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Abstract. Recent advances in laser technology allow us to follow electronic motion at its natural time-scale
with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme preci-
sion. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features
of the probe absorption (for example, absorption in the visible range of otherwise transparent samples).
This type of manipulation of the system response could be helpful for its full characterization, since it
would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate
these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this
context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the
feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this
absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea
could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing
states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem:
large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings
of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.

1 Introduction

Time-resolved pump-probe experiments are powerful tech-
niques to study the dynamics of atoms and molecules: the
pump pulse triggers the dynamics, which is then moni-
tored by measuring the time-dependent response of the
excited system to a probe pulse. The time-resolution of
this technique has increased over the years, and nowa-
days, it can be used to observe the electron dynamics in
real time, giving rise to the field of attosecond physics [1,2].

A suitable setup to observe charge-neutral excitations
is the time-resolved photoabsorption or transient absorp-
tion spectroscopy (TAS), where the time-dependent op-
tical absorption of the probe is measured. TAS can of
course be used to look at longer time resolutions: if we
look at molecular reaction on the scale of tens or hun-
dreds of femtoseconds, the atomic structure will have time
to re-arrange. These techniques are thus mainly employed
in femtochemistry [3,4] to observe and control modifica-
tion, creation, or destruction of bonds. TAS has been
successfully employed, for example, to watch the first
photo-synthetic events in cholorophylls and carotenoids [5]
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(a review describing the essentials of this technique can
be found in Ref. [6]). If, on the contrary, one wants to
study the electronic dynamics only, disentangling it from
the vibronic degrees of freedom, then one must perform
TAS with attosecond pulses [7], a possibility recently
demonstrated [8,9].

The theoretical description of these processes,
which involve non-linear light-matter interaction, and
the ensuing non-equilibrium electron dynamics, is
challenging. Time-dependent density functional theory
(TDDFT) [10–12] is a well-established tool to compute
the response of a many-electron system to arbitrary per-
turbations. Traditionally, the vast majority of TDDFT ap-
plications have addressed the first-order response of the
ground-state system to weak electric fields – which can
provide the absorption spectrum, the optically-allowed ex-
citation energies and oscillator strengths, etc. Neverthe-
less, the extension of TDDFT to the description of ex-
cited state spectral properties and its ability to simulate
transient absorption spectroscopy (TAS) has recently been
demonstrated [13,14].

In this work, we are not only interested in simulating
attosecond TAS of atoms and molecules, but in studying
the possibility of tailoring the pump to control the spectra.
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In fact, the measurement and control of ultrafast processes
are inherently intertwined: quantum optimal control the-
ory (QOCT) [15,16] can be viewed as the inverse of the-
oretical spectroscopy: rather than attempting to predict
the reaction of a quantum system to a perturbation, it
attempts to find the perturbation that induces a given
reaction in a given quantum system. It is the quantum
version of the more general control theory [17–21], which
was needed given the fast advances in experimental quan-
tum control [22–31].

The possibility of combining QOCT with TDDFT has
been established recently [32]. Furthermore it has been
shown, that it can be used to optimize strong-field ioniza-
tion [33], photo-induced dissociation [34] and is compat-
ible with Ehrenfest dynamics [35]. Very recently, Krieger
et al. used TDDFT to study the influence of laser intensity,
frequency and duration on the laser-induced demagnetiza-
tion process in bulk materials, which takes place on time
scales of <20 fs [36].

Here, we take the first steps towards the use of this
combination of TDDFT with QOCT to control excited
state spectra of finite systems. This idea is very much re-
lated to the concept of electromagnetically induced trans-
parency [37,38]. Control of the absorption spectra may
mean its elimination or reduction, or its increase. Our
gedanken setup throughout this paper is the following: for
a certain time interval [0, T ] a quantum system is driven
by a “classical” pump pulse E (t) whose precise shape can
be manipulated. After the pump has ended, the (linear)
response of the system to some later perturbation is calcu-
lated. Our goal is to design the shape of the pump pulse in
such a way, that the response to some later perturbation is
optimal in some given way. In particular, we demonstrate
how the tailored pump pulses may be used to transform
a transparent atom or molecule into an excited one that
absorbs in the visible.

This paper is structured as follows. In Section 2, we an-
alyze the optical linear response of a system in an excited
state, looking at the location and the shape of the re-
sulting spectral peaks and their time-dependence. In Sec-
tion 3 we present the theory of quantum optimal control
and how it can be applied to optimize spectral properties
of systems in excited states. We then bring these concepts
into application in Section 4. In Section 4.1 we illustrate
the conclusions gained in Section 2 using the analyticly
solvable hydrogen atom. We then proceed to demonstrate
control of the excited state properties in this system. In
Section 4.2 we finally combine our methodology with time-
dependent density functional theory, first for the helium
atom, and then for the methane molecule. We conclude
our work in Section 5.

2 Short review of out-of-equilibrium
(pumped) absorption spectra

In pump-probe spectroscopy, the probe may arrive after,
during, or even before the pump; in this work, we consider
a non-overlapping regime in which the probe arrives after

the pump has vanished. The time evolution of a system
after the end of the pump is described by the Hamiltonian
(atomic units will be used hereafter):

Ĥ(t) = Ĥ + F (t)D̂μ, (1)

where Ĥ is the static Hamiltonian, that describes the
system itself and F (t)D̂μ is the coupling to a probe pulse
via the dipole operator

D̂μ = −
N∑

i=1

r̂(i)
μ (2)

in which N is the number of electrons in the system, and
μ = x, y, z determines the polarization direction. Note,
that the implementation of the coupling via the dipole
operator is an approximation and could be removed in
practical implementations since the theory handles non-
dipolar fields. Also note, that we work in the length gauge
all over the paper.

If, at the time t = T , the system has been driven by
the previous pump E to the state |Ψ [E ] (T )〉, the com-
plete dipole-dipole response function for the perturbation
at later times is given by:

χD̂μ,D̂ν
[E ] (t, t′) = −iθ(t − t′) 〈Ψ [E ] (T )|

×
[
D̂μI(t), D̂νI(t′)

]
|Ψ [E ] (T )〉 , (3)

where the operators are expressed in the interaction
picture.

The difference between equation (3) and the equilib-
rium response function [39] or the response function of a
system in a many-body eigenstate is that the two times t
and t′ cannot be reduced to only one by making use of the
time-translational invariance. Since |Ψ [E ](T )〉 depends on
the pump, the first-order response of the system does ex-
plicitly depend on both the pump E and the probe F . It
is given by:

D(1)
μν [E , F ] (t) =

∫ t

T

dt′F (t′)χD̂μ,D̂ν
[E ] (t, t′). (4)

An intuitive physical meaning can be gained from this
equation for the response function: it is the first order of
the system response, if we consider a sudden perturbation
at t′ = T + τ : F (t) = δ(t− (T + τ)), where τ denotes the
delay between the end of the pump and the perturbation:

χD̂μ,D̂ν
[E ] (t, T + τ) = D(1)

μν [E , δT+τ ] (t). (5)

This object contains all the necessary information about
the interacting system to compute the absorption of any
given probe, as long as it is weak enough for the re-
sponse to be linear. In order to analyze it, it is useful
to take the Fourier transform with respect to the variable
t, and expand equation (3) in an eigenbasis of the static
Hamiltonian Ĥ

|Ψ [E ] (T )〉 =
∞∑∫

j=1

γj |Φj〉, Ĥ |Φj〉 = εj |Φj〉, (6)
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obtaining a Lehmann representation for the time-
dependent non-equilibrium response function:

χD̂μ,D̂ν
[E ] (ω, T + τ) =

∑∫

jkm

dμ
jmdν

mk

{
γjγ

∗
keiωjkτ

ω + ωjm + iΓ/2
− γ∗

j γke−iωjkτ

ω − ωjm + iΓ/2

}
(7)

in terms of the exact energy differences ωjk = εk − εj , the
dipole-matrix elements dμ

jm = 〈Φj |D̂μ|Φm〉 ∈ R and the
pump-probe delay τ . Note that here, we introduced the in-
finitesimal parameter Γ in order to obtain the Lehmann
representation; physically, Γ can be used as an effective
way to account for the line broadening. A similar repre-
sentation in the case of non-equilibrium spectroscopy has
been recently presented in a similar context [40]. By writ-
ing γj = |γj |eiϕj equation (7) turns into

χD̂μ,D̂ν
[E ] (ω, T + τ) =

∑∫

jkm

dμ
jmdν

mk|γjγk|
{

eiΘkj(τ)

ω + ωjm + iΓ/2
− e−iΘkj(τ)

ω − ωjm + iΓ/2

}

(8)

with
Θkj(τ) = ϕj − ϕk − ωkjτ. (9)

Since the absorption depends on the imaginary part of the
response function, we get from equation (8):

�χD̂μ,D̂ν
[E ] (ω, T + τ) =

∑∫

jkm

dμ
jmdν

mk|γjγk|

× {cos(Θkj(τ))L(ω − ωjm)
+ sin(Θkj(τ))R(ω − ωjm)
− cos(Θkj(τ))L(ω + ωjm)
+ sin(Θkj(τ))R(ω + ωjm)}

(10)

with the Rayleigh peaks

R(ω̄) =
ω̄

ω̄2 + Γ 2/4
(11)

and the Lorentzian peaks

L(ω̄) =
Γ/2

ω̄2 + Γ 2/4
. (12)

The absorption cross section tensor is:

σμ,ν(ω) =
4πω

c
�χD̂μD̂ν

(ω), (13)

and for a random sample, the absorption will be its orien-
tational average, i.e. the absorption coefficient :

σ̄(ω) =
1
3

Tr σ(ω). (14)

Since we are only interested in the trace, in the following,
we concentrate on the diagonal terms, we will omit here-
after the orientation indexes in order to ease the notation.

We now analyze equation (10) in more detail. First,
as already pointed out in reference [40], in this non-
overlapping regime the dependence of the spectrum on
both the pump-pulse and the delay time enters through
the modification of the peak amplitudes and shapes ex-
clusively: the peak positions are intrinsic properties of the
many-body system. Second, for the analysis of the effect
of the pump pulse and of the pump-probe delay on the
spectrum, we can distinguish between three cases: (i) the
system is in its ground state; (ii) the system is in an excited
eigenstate; (iii) the system is in a non-stationary state, i.e.
in a linear combination of non-degenerate eigenstates. In
all cases we focus on the positive part of the energy range,
which we denote by ω+. The following shape analysis in
terms of Lorentzian and Rayleigh contributions is for dis-
crete peaks only. We denote this by replacing ∑∫ by

∑

(we will comment on the continuum part later on in this
section).

In case (i) γi = δi0 and �χD̂,D̂ [E ] (ω+) reduces to
the usual Lehmann representation for the ground state
spectrum:

�χD̂,D̂ [E ] (ω+) =
∑

m

|d0m|2L(ω+ − ω0m). (15)

All peaks are positive and have Lorentzian shape. In
case (ii), where γi = δiξ, the system is in an excited eigen-
state Φξ, and therefore in the positive energy part of the
spectrum we can find both positive and negative peaks of
Lorentzian shape:

�χD̂,D̂ [E ] (ω+) =
∑

ξ<m

|dξm|2L(ω+ − ωξm)

−
∑

ξ>m

|dξm|2L(ω+ + ωξm). (16)

Note, that in both cases (i) and (ii); the spectrum is time-
independent and has only Lorentzian contributions. This
is the main difference to the case (iii); for non-stationary
states. In this case, the spectrum can be divided into two
parts, one time-independent and one oscillatory part due
to interferences between the involved states:

�χD̂,D̂ [E ] (ω+, T + τ) = �χ0
D̂,D̂

[E ] (ω+)

+ �χINT
D̂,D̂

[E ] (ω+, T + τ). (17)

The equilibrium term consists of the sum over the sta-
tionary state spectra of the eigenstates involved, scaled
by their occupations:

�χ0
D̂,D̂

[E ] (ω+) =
∑

j

|γj |2
⎧
⎨

⎩
∑

j<m

|djm|2L(ω − ωjm)

−
∑

j>m

|djm|2L(ω + ωjm)

⎫
⎬

⎭ . (18)
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Its peaks are always of Lorentzian shape and depend nei-
ther on time nor on the initial phase difference ϕj − ϕk.
It is influenced by the pump laser only through the oc-
cupations |γj |2. The phase- and time-dependency of the
spectrum enters through the interference term

�χINT
D̂,D̂

[E ] (ω, T + τ) =
∑

j �=k;m

djmdmk|γjγk|

× {cosΘkj(τ)L(ω − ωjm)
+ sin Θkj(τ)R(ω − ωjm)
− cosΘkj(τ)L(ω + ωjm)
+ sin Θkj(τ)R(ω + ωjm)} (19)

which in turn is governed by the phase differences Θkj ,
which have contributions from both the phase difference
ϕj − ϕk at the end of the laser and from its time evolu-
tion ωkjτ . Θkj mixes real and imaginary part of the re-
sponse function and converts Lorentzian line shapes into
Rayleigh line shapes and vice versa. This conversion hap-
pens periodically with the frequency given by the energy
differences ωkj between the occupied states involved. The
time-dependence of a spectrum is therefore a clear sign
of a non-stationary state. Experimentally, this periodic
beating pattern was recently observed by Goulielmakis
et al. [8]. This demonstrates, how using a pump to im-
print an internal phase difference ϕj −ϕk onto a state and
controlling the delay time τ between pump and probe laser
can be used to change a spectrum, converting absorption
into emission peaks (and vice versa) as well as changing
the overall shape of the lines. In Section 4.1 we demon-
strate these line shape changes using the example of an
exactly solvable hydrogen atom. Furthermore we demon-
strate, how to use a laser to control these features.

Note, that in the discussion above, the lineshape anal-
ysis is valid for isolated peaks without contribution from
continuum states. If coupling to continuum states is in-
volved, an additional shaping comes from the dependence
of the matrix elements djm on the energy. This is e.g. the
case for Fano line-shapes which may acquire a complex
Fano q factor [41].

3 Quantum optimal control of excited
state spectra

In this work we employ Quantum Optimal Control The-
ory (QOCT) to optimize the response of a system in the
situation described in the previous section. QOCT is con-
cerned with studying the optimal Hamiltonian (in prac-
tice, a portion of the Hamiltonian, such as the temporal
profile of the coupling of an atom or molecule to a laser
pulse) that induces a target system behaviour. In the fol-
lowing, we present its specific application to the problem
of optimizing response functions of excited states. We will
also show how, if the problem can be reduced to a small
model, it can be solved analytically.

Let us consider a quantum mechanical system gov-
erned by the Schrödinger equation during the time

interval [0,T]:

i
∂Ψ

∂t
(x, t) = Ĥ [E , t]Ψ(x, t), (20a)

Ψ(x, 0) = Ψ0(x), (20b)

where x is the full set of quantum coordinates, and E
is the control field, an external potential applied to the
system (in our case, the pump pulse). In order to perform
optimizations the field must be discretized, for example
with the help of a sine Fourier basis. In our numerical
simulations:

Ec(t) =
M∑

n=1

cn sin(ωnt) (21)

where M is the dimension of the optimization search
space, and c is the set of all the parameters that deter-
mine the field: c = c1, . . . , cM . The frequencies, and their
maximum value or cut-off frequency, may be chosen at
will.

The specification of E , together with an initial value
condition, Ψ(0) = Ψ0 determines the full evolution of the
system, Ψ [E ], via the propagation of the Schrödinger equa-
tion. The behaviour of the system must then be mea-
sured by defining a “target functional” F , whose value
is high if the system evolves according to our goal, and
small otherwise. In many cases, it is split into two parts,
F [Ψ, E ] = J1[Ψ ] + J2[E ], so that J1 only depends on the
state of the system, and J2, called the “penalty”, depends
explicitly on the control E . Regarding J1, it may depend
on the full evolution of the system during the time interval
[0, T ], or only on the system state at time T , as it is the
case in this work. Often, the functional is defined through
the expectation value of an observable Ô:

JT
1 [Ψ(T )] = 〈Ψ(T )|Ô|Ψ(T )〉. (22)

The mathematical problem is then reduced to the problem
of maximizing a real-valued function G:

G[c] = F [Ψ [Ec], Ec]. (23)

The absorption of light is related to the average absorption
coefficient σ̄[Ec](E) (Eq. (14)). The larger the absorption
coefficient at a certain energy, the more light is absorbed
at this energy. In order to find a laser pulse to make a
system, that is transparent in its ground state, absorb
as much light as possible, we therefore optimize the ab-
sorption coefficient in the visible by taking the integral of
σ̄[Ec](E) over the respective energy range. We employed
two different control targets:

GA
τ [c] =

∫ Emax

Emin

dEσ̄τ [Ec](E), (24a)

GB
τ [c] =

∫ Emax

Emin

dEσ̄τ [Ec](E)e
(
−γ

N0−NT [E ]
N0

)

, (24b)

where σ̄τ [Ec](E) (in the following we will call it just σ̄(E))
is the average absorption coefficient of the system at a
given time delay τ after the pump pulse E (t), and Emin
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and Emax define the optimization region – the energy
range, where the absorption is optimized. In the second
target function we have introduced an exponential factor
that depends on N0 and NT , the number of electrons in the
system at the beginning and the end of the pump pulse,
respectively. The reason to introduce this factor is to avoid
ionization, i.e. we wish to lead the system to a state with
the desired absorption properties, but keeping the ioniza-
tion probability low. Keeping the ionization low is partic-
ularly important in the TDDFT calculations, if performed
with adiabatic functionals, since with current state-of-the-
art adiabatic functionals, ionization of the system leads to
unphysical shifts in the position of the absorption peaks.
The term exp (−γ N0−NT [E ]

N0
) therefore inflicts a penalty,

whose strength can be modulated by γ, to pump pulses
that produce strong ionization. We implement ionization
using absorbing boundaries and thus the total number of
electrons is, in general, not conserved during time. In prac-
tice, one can also combine the two target functions: one
may start optimizations using GA

τ , and later continue with
GB

τ , restarting from the previous optimum.
Once the target is defined one is left with the problem

of choosing an optimization algorithm to find the maxi-
mum (or maxima) of G. Two broad families can be distin-
guished: gradient-free procedures, which only require the
computation of G given a control input E , and gradient-
based procedures, that also require the computation of the
gradient of G with respect to E . QOCT provides an ex-
pression for the gradient that can be adapted for this case
(see Appendix A for details). This approach, however is
numerically unfeasible for the target covered in this pa-
per. For this reason, in our simulations, we employed the
gradient-free Simplex-Downhill algorithm by Nelder and
Mead [42].

In principle, if the system can be reduced to a few-
level model, the optimal fields can be found analytically.
To illustrate this approach, below we briefly illustrate a
simple example of controlling the absorption properties
of a single hydrogen atom. Instead of directly optimizing
GA,B

τ we here derive a laser that drives the system into a
state with the wanted optical properties. Let us suppose
that the situation can be approximated by a three-level
Hamiltonian Ĥ with eigenstates |Φa〉, |Φb〉 and |Φc〉 and
the corresponding eigenenergies εa, εb and εc. We define
the transition energies ωab = εb − εa, ωbc = εc − εb and
ωac = εc − εa. The dipole coupling between the states is
given by dab and dac (both assumed to be real numbers),
and we further consider the case where the coupling be-
tween the states |Φb〉 and |Φc〉 is dipole forbidden.

The system is pumped by a laser field composed of two
carrier frequencies ω1,2 of the form:

E (t) = ε̃1(t) cos(ω1t + ϕ1) + ε̃2(t) cos(ω2t + ϕ2), (25)

with phases ϕ1,2, amplitudes ε1,2 and envelope ε̃1,2(t) de-
fined by

ε̃1,2(t) = 2ε1,2 sin2

(
π

t

T

)
. (26)

Our goal is to find a laser pulse that drives the system
from state |Ψ(t = 0)〉 = |Φa〉 into a target state |Ψ̄〉

|Ψ̄〉 = α|Φa〉 + β|Φb〉 + γ|Φc〉 (27)

in a given time T – α, β, and γ are complex coefficients.
Since the spectral properties of this state can be then eas-
ily obtained using equations (17) and (14), the problem of
finding a pulse giving the desired optical properties trans-
lates to the one of maximizing the overlap |〈Ψ(T )|Ψ̄〉|2
while keeping the functional form of the laser fixed – i.e.
changing only ω1,2, ϕ1,2, and ε1,2. If we choose ω1,2 reso-
nant with the transition frequencies ωab, ωac and assume
they are sufficiently separated in energy we can apply the
rotating wave approximation and obtain the laser param-
eters as function of α, β, γ as (see Appendix B for details):

ε1 =
2
T

arccos(|α|)
sin(arccos(|α|)

|β|
dab

(28a)

ε2 =
2
T

arccos(|α|)
sin(arccos(|α|)

|γ|
dac

(28b)

and

ϕβ = ϕ1 − π + ωbaT (28c)
ϕγ = ϕ2 − π + ωcaT. (28d)

We will come back to this example below in Section 4.1.

4 Applications

Any QOCT formulation is constructed on top of a
given model for the physics of the process under study.
In this paper we study and optimize the absorption
spectra of atoms and molecules using either analyti-
cally solvable model Hamiltonians or obtaining the spec-
tra by using time-dependent density functional theory
(TDDFT) [11,12] – the time-dependent counterpart of
DFT [43].

Based on the Runge-Gross theorem [10] TDDFT es-
tablishes a one-to-one correspondence between the time-
dependent density and the time-dependent external po-
tential of a many-electron system. Together with the
Kohn-Sham (KS) scheme [44] it allows us to recast the
many-body time-dependent problem into a simpler one
where the interacting electrons are replaced by a fic-
titious set of non-interacting electrons with the same
time-dependent density. This system of non-interacting
electrons can then be represented with a single Slater de-
terminant formed by a set of KS orbitals leading to great
computational simplifications.

In the following we will work with spin-compensated
systems of N electrons doubly occupying N/2 spatial or-
bitals. The time evolution of these orbitals ϕi (i = 1, N/2),
is governed by the time-dependent Kohn-Sham equations

i
∂

∂t
ϕi(r, t) = −1

2
∇2ϕi(r, t) + vKS[n](r, t)ϕi(r, t), (29)

n(r, t) = 2
N/2∑

i=1

|ϕi(r, t)|2, (30)
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where vKS[n](r, t) is the KS potential. It is, in general, a
functional of the density and is defined as:

vKS[n](r, t) = v0(r) + v(r, t) + vH[n](r, t) + vxc[n](r, t),
(31)

where v0(r) represents the static (ionic) external poten-
tial, v(r, t) = E(t) · r is the coupling to the time depen-
dent electric field E(t) in the dipole approximation (in
the length gauge), vH[n](r, t) =

∫
d3r′n(r, t)/|r′ − r| is the

classical electrostatic Hartree potential, and vxc[n](r, t) is
the exchange and correlation potential accounting for the
many electron effects [11,45]. In our simulations the ions
are clamped to their equilibrium positions. All numerical
calculations were performed using the octopus code [46].

4.1 One electron systems: the hydrogen atom

In Section 2 we have discussed how the amplitudes and
shapes of excited state absorption spectra depend on the
relative phases ϕi of the expansion coefficients γi. Here, we
illustrate this effect in a hydrogen atom, which is initially
pumped into the state

|Ψ̄〉 =
√

0.4|2pz〉 +
√

0.6eiϕ|3pz〉. (32)

Let us first vary ϕ to show the effect of the phase on the
final spectrum. For our pumped state the stationary part
of the spectrum is composed of the weighted stationary
state spectra coming from |2pz〉 and |3pz〉:

σ̄0(ω) = 0.4σ̄2pz(ω) + 0.6σ̄3pz(ω), (33)

whereas the phase-dependent interference term is:

σ̄INT(ω, ϕ) = 0.4 × 0.6 × 4πω

3c

[
∑∫

m

d2p,mdm,3p

× {cosϕL(ω − ω3p,m) + sin ϕR(ω − ω3p,m)

− cosϕL(ω − ω3p,m) + sin ϕR(ω − ω3p,m)}

+
∑∫

m

d2p,mdm,3p

× {cosϕL(ω − ω2p,m) − sin ϕR(ω − ω2p,m)

− cosϕL(ω−ω2p,m)−sinϕR(ω−ω2p,m)}
]
.

(34)

Note the change in the sign of the Rayleigh terms in both
sums. Figure 1 shows the different contributions and the
complete spectrum for ϕ = 0, (1/2)π, π and (3/2)π, which
are the cases, where the interference term is either purely
Lorentzian (ϕ = 0, π) or purely Rayleigh (ϕ = 1/2π,
3/2π). The shaded areas indicate the weighted equilib-
rium contributions, the dotted line shows the interference
terms, and the solid line the complete spectrum. The en-
ergy range shown includes the transitions from n = 2 to

Fig. 1. Absorption coefficient σ̄(ω) of the state defined in equa-
tion (32) with ϕ = 0, (1/2)π, π and (3/2)π. The total spectrum
(black line) is the sum of two phase-independent terms 0.4σ̄2pz

(red shaded) and 0.6σ̄3pz (blue shaded) coming from the ex-
cited state spectra of the respective states, plus the phase-
dependent interference term σ̄INT(ω,ϕ) (green dashed line),
which is responsible for the change of the spectrum with the
delay time.

all higher states and from n = 3 to all higher states and to
n = 2. Transitions to the ground state lie outside of this
region.

As can be learnt from equation (34), the interference
terms require the existence of states which are dipole-
coupled to both 2pz and 3pz. This is the case for s- and
d-orbitals. This means, that e.g. for hydrogen in a linear
combination of the states 2s and 4f , all the interference
terms would vanish and the spectrum would be purely the
sum of the weighted equilibrium contributions.

Let us take a closer look at the structure of the in-
terference terms. We start with the interference term at
ω23 = 0.069 Ha having contributions from terms with
m = 2s, m = 3s and m = 3d. All contributions have differ-
ent prefactors with the ones coming from the 2s-state hav-
ing the opposite sign compared to the ones coming from 3s
and 3d states. For the other peaks, the interference terms
are much smaller at the energies ω3n than their counter-
parts at ω2n (compare the purely blue to the purely red
peaks in Fig. 1). From equation (34), it is apparent that
the amplitude of each interference term is the same for
ω2n and ω3n with the same n. The difference comes purely
from the factor 4πω

3c – note that the sign of the Rayleigh
contributions is opposite in these pairs of peaks. This vari-
ation of amplitude has the following consequences for the
change of the overall spectrum: At ω3n the spectrum has
positive contributions from σ̄3pz and contributions from
the interference terms, but since the interference terms
are much smaller than σ̄3pz , the spectrum changes only
slightly for different ϕ’s. This is different for the peaks
at energies ω2n. Here, the spectrum has positive, phase-
independent contributions from σ̄2pz (ω), but the contri-
butions from the interference terms are much larger and
dominate the spectrum leading to a strong dependence of
the spectrum in this energy range on the phase ϕ. For
ϕ = 0 and ϕ = π, σ̄INT(ω, ϕ) only contains Lorentzian
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Fig. 2. Time-resolved spectrum of the initial state
√

0.4|2pz〉+√
0.6|3pz〉 of hydrogen. Because the phases of the |2p〉 and

|3p〉 states evolve with different velocities, the spectral weights
of each of the peaks changes with time, leading to a time-
dependent spectrum with a periodicity of T = 2π

ω32
≈ 91 a.u.

peaks and consequently the whole spectrum only con-
tains Lorentzians. Nevertheless, σ̄INT(ω, ϕ) changes sign
between ϕ = 0 and ϕ = π, switching the sign of all peaks
at ω2n. This is a demonstration of, how the manipulation
of the internal phase ϕ can lead to a switch from gain (neg-
ative peaks) to loss (positive peaks) regime and vice versa.
Finally, for ϕ = (1/2)π and ϕ = (3/2)π, the interference
spectrum contains purely Rayleigh peaks. Together with
the small contributions from the stationary-state contri-
butions, the final spectrum consists of slightly asymmetric
Rayleigh peaks, again with different signs for ϕ = (1/2)π
and ϕ = (3/2)π. One can therefore not only change peaks
from emission to absorption peaks, but also manipulate
their shape. The phases ϕ therefore play a critical role in
the spectral weights and the peaks of the photo-absorption
spectrum.

We now look at the variation of the spectrum with
time, assuming that an initial, yet unknown pump laser
created the state of equation (32) with ϕ = ϕ32 = 0 at
t = T and we probe the system at different delay times τ .
Figure 2 shows the corresponding time-resolved spectrum
σ̄(ω, τ) of |Ψ̄〉. Since the eigenenergies of |2pz〉 and |3pz〉
are different, the phase Θ32(τ) in equation (9) evolves with
the frequency ω32. At τ = 0, τ = π

2ω32
, τ = π

ω32
and

τ = 3π
2ω32

, the spectra of Figure 1 are reproduced. One
sees the strong changes of σ̄ in the energy range of the
peaks ω2n, while the peaks ω3n remain almost unchanged.
The spectrum is periodic with T = 2π

ω32
≈ 91 a.u.

We now move on to the control problem – i.e. the
design of a pump pulse driving the system into a state
with specific optical properties. For this problem, we
will use the three-levels model, and the analytical equa-
tions of control presented in Section 3. The target state
will again be the one defined in equation (32) |Ψ̄〉 =√

0.4|2pz〉 +
√

0.6eiϕ|3pz〉 with a relative phase of ϕ = 0:
|Ψ̄〉 =

√
0.4|2pz〉 +

√
0.6|3pz〉. The three active states are

then |1s〉, |2pz〉 and |3pz〉. Note that since |2pz〉 and |3pz〉
have the same symmetry, they are decoupled in the dipole
approximation, and in consequence the system fits into
the framework described in Section 3. We may therefore
write down the shape of a control pulse, assuming a total

0

0.4

0.8

0 30001000 2000
t [a.u.]
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Fig. 3. Time-evolution of the populations of the 1s-, 2pz-
and 3pz-state. Dashed lines show the analytic model, solid
lines the numerical results. The total pump-laser (upper panel,
black) has two carrier-frequencies, one resonant to the transi-
tion |Ψ1s〉 → |Ψ2p〉 (green), the other resonant to the transition
|Ψ1s〉 → |Ψ3p〉 (blue). The lower panel shows the phase differ-
ence ϕ3p − ϕ2p.

pulse time of T = 3200 a.u:

E (t) =
2π

T

( √
0.4

d1s→2p
cos(ω1s→2p(t − T ) + π)

+
√

0.6
d1s→3p

cos(ω1s→3p(t − T ) + π)

)
sin2

(
π

t

T

)
.

(35)

We numerically solved the TSDE in order to check the
validity of the three-level approximation. To this end we
discretized the equations on a spherical grid of radius
R = 60 a.u., spacing of Δx = 0.435 a.u. and with 20 a.u.
wide absorbing boundaries placed at the edges. The re-
sults are collected in Figure 3 where we show the time-
evolution of the populations |a(t)|2, |b(t)|2 and |c(t)|2 of
the states |1s〉, |2pz〉 and |3pz〉 respectively. The numeri-
cal values (solid lines) follow closely the ones correspond-
ing to the model (B.10) (dashed lines) except for a small
superimposed oscillatory behavior. A frequency analysis
of the additional oscillations shows, that they are due to
the components neglected in the rotating wave approxi-
mation. The small deviation in the final populations from
the analytic prediction comes from the excitation into the
3d-states (not shown). The coupling to these orbitals was
neglected in the three-level approximation. This popula-
tion transfer to the 3d-states nonetheless is less than 4%,
and we achieve a transfer into the target wave function
|Ψ̄〉 of 96%. Furthermore the transfer is obtained precisely
with the desired relative phase ϕ = 0 as reported in the
bottom panel of Figure 3.

4.2 More than one electron: results based on TDDFT

We here turn to systems with more than one electron, and
investigate the possibility to drive the absorption of atoms
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and molecules into the visible using a laser pulse optimized
with the gradient-free optimization algorithm presented in
Section 3 in combination with TDDFT.

4.2.1 Helium

As a first example we study the one-dimensional soft-
Coulomb helium atom. This model is defined by the
Hamiltonian:

H(t) = T + Vext(t) + Vee, (36)

where

Vext(t) = − 2√
1 + x2

1

− 2√
1 + x2

2

+ E(t)(x1 + x2) (37)

is the external potential with softened Coulomb inter-
action and the dipolar coupling to the external time-
dependent field E(t). The electron-electron interaction
is also described by a soft-Coulomb function Vee =

1√
1+(x1−x2)2

. For the optimization we solve the equations

discretized on a regular grid of size L = 100 a.u. and spac-
ing Δx = 0.2 a.u. with 20 a.u. absorbing boundaries at the
borders of the simulation box. Results obtained with the
optimized pulse were further converged in a box of size
L = 200 a.u. with 70 a.u. absorbing boundaries. Time was
discretized with a time step of Δt = 0.025 a.u. for a max-
imum propagation time of 1250 a.u. during optimization
and 2250 a.u. for convergence. The duration of the pump
pulse was chosen to be TP = 800 a.u. and the delay
between pump and probe was set to τ = 50 a.u. for all
the calculations. Finally the target region for optimiza-
tion was chosen between 0.06 a.u. and 0.23 a.u. (≈200 nm
and 800 nm). We carried out optimizations at two dif-
ferent theory levels: exact (TDSE) and TDDFT with the
adiabatic EXX functional (TDEXX) [47].

Let us first focus on the optimization obtained by solv-
ing the exact TDSE as illustrated in Figure 4b where the
ground state spectra are compared to the spectra of the
systems excited by the optimized pump-pulses E100(t) ob-
tained after 100 iterations. In the exact case, the search
space was constructed from two wave lengths λ = 800 nm
and λ = 1450 nm and their first nine odd harmonics as
shown in Figure 4a. Optimization is achieved transferring
population from the ground state (at ε0 = −2.238 a.u.)
into the first excited state (at ε1 = −1.705) with the help
of the 9th harmonic of λ = 1450 nm at ωP13 = 0.534 a.u.
Due to this population transfer, the peak at ω0→1 =
0.533 a.u. turns from positive to negative and peaks com-
ing from the first excited state (ω1→2 = 0.076 a.u. and
ω1→4 = 0.159 a.u.) arise in the excited-state spectrum,
where the peak at ω1→2 is located in the visible part of the
energy range. At the same time, population is transfered
into the second excited state (ε2 = −1.629 a.u.), leading to
e.g. the peaks at ω2→3 = 0.062 a.u. and ω2→5 = 0.103 a.u.
This interpretation is confirmed by the population anal-
ysis in Figure 4d where |〈Ψ(t)|Φi〉|2 is plotted over time.
In particular it is apparent that at the end of the pump

Fig. 4. Optimization of the absorption of one-dimensional
helium: TDSE vs. TDEXX. (a) Power spectrum of the initial
and optimized laser pulses: the green line shows the initial laser
used for the TDSE; the green shaded area shows the initial laser
used for the TDEXX optimization (these two only differ by the
indicated peaks at ω = 0.534 a.u. and ω = 0.549 a.u.); the blue
and red lines are the optimal pulses obtained when using TDSE
and TDEXX, respectively. (b) Ground state (dashed line) and
excited state (shaded) spectra of optimized one-dimensional
helium, in blue and red for the TDSE and TDEXX cases, re-
spectively. The excited state transitions of the exact calcula-
tions are indicated. (c) The control function GA as a function of
the number of iterations, also in blue and red for the TDSE and
TDEXX, respectively. (d) The populations |〈Ψ(t)|Ψi〉|2 of the
exact time propagation under the influence of the optimized
pump pulse for the (red) ground state, (green) first excited
state, (blue) second excited state, (pink) third excited state
and (turquoise) fourth excited state.

only ≈8% of the electrons remain in the ground state,
whereas the rest has been transfered into higher lying
states thus explaining the appearance of the new peaks
in the spectrum. To complete the picture in Figure 4c we
show the evolution of the control function GA with the
number of iterations. As can be seen, GA shows a steady
increase during the optimization.

For the TDEXX case we adapted the search space by
replacing the laser component at the carrier frequency
ω = 0.534 a.u. (in resonance with the first excitation in
the TDSE case) by a laser component with ω = 0.549 a.u.,
which is its TDEXX equivalent. In our experience fail-
ing to meet this requirement resulted in poor optimiza-
tions. The resulting optimization is shown in Figure 4b.
The results follow a trend similar to the exact case. How-
ever the TDEXX optimization is smaller and the 1 → 2
peak present in TDSE seems to be missing. The differ-
ence between TDEXX and TDSE can be tracked down
to a known problem of the adiabatic approximation in
TDDFT. In particular, the lack of memory in the adia-
batic approximation, causing a spurious time dependence
of the exchange potential, is responsible for the poor pop-
ulation transfer and the excess of asymmetric peaks in
the spectrum [14,48]. This problem is further amplified by
the ionization of the system, which results in an unphys-
ical shift of the peaks to higher energies (compare the
ground state and the excited state spectrum in Fig. 4).
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Fig. 5. (Top) Transient Absorption Spectrum of helium af-
ter the excitation with a 45 cycle sin2 laser pulse of intensity
I = 5.26 × 1011 W cm−2 with a carrier frequency resonant to
the excitation energy from the ground to the first excited state
for exact (a) and adiabatic EXX (b) with ωexact = 0.534 a.u.
and ωEXX = 0.549 a.u. Time-evolution of the absorption cross-
section at selected energies ωn = 0.2 (red), 0.4 (blue), 0.6 (pur-
ple) 0.8 (turquoise) a.u. for exact (c) and adiabatic EXX (d).
In the exact case the curve at 0.6 a.u. is offset by –0.1 for clar-
ity. In all cases, the time interval T = 2π/(ε1 − ε0) is shown.

These effects, however, strongly depend on the fraction of
the total density that gets driven out of equilibrium and
therefore become more dominant with decreasing size of
the system – with helium being the worst case. In large
molecules with many electrons we expect the error to be
greatly reduced (as has been empirically shown in stud-
ies of light induced charge transfer in organic photovoltaic
blends [49,50]).

A different perspective on the same problem can be ob-
tained by comparing the time evolution of an excited state
spectrum in TDSE and TDEXX as shown in Figure 5. The
systems were excited by a 45 cycle sin2 laser pulse reso-
nant with the excitation energy from the ground state into
the first excited state. After the pulse the systems are in
a superposition of these two states and the spectra should
contain time-dependent interference terms, which oscillate
with the period time T = 2π

ε1−ε0
, which is T = 11.76 a.u.

for TDSE and T = 11.26 a.u. for TDEXX. However, on
the scale of Figure 5a the TDSE spectrum hardly presents
any oscillation. Therefore, in Figure 5c we report cuts at
ωn = 0.2, 0.4, 0.6 and 0.8 a.u. From the figure it is appar-
ent that, albeit with different phases, each cut presents
oscillations with the expected period of T = 11.76 a.u.
The TDEXX calculations, in Figures 5b and 5d, present
a different picture. First of all, the amplitude of the oscil-
lations is much larger than in the exact case and, second,
the oscillations are two times faster than expected. We
conclude, that the TDEXX description seems to have a
similar structure to the exact case, in the sense, that the
energy difference of the involved states is reflected in the
periodicity of the oscillations of the spectrum. Nonethe-
less, there are major differences in the behaviour, which
is reflected in the factor of two in the periodicity.

4.2.2 Methane dication

Finally, we apply our scheme to a poly-atomic molecule:
doubly-ionized methane, CH+2

4 . The goal here is to de-
sign a laser capable to turn this molecule, transparent
in nature, visible. To this end we used the same strat-
egy as we did before for helium, namely we optimize the
laser on a small simulation box and then converge the re-
sults with the optimized laser on a larger box. During the
optimization routine the simulation box has a radius of
R = 15 a.u., including 5 a.u. absorbing boundaries while
the results are converged in a box of R = 30 a.u. with
15 a.u. absorbing boundaries. We discretize the TDDFT
equations on a three-dimensional grid with a spacing of
Δx = 0.3 a.u. The reason for this box choice is the fact
that the computational costs of three-dimensional calcu-
lations scale with the third power of the simulation box
radius. The maximum propagation time is 850 a.u. dur-
ing the optimization and 1600 a.u. for convergence. In all
cases, the pump duration was 600 a.u., the time step was
Δt = 0.04 a.u. and the delay was τ = 0 a.u.

The optimization region was chosen as the interval be-
tween 0.057 a.u. and 0.139 a.u. (328 and 750 nm) and in
order to discourage the algorithm from exciting too many
electrons into the continuum, we used the target func-
tional GB

τ (24b), which includes an exponential “penalty”
for ionization.

To obtain a good description of states close to the ion-
ization threshold, we employed the average density self-
interaction corrected (ADSIC) LDA functional [51], which
is asymptotically correct.

The inclusion of resonant frequencies in the search
space is a good practice that facilitates transitions be-
tween eigenstates and enables the optimization algorithm
to populate excited eigenstates. These molecular excita-
tion frequencies can easily be obtained from the ground-
state spectrum reported in Figure 6. By populating the
correct eigenstates, the system might absorb in the visible
region: consider two eigenstates with energies εh and εT ,
that differ by an energy in the visible: 0.057 a.u. ≤
εh − εT ≤ 0.139 a.u. By exciting the system into the lower
“target” state εT one might obtain transition peaks in
the visible, due to the transition to the higher one. Note,
however, that this fact is not guaranteed since the tran-
sition might be dipole forbidden. We cannot rule out this
possibility since our groundstate linear-response TDDFT
calculation does not provide this information. The ground
state spectrum shows, that the first possible target state
is ε3. The energy difference between ε3 = 0.690 a.u. and
ε4 = 0.816 a.u. is ω3→4 = 0.126 a.u. and lies – with 362
nm – at the red end of the visible spectrum. Also ε4 pro-
vides a transition in the visible range – into ε5 = 0.938 a.u.
with ω4→5 = 0.122 a.u. = 373 nm. Starting from ε5, the
states have even more than one transition in the visible.
We must therefore choose a frequency search space, that
allows the construction of a pump pulse, that excites elec-
trons from the ground state into ε3 and higher lying states
either directly or by successive excitations.

Here we present results for two possible search spaces.
The first search space includes frequencies that are either
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Fig. 6. Ground state spectrum of doubly-ionized methane
CH2+

4 . Peaks are numbered for later reference (as discussed in
the text). The shaded grey area marks the optimization range.

Fig. 7. Ground state (black line) and excited state (shaded)
spectra of doubly-ionized methane (CH2+

4 ) for two different
pump pulses E I (red) and E II (blue). The grey shaded box
marks the optimization area, the blue shaded area the visible
region of the spectrum.

resonant to the ground state excitation energies εn, or to
excited state excitations εm − εn. To avoid ionization, all
carrier frequencies are smaller than ε7 = 1.0 a.u. The sec-
ond frequency search space was designed using the ioniza-
tion potential IP of the system (which is equal to minus
the energy εH of the highest occupied KS orbital ϕH)
and the energy differences IP − εn. One frequency is IP

itself, while all others are resonant with relaxations bring-
ing down states at that ionization threshold to bound ex-
cited states (ε3 to ε8). The idea is that the system could
be excited into the ionization threshold, and then relax
into one of the target states. The laser frequencies, that
were included in the search spaces and the corresponding
resonances are summarized in Appendix C.

The optimized spectra are shown in Figure 7. It can be
seen that both search spaces include optimal lasers that
cause the molecule to loose its transparency and absorb
in the visible. The achieved opacity can be quantified in
terms of the control function GA (24a) being the inte-
gral over the absorption spectrum in the visible range of
the spectrum. Comparing the opacity achieved in search
space I (GA

I = 0.017) with the one achieved in search
space II (GA

II = 0.020), we conclude that search space II

is better suited for the pursued optimization. Thus, includ-
ing energy levels at the ionization threshold in the search
space might be a useful strategy in further optimizations.

5 Conclusions

In this work, we assessed the possibility of using tailored
pumps in order to enhance some given features of the
probe absorption – for example, the absorption in the
visible range of otherwise transparent samples. We first
detailed a theoretical analysis of the non-equilibrium re-
sponse function in this context, aided by one simple nu-
merical model of the hydrogen atom. Then, we investi-
gated the feasibility of using TDDFT theory as a means
to implement, theoretically, this absorption-optimization
idea, for more complex atoms or molecules.

The theoretical analysis of the response function can
be done by writing it in a generalized form of the Lehmann
representation, valid for systems that have been pumped
out of equilibrium by a first pulse, and whose response
to a probe pulse (in our case, assumed non-overlapping
with the first one) needs to be studied and manipulated.
The peaks of this response functions are always fixed to
the differences in the system energies, but their strength
and shape varies depending on the pump shape, and on
the pump-probe delay. Furthermore, the response func-
tion is a sum of a stationary part (the only one present
if the pumped state is itself a stationary state), and a
time-dependent, oscillatory term, caused by interferences
between the populated eigenstates.

We then used this dependence of the non-equilibrium
response with respect to the pump pulse shape to manipu-
late it by means of QOCT. We demonstrated the idea first
with a small model, that could be treated analytically.
This could be a viable alternative for larger systems, if
they can be reduced to few-level models. However, for full
generality we also showed how QOCT can be combined
with TDDFT. We showed how this avenue is tractable,
but we also highlighted the key numerical difficulties and
theoretical challenges. For this purpose, we performed first
calculations on a model for the helium atom that could be
solved both exactly with the TDSE equation, and with
TDDFT within the adiabatic EXX approximation. Then
we concluded with simulations of the methane dication.

From our results we conclude that the proposed idea
could be brought to the laboratory: tailored pump pulses
can excite systems into light-absorbing states. Theoret-
ically, the scalability of TDDFT could in principle per-
mit studying these processes for larger systems. However,
our results have also highlighted the severe numerical and
theoretical difficulties posed by the problem: large-scale
non-equilibrium quantum dynamics are cumbersome, even
with TDDFT, and moreover the shortcomings of state-of-
the-art TDDFT functionals may still be serious for these
out-of-equilibrium situations. Our findings confirm recent
investigations about the consequences of these shortcom-
ings for the use of coherent control schemes [52,53].
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Appendix A: Quantum optimal control
equations

For completeness, we derive here the equations for the
computation of the gradient of a target functional de-
signed to optimize the response of a system. In general, the
equation for the gradient provided by QOCT is given by:

∇cG[c] = ∇cF [Ψ, Ec]|Ψ=Ψ [Ec]

+ 2�
∫ T

0

dt 〈χ[Ec](t)|∇cĤ [Ec, t]|Ψ [Ec](t)〉.
(A.1a)

Note that a new “wave function”, χ[E ], has been intro-
duced; it is given by the solution of:

i
∂χ[E ]

∂t
(x, t) = Ĥ†[E , t]χ[E ](x, t) (A.1b)

χ[E ](x, T ) =
δJT

1

δΨ∗[E ](x, T )
. (A.1c)

This is similar to the original Schrödinger equation (20),
although the initial condition is given at the final time
t = T , which implies it must be propagated backwards.
For a detailed derivation of equations (A.1) we refer the
reader to references [18,19,54,55].

The computation of the gradient or functional deriva-
tive of G, therefore, requires Ψ [E ] and χ[E ], which are ob-
tained by first propagating equation (20a) forwards, and
then equation (A.1b) backwards. The maxima of G are
found at the critical points ∇cG[Ec] = 0.

We may now apply these general equations for a tar-
get functional designed to optimize the response of a sys-
tem after the excitation by a pump pulse. This setup is
consistent with the non-overlapping regime described in
Section 2, where the Hamiltonian that governs the sys-
tem, once that the pump has passed (t ≥ T ) has the form
equation (1). If, at time t = T , the system has been driven
to the state |Ψ(T )〉, the response function for the pertur-
bation at later times is given by equation (3) and the first-
order response of the system is given by equation (4).

The key point is the definition of a target: for exam-
ple, let us assume, that we wish to enhance the reaction
of the system at a given frequency to a sudden perturba-
tion at the end of the pump F (t′) = δ(t − T ). As seen
in (5), the time-dependent dipole-dipole response is then

directly given by the response function χD̂,D̂ [E ] (t, T ) =
D(1) [E , δT ] (t) and its Fourier transform by

χD̂,D̂ [E ] (ω, T ) = D(1) [E , δT ] (ω)

=
∫ ∞

T

dt′ e−iωt′D(1) [E , δT ] (t′). (A.2)

It can be easily seen that the problem fits into the frame-
work discussed above, i.e. the target functional is given by
the expectation value of some operator:

JT
1 [Ψ(T )] = −i〈Ψ(T )|

∫ ∞

T

dt′ e−iωt′

×
[
ei(t′−T )H D̂e−i(t′−T )H , D̂

]
|Ψ(T )〉. (A.3)

The equation for the gradient is therefore equation (A.1a);
which must be completed with the equation of motion for
the co-state, equation (A.1b), and, in particular, with its
boundary condition (A.1c) at time t = T : this is the only
one that in fact depends on the definition of the target
operator:

|χ(T )〉 = −i

∫ ∞

T

dt′ e−iωt′

×
[
ei(t′−T )H D̂e−i(t′−T )H , D̂

]
|Ψ(T )〉. (A.4)

Similar formulas can be obtained for more general defi-
nitions of the target functional in terms of the response
D(1)(ω), and for more general probe functions. In all cases
the computational difficulties associated to the computa-
tion of this boundary condition are similar, and are consid-
erable. By inspecting the previous formula, it can be learnt
that various time-propagations of the wave functions, for-
wards and backwards, are required. These difficulties are
even larger if the scheme is formulated within TDDFT –
in the previous derivation we have used the exact many-
electron wave functions. In consequence, we decided to
employ, for this type of optimizations, gradient-free algo-
rithms, such as the Simplex-Downhill algorithm that we
describe in next section.

Appendix B: Derivation of the control
equations for three level systems

For the three-levels model described at the end of Sec-
tion 3, we will start by considering a simpler situation in
which the field envelopes are constant, i.e.:

E (t) = ε1 cos(ω1t + ϕ1) + ε2 cos(ω2t + ϕ2). (B.1)

If the two carrier frequencies are sufficiently close to the
transition frequencies ωab and ωbc, one can apply the ro-
tating wave approximation (RWA), as it is done in the
theory of Rabi oscillations. In fact, we choose the car-
rier frequencies to be equal to the transition energies. In
addition, we also assume, that the laser frequencies are
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sufficiently well separated in energy to apply the RWA a
second time:

|ω1 + ω2| � 0, (B.2a)
|ω1 − ω2| � 0. (B.2b)

Assuming the validity of the RWA mentioned in Section 3,
the solution of the resulting differential equations with the
initial conditions a(0) = 1, b(0) = c(0) = 0, leads to the
following time-evolution of the coefficients:

a(t) = cos(Ω̄/2t), (B.3a)

b(t) =
dabε1e

−i(ϕ1−π)

√
(dabε1)2 + (dacε2)2

sin
(
Ω̄/2t

)
, (B.3b)

c(t) =
dacε2e

−i(ϕ2−π)

√
(dabε1)2 + (dacε2)2

sin
(
Ω̄/2t

)
, (B.3c)

with the Rabi-frequency

Ω̄ =
√

(dabε1)2 + (dacε2)2. (B.4)

Note that:

1. The Rabi-frequency is the Pythagorean mean of
the Rabi-frequencies of the single transitions: Ω̄ =√

Ω̄2
ab + Ω̄2

ac. Consequently, it is larger than each of
those single frequencies.

2. The maximum populations of the excited states de-
pend only on the ratio of the Rabi-frequencies belong-
ing to the respective transitions |b(t)|2

|c(t)|2 = Ω̄2
ab

Ω̄2
ac

.
3. The relative phases of the expansion coefficients de-

pend on the phases of the applied lasers.

The target state is defined in equation (27): the goal is
to find a laser pulse that drives the system from the state
|Ψ(t = 0)〉 = |Φa〉 into this target state within the time
T . The evolution of the time-dependent wave function is
given by:

|Ψ(t)〉 = cos(Ω̄/2t)|Φa〉

+
dabε1 sin

(
Ω̄/2t

)
√

(dabε1)2 + (dacε2)2
e−i(ϕ1−π+ωbat)|Φb〉

+
dacε2 sin

(
Ω̄/2t

)
√

(dabε1)2 + (dacε2)2
e−i(ϕ2−π+ωcat)|Φc〉.

(B.5)

The condition |〈Φa|Ψ̄〉|2 = 1 leads to two sets of equa-
tions: one connecting the laser amplitudes ε1 and ε2 to
the populations |α|2, |β|2 and |γ|2

|α| = cos(Ω̄/2T ), (B.6a)

|β| =
dabε1√

(dabε1)2 + (dacε2)2
sin
(
Ω̄/2T

)
, (B.6b)

|γ| =
dacε2√

(dabε1)2 + (dacε2)2
sin
(
Ω̄/2T

)
, (B.6c)

and the other one connecting the laser phases to the rela-
tive phases ϕβ and ϕγ of the wave function

ϕβ = ϕ1 − π + ωbaT, (B.7a)
ϕγ = ϕ2 − π + ωcaT. (B.7b)

Solving these sets of equations, we find the following am-
plitudes as one example of a control laser

ε1 =
2
T

arccos(|α|)
sin(arccos(|α|)

|β|
dab

, (B.8)

ε2 =
2
T

arccos(|α|)
sin(arccos(|α|)

|γ|
dac

. (B.9)

Note, however, that the solutions are not unique: other
sets {(2n + 1)ε1, (2n + 1)ε2} fulfill the equations above.
These solutions represent lasers that lead to an evolution
of the coefficients that covers (n+1) complete Rabi cycles
within the time T .

In practice one is often interested in pulses with time-
dependent envelope functions, such as the ones discussed
in Section 3, in which the pulses have a sin2 envelope with
a period of 2T . The problem can be solved in an ana-
logue manner; the solutions for the amplitudes were al-
ready given in Section 3. In this case, the evolution of the
coefficients is given by:

a(t) = cos

(∫ t

0
Ω̃(t′)dt′

2

)
, (B.10a)

b(t) =
dabε1e

−i(ϕ1−π)

√
(dabε1)2 + (dacε2)2

sin
∫ t

0

Ω̃(t′)dt′

2
, (B.10b)

c(t) =
dacε2e

−i(ϕ2−π)

√
(dabε1)2 + (dacε2)2

sin
∫ t

0

Ω̃(t′)dt′

2
, (B.10c)

where the “time-dependent Rabi-frequency” Ω̃(t) is
given by:

Ω̃(t) =
√

(dabε̃1(t))2 + (dacε̃2(t))2 = 2Ω̄ sin2

(
π

t

T

)
.

(B.11)
and integrates as:

∫ t

0

Ω̃(t′)dt′

2
=
(

1
2
t − T

4π
sin
(

2π
t

T

))
Ω̄. (B.12)

Appendix C: Laser frequencies used
in the optimization of methane

The laser frequencies (in a.u.) and the corresponding res-
onances of the search spaces of the optimization of CH2+

4 .
The nomenclature follows the one in Figure 6: εH is minus
the energy of the highest occupied KS state. ωI

3 is the av-
erage of ε1 = 0.337 a.u. and ε3 − ε1 = 0.353 a.u. Since the
frequencies are broadened by the finite pulse duration, ωI

3
covers both resonances.
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Search Space I

ωI
1 ωI

2 ωI
3 ωI

4 ωI
5

0.122 0.248 0.345 0.479 0.601
ε4 − ε5 ε3 − ε5 ε1 / ε1 − ε3 ε1 − ε4 ε1 − ε5

ωI
6 ωI

7 ωI
8 ωI

9 ωI
10

0.654 0.690 0.816 0.938 1.000
ε2 ε3 ε4 ε5 ε7

Search Space II

ωII
1 ωII

2 ωII
3 ωII

4 ωII
5 ωII

6 ωII
7

0.311 0.364 0.386 0.426 0.548 0.674 1.364
ε3 − IP ε4 − IP ε5 − IP ε6 − IP ε7 − IP ε8 − IP IP
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