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Abstract: Remote sensing techniques based on images acquired from unmanned aerial vehicles
(UAVs) could represent an effective tool to speed up the data acquisition process in phenotyping
trials and, consequently, to reduce the time and cost of the field work. In this study, we assessed the
ability of a UAV equipped with RGB-NIR cameras in highlighting differences in geometrical and
spectral canopy characteristics between eight olive cultivars planted at different planting distances
in a hedgerow olive orchard. The relationships between measured and estimated canopy height,
projected canopy area and canopy volume were linear regardless of the different cultivars and
planting distances (RMSE of 0.12 m, 0.44 m2 and 0.68 m3, respectively). A good relationship (R2 = 0.95)
was found between the pruning mass material weighted on the ground and its volume estimated
by aerial images. NDVI measured in February 2019 was related to fruit yield per tree measured in
November 2018, whereas no relationships were observed with the fruit yield measured in November
2019 due to abiotic and biotic stresses that occurred before harvest. These results confirm the reliability
of UAV imagery and structure from motion techniques in estimating the olive geometrical canopy
characteristics and suggest further potential applications of UAVs in early discrimination of yield
efficiency between different cultivars and in estimating the pruning material volume.

Keywords: hedgerow olive plantings; canopy volume; projected canopy area; vegetation indices;
fruit yield; NDVI; pruning; structure from motion; remote sensing

1. Introduction

Olive groves are widespread in the Mediterranean basin, where 97% of total olive trees
are grown [1]. Taking into account the new olive-producing countries (Australia, South
Africa, Argentina, Chile and California) outside the Mediterranean Basin, olive trees can be
considered one of the most representative tree cultivations in the world [1]. The diffusion
of olive growing outside traditional areas of cultivation is mainly due to an increase in olive
oil consumption over the last 20 years and to the availability of new planting systems (e.g.,
high-density and super-high-density) and more efficient orchard management strategies
(irrigation and mechanized harvesting and pruning).

Currently, only a few cultivars (Arbequina, Arbosana, Chiquitita and Koroneiki) have
the necessary low vigor to be suitable for super high density (SHD) olive groves [2–5]. In
order to prevent possible loss of biodiversity linked to the adoption of SHD systems, the
selection of local cultivars with the most desirable traits for these planting systems could
represent a forward-looking strategy. However, while plant genotyping is nowadays an
efficient process thanks to advances in genomics and biotechnology, phenotypic data are
mainly collected by manual or visual methods [6,7].

Crop phenotyping is defined as the monitoring of morphological, physiological and
biochemical traits resulting from the interaction between genetic and environmental fac-
tors [8,9]. Geometrical canopy characteristics and tree vigor are crucial traits in phenotyping
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studies in order to assess the cultivar’s suitability to be cultivated in specific growing sys-
tems, as well as for assessing pruning practices [4,5,10,11]. Tree canopy shape and size are
also related to fruit and oil quality as they affect light distribution within the canopy and,
in turn, the amount of light intercepted by fruits [12–14]. Finally, the combined analysis of
tree vigor data, based on both vegetation indices or canopy growth patterns, and tree crop
load can be used to classify different olive cultivars according to their fruit yield efficiency.

The traditional manual-based measurements of geometrical canopy characteristics
require intensive field work and experienced staff. The same measurements are also used to
evaluate the impact of pruning on tree architecture. From the above, the need for time and
cost-efficient methods to rapidly identify desirable genotypes is clear. High-throughput
phenotyping technologies can play a crucial role in phenotyping trials thanks to their ability
to monitor a large number of plants in a short period of time [7,15,16]. Recent studies
focused on possible applications of ground and aerial platforms for plant phenotyping
under field conditions [16–22]. Among them, unmanned aerial vehicles (UAVs) have
been proposed as sensing platforms for field-based phenotyping due to their efficiency in
producing a large amount of field scale information, great flexibility in flight scheduling
and low operational costs.

In the few studies focused on the evaluation of UAVs for olive breeding purposes,
high-resolution images have been used to infer geometrical canopy characteristics, such
as tree height, canopy diameters and canopy volumes, but no information on the re-
lationship between canopy spectral response and fruit yield of different genotypes are
available [17,18,23,24]. Another possible application of UAVs in breeding trials concerns
the evaluation of pruning effects on the tree canopy. In previous studies, the volume of the
pruning material has been estimated as the difference in canopy volume measured before
and after pruning [25,26]. To the best of our knowledge, there are no studies where the
volume of pruning material has been directly estimated by UAV images.

The overall objective of this study was to assess the ability of UAVs equipped with
RGB-NIR cameras in highlighting differences in geometrical and spectral canopy char-
acteristics between eight olive cultivars in a super-high-density olive orchard. The re-
lationship between spectral canopy characteristics and fruit yield was also investigated.
Finally, we propose a new approach for direct pruning material estimation using a low-cost
RGB camera.

2. Materials and Methods
2.1. Plant Material and Site Characteristics

The experiment was carried out in an irrigated olive orchard located near Sciacca
in South-West Sicily (Italy) and planted in 2012 with 1-year-old self-rooted olive plants
of eight different olive cultivars: Cerasuola, Nocellara del Belice, Biancolilla, Nocellara
Etnea, Minuta, Calatina, Abunara and Koroneiki. The climate at the experimental site
is characterized by hot and dry summers and mild winters. The soil was a sandy clay
loam, consisting of 60% sand, 22% clay and 18% silt, with pH 7.7 and less than 5% active
carbonates. The tree rows were oriented North-East to South-West. Distance between the
rows was 4 m while three different spacing (2, 3 and 4 m) were used between trees along
the rows. The trees were trained with a single central trunk with three main couples of
branches, oriented along the row, starting at 0.7 m height above ground. A manual topping
was performed to keep plant height below 3 m.

2.2. Field Data

On 27 February 2019, the canopy volume and the projected canopy area (PCA) were
measured on trees of cvs. Biancollilla, Calatina and Koroneiki (5 trees for each cultivar-
planting distance combination for a total of 45 trees) according to the following formulas:

Canopy volume =
4π
3

D1
2

D2
2

Ht − Hb
2

(1)
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Projected canopy area =
D1
2

D2
2

π (2)

where D1 and D2 are crown diameters, Ht is tree height and Hb is the lowest canopy height
from the ground.

The same trees were manually pruned on the same day, after the canopy volume
measurements. The pruned material from each tree was placed in the middle of the
inter-row and weighed using a portable weight scale (Figure 1).
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Figure 1. Image segmentation of tree canopies (black) and pruning material (colors) at the experi-
mental olive orchard (A). Magnification of an olive orchard area (B), aerial view (RGB image) of tree
canopies and pruning material (C), weighting of the pruning material using a weight scale (D).

The trunk cross-sectional area (TCSA) and fruit yield were measured on six cultivars
(Cerasuola, Nocellara del Belice, Biancolilla, Calatina, Abunara, Koroneiki). The TCSA was
measured on seven trees for each cultivar-planting distance combination in December 2018
and December 2019. The same trees were harvested individually by hand in November



Horticulturae 2021, 7, 258 4 of 16

2018 and 2019, and yield data were compared with spectral indices calculated from images
acquired before pruning in February 2019.

2.3. Multispectral Imagery Acquisitions from the Unmanned Platform

The acquisition campaign was performed using an S1000 UAV octocopter (DJI, Shen-
zhen, China) able to fly autonomously over a predetermined waypoint course. The S1000
was equipped with a 2-axis stabilized gimbal equipped with a consumer photo cam-
era (RGB) and a multispectral camera (NIR-RG). The RGB camera was a Coolpix P7700
(Nikon, Shinjuku, Japan) embodying a 12.2-megapixel CMOS sensor, whereas the NIR-
RG multispectral camera was a Tetracam ADC-lite (Tetracam Inc., Gainesville, FL, USA)
equipped with a 3.2-megapixel CMOS sensor. Images were recorded in the visible red
(R), green (G) and near-infrared (NIR) domain with nominal wavelengths of 520–600,
630–690 and 760–900 nm, respectively. Images were acquired before (27 February 2019)
and after (28 February 2019) pruning at noon under clear sky conditions. The flight alti-
tude was 50 m above ground level (AGL), flying at 2.5 m s−1 speed. A total of 126 and
132 multispectral and RGB images, respectively, were acquired on 27 February, whereas
143 RGB images were acquired on 28 February. The image forward and side overlap (80%
and 70%, respectively) guaranteed optimal photogrammetric processing. Geometrical
parameters and vegetative indices used for cultivars characterization were calculated by
processing the images acquired on 27 February (before pruning) in order to avoid the
effects of canopy manipulation.

2.4. Image Processing Methods

The multispectral images were first mosaicked using Autopano Giga 3.5 Software
(Kolor SARL, Challes-les-Eaux, France), then georeferenced and orthorectified using the
ground-referenced points (ArcGIS software®, ESRI, Redlands, CA, USA). Vegetative in-
dices were calculated by means of the map algebra technique implemented in ArcGIS
software (ESRI, Redlands, CA, USA). Normalized Difference Vegetation Index (NDVI),
Green Normalized Difference Vegetation Index (GNDVI), Green Ratio Vegetation Index
(GRVI), Radar Vegetation Index (RVI), Green Red Normalized Difference Vegetation Index
(GRNDVI) and Modified Soil adjusted Vegetation Index (MSAVI) were calculated according
to Rouse et al. [27], Gitelson et al. [28], Tucker et al. [29], Kim et al. [30], Wang et al. [31] and
Qi et al. [32], respectively. The average value of the above indices was used for each tree.

The three-dimensional canopy volume and the PCA of each tree were calculated
following the same procedure reported in Caruso et al. [33]. Briefly, RGB images were
processed using Agisoft PhotoScan Professional Edition (Agisoft LLC, St. Petersburg,
Russia) for the generation of the 3D point clouds. The digital surface model (DSM) was
obtained from the 3D point cloud and then processed in ArcGIS to obtain a digital terrain
model (DTM). The normalized DSM, obtained by subtracting the DTM from the DSM,
allowed to retrieve the height of each three-dimensional axes of the canopy point above the
ground. The net tree canopy volume was calculated by subtracting the volume comprised
between the ground level and 0.7 m (the height of the insertion of the first couple of
branches) to the total volume of each tree [33]. The very high-resolution of the images and
the absence of grass cover facilitated the separation of tree crowns from the background.
The PCA was obtained using a height value threshold (0.7 m) which delimited soil and
tree components. The canopy height profile of each tree along the row was obtained by
extracting the pixel value (height above the ground level) from the normalized DSM at
0.1 m intervals. The mean canopy height profile was calculated as the average of 10 trees
for each cultivar-planting distance combination. The volume of the pruned material of
Biancolilla, Calatina and Koroneiki trees was estimated following the same procedure used
for the canopy volume estimation. The entire volume (from ground level to the top of the
pruning heap) was considered representative of the pruning material volume (Figure 1).
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2.5. Statistical Analysis

The experimental design was a split-plot where cultivar was considered as the main
plot and planting distance as the sub-plot. Each combination (cultivar-planting distance)
consisted of 10 (canopy volume, PCA and canopy height profile) and 7 (fruit yield and
TCSA) replicate trees. Means were separated by honestly significant differences (Tukey’s
HSD) at p < 0.05 after analysis of variance (ANOVA). Where applicable, data were analyzed
by regression using Costat (CoHort Software, Monterey, CA, USA). The root mean square
error (RMSE) and the mean absolute percentage error (MAPE) of residuals were calculated
along with the regression fit and the squared correlation coefficient between measured
and estimated tree parameters. Discriminant analysis was performed using JMP (JMP
SAS, Campus Drive Cary, NC, USA) to evaluate the vegetation indices derived by aerial
images as a set of independent variables for discriminating the eight cultivars (Cerasuola,
Nocellara del Belice, Nocellara Etnea, Minuta, Calatina, Abunara, Koroneiki). All the tests
used to evaluate the analysis (Wilks’ Lambda, Pillai’s Trace, Hotelling–Lawley, Roy’s max
root) were significant (p < 0.0001). Canonical details on discriminant analysis are provided
as supporting materials (Table S1).

3. Results

The relationships between measured and estimated canopy height, projected canopy
area and canopy volume were linear regardless of the different cultivars and planting
distances (slope of 0.89, 0.96 and 0.85 for canopy height, projected canopy area and canopy
volume, respectively) (Table 1, Figure 2). Good correlation (R2 equal to 0.79, 0.78 and 0.82
for canopy height, projected canopy area and canopy volume, respectively) and accuracy
levels (RMSE equal to 0.12 m, 0.44 m2 and 0.68 m3 for canopy height, projected canopy
area and canopy volume, respectively) were also observed (Table 1, Figure 2).

Table 1. Comparison between ground measured and UAV-estimated projected canopy area (m2) and
canopy height (m). Measurements were carried out on olive trees of cultivar Koroneiki, Biancolilla
and Calatina (15 trees per cultivar) before pruning.

Parameter Measured versus Estimated
Canopy Height (m)

Measured versus Estimated
Projected Canopy Area (m2)

Intercept 0.28 0.30
Slope 0.89 0.96
R2 0.79 0.78
RMSE (m–m2) 0.12 0.44
MAPE (%) 3.26 10.4

The geometrical canopy characteristics derived by RGB images showed significant
differences between cultivars and between planting distances (Table 2, Table S2). The
biggest canopies were those of cultivar Cerasuola (7.30 m3, average of all the sampling
distances), whereas the smallest ones were measured in Calatina trees (5.27 m3). The
projected canopy area was similar between cultivars (4.07–4.27 m2) except for the cultivar
Calatina, which showed significantly lower values (3.29 m2) than the others (Table 2).

Figures 3–5 report the canopy height profile and percentage of a hypothetical veg-
etative wall (2 m width × 2.3 m high, 3 × 2.3 and 4 × 2.3 m, for the 4 × 2, 4 × 3 and
4 × 4 m planting distances, respectively) filled by tree canopies of different cultivars and
planting distances. Canopy profiles of cultivars planted at 4 × 2 m were similar in shape
but different in canopy height (Figure 3). Differences in the shape of the canopy profile
became more evident in trees planted at 4 × 3 and 4 × 4 m (Figures 4 and 5). The percentage
of the vegetative wall filled by tree canopies was calculated by assuming a complete and
uniform canopy development below the maximum canopy height profile. Trees planted at
row distances of 2 and 3 m showed similar percentages of filled canopy walls between each
other, whereas lower values were measured in olives planted at 4 × 4 m (Figures 3–5).
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Figure 2. Relationship between the ground measured and UAV-estimated canopy volume (CV) of
olive trees of different cultivars (Biancolilla, Calatina and Koroneiki) planted at the 4 × 2 m (black
symbols), 4 × 3 m (grey symbols) and 4 × 4 m (white symbols). Each symbol represent one tree.
Equation: Esimated CV = 0.85 measured CV + 0.45, R2 = 0.82, RMSE = 0.68, MAPE = 9.25.

Table 2. Projected canopy area and canopy volume of different olive tree cultivars planted at 4 × 2,
4 × 3 and 4 × 4 m. Values are means of 30 (cultivar) and 80 (planting distance) trees. Different letters
indicate significant differences between cultivars (main plot) and planting distances (sub-plot) after
analysis of variance (ANOVA). Legend: HSD, honestly significant difference.

Cultivar—Planting Distance Projected
Canopy Area (m2)

Canopy
Volume (m3)

Cerasuola 4.25 a 7.30 a
N. Belice 4.25 a 7.01 a
Biancolilla 4.07 a 6.78 a
N. Etnea 4.12 a 6.69 a
Minuta 4.14 a 7.41 a
Calatina 3.29 b 5.27 b
Abunara 4.27 a 6.92 a
Koroneiki 4.16 a 6.87 a
HSD 0.55 1.16
4 × 2 3.35 b 5.92 b
4 × 3 4.30 a 6.95 a
4 × 4 4.55 a 7.46 a
HSD 0.26 0.53
Cultivar (C) 0.0000 0.0000
Planting distance (PD) 0.0000 0.0000
C × PD 0.0006 0.0178
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Figure 3. Canopy height profile of olive trees of different cultivars planted at 4 × 2 m. The average
canopy height profile of 10 trees is reported for each cultivar. In each section, the percentage of
the canopy wall filled by the canopy is also reported. The canopy wall (2 × 2.3 m) was calculated
considering the distance between trees along the row (2 m), a trunk height of 0.7 m and a canopy
height considered optimal for the agronomic management (3 m).
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Figure 4. Canopy height profile of olive trees of different cultivars planted at 4 × 3 m. The average
canopy height profile of 10 trees is reported for each cultivar. In each section, the percentage of
the canopy wall filled by the canopy is also reported. The canopy wall (3 × 2.3 m) was calculated
considering the distance between trees along the row (3 m), a trunk height of 0.7 m and a canopy
height considered optimal for the agronomic management (3 m).
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Figure 5. Canopy height profile of olive trees of different cultivars planted at 4 × 4 m. The average
canopy height profile of 10 trees is reported for each cultivar. In each section, the percentage of
the canopy wall filled by the canopy is also reported. The canopy wall (4 × 2.3 m) was calculated
considering the distance between trees along the row (4 m), a trunk height of 0.7 m and a canopy
height considered optimal for the agronomic management (3 m).

Pruning material mass varied according to tree cultivar (11.8, 7.21 and 4.32 kg of
pruning material per tree—an average of 15 trees per cultivar—in Koroneiki, Biancolilla
and Calatina trees, respectively). The combined use of RGB images by UAV and structure
from motion techniques allowed to properly estimate the mass removed by pruning from
each tree (Figure 6). A good relationship (R2 = 0.95) was found between the pruning
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mass material weighted on the ground and its volume estimated by UAV (Figure 6A).
Similarly, the reduction in canopy volume (canopy volume before pruning minus canopy
volume after pruning) estimated by UAV was correlated (R2 = 0.84) with the pruned mass
(Figure 6B). The impact of different pruning intensities on the projected canopy area was
less evident (R2 = 0.63) (Figure 6C).
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Figure 6. Relationship between measured pruning material mass and: the estimated pruning material
volume (A), the reduction (∆) in canopy volume (B) and in projected canopy area (C) after pruning
(canopy volume/projected area before pruning-canopy volume/projected area after pruning) mea-
sured in olive trees cvs. Koroneiki, Biancolilla and Calatina. Symbols are means of 5 trees ± standard
error for each cultivar-planting distance combination. Equations: y = 0.05 x – 0.003, R2 = 0.95 (A);
y = 0.2 x – 0.17, R2 = 0.84 (B); y = 0.08 x + 0.14, R2 = 0.63 (C).
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A positive linear relationship between NDVI measured on February 2019 and the an-
nual TCSA increment was found regardless of cultivar and planting distances (Figure 7A–C).
Fruit yield per tree ranged between 4.8 kg (Nocellara del Belice 4 × 2 m) and 26.3 kg (Cera-
suola 4 × 4 m) in 2018 and between 2.1 kg (Abunara 4 × 2) and 25.1 kg (Biancolilla 4 × 4)
in 2019 (Figure 7D–I). In 2019, fruit yield was strongly affected by both abiotic and biotic
stresses. Particularly, hot winds and rain at blooming reduced fruit set, whereas olive
fruit fly (Bactrocera oleae Rossi) caused a consistent fruit drop before harvest. The NDVI
measured in February 2019 was positively related to fruit yield measured a few months
earlier (November 2018) with the only exception of Calatina, which did not follow the
general trend of the other cultivars (Figure 7G–I). In 2019, yields were very highly vari-
able depending on the intensity of biotic and abiotic stresses effects, and, as expected, no
relationship between NDVI and tree productivity emerged (Figure 7D–F).
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symbol represent one tree. The values of Calatina trees were not included in the regression analysis (G–I). Equation: annual
TCSA increment = 5.7 NDVI - 2.5, R2 = 0.69 (A); annual TCSA increment = 6.4 NDVI – 2.7, R2 = 0.66 (B); annual TCSA
increment = 8.7 NDVI - 3.8, R2 = 0.74 (C); fruit yield 2018 = 287 NDVI - 136, R2 = 0.75 (G); fruit yield 2018 = 217 NDVI - 98
R2 = 0.65 (H); fruit yield 2018 = 335 NDVI - 159 R2 = 0.67 (I).
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Figure 8 shows the results of the discriminant analysis performed using six vegetation
indices derived by the green (G), red (R) e near-infrared (NIR) bands from the multispectral
images. Discriminant analysis, performed including all planting distances, was able to
separate the different cultivars using the six vegetation indices. In particular, GRVI and
RVI were able to discriminate Minuta and Calatina toward Canonical 1, while Cerasuola
and Nocellara del Belice were mainly discriminated by GNDVI (Figure 8). Koroneiki was
separated on Canonical 2 by NDVI and MSAVI indices.
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Figure 8. Discriminant analysis based on different vegetation indices (NDVI, MSAVI, GRNDVI, GNDVI, RVI, GRVI) and
used separate eight olive tree cultivars (Cerasuola, N. Belice, Biancolilla, N. Etnea, Minuta, Calatina, Abunara, Koroneiki)
trained on a hedgerow system and three different planting distances (4 × 2 m, 4 × 3 m and 4 × 4 m). Discriminant analysis
was performed using the vegetation indices as a set of independent variables. Each circle enclosed the region in proximity
of the centroid. Lines refer to variables considered in the model.

4. Discussion

Previous studies ascertained the ability of UAV and image analysis in geometrical
canopy characteristics estimation in orchards and vineyards [22,33–37]. In this study,
geometrical canopy characteristics, such as canopy height, projected canopy area and
canopy volume, were satisfactorily estimated (MAPE of 3.26, 10.40 and 9.25%, respectively)
following the methodology proposed by Caruso et al. [33]. In a similar study carried out
on young (27 months old) olive trees, the relative error between estimated and measured
canopy volume accounted for 17.65% [17].

The significant differences in canopy volume and in projected canopy area between
cultivars were also observed in previous experiments [17,18,23], confirming their geometri-
cal canopy peculiarities observed using an on-ground measurement approach [38]. The
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analysis of the canopy height profile provides useful information about the ability and tim-
ing of different olive cultivars in filling a predetermined leaf area wall (in our experiment
4.6, 6.9 and 9.2 m2, for 4 × 2, 4 × 3 and 4 × 4 m planting systems, respectively). One of
the assumptions in our procedure (a complete and uniform canopy development below
the maximum canopy height profile, Figures 3–5) represents a simplification that cannot
be applied a priori under different experimental conditions. However, our results are in
agreement with those observed in previous experiments [39,40], suggesting a possible
use of this technique under specific site conditions. Geometrical canopy characteristics
are also important in order to optimize the spray volume in pesticides application [41,42].
Different dosing models are proposed to calculate the optimal amount of pesticide to be
applied, including the Crown Height model (CHT model), the Surface Orchard model (SO
model) and the Tree Row Volume model (TRV model) [43]. In this regard, the ability of
UAVs in easily providing these canopy features could positively contribute to reducing the
environmental impact of pesticide applications.

In previous studies, the pruning biomass was estimated by comparing the tree canopy
volume estimated by UAV before and after pruning [25,26,44,45]. To the best of our
knowledge, this is the first study where UAV imagery was used to directly estimate the
pruning material volume. In our research, following the same approach proposed for
the canopy volume estimation [33], we estimated the volume of the pruning heap placed
by pruners on the ground. The relationship between the pruning material mass and its
volume estimated by UAV was very good (R2 = 0.95). These results could represent a
substantial improvement in data collection in phenotyping trials where intensive field
work is needed to acquire this information at tree level on the ground. It is important to
point out that these relationships are “pruners”-specific because the way through which
the operator places and arranges the pruning material on the ground could affect its final
volume. Moreover, in order to be clearly visible from the UAV, the pruning material should
be placed in the middle of the inter-row. The above specifications only slightly reduce the
applicability of this methodology because, in olive trials, pruning is usually carried out
always by the same pruners. The amount of pruning material was also consistent with
the reduction in canopy volume after pruning. Some discrepancies between the pruning
mass and the corresponding reduction in canopy volume may be due to the position of the
shoots and branches to be removed. Inner shoots and branches have little impact on the
canopy shape and, therefore, their removal may have only a slight (or none) effect on the
canopy volume. Johansen et al. [26] used multispectral UAV images to assess changes in
lychee trees structures (tree crown perimeter, width, height, area and Plant Projective Cover,
PPC) induced by pruning. They reported that all measured tree structural parameters
collected after a pruning event were lower than those measured before pruning. Similar
results were found in a previous study where similar technologies were used to quantify
the impact of different pruning strategies (traditional, adapted and mechanical pruning)
on olive tree architecture and annual canopy growth [25].

The olive cultivars evaluated in this study were different for canopy spectral response.
While morphological markers are widely used for olive cultivars identification [46–48],
little information is reported about leaf and canopy reflectance [49,50]. The combined use
of leaf hyperspectral reflectance and data-mining techniques was successfully applied to
discriminate 10 olive cultivars in an experiment carried out in Portugal [50]. In another
experiment, Avola et al. [49] used a UAV equipped with a multispectral camera (520–600,
630–690 and 760–900 bands) to discriminate field-grown olive cultivars (Frantoio and
Leccino) in an experimental plantation with different scion/rootstock combinations. The
same authors were able to effectively discern the two scions, whereas the effect of rootstock
on canopy reflectance appeared unclear. Using a similar approach, we were able to
highlight differences in spectral response between the eight olive cultivars evaluated.

A positive linear relationship between NDVI and fruit yield was found for all cultivars,
with the only exception of Calatina trees. This result is not surprising, because Calatina
has been previously described as a low vigor but highly productive cultivar [38]. In this
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sense, the integration of data derived by remote sensing (tree vigour-NDVI) and field
measurements (fruit yield per tree) could improve the characterization of olive cultivars
according to their vegetative-to-reproductive balance. This is a crucial information in
phenotyping trials which are mainly aimed at finding low vigor but highly productive
olive varieties. Recent studies focused on olive yield forecasting based on geometrical and
spectral canopy characteristics [51,52]. Sola-Guirado et al. [51], in an experiment carried
out in Greece, developed a multiple linear regression based on NDVI, canopy volume and
the average slope of the tree location, yielding an R2 of 0.6. Although good performance of
vegetative indices in discriminating olive cultivars and in yield forecasting was found in our
study and in previous ones [49–52], it is important to pay attention to possible limitations
in practical transferring of these techniques. For instance, the ability of vegetative indices in
cultivar identification has been tested in experimental fields characterized by homogeneous
pedo-climatic conditions and agronomic practices within the orchard [49, this experiment].
Under uncontrolled conditions (larger areas or abandoned olive orchards), abiotic and
biotic stresses should induce changes in vegetative indices values greater than those
induced by genotype. Similarly, forecasting fruit yield based only on NDVI values and
canopy geometrical characteristics can be risky because biological parameters affecting
production are not taken into account. In our experiment, we experienced this issue in
2019, when we did not find any relationship between the NDVI measured in February and
the final fruit yield due to the abiotic and biotic stresses that occurred during the growing
season. In general, unfavorable events affecting flowering, fruit-set or ripening (e.g., spring
frost, heat waves, olive fruit fly) can dramatically modify the final fruit yield per tree but
induce negligible effects on tree canopy volume and vigor (NDVI).

Overall, our results confirm the reliability of UAV imagery and structure from motion
techniques in estimating the olive geometrical canopy characteristics such as canopy vol-
ume and projected canopy area. The relationship between NDVI and fruit yield suggests
the usefulness of the combined use of field and remotely sensed data for the early discrimi-
nation of yield efficiency between different cultivars. The possibility to remotely estimate
the pruning material volume may dramatically speed up the acquisition process of this
information and, consequently, reduces the time and cost of the field work. Finally, in a
commercial farm context, the UAV-derived information could provide olive growers the
opportunity to take corrective actions to improve orchard management activities such as
pruning and pesticide applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/horticulturae7080258/s1, Table S1: Canonical details calculated from the overall pooled
within-group covariance matrix referred to discriminant analysis reported on Figure 7 and carried
out using different vegetation indices (NDVI, MSAVI, GRNDVI, GNDVI, RVI, GRVI) to separate
eight olive tree cultivars (Cerasuola, N. Belice, Biancolilla, N. Etnea, Minuta, Calatina, Abunara,
Koroneiki) trained on a hedgerow system and three different planting distances (4 × 2 m, 4 × 3 m,
and 4 × 4 m). Table S2: Projected canopy area and canopy volume of olive trees of different cultivars
planted at 4 × 2, 4 × 3 and 4 × 4 m measured on 27 February 2019. Values are means ± standard
error of 10 trees per each cultivar-planting distance combination.
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