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Abstract. We develop a first-principles simulation method for attosecond time-resolved photoelectron
spectroscopy. This method enables us to directly simulate the whole experimental processes, including
excitation, emission and detection on equal footing. To examine the performance of the method, we use it
to compute the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT)
experiments of gas-phase Argon. The computed RABBITT photoionization delay is in very good agreement
with recent experimental results from [Klünder et al., Phys. Rev. Lett. 106, 143002 (2011)] and [Guénot
et al., Phys. Rev. A 85, 053424 (2012)]. This indicates the significance of a fully-consistent theoretical
treatment of the whole measurement process to properly describe experimental observables in attosecond
photoelectron spectroscopy. The present framework opens the path to unravel the microscopic processes
underlying RABBITT spectra in more complex materials and nanostructures.

1 Introduction

Recent progress of laser technologies has enabled the
observation of ultrafast phenomena with attosecond reso-
lution and offered novel opportunities to directly explore
real-time electron dynamics in matter [1–3]. Broadly
speaking one can assign the available attosecond time-
resolved measurement techniques to three major groups:
one is based on all-optical measurements such as the
attosecond transient absorption spectroscopy [4–6]. The
second is based on photoelectron spectroscopy such as
the reconstruction of attosecond beating by interfer-
ence of two-photon transitions (RABBITT) [7,8] and the
attosecond streaking camera [9,10]. The other is based on
detection of ionic fragments from molecules [11].

In the past decade, attosecond transient absorption
spectroscopy has been applied to atomic and molecular
systems, and ultrafast electron dynamics in these rel-
atively small systems has been intensively investigated
both experimentally [4,12–14] and theoretically [15,16].
Recently, this technique has been extended to solid-state
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materials where nonequilibrium electron dynamics has
been investigated towards future applications such as
petahertz devices [17–19]. Although attosecond spec-
troscopy of solid-state materials provides in principle
a wealth of information on novel aspects of ultrafast
dynamics, experimental results are often hard to interpret
directly, because of the strong nonlinearlity of light-matter
interactions combined with the complex electronic struc-
ture of solids. To extract microscopic insight from attosec-
ond transient absorption spectra of solids, first-principles
simulations based on the density functional theory (DFT)
[20,21] and the time-dependent density functional theory
(TDDFT) [22] have played a significant role [17,18,23].

Likewise, attosecond photoelectron spectroscopy has
been applied to atomic systems [24–27] as well as
recently to solid-state materials [28–30]. However, in
spite of the intensive development of several ab initio
approaches for atomic and molecular systems [31–33],
similar approaches for solids and surfaces have not yet
been established. Therefore, in order to understand exper-
iments on such complex systems, further development of
first-principles approaches is required. In this regard one
promising candidate is represented by real-time electron
dynamics simulations based on TDDFT. Real-time
TDDFT simulations of solids have been already applied to
ultrafast as well as strong-field-induced phenomena such
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as attosecond transient absorption spectroscopy [18], high
harmonic generation [34–36], laser-induced damage [37],
and laser-induced magnetism [38].

In a recent work [39] the authors have introduced a
method to compute the angle-resolved photoelectron spec-
trum of solid-state systems. This method is based on
the calculation of the photoelectron flux trough a closed
surface that can be simulated with TDDFT in a real-
space real-time implementation. Here we illustrate how
this approach can be employed to calculate attosecond
photoelectron spectra of finite systems. This constitutes
a fundamental benchmark towards the application to
solid-state materials.

For this purpose, we perform the attosecond photo-
electron spectroscopy simulation of an Argon atom and
compare the theoretical results with recent experiments.
In particular here we focus on RABBITT experiments,
since the alternative approach, attosecond streaking, pro-
vides equivalent information [40,41] and we emphasize
that the TDDFT attosecond photoelectron spectroscopy
can be straightforwardly applied also to the attosecond
streaking technique.

RABBITT has been originally introduced for the tem-
poral characterization of attosecond pulses [7], and has
then been employed to investigate the photoionization
delay in atoms and molecules [25,27,40] as well as, in
recent times, in solid-state surfaces [29,42]. The RAB-
BITT technique employs two laser pulses in a pump-probe
fashion: an attosecond extreme ultraviolet (EUV) pulse
train is used as a pump to ionize the system while a
femtosecond infrared (IR) pulse is used as a probe. This
configuration is designed for experiments where the pulse
train is obtained by an high harmonic generation stage
seeded by the IR pulse. As the attosecond pulse train
consists of a frequency comb of odd IR frequency multi-
ples it produces an energy comb of photoelectron spectra
that are shifted by IR photons. Probing the system with
the delayed IR brings two adjacent photoelectron peaks in
contact and forms an interference pattern that oscillates
as a function of the delay. This pattern encodes informa-
tion on the emission delay with attosecond resolution. In
this paper we will demonstrate how the entire process can
be efficiently simulated with TDDFT.

The structure of this paper is as follows: in Section 2,
we describe the theoretical and numerical methods to
compute electron dynamics and photoelectron spectra
based on the TDDFT. In Section 3, we demonstrate
the first-principles simulation for attosecond photoelec-
tron spectroscopy and compare the theoretical results with
recent experiments. We further discuss the role of a many-
body effects in the photoemission process. Finally, we
summarize our findings and provide some perspective for
future work in Section 4.

Hartree atomic units (~ = e = me = 4πε0 = 1) are
employed throughout the paper unless otherwise specified.

2 Method

The fundamental concept of TDDFT is that all phys-
ical properties of a time-dependent system can be
determined through their functional dependence on

the time-dependent interacting many-body density [22],
n(r, t) and the initial many body state, which can be
disregarded if we start from the ground state. The idea of
both DFT and TDDFT, is to obtain this many-body den-
sity by mapping it to the density of a fictitious auxiliary
system of non-interacting electrons: the Kohn-Sham (KS)
system. The dynamics of the KS system can be obtained
by propagating the one-particle equations for the orbitals
ϕi(r, t) of a single Slater determinant, according to the
time-dependent KS (TDKS) equations

i
∂

∂t
ϕi(r, t) = HKS(r, t)ϕi(r, t), i = 1, . . . , N/2 . (1)

To simplify notation we here only consider systems with
an even number of electrons N , so that each spatial
orbital ϕi is doubly occupied with two electrons of oppo-
site spin. The KS Hamiltonian governing the dynamics of
the orbitals in (1) is defined as:

HKS(r, t) =
1

2

(
−i∇+

A(t)

c

)2

+ vKS[n](r, t), (2)

vKS[n](r, t) = vion(r, t) + vH[n](r, t) + vxc[n](r, t), (3)

where due to the action of the KS potential vKS, the time-

dependent density n(r, t) = 2
∑N/2
i=1 |ϕi(r, t)|2 corresponds

both to the real and to the KS system. The KS potential
is composed of three terms. The first term is the electron–
ion potential provided by the nuclei, while the second
term is the electrostatic potential generated by the elec-
tronic charge density vH[n](r, t) =

∫
dr′ n(r′, t)/|r − r′|.

The last term vxc[n](r, t) is the so-called exchange and
correlation (xc) potential that accounts for the many-body
effects deriving from the electron–electron interaction; it
is a functional of the density at all times n(r, t) and,
since its explicit form is unknown, it must be approxi-
mated. In this work we employ the adiabatic local-density
approximation (ALDA) [43,44] which is based on the xc
potential of a homogeneous electron gas evaluated with
the instantaneous density in time at every point in space.
In order to compensate the self-interaction error [44] of
the local approximation and obtain a correct ionization
potential we employ the simplest scheme based on the
averaged-density self-interaction correction (ADSIC) [45].

Given the energy range of the lasers employed in the
simulations, it is well justified to invoke the dipole approx-
imation for the light-matter interaction. Under this con-
dition, the coupling with the laser field can be expressed
in the velocity gauge which amounts to modifying the
kinetic operator by adding the spatially homogeneous
time-dependent vector potential A(t) of the classical laser
field, as in equation (2).1 The time profile of A(t) can

1 Note that equations (2) and (3) correctly describe the coupling
with external electric fields, but neglect contributions from the mag-
netic fields. To correctly account for magnetic fields one would need
to resort to a current-density functional theory formulation of the
problem where exchange and correlation are expressed via a vec-
tor potential Axc[j]. However, the effect of the magnetic component
of a laser electromagnetic radiation is much smaller than that of
the electric component and can be safely neglected in the presently
discussed context.
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accommodate any linear combination of laser fields and
is therefore naturally suited to describe any kind of
pump-probe configuration, including the one employed for
RABBITT experiments.

To obtain the photoelectron spectrum from the time-
dependent KS orbitals, we use the fact that it can be
expressed as a flux integral of the ionization current
through a closed surface. This approach is based on the
t-SURFF method, first introduced by Scrinzi [46] for
one-electron systems and later extended to many elec-
trons with TDDFT [47]. According to this formulation
the momentum-resolved photoelectron probability P(p),
i.e. the probability to measure an electron with a given
momentum p, can be expressed as

P(p) =
2

N

N/2∑
i=1

∣∣∣∣∫ ∞
0

dτ

∮
S

ds · 〈χp(τ)|̂j|ϕi(τ)〉
∣∣∣∣2 , (4)

where ĵ is the single-particle gauge-invariant current den-
sity operator and χp(r, t) = (2π)−

3
2 ei(p+A(t))·reiΦ(p,t).

The phases Φ(p, t) =
∫ t
0

dτ 1
2

(
p + A(t)

c

)2
describe Volkov

waves of momentum p that are the analytical solutions of
the time-dependent Schrödinger equation for free particles
in a field. The bracket notation in the equation is thus used
as shorthand to indicate the evaluation of the current-
density operator matrix element between KS orbitals and
Volkov waves. The energy-resolved photoelectron spec-
trum, P(E), employed to build the RABBITT traces can
be obtained by integrating the angular dependence of
P(p) as follows

P(E) =

∫ 4π

0

dΩ P(E =
p2

2
, Ω) . (5)

This approach to photoemission is particularly suited to
numerical implementations where the TDKS equation (1)
are solved in real-space and propagated in real-time. In our
implementation the spatial coordinates are discretized on
a cartesian grid with spacing ∆ = 0.3 a.u. and the equa-
tions are solved on a spherical box of radius R = 30 a.u.
The TDKS equations are propagated under the influence
of a time dependent field with a time step ∆t = 0.04 a.u.
starting from the ground state configuration. The pho-
toelectron probability is calculated with (4) by collecting
the flux integral calculated on a spherical surface of radius
RS = 20 a.u. while the KS orbitals are propagated over
time. To prevent spurious reflections from the boundaries
of the simulation box we employ a complex absorbing
potential (CAP) acting on the region outside the surface
S with parameters tuned in such a way to be maximally
efficient in the energy region where we expect photoelec-
trons to be mostly emitted [48]. The geometry employed
in the simulations is summarized in Figure 1.

Note that the method we use here is based on the flux
of the current density which is a quantity that is not
necessarily well described by TDDFT. More specifically,
TDDFT fails in capturing the transverse component of the
current. For a proper description of the current density

Fig. 1. Scheme illustrating the geometry employed to calcu-
lated the photoelectron spectrum with t-SURFF and TDDFT.

one, in principle, should use time dependent current-DFT
[49]. However, for ionization problems, this treatment
is not necessary because, given the outgoing nature of
the ionization current, one can safely assume the trans-
verse component to be negligible. In fact, it was recently
demonstrated that the above TDDFT photoelectron spec-
troscopy shows excellent agreement with angular-resolved
photoelectron spectra for a small molecule in strong-field
regime [50].

Finally, since the inner shell electrons of Argon are not
expected to take significant part in the ionization dynam-
ics, we use the Hartwigsen–Goedecker–Hutter (HGH)
pseudopotential [51] that effectively accounts for the core
electrons and consider explicitly only the n = 3 electrons.

All the simulations presented are carried out with the
Octopus code [52].

3 Result

In this section, we examine the performance of the
TDDFT simulation for the attosecond photoelectron spec-
troscopy. For this purpose, we simulate the RABBITT
measurement processes for an Argon atom. We first
explain how to simulate the entire the RABBITT mea-
surement. Then, we compare the theoretical results with
the recent experimental data [25,26]. Finally, we inves-
tigate the role of many-body effects in the RABBITT
photoemission delay.

3.1 RABBITT spectroscopy

Here, we revisit the RABBITT pump-probe technique
from a computational point of view. The RABBITT mea-
surement is a pump-probe experiment that employs an
attosecond EUV pulse train as a pump and an IR fem-
tosecond pulse as a probe. Importantly, the attosecond
pulse train is generated by high-order harmonic gener-
ation of the same IR femtosecond pulse. Therefore, the
attosecond EUV pulse train consists of odd harmonics of
the IR field.

In this work, we employ the following form for the
femtosecond IR pulse,

AIR(t) = −cEIR
ω0

[
cos

(
πt

TIR

)]2
sin (ω0t) , (6)

in the domain −TIR/2 < t < TIR/2 and zero outside. Here
ω0 is a mean frequency of the IR pulse, and TIR is the full
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Fig. 2. Profile of the attosecond pulse train in time-domain
(a) and the frequency domain (b).

duration of the pulse. The maximum field amplitude EIR
is related to the peak laser intensity as IIR = cE2

IR/8π.
We set ω0 to 1.55 eV, and TIR to 30 fs. The peak intensity
IIR is set to 1011 W/cm2. As a corresponding attosecond
pulse train, we employ the following form:

AEUV (t) = −cEEUV
ωEUV

cos4
(

πt

Ttrain

)
× cos6 (ω0t) sin (ωEUV t) , (7)

in the domain −Ttrain/2 < t < Ttrain/2 and zero outside.
Here ωEUV is the central frequency, and Ttrain is the full
duration of the pulse train. We set ωEUV to 25ω0, and
Ttrain to 10 fs. We also set the peak laser intensity IEUV =
cE2

EUV /8π to 5× 1010 W/cm2.
Figure 2 shows the attosecond pulse train of

equation (7) in the time-domain (a) and the frequency-
domain (b). As seen from Figure 2a, several attosecond
pulses follow each other in a line with equal distance
in time-domain. Each pulse has about 120 attoseconds
full-width half-maximum. This train forms a comb in the
frequency domain, as seen in Figure 2b. We note that the
comb consists of the odd order harmonics of the IR probe
pulse.

We then compute the photoelectron spectrum induced
by the attosecond pulse train. Figure 3 shows the pho-
toelectron spectrum as a function of kinetic energy
of emitted electrons. Since the photoelectron spectrum
is computed based on the time-dependent Kohn-Sham
orbitals, one can naturally decompose the signal into each
orbital contribution. In Figure 3, the contribution from the
Ar 3s shell is shown as a red-solid line, while that from

Fig. 3. Photoelectron spectrum induced by the attosecond
pulse train of Figure 2. The contribution from the Ar 3s shell
is shown as a red-solid line, while that from the Ar 3p shell is
shown as a green-dashed line. The contribution from the Ar 3s
shell is scaled by a factor of 5.

the Ar 3p shell is shown as a green-dashed line. One sees
that the two contributions are energetically well separated
because of the large difference between the ionization
potentials of the 3s and 3p shells. Each contribution shows
the comb structure, reflecting the frequency comb feature
of the attosecond pulse train in Figure 2b.

In a RABBITT experiment, the photoelectron spectrum
under both the attosecond pulse train and the femtosec-
ond IR pulse is measured. In perfect analogy, we can
compute in the theoretical simulation the photoelectron
spectrum under both the attosecond pulse train and the
IR femtosecond laser pulse. Figure 4 shows the photo-
electron spectrum from the Ar 3p shell. Red-solid line
shows the photoelectron spectrum created by both the
attosecond pulse train and the IR femtosecond pulse,
while blue-dashed line shows the signal solely due to the
pulse train. One sees that the IR pulse results in addi-
tional peaks between those peaks that were created only
by the pulse train. These additional peaks originate from
a two-photon absorption process: one-photon from the
attosecond pulse train and the other from the IR pulse.
Adding the ionization potential of the Ar 3p shell to the
photoelectron kinetic energy, the absorbed photon energy
can be calculated. The calculated absorbed photon energy
is shown as the secondary x-axis of Figure 4. Each addi-
tional peak due to the IR field consists of two excitation
paths: one corresponds to the EUV photon energy plus
the IR photon energy, while the other corresponds to the
EUV minus IR photon energy. For example, as seen in the
schematic picture of Figure 4, the additional peak at the
energy of 24ω0 is created by the following two excitation
paths: one is the 23rd harmonics plus the IR photon
energy, while the other is the 25th harmonics minus the
IR photon energy. As discussed above, this interference
between the two excitation path is the central effect used
in which RABBIT spectroscopy.

We next perform the RABBITT pump-probe simula-
tions by changing the time delay between the attosecond
pulse train and the IR pulse. Figure 5 shows the calcu-
lated photoelectron spectrum as a function of the time
delay. One sees that the even order side bands show an
oscillating feature in time delay, reflecting the interference
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Fig. 4. Photoelectron spectra from the Ar 3p shell. Red-solid
line shows the result with both the attosecond pulse train and
the IR femtosecond pulse, while the blue-dashed line shows the
result only with the pump pulse train.

Fig. 5. Calculated RABBITT trace from equation (5) for the
Ar 3p shell using the laser pulses of Figure 2.

of the two different two-photon absorption paths, which
is described in the schematic picture of Figure 4. The fre-
quency of the oscillation is twice that of the IR frequency
ω0. Generally, each side band has its own time-delay with
respect to the IR field. Because the difference of the delay
of these side bands reflects the difference of the photoion-
ization delay in each excitation channel, the time delay in
the RABBITT trace has been used to investigate the pho-
toionization processes [25–27]. Since TDDFT can directly
simulate the whole RABBITT experimental process and
provide the resulting RABBITT trace as seen in Figure 5,
it enables us to directly compare calculated results with
experimental results. In the following subsection, we
demonstrate the comparison of theory with experiment.

3.2 Comparison with experimental results

Here, we compare the computed time delays from TDDFT
simulations with the experimental results [25,26]. For this
purpose, we first numerically extract the delay from the
RABBITT trace in Figure 5. To extract the delay for each
side band, we average the RABBITT trace around the
central frequency of the side-band with width of ω0/2.
For example, to extract the 26th side band in Figure 5, we

Fig. 6. Extracted RABBITT trace of the Ar 3p shell for the
26th side-band. Red-points show the TDDFT result for each
delay. The blue line shows the fitting function in equation (8).

average the signal between 26ω0 ± ω0/4. Figure 6 shows
the extracted signal for the 26th side-band in Figure 5.
Each red-point shows the result from a single TDDFT
simulation with the corresponding time delay. In order to
extract the time delay, we further fit the numerical signal
by an analytic function of the following form:

S(t) = A · cos4
[π
σ

(t− t0)
]

cos2 [ω0(t− τdelay)] + C, (8)

where A, C, σ, t0, and τdelay are fitting parameters. Here,
τdelay is the time delay, which we aim to extract. In
Figure 6, the fitting function is shown as a blue line. One
sees that the fitting function represents the signal very
well over the entire time delay range.

Even though the absolute time delay with respect to
the IR field can be readily extracted from these theoreti-
cal simulations, it is in fact hard to extract this absolute
delay from experimental results, since the absolute time-
zero cannot be determined in the experiments. Therefore,
so far, experimental results only provide the relative time
delay between two different excitation channels such as
excitation from different atomic shells.

Figure 7 shows the relative time delay for ionization of
Ar from the 3s and 3p shells. Red-circles show the TDDFT
results, while up and down-pointing triangles show recent
experimental results [25,26]. One sees that the TDDFT
results are in excellent agreement with the experimental
results.

We note that while our work based on the TDDFT with
ALDA and ADSIC shows very good agreement with the
experiment, recent results by Magrakvelidze et al. [53],
also based on TDDFT in the local density approximation,
appears to disagree on the same experiment. Here, we dis-
cuss a possible origin for this apparent inconsistency and
suggest that emerges from the separation of the photoe-
mission delay into two consecutive steps – an approach
shared by many RABBITT models. In many works that
deal with modelling RABBITT [25,40], the time delay is
first decomposed into two components:

τdelay = τW + τcc, (9)
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where τW is so-called Wigner delay due to the EUV single-
photon absorption process [54,55], and τcc is the so-called
continuum-continuum delay due to the additional contri-
bution from the IR field [25,56]. These two delays are
often treated and computed separately. In contrast, in the
present work, we do not rely on such a decomposition
of the RABBITT delay, but directly compute the total
delay, by simulating the whole measurement processes,
starting from two external laser fields and the system in
its groundstate and by performing a time-propagation all
the way to the detection of the emitted photo-electron.
As a result our method treats the excitation, emission and
detection process on the same footing and, as shown in the
present work, succeeds to accurately reproduce the experi-
ment. This fact indicates that a fully consistent treatment
for all the delay components is significant to correctly
understand experimental results, and thus, a direct sim-
ulation of the entire measurement processes is required.
Furthermore, a separated treatment of the delay compo-
nents is highly non-trivial for complex systems such as
large molecules or solid-state surfaces. In the last case, an
additional delay related to the electron transport towards
the surface has to be taken into account [29].

3.3 Many-body effects

One of the strong points of the present TDDFT photo-
electron spectroscopy is the capability to investigate the
impact of many-body effects directly in the experimental
observable. Therefore, the present TDDFT simulation of
photoelectron spectroscopy offers novel opportunities to
explore the role of many-body effects in the photoelectron
emission process. To demonstrate this capability, we here
investigate the role of the dynamical electron–electron
interaction effects in the argon RABBITT spectroscopy.
In our calculation we employ the local density approxima-
tion (LDA) for all exchange and correlation effects that are
beyond the time-dependent Hartree approximation. While
LDA is known to not be able to represent most exchange
effects and only weak correlation, the dynamical Hartree
potential we use in our calculation should be expected
to have a large impact on the dynamics. Since, for the
photo-emission process we require a functional with SIC-
correction it is not possible to completely separate the
effect of the xc-functional and the Hartree potential, but
we posit that our results can be considered to be roughly
equivalent to at least a random phase approximation level
of theory.

To demonstrate the influence of some of the many-
body effects as captured by the current approximation,
we additionally perform TDDFT RABBITT simulations,
where we neglect the time-dependence of the Hartree
and the exchange-correlation potentials. That is to say
that throughout the propagation of the KS equation, the
Kohn–Sham potential is kept “frozen” to the ground state.
This treatment corresponds to the independent particle
(IP) approximation since all the electrons independently
move in a common and fixed mean-field potential.

Figure 8a shows the relative delays τ3s–τ3p computed by
the TDDFT and the IP calculations. One sees that, while
the two calculations provide the similar relative delays in

Fig. 7. Comparison of the delay differences for ionization of Ar
from the 3s and 3p shells: the theoretical results by the TDDFT
with ALDA + ADSIC (red-circles), the experimental results
by Klünder et al. [25] (green up-pointing triangles), and the
experimental results by Guénot et al. [26] (blue down-pointing
triangles) are shown.

the lower photon energy region, they show a discrepancy
in the higher energy region. In this high energy range
around 42 eV, the Ar 3s photoionization cross section
becomes very small due to many-electron effects [57]. This
region is the so-called Cooper minimum, and the influence
of the Cooper minima in the photoionization delay has
been intensively discussed [40]. Previous TDDFT calcula-
tions with LDA reported a photoionization cross section
in good agreement with the experiment [58].

To obtain further insight of the impact of the many-
body effects in the photoionization delay in atoms, we
investigate the RABBITT delay for individual Ar 3s and
3p shells. Figures 8b and 8c show the RABBITT delays for
Ar 3s and 3p shells, respectively. As seen from Figure 8b,
many-body effects play different roles for the photoion-
ization from Ar 3s shell in the lower and higher energy
ranges: while the many-body interaction induces a positive
delay in the lower energy range, it induces a negative delay
in the higher energy range. This fact indicates a correla-
tion among many-body effects, Cooper minima, and the
photoionization delay. In contrast, as seen from Figure 8c,
the many-body effects uniformly increase the delay of the
Ar 3p shell in all the investigated photon energy range.
Importantly, one sees that it induces similar amount of
positive delay for both Ar 3s and 3p shells in the low pho-
ton energy range. Therefore, the influence of many-body
effects on the relative 3s–3p delay in the low photon energy
range is cancelled out and appears to have no influence on
the relative delay.

4 Summary

In this work, we developed an efficient first-principles
attosecond photoelectron spectroscopy technique based
on time-dependent density functional theory (TDDFT),
focusing on the reconstruction of attosecond beating by
interference of two-photon transition (RABBITT). We
applied the TDDFT RABBITT simulation to investigate
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Fig. 8. Comparison of the RABBITT delay with and without
the many-body effects as captured by TDDFT with LDA. The
panel (a) shows the relative Ar 3s–3p delay. The individual
delays of the Ar 3s and 3p shells are also shown in the panels
(b) and (c), respectively.

the photoemission from the 3s and 3p shells of Argon. We
demonstrated that the TDDFT results nicely reproduce
recent experimental results [25,26]. The good agreement
of our TDDFT simulation with the experimental results
is apparent inconsistency with previous work that also
employs TDDFT [53]; Magrakvelidze, et al. reported that
the results computed by TDDFT with the local density
approximation disagrees with the measured relative Ar
3s–3p time delay. While the previous work computed only
the Wigner delay with TDDFT but employed another the-
ory to treat the continuum-continuum delay, the present
work treats all the components of the delay at the same
level in the TDDFT propagation. Therefore, the apparent
inconsistency between the present and previous works may
originate from the inconsistent treatment of individual
delay contributions of the previous work. This fact indi-
cates the significance of a consistent treatment for each
delay contribution and the direct simulation of the whole
measurement processes. Furthermore, once target systems
become complex, such as large molecules and solid-state
surfaces, this kind of step-wise approach to the complete
delay becomes nontrivial or unfeasible. Therefore, the
fully consistent simulations for the whole measurement
processes naturally emerges as a significant tool to attain
microscopic insight of such attosecond experiments.

Furthermore, the presented TDDFT approach offers
novel opportunities to investigate the role of microscopic
many-body effects in the photoemission process. In
this work we have shown how, by freezing the time-
dependent Hartree and exchange-correlation potentials,
the role of many-body interactions can be systematically
investigated.

As a result, it turned out that many-body effects sub-
stantially affect the RABBITT photoionization delay.
In particular, we found that the induced delay in Ar
3s photoionization changes its sign around the Cooper
minimum. At the moment, accurate description of the
exchange-correlation potential as well as electron–ion cou-
pling is limited, and thus, many-body effects are not
fully captured by our TDDFT simulation. However, once
a better description for electron–electron and electron–
ion interactions is developed, the TDDFT RABBITT
simulation could be employed to investigate the role of
decoherence due to electron–electron, electron–ion and
electron–phonon scattering both in the photoemission as
well as the transport processes.

While in this work we presented results on a simple sys-
tem such as gas-phase Argon, the current technique can
be readily employed to more complex targets. In partic-
ular, the current approach as well as our implementation
can be already used to investigate attosecond photoelec-
tron dynamics of solid surfaces. It therefore represents a
very powerful and timely technique to guide state-of-the-
art experiments, and indeed, work along these lines with
experiments is already underway.
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