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ABSTRACT

We have demonstrated that the transition region adaptive conduction (TRAC) method permits fast and accurate numerical solutions of
the field-aligned hydrodynamic equations, successfully removing the influence of numerical resolution on the coronal density response
to impulsive heating. This is achieved by adjusting the parallel thermal conductivity, radiative loss, and heating rates to broaden the
transition region (TR), below a global cutoff temperature, so that the steep gradients are spatially resolved even when using coarse
numerical grids. Implementing the original 1D formulation of TRAC in multi-dimensional magnetohydrodynamic (MHD) models
would require tracing a large number of magnetic field lines at every time step in order to prescribe a global cutoff temperature
to each field line. In this paper, we present a highly efficient formulation of the TRAC method for use in multi-dimensional MHD
simulations, which does not rely on field line tracing. In the TR, adaptive local cutoff temperatures are used instead of global cutoff
temperatures to broaden any unresolved parts of the atmosphere. These local cutoff temperatures are calculated using only local grid
cell quantities, enabling the MHD extension of TRAC to efficiently account for the magnetic field evolution, without tracing field lines.
Consistent with analytical predictions, we show that this approach successfully preserves the properties of the original TRAC method.
In particular, the total radiative losses and heating remain conserved under the MHD formulation. Results from 2D MHD simulations
of impulsive heating in unsheared and sheared arcades of coronal loops are also presented. These simulations benchmark the MHD
TRAC method against a series of 1D models and demonstrate the versatility and robustness of the method in multi-dimensional
magnetic fields. We show, for the first time, that pressure differences, generated during the evaporation phase of impulsive heating
events, can produce current layers that are significantly narrower than the transverse energy deposition.

Key words. magnetohydrodynamics (MHD) – Sun: transition region – Sun: corona – Sun: chromosphere – Sun: flares –
hydrodynamics

1. Introduction
By using multi-dimensional magnetohydrodynamic (MHD)
models to study the physics of magnetically closed loops in the
solar atmosphere, we have learned a great deal about the stor-
age and release of energy in the corona (see e.g., Reale 2014;
Pontin & Hornig 2020). Simulating the plasma response to the
heating in such models requires a physical connection between
the corona, transition region (TR), and chromosphere in order
to account for field-aligned thermal conduction, optically thin
radiation, and chromospheric evaporation. These processes con-
trol the evolution of the temperature and density of the confined
plasma, which determine the brightness of the emission from the
coronal loops.

One of the main difficulties encountered when including
such additional physics in MHD models is the need to imple-
ment a grid that fully resolves the steep gradients in the TR,
which are associated with thermal conduction between the
corona and chromosphere (e.g., Antiochos & Sturrock 1978;
Vesecky et al. 1979). Resolving these gradients in numerical
simulations requires very small grid cell widths, typically less
than 1 km (Bradshaw & Cargill 2013), which, in turn, acts as a
? Movies associated to Figs. 4 and 8 are available at
https://www.aanda.org

major constraint on the time step, as required for numerical sta-
bility. Obtaining this spatial resolution in active-region-sized 3D
MHD models poses a serious challenge (e.g., Reid et al. 2018,
2020; Knizhnik et al. 2019; Kohutova et al. 2020), for simula-
tions to be run in a realistic time.

As pointed out by Bradshaw & Cargill (2013), the main con-
sequence of not properly resolving the TR when using the stan-
dard Spitzer & Härm (1953, hereafter SH) conduction method is
that the resulting coronal density (n) is artificially low. This hap-
pens because the downward heat flux is forced to jump across
an under-resolved TR to the chromosphere, where the incom-
ing energy is then strongly radiated. Since the emission measure
scales with n2, such underestimations in the density can then
potentially lead to inaccurate conclusions when numerical pre-
dictions are compared with real observational data.

Furthermore, for the case of steady footpoint heating,
Johnston et al. (2019) demonstrated that inadequate TR res-
olution can result in the suppression of the thermal non-
equilibrium cycles (Froment et al. 2018; Winebarger et al. 2018;
Klimchuk & Luna 2019) that are present when the TR is prop-
erly resolved. Similar results were also reported by Zhou et al.
(2021) for the formation of prominences (e.g., Antiochos et al.
1999; Xia et al. 2012). Both are examples where the predicted
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observational signatures are significantly different depending on
the size of grid cells used in the TR.

In a recent paper, Johnston & Bradshaw (2019, hereafter
JB19) demonstrated that modelling the transition region with
the use of an adaptive conduction (TRAC) method success-
fully removes this influence of numerical resolution on the coro-
nal density response to heating, while maintaining high levels
of agreement with fully resolved hydrodynamic (HD) models.
When employed with the coarser spatial resolutions, typically
achieved in multi-dimensional MHD codes, the TRAC simula-
tions gave peak density errors of less than 5%, whereas without
TRAC, in the equivalent coarse resolution simulations, the errors
can be as high as 75% (see e.g., Johnston et al. 2017a, 2020,
JB19). This is achieved by enforcing adjustments to the parallel
thermal conductivity (κ‖(T )), radiative loss (Λ(T )), and heating
(Q) rates that are due, in their original form, to Lionello et al.
(2009) and Mikić et al. (2013) and were subsequently extended
by Johnston et al. (2020). These conditions act to broaden any
unresolved parts of the TR, below an adaptive cutoff temperature
(Tc), while ensuring that κ‖(T )Λ(T ) and κ‖(T )Q(T ) give the same
function of temperature as for T ≥ Tc. Johnston et al. (2020)
showed that modifications of this form allow the TR to be mod-
elled in HD simulations with tractable grid sizes, of order 50 km,
because they preserve the energy balance in the TR and conserve
the total amount of energy that is delivered to the chromosphere,
consistent with fully resolved models.

The natural extension of the original TRAC method, from 1D
HD to multi-dimensional MHD, requires the tracing of magnetic
field lines at each time step in order to identify the global cut-
off temperature that is associated with each field line. Recently,
Zhou et al. (2021) proposed such an approach, applying the 1D
TRAC method in 2D MHD simulations of prominence forma-
tion by using two different field line tracing techniques. How-
ever, multi-dimensional implementations of TRAC that employ
the original 1D formulation suffer from limitations that are asso-
ciated with the need to prescribe a global cutoff temperature
to individual field lines. In particular, tracing a sufficient num-
ber of magnetic field lines at every time step is computation-
ally very time consuming because of the global communication
that is required between all of the grid cells in the numerical
domain. The outcome is that field line tracing implementations
of the TRAC method are unlikely to be practical in 3D MHD
simulations of coronal heating, where the energy release is gen-
erated self-consistently through the build-up of magnetic energy
in the coronal field and subsequent dissipation through magnetic
reconnection events (e.g., Hood et al. 2016; Reale et al. 2016;
Reid et al. 2018, 2020).

In this paper, we address these shortcomings by presenting
an extension of the TRAC method for use in multi-dimensional
MHD simulations, without the need to trace magnetic field lines.
This is achieved by prescribing an adaptive cutoff temperature
local to each grid cell, using only local grid cell quantities. The
full details of the MHD TRAC method are described in Sect. 2,
where we also show that moving from a global to a local cut-
off temperature preserves the properties of the original TRAC
method. Section 3 outlines the numerical experiments, and in
Sect. 4 we present the results from 2D MHD simulations that
model the thermodynamic response to impulsive heating events
in unsheared and sheared arcades of coronal loops. The unsheared
arcade simulation is used to benchmark the MHD TRAC method
against a series of 1D models, while the sheared arcade model
demonstrates the performance of the MHD extension of TRAC
in a multi-dimensional magnetic field configuration. We conclude

with a discussion of the MHD TRAC method in Sect. 5 and
present supplementary material in Appendix A.

2. The TRAC method

In Johnston et al. (2020), we presented an extensive description
of the TRAC method for the highly efficient numerical inte-
gration of the field-aligned HD equations through the compu-
tationally demanding TR. The extension of the method to multi-
dimensional MHD simulations will be presented in the following
subsections.

2.1. MHD model

To model the magnetic field evolution and plasma response to
heating, we considered the following set of MHD equations,
which include gravitational stratification and an energy equation
that incorporates the effects of thermal conduction and optically
thin radiation,
∂ρ

∂t
+ ∇ · (ρv) = 0; (1)

ρ
Dv
Dt

= −∇P − ρg + j × B + Fvisc.; (2)

ρ
Dε
Dt

= −P∇ · v − ∇ · q + Qvisc. + Q −n2Λ(T ) +
|j|2

σ
; (3)

∂B
∂t

= ∇ × (v × B) − ∇ × (η∇ × B); (4)

P = 2 kBnT. (5)

Here, ρ is the mass density, v is the velocity, P is the gas pressure,
g is the gravitational acceleration, j is the electric current den-
sity, B is the magnetic field, Fvisc. represents the viscous force,
ε = P/(γ − 1)ρ is the specific internal energy density (where
γ = 5/3 is the ratio of specific heats), q is the heat flux vec-
tor, Qvisc. represents the viscous heating, Q is a heating function
that includes uniform background heating and a time-dependent
component that can be dependent on position, n is the number
density (n = ρ/1.2mp, where mp is the proton mass), Λ(T ) is
the radiative loss function in an optically thin plasma, which we
approximated using the piecewise continuous function defined
in Klimchuk et al. (2008), σ is the electrical conductivity, η is
the resistivity, kB is the Boltzmann constant and T is the temper-
ature.

We solved the MHD Eqs. (1)–(5) using the Lagrangian
Remap (Lare) code described in Arber et al. (2001). Two small
shock viscosity terms were included to ensure numerical stabil-
ity together with a small background viscosity (Reid et al. 2020).
These contribute a force, Fvisc., on the right-hand side of the
equation of motion (2) and a heating term, Qvisc., to the energy
Eq. (3). The thermal conduction model is based on the Braginskii
(1965) heat flux in the presence of a magnetic field, where the
heat flux vector,

q = −
κ‖(T )

B2 + b2
min

(
(B · ∇T )B + b2

min∇T
)
, (6)

recovers the anisotropic SH parallel thermal conductivity
(Spitzer & Härm 1953) in the limit B2 � b2

min. Here, κ‖(T ) =

κ0T 5/2 is the SH parallel coefficient of thermal conduction with
κ0 = 10−11 Jm−1 K−7/2 s−1 and the perpendicular conductivity is
given by

κ⊥(T ) =
κ‖(T )

1 + B2/b2
min

, (7)
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where B2/b2
min is used to approximate the square of the product

between the electron gyrofrequency and electron collision time
(ωceτe)2, with bmin = 0.1 G used throughout this paper. In the
strong field limit, κ⊥(T ) is proportional to κ‖(T )/B2 and when
B2 � b2

min, we note that the thermal conductivity reduces to
isotropic.

Time-splitting methods are used to update thermal conduc-
tion and optically thin radiation separately from the advection
terms, as discussed in Appendix A of Johnston et al. (2017a).
Furthermore, to treat thermal conduction, we use super time
stepping methods, as described in Meyer et al. (2012, 2014) and
discussed in Appendix B of Johnston et al. (2017a). This time
integration strategy is a computational efficient way of deal-
ing with the potentially large difference between the advection
(dtadv) and conduction (dtcond) time step restrictions that are
required for numerical stability in an explicit numerical scheme,
since dtcond � dtadv is typical for coronal plasma evolution.

2.2. The TRAC method: Extension to MHD models

The extension of the TRAC method to multi-dimensional MHD
models requires a more sophisticated treatment than the field-
aligned HD implementation. The main challenge that needs to
be addressed is how the magnetic field evolution modifies the
prescription of the adaptive cutoff temperature along a field line.
As pointed out by Ruan et al. (2020), continuing with the same
approach as JB19 and Johnston et al. (2020) requires the track-
ing of magnetic field lines and identification of a cutoff temper-
ature, associated with each field line, at each time step of the
numerical simulation. However, this approach, which was subse-
quently pursued by Zhou et al. (2021), is computationally expen-
sive and non-trivial to parallelise with a strong scaling due to the
substantial communication required between all of the grid cells
in the numerical domain.

Therefore, it is desirable to develop an optimised extension
of the TRAC method, for use in MHD simulations, that pre-
scribes an adaptive cutoff temperature local to each grid cell,
using only local grid cell quantities. The full details of such an
implementation are described next, starting first with the field-
aligned HD formulation, followed by the generalisation to multi-
dimensional MHD.

2.2.1. Hydrodynamic implementation

To formulate the extension of the TRAC method, we begin with
a steady state version of the energy equation that approximates
the SH temperature gradient as given by Eq. (8) in Johnston et al.
(2020),

T
LT

=

5kBJ±

√
25k2

BJ2+4
κ‖(T )

T

( P
2kBT

)2
Λ(T )−Q


2
κ‖(T )

T

, (8)

where

LT (s) =
T (s)

dT (s)/ds
(9)

is the temperature length scale, s is the spatial co-ordinate along
the magnetic field, J = nv is the mass flux, and v is the velocity
parallel to the magnetic field. We note that the positive (nega-
tive) root corresponds to an increasing (decreasing) temperature
gradient.

The aim is to construct a conductivity model that broad-
ens the TR, giving a new local temperature length scale (LT (s))
that satisfies the minimum resolution criteria of Johnston et al.
(2017a,b). This requires that

LT (s) =
LR(s)
δ

, (10)

where LR(s) = ∆s is the local grid cell width and δ = 1/2 is a
parameter that controls the number of grid cells used to resolve
LT (s).

Combining Eqs. (8) and (10), taking the absolute value of
the mass flux term (see below) and considering only the positive
root (to remove the dependence on sign of the local temperature
gradient), we obtain the following expression for a conductivity
model that is fitted to resolve the local temperature length scale,

κtrac
‖

(T )=

5kB|J|+

√
25k2

BJ2+4
κ‖(T )

T

( P
2kBT

)2
Λ(T )−Q


2δ
LR

, (11)

which we refer to as the TRAC parallel thermal conductivity. We
note that Eq. (11) can also be interpreted as the calculation of a
local cutoff temperature in each grid cell, using only local grid
cell quantities.

As formulated, the TRAC conductivity only exceeds the
SH value (κ‖(T )) in grid cells that would be under-resolved
with the SH conductivity. That is locations in the TR where
LT (s) < LR(s)/δ. On the other hand, κtrac

‖
(T ) is smaller than

the SH value in properly resolved grid cells (e.g., in the corona
where LT (s) > LR(s)/δ). This is the case during the evaporation
and peak density phases of an impulsively heated loop because
the approximation of the SH temperature gradient, used in the
calculation of the TRAC conductivity, reduces to the simplified
expressions presented in Johnston et al. (2020), for the two lim-
its of strong evaporation (neglecting radiation) and peak density
(neglecting mass flux terms). Thus, the TRAC conductivity is
calculated using an accurate approximation of the SH tempera-
ture gradient, during these first two phases.

We note that it is necessary to take the absolute value of
the mass flux term in order to ensure that the TRAC conduc-
tivity remains smooth during the evaporation phase, when large
upflows in the TR are accompanied by small downflows at the
base of the TR (see e.g., Johnston et al. 2020). The evapora-
tion phase is prioritised because this phase has the most severe
requirements for resolving the downward heat flux. However,
for the decay phase of an impulsively heated loop the mass flux
term is negative (downflow). Therefore, the approximation of the
temperature gradient used in Eq. (11) does not recover the radia-
tive cooling limit (neglecting thermal conduction) due to the sign
enforced by the |J| term. The outcome is that the TRAC conduc-
tivity can lead to an over-broadening of the TR during the decay
phase.

To mitigate this over-broadening effect, we imposed a limiter
on the TRAC conductivity, which is derived by neglecting the
mass flux terms,

κlim‖ (T )=

√
4
κ‖(T )

T

( P
2kBT

)2
Λ(T )−Q


2δ
LR

. (12)

This limited conductivity is used when grid cells would be
under-resolved with the SH conductivity and over-resolved with
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the TRAC conductivity given by Eq. (11). Such grid cells are
regarded as being over-resolved if the new local temperature
length scale, given by Eq. (9), is broadened beyond twice the
value intended by Eq. (10). Therefore, the threshold for transi-
tioning to κlim

‖
(T ) is taken as LT (T ) > 2LR(T )/δ.

Incorporating the TRAC conductivity with the broadening
limiter, we set the parallel thermal conductivity to be of the form

κ′‖(T ) =


max{κtrac

‖
(T ), κ‖(T )}, for LT (T ) ≤

2LR(T )
δ

max{κlim
‖

(T ), κ‖(T )}, for LT (T ) >
2LR(T )
δ

, (13)

which increases the conductivity in under-resolved grid cells and
reduces to the classical SH value elsewhere, as we show in the
next subsection. This calculation of the κ′

‖
(T ) conductivity model

comprises the first part of the TRAC method as described in
JB19.

The second part of the method is to broaden the steep tem-
perature and density gradients in the TR. This is achieved using
an approach first proposed by Linker et al. (2001), Lionello et al.
(2009) and Mikić et al. (2013).

Using the κ′
‖
(T ) conductivity model, we modify the radiative

loss rate (Λ(T )) to preserve κ‖(T )Λ(T ) = κ′
‖
(T )Λ′(T ),

Λ′(T ) = Λ(T )
κ‖(T )
κ′
‖
(T )

, (14)

and the heating rate (Q(T )) to preserve κ‖(T )Q(T ) = κ′
‖
(T )Q′(T ),

Q′(T ) = Q(T )
κ‖(T )
κ′
‖
(T )
· (15)

Reducing both Λ(T ) and Q(T ), in this way, ensures that the total
radiation and heating, integrated across the TR remains the same
for both the SH and TRAC methods (Johnston et al. 2020).

2.2.2. Comparison between the SH and TRAC models

Figure 1 shows the outcome of implementing the method out-
lined above for a loop of total length 60 Mm, in hydrostatic equi-
librium with an apex temperature of 1.16 MK. In the upper two
panels we focus on the TR, showing the temperature and density
as a function of position. An enlargement about the broadened
region that uses the TRAC conductivity, referred to as the TRAC
region, is also shown inset. In the lower six panels, we show
the parallel thermal conductivity, temperature length scale, local
radiative losses, local background heating, integrated radiative
losses and integrated background heating as functions of tem-
perature. The integrated quantities are defined as being from
the apex of the loop downwards to the base of the TR and are
shown on a linear scale. In these panels, the solid red and dashed
blue lines are the SH and TRAC solutions, respectively. The
TRAC (SH) solution is calculated using a grid size of approx-
imately 60 km (60 m). Starting from the left, the first dashed
red (blue) vertical line shows the base of the TR for the TRAC
(SH) solution, and the next dot-dashed red line the top of the
TRAC region. The rightmost vertical dot-dashed blue line is the
top of the actual TR, defined by where the downward conduc-
tion changes sign from a loss to a gain (e.g., Vesecky et al. 1979;
Klimchuk et al. 2008).

The upper two panels (row 1) show the TR broadening
that is associated with the TRAC method, on the temperature

and density structure in the lower TR. In particular, the TRAC
region extends the TR both below and above the SH location,
as was also shown for static loops by Lionello et al. (2009) and
dynamic loops in response to heating by Johnston et al. (2020).
The third panel demonstrates that the TRAC thermal conductiv-
ity is increased relative to the SH value only in under-resolved
grid cells and reduces to the SH model elsewhere. This helps to
broaden the temperature length scale (fourth panel) in grid cells
that would be under-resolved with the SH conduction method.
For example, the minimum LT with the TRAC (SH) conduction
method is of order 100 km (1 km) for the loop shown in Fig. 1.
Thus, the TRAC temperature length scale satisfies the minimum
resolution criteria presented in Eq. (10), shown as the lower solid
green line in the fourth panel, and the extent of the broadening is
bounded by the over-resolution limit described above in Eq. (13)
(shown as the upper solid green line). The broadened tempera-
ture length scale obtained with TRAC prevents the heat flux from
jumping across any unresolved regions while maintaining accu-
racy in the properly resolved parts of the atmosphere (see e.g.,
JB19).

The lower four panels of Fig. 1 demonstrate that moving
from a global to a local cutoff temperature conserves the proper-
ties of the original TRAC method. In particular, consistent with
the analytical predictions of Johnston et al. (2020), the TRAC
broadening modifications to the local radiative loss and heating
rates (row 3), conserve the total radiative losses and total heating
(row 4), when integrated over the loop. This preserves the energy
balance in the TR and conserves the total amount of energy that
is delivered to the chromosphere. The plots also show that the
top of the TR is at 0.68 MK while the top of the TRAC region is
at 0.17 MK, corresponding to roughly 60% and 15% of the maxi-
mum loop temperature, respectively. The thickness of the TRAC
region is thus a small fraction of the TR thickness. Therefore, the
TRAC method has limited influence on the coronal properties of
the loop. The result is that the SH and TRAC temperature and
density profiles converge a short distance above the top of the
TRAC region.

We also tested this implementation of TRAC on loops that
evolve dynamically in response to heating. These simulations
show the same fundamental properties as the hydrostatic loop
and excellent agreement with Johnston et al. (2020), as dis-
cussed further in Appendix A.

2.2.3. Magnetohydrodynamic implementation

Equations (11)–(15) describe the field-aligned formulation of the
TRAC method that is used for the multi-dimensional implemen-
tation. The extension to MHD requires the generalisation of the
mass flux (J), resolution (LR) and temperature length scale (LT )
terms to account for the magnetic field evolution. We define the
mass flux parallel to the magnetic field as

J =
n(B · v + (b2

min|v|
2)1/2)

(B2 + b2
min)1/2

, (16)

the field-aligned resolution is given by

LR =
B · LR + (b2

min|LR|
2)1/2)

(B2 + b2
min)1/2

, (17)

where LR = (∆x,∆y,∆z), and the temperature length scale par-
allel to the magnetic field is defined as

LT =
T (B2 + b2

min)1/2

(B · ∇T + (b2
min|∇T |2)1/2)

. (18)
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Fig. 1. Comparison of the SH and TRAC conduction methods for a one-dimensional loop in hydrostatic equilibrium. Upper two panels: temperature
and density as functions of position along the loop. Lower six panels: parallel thermal conductivity, temperature length scale, local radiative losses,
local background heating rate, integrated radiative losses, and integrated background heating as functions of temperature. The lines are colour-
coded in a way that reflects the conduction method used with dashed blue (solid red) representing the TRAC (SH) solution. The dashed red (blue)
vertical line indicates the base of the TRAC (SH) TR and the dot-dashed red (blue) vertical line the temperature at the top of the TRAC region (the
temperature at the top of the TR).
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We note that, analogous to the conduction model described in
Eq. (6), finite bmin is used here to make the TRAC conductivity
isotropic when B = 0. Furthermore, when TRAC is employed in
the MHD model, we calculate κ′

‖
(T ) in every grid cell and then

solve the full set of MHD Eqs. (1)–(5), but with the use of the
modified κ′

‖
(T ), Λ′(T ) and Q′(T ).

3. Numerical model and experiments

3.1. Unsheared and sheared arcades

To demonstrate the viability of the MHD implementation of
TRAC, we consider a 2D coronal arcade given in cylindrical
coordinates (R, θ, y) by

B =

(
0, B0

R
r
, B1

)
, (19)

where r is the radius and R, B0 and B1 are constants. If B1 = 0 G,
then the arcade is unsheared.

In particular, we consider a surface given by r = R and
express the azimuthal distance along the unsheared field as x =
Rθ, where L = Rπ is the length of a field line. This variable trans-
formation enables the derivatives along the magnetic field to be
written in the form

B · ∇ =

(
B0

R
∂

∂θ
+ B1

∂

∂y

)
=

(
B0

∂

∂x
+ B1

∂

∂y

)
. (20)

Hence, we can model an arcade of coronal loops using a straight
field geometry with a spatially varying gravity, where x is the
spatial coordinate along the magnetic field and y represents the
transverse direction. The expression for the gravitational accel-
eration along the field is then given by

−
g · B
|B|

= −g
B0 cos(πx/L)√

B2
0 + B2

1

. (21)

For our unsheared arcade model, we take B0 = 100 G
and consider a computational domain of dimensions (x, y) =
60 Mm× 2.4 Mm. The numerical grid used to resolve this
domain is comprised of 1024 grid points in x (field-aligned
direction), while the influence of using low and high resolution
in y (cross-field direction) will be examined in Sects. 3.3 and 4.2.

We stratify the initial atmosphere using the broadened, field-
aligned temperature and density profiles shown in Fig. 1, which
are calculated using the TRAC conduction method and a grid
size of approximately 60 km (Nx = 1024) along the field. It is
demonstrated in Appendix A that this field-aligned resolution
is adequate to fully resolve the TR, when the TRAC method
is employed, for all of the simulations presented in this paper.
Here, each field line in the arcade starts in static equilibrium and
the total length of each field line (L = 60 Mm) includes a 5 Mm
chromosphere at the base of each TR. Following Johnston et al.
(2017a), the chromosphere is modelled as a mass reservoir with a
constant temperature of 104 K, and gravitationally stratified den-
sity, while the optically thin radiative losses are reduced to zero
to maintain the isothermal temperature (Klimchuk et al. 1987;
Bradshaw & Cargill 2013).

To model a sheared arcade we set B1 = 4 G. This tilts the
field so that the field lines are no longer aligned with the numeri-
cal grid. The initial conditions are adjusted accordingly to ensure
the initial state is an equilibrium.

Fig. 2. Spatially non-uniform heating profile Q(x, y) (solid red line, left-
hand axis) used in Sects. 3 and 4, imposed on top of the temperature
initial condition (solid blue line, right-hand axis). Upper (lower) panel:
variation of the heating profile in the field-aligned (transverse) direction
at the time of peak heating.

3.2. Non-uniform coronal heating pulse

The effectiveness of the MHD implementation of TRAC is inves-
tigated by considering a spatially non-uniform, impulsive coro-
nal heating event, comprised of a short pulse that lasts for a total
duration of 60 s, where the energy deposition is localised at the
centre of the computational domain. The temporal profile of the
heating pulse is triangular with a linear ramp up to the peak
heating rate (QH0 ) followed by a linear decrease, while the field-
aligned heating profile is square, confining the energy release to
the uppermost 5 Mm located at the apex of the loop, as shown
in Fig. 2 (Q(x) at y = 1.2 Mm is displayed in the upper panel
as the red curve). However, we note that the coronal response to
apex heating is similar to that of uniform heating because ther-
mal conduction is very efficient at coronal temperatures (see e.g.,
Johnston et al. 2017a,b). Thus, the results presented here are not
highly sensitive to the form of heating profile that is used in
the field-aligned direction, given that the same total amount of
energy is released at a sufficient height above the footpoints of
the loop.

For the transverse direction, the spatial profile of the heating
pulse is given by

QH(y) =
QH0

2

(
tanh

(
y − yL

yH

)
− tanh

(
y − yR

yH

))
, (22)

where QH0 is the maximum heating rate, yH = 100 km is the
transverse length scale of heat deposition and we take yL =
1 Mm and yR = 1.4 Mm to give the maximal heating value at
y = 1.2 Mm. This is broadly consistent with the spatial distribu-
tions of heating reported by Reid et al. (2020). We use a maxi-
mum heating rate of QH0 = 8×10−2 Jm−3 s−1, which corresponds
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Fig. 3. Results for the reconstruction of the non-uniform coronal heating pulse using one-dimensional HD simulations of the unsheared arcade
(Sect. 3.3). The panels show the temperature, density, pressure, and field-aligned velocity as functions of position across the arcade (left-hand
axis), at a coronal height of x = 25 Mm, at the time of the first density peak (t = 150 s). The lines are colour coded in a way that reflects the
transverse resolution used with solid blue (dashed green) representing the Ny = 1024 (Ny = 64) solution, which is imposed on top of the transverse
heating profile (solid red line, right-hand axis).

roughly to an active region nanoflare (Bradshaw & Cargill
2013).

A small spatially uniform background heating term is also
present so that Q(x, y) = Qbg + QH(x, y), where Qbg = 2.2167 ×
10−5 Jm−3 s−1. The initial state of the loop is determined using
just Qbg, leading to an apex temperature of 1.16 MK. Defining
the transverse heating length scale as

LQy
=

Q
|∂Q/∂y|

, (23)

the lower panel of Fig. 2 shows that moving outwards from y =
1.2 Mm, the transverse heating profile decreases smoothly from
QH0 to Qbg with a minimum heating length scale of LQy

= 50 km.

3.3. One-dimensional simulations of the unsheared arcade

First we solve the unsheared arcade model using a series of
1D field-aligned TRAC simulations that reconstruct the two-
dimensional (2D) plasma response to the imposed non-uniform
coronal heating pulse. In particular, we treat each field line inde-
pendently by solving the field-aligned MHD equations with a
heating function that is given by the transverse position of the
field line in the 2D reconstruction.

The justification for using such an approach is two-fold.
Firstly, the 2D reconstruction obtained from the HD simula-
tions will be used as a benchmark solution for comparison
with the MHD implementation of TRAC, due to our previous
demonstration of excellent agreement with fully resolved field-
aligned models (see e.g., JB19, Johnston et al. 2020). Secondly,

the results from the 1D simulations also give predictions for
the transverse resolution that is required in the MHD model in
order to accurately capture all of the features that form in the 2D
plasma response.

Figure 3 shows a snapshot at t = 150 s of a number of
variables that are reconstructed from the 1D simulations, as a
function of the transverse direction (y), at a coronal height of
x = 25 Mm. This snapshot corresponds to the time of the first
coronal density peak. In the four panels we focus on 0.4 Mm
around the centre of the arcade, showing the temperature, den-
sity, pressure and field-aligned velocity (vx). Each quantity is
shown imposed on top of the transverse heating profile (Q(y)),
which is displayed as the red curve. In these panels, the solid
blue and dashed green lines are 2D reconstructions that are cal-
culated from the 1D simulations using Ny = 1024 and Ny = 64
grid points in the transverse direction, respectively. These trans-
verse resolutions correspond to grid cell widths of approximately
2.3 km (solid blue curve) and 37.5 km (dashed green curve) in
the 2D reconstructions, enabling both grids to fully resolve the
minimum transverse heating length scale given by Eq. (23).

Starting with the temperature structure across the arcade, it
is clear that the transverse variations in the temperature are con-
sistent with the imposed heating function. This happens because
the initial temperature evolution is being set by the direct in situ
heating. Consequently, the temperature profiles calculated using
Ny = 1024 and Ny = 64 grid points show good agreement as
both solutions adequately resolve the resultant transverse tem-
perature length scale.

On the other hand, it is striking that the transverse variations
in the density have significantly shorter length scales than the
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heating profile. The minimum transverse density length scale
(defined in the same was as the minimum transverse heating
length scale) is of order 10 km, which is five times smaller than
that of the heating function. Therefore, the density profiles show
major differences between low (Ny = 64) and high (Ny = 1024)
transverse resolution because the Ny = 64 grid is unable to
resolve the narrow transverse variations that are observed with
the Ny = 1024 solution.

The generation of these small length scales can be attributed
to the coronal density evolution relying on the interplay in the TR
between downward conduction and upward enthalpy, entangling
the scaling with the imposed heating function (as discussed in
detail in Sect. 4.1.1). This is also the case for the pressure, which
shows small length scales that are of similar order to those seen
in the density, with steep transverse gradients forming around
y = 0.93 and y = 1.01 Mm.

Furthermore, the field-aligned velocity across the arcade
shows the formation of two shear flow layers that are co-spatial
with the steep transverse density and pressure gradients. How-
ever, the length scales that are associated with these shear flows
are of order 1 km, making it more challenging to resolve the
transverse variations in the field-aligned velocity than the density
and pressure. The outcome is that there is considerable depar-
ture between the velocity profiles calculated using Ny = 1024
and Ny = 64 grid points, with the low resolution solution signifi-
cantly under-resolving the shear flow layers. Therefore, based on
the predictions of the length scales that result in the HD simu-
lations, the MHD model will be run with a transverse resolution
of 2.3 km (Ny = 1024), so that the steepness of the shear flow
layers is captured reasonably well.

4. Results: Two-dimensional simulations

4.1. Unsheared arcade

Figure 4 summarises the temporal evolution of the MHD simu-
lation of the unsheared arcade, in response to the non-uniform
coronal heating pulse. The three columns show contour plots of
the temperature, density and field-aligned velocity (vx). Each row
shows a snapshot at a different time: t = 10 s (row 1), t = 60 s
(row 2), t = 150 s (row 3) and t = 1000 s (row 4). These cor-
respond to times during the heating phase, at the start of the
evaporation phase, at the first coronal density peak, and during
the arcade’s draining phase, respectively. The black curves on
the contour plots show the top of the TRAC region on each of
the field lines in the unsheared arcade.

Individual field lines located inside the heated region follow
an evolution characteristic of an impulsively heated loop (see
e.g., Bradshaw & Cargill 2006; Klimchuk 2006; Klimchuk et al.
2008; Cargill et al. 2012a,b, 2015; Reale 2016). For such an evo-
lution, the field-aligned flows associated with the draining phase
are typically an order of magnitude smaller than during the evap-
oration phase (JB19, Johnston et al. 2020). Thus, the scale used
for the colour table of the field-aligned velocity in Fig. 4, has
been adjusted accordingly, to give an accessible range for the
snapshot at t = 1000 s.

4.1.1. Shear flow formation

The collective evolution of the individual field lines leads to the
formation of a shear flow layer across the arcade, as shown in
Fig. 4. As only a small part of the corona is heated, this ini-
tially produces a region with high temperature and pressure. The
high pressure causes a downflow, which pushes plasma out of the

corona towards the footpoints, while the high temperature causes
a conduction front to propagate downwards along the magnetic
field, driving a heat flux into the TR.

While the conduction front on a particular field line prop-
agates ahead of the flows generated by the pressure gradient,
the speed of the conduction front depends on the temperature
reached, which depends on the transverse heating profile. As
the conduction front propagates downwards, the plasma lower
in the corona is unable to radiate the excess conductive heating
and so the gas pressure increases locally. The conduction front
then slows down as it reaches the TR and the accompanying
increased gas pressure piles up at the base of the TR. This cre-
ates an upward pressure gradient that drives an upflow of dense
material from the TR to the corona, increasing the coronal den-
sity.

However, the timing of this upward pressure gradient
depends on the amount of heating in the corona, which depends
on the transverse position of the field line. Therefore, a shear
flow occurs between strongly and weakly heated regions when
there are transverse variations in the energy deposition. This
shear flow formation is seen clearly at t = 60 s in the field-
aligned velocity plot shown in Fig. 4. Furthermore, row 3 of
Fig. 4 demonstrates that the shear flow remains present at the
time of the first coronal density peak (t = 150 s). This corre-
sponds to a time when the evaporation fronts on strongly heated
field lines have rebounded at the apex and subsequently reversed,
transporting the evaporated plasma back towards the footpoints,
while the flows on weakly heated field lines are still evaporat-
ing mass upwards into the corona. The flows associated with
the directly heated plasma do not show such short length scales
across the arcade.

4.1.2. Comparison between the HD and MHD models

Figures 5 and 6 compare the response of the 2D MHD model
with the results from the 1D HD reconstruction of the unsheared
arcade. Hereafter, we refer to these simulations as the MHD
and HD TRAC models, respectively. Starting with the coronal
response, the two panels in Fig. 5 show the time evolution of the
coronal averaged temperature and density, for both models, at
four different transverse positions inside the heated region. The
coronal averages are calculated by spatially averaging over the
uppermost 50% of each field line. Each solid curve represents
the particular coronal average on the selected field lines from the
HD TRAC reconstruction and the dashed blue curves imposed
on top are the corresponding averages from the MHD TRAC
simulation.

Both models show excellent agreement across each of the
field lines, with a rapid rise in temperature, followed by an
increase in density due to evaporation, then, after the time
of maximum density, a radiative cooling and draining phase
(Bradshaw & Cargill 2010a,b). The density oscillations that are
typical for the short heating pulse imposed (e.g., Reale 2016), are
damped slightly faster in the MHD model, but the resulting dif-
ferences are sufficiently small so that the correct draining rate is
retained during the decay phase. Therefore, Fig. 5 demonstrates
that the MHD code, with the multi-dimensional TRAC method,
accurately captures the enthalpy exchange between the corona
and TR, through all phases of an impulsive heating event.

This conclusion is confirmed by the temporal comparisons
that are presented in Fig. 6. In the upper four panels, we focus
on the field-aligned evolution of the unsheared arcade at y =
1.2 Mm, showing the temperature, density, pressure and field-
aligned velocity as functions of position along the magnetic
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Fig. 4. Results for the non-uniform coronal heating pulse using a two-dimensional MHD simulation of the unsheared arcade (Sect. 4.1). Starting
from the left, the columns show time ordered snapshots of the temperature (T ), density (n) and field-aligned velocity (vx) for times during the
heating, evaporation and decay phases. The contours are drawn according to the scales shown in the colour tables. The black curves indicate the
top of the TRAC region at each of the footpoints of the unsheared arcade. Movies of the full time evolution of the T , n and vx contour plots can be
viewed online.
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Fig. 5. Comparison of the coronal evolution obtained from the two different models of the unsheared arcade (Sect. 4.1), in response to the non-
uniform coronal heating pulse. The panels show the coronal averaged temperature and density as functions of time, at four different positions
across the magnetic field. The various solid curves represent the HD TRAC solution at these different transverse locations (with the lines colour
coded in a way that reflects the distance across the field from the centre of the arcade) and the dashed blue curves correspond to the MHD TRAC
solution at these locations.

field. In the lower four panels, we show the transverse evolu-
tion of the same quantities at x = 25 Mm, which is consistent
with the coronal height considered previously in Fig. 3. In these
panels, using the same line styles as before, each solid curve rep-
resents a different snapshot from the HD TRAC model and the
dashed blue curves imposed on top are the corresponding snap-
shots from the MHD TRAC simulation.

First we examine the field-aligned evolution. The third panel
of Fig. 6 shows the high level of agreement between the HD
and MHD TRAC models, for the evolution of the pressure gra-
dients that form along the field. These pressure gradients subse-
quently drive the field-aligned flows. It therefore follows that the
MHD TRAC solution correctly models the evolution of the field-
aligned flows, throughout the evaporation and draining cycle,
and this is confirmed in the fourth panel. The outcome is that
the mass and energy exchange between chromosphere, TR, and
corona is correctly captured by the MHD implementation of
TRAC, which, in turn, ensures accuracy in simulating the coro-
nal temperature and density evolution.

Next we look at the transverse evolution. As shown in
the fifth panel of Fig. 6, the temperature structure across the
arcade shows excellent agreement between the HD and MHD
TRAC models, for each of the snapshots. Likewise, the evo-
lution of the transverse variations in the density and pressure
shows good agreement between the two models. However, there
are some small differences. For example, while the steep trans-
verse density and pressure gradients that form around y =
1.01 Mm, at the time of the first coronal density peak (t = 150 s,
orange curve), are accurately captured by the MHD TRAC solu-
tion, the accompanying gradients that form further out, around
y = 0.93 Mm, are slightly smoothed over by the MHD TRAC
model.

Consequently, the MHD TRAC solution correctly models
the shear flow layer in the field-aligned velocity that is co-
spatial with the transverse gradients at y = 1.01 Mm, but slightly
broadens the outer layer at y = 0.93 Mm. Thereafter, minor
differences remain for the evolution of the transverse density
and pressure structure in the heated region, before both mod-
els reconcile later in the decay phase. Overall, Fig. 6 shows
that the TRAC method can be used to model the coronal
plasma evolution with confidence in multi-dimensional MHD
simulations.

4.1.3. MHD effects

Finally, the first panel of Fig. 7 shows that there is a modification
to the magnetic field in the MHD simulation in order to keep the
total pressure constant in the transverse direction. The second
panel shows that this introduces a narrow current layer, which is
co-spatial with the shear flow region that forms at y = 1.01 Mm,
for the snapshot shown at t = 150 s. We note that this narrow
current sheet is fundamentally different from a tangential dis-
continuity as proposed by Parker (1972) because it is driven by
pressure differences instead of constant pressure across a tan-
gentially discontinuous flux surface. Hence, this demonstrates
for the first time that the thermodynamic response to spatially
non-uniform heating events can generate small transverse length
scales in the form of pressure driven current sheets, which are
significantly shorter than those that are associated with the heat-
ing profile or mechanism.

4.2. Sheared arcade

Figure 8 shows the outcome of imposing the non-uniform coro-
nal heating pulse in the sheared arcade model, in the same format
as Fig. 4. The temporal evolution shows the same fundamental
properties as the unsheared arcade, but with the TRAC region
and thermodynamic response aligning with the tilted magnetic
field accordingly. In particular, we see the formation of a shear
flow layer between strongly and weakly heated field lines at the
start of the evaporation phase (t = 60 s), which remains promi-
nent at the time of the first coronal density peak (t = 150 s).
Therefore, the shear flow is a signature of the evaporated plasma,
which is not observed in the directly heated material.

We note that the simulation presented in Fig. 8 used a trans-
verse resolution of 2.3 km (Ny = 1024) in order to resolve the
resulting shear flow layer. However, such high spatial resolu-
tion across the magnetic field is not typically achieved in active
region sized 3D MHD models. Thus, to study the influence of
transverse resolution on the shear flow formation, we repeated
the sheared arcade simulation using intermediate (Ny = 256)
and low (Ny = 64) levels of transverse resolution.

Figure 9 contrasts the results with the shear flow formed in
the high resolution simulation at t = 150 s, showing the tem-
perature, density, pressure and velocity parallel to the magnetic
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t = 60 s

t = 150 s

HD TRAC

MHD TRAC

t = 600 s
t = 1000 s

t = 2000 s

t = 10 s

t = 60 s

t = 150 s

HD TRAC

MHD TRAC

t = 600 s
t = 1000 s

t = 2000 s

Fig. 6. Comparison of the field-aligned and transverse temporal evolution obtained from the two different models of the unsheared arcade
(Sect. 4.1), in response to the non-uniform coronal heating pulse. Upper (lower) four panels: time ordered snapshots of the temperature, den-
sity, pressure and field-aligned velocity as functions of position along (across) the magnetic field at y = 1.2 Mm (x = 25 Mm). The various solid
curves represent the HD TRAC solution at different times (with the lines colour coded in a way that reflects the temporal evolution) and the dashed
blue curves correspond to the MHD TRAC solution at these times.
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Fig. 7. Quantities from the MHD model of the unsheared arcade (Sect. 4.1), at a coronal height of x = 25 Mm, at the time of the first density
peak (t = 150 s). Left-hand panel: gas pressure (dashed line), magnetic pressure (solid line), and total pressure (dash-dotted line) as functions of
position across the arcade. We note that the gas pressure has been offset by 398.4 × 10−1 Pa in the pressure plot. Right-hand panel: jz component
of the current current density.

field, as functions of position across the sheared arcade. The low
(dashed green) and intermediate (dashed red) transverse resolu-
tion simulations both show broadened temperature, density and
pressure profiles that smooth over the transverse gradients of the
high resolution simulation (solid blue). Consistent with numer-
ical diffusion artificially influencing the evolution (due to the
finite grid), more significant broadening is associated with lower
transverse resolution. This broadening makes it increasingly dif-
ficult to detect any local signatures of the shear flow when using
lower transverse resolution.

However, Fig. 10 demonstrates that this has little effect
on the global evolution of the corona because the evaporative
response to heating is dominated by the field-aligned mass and
energy exchange that takes place between the chromosphere,
TR, and corona. A process which is modelled accurately by the
TRAC method for each of the different levels of transverse reso-
lution. The outcome is that the coronal averaged temperature and
density show good agreement between the high (Ny = 1024),
intermediate (Ny = 256) and low (Ny = 64) transverse resolu-
tion simulations of the sheared arcade. Therefore, lower trans-
verse resolution does not lead to erroneous conclusions for the
coronal plasma evolution when using the MHD implementation
of TRAC.

5. Discussion and conclusions

This paper extends the work of JB19 and Johnston et al. (2020),
presenting a highly efficient formulation of the TRAC method
for use in multi-dimensional MHD simulations. Extending the
TRAC method to MHD has required optimisation in order to
efficiently account for the magnetic field evolution, without the
need to trace field lines at each time step. In particular, to move
from one-dimensional HD to multi-dimensional MHD, we have
modified the method from requiring the calculation of a global
cutoff temperature that is associated with individual field lines,
to employing a local cutoff temperature that is calculated using
only local grid cell quantities. However, despite this change from
using a global to a local cutoff temperature for broadening the
steep gradients in the TR, the total radiative losses and heating
remain conserved under the MHD formulation. The outcome is
that multi-dimensional MHD simulations using the MHD exten-
sion of the TRAC method can accurately model the coronal

plasma evolution through all phases of an impulsive heating
event.

The advantages of using this novel extension of the TRAC
method over field line tracing approaches (see e.g., Zhou et al.
2021) are multiple. For multi-dimensional MHD models, the
ability to side-step the need to trace magnetic field lines when
applying the MHD TRAC method means that (1) the imple-
mentation of the method is substantially simpler, (2) the cutoff
temperatures are calculated significantly faster at a fraction of
the computational cost, (3) it is fundamentally easier to account
for changes in field line connectivity, permitting the plasma
response to be modelled accurately with relative ease in coronal
heating simulations where the energy release is generated
self-consistently through magnetic reconnection events (e.g.,
Hood et al. 2016; Reale et al. 2016; Reid et al. 2018, 2020) and
(4) the method is more readily employed in large-scale 3D MHD
simulations, which have more realistic and complex magnetic
field configurations (e.g., Warnecke et al. 2017; Mikić et al.
2018; Martínez-Sykora et al. 2018; Knizhnik et al. 2019;
Howson et al. 2019, 2020; Kohutova et al. 2020; Antolin et al.
2021). Furthermore, the MHD TRAC method only increases the
thermal conductivity relative to the SH value in under-resolved
grid cells, while reducing to the SH model elsewhere. Therefore,
the method automatically switches off in properly resolved parts
of the atmosphere.

While the MHD TRAC method successfully removes the
influence of under-resolving the TR on the coronal density
response to heating, the broadening modifications act only in
the field-aligned direction. This means that full numerical res-
olution is still required in the transverse direction in order to
resolve the current sheets that are responsible for the heating (see
e.g., Leake et al. 2020). Moreover, in this paper, we have demon-
strated that the evaporative response to impulsive heating events
can generate transverse length scales that are much smaller than
those associated with the heating mechanism. In particular, we
presented the formation of a shear flow, which we identified as
a unique signature of the evaporated plasma because such short-
ened length scales are not observed in the directly heated mate-
rial, and associated pressure driven current sheets.

In summary, the MHD TRAC method efficiently addresses the
difficulty of obtaining the correct evaporative response to impul-
sive heating events in multi-dimensional MHD simulations, with-
out the need for high spatial resolution in the TR. Indeed, our
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Fig. 8. Results for the non-uniform coronal heating pulse using a two-dimensional MHD simulation of the sheared arcade (Sect. 4.2). Notation is
the same as that in Fig. 4. Movies of the full time evolution of the T , n and vb contour plots can be viewed online.
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Fig. 9. Results for the non-uniform coronal heating pulse released in MHD simulations of the sheared arcade (Sect. 4.2), run with different levels
of transverse resolution. The panels show the temperature, density, pressure and velocity parallel to the magnetic field (vb) as functions of position
across the arcade, at a coronal height of x = 25 Mm, at the time of the first density peak (t = 150 s). The lines are colour coded in a way
that reflects the transverse resolution used with solid blue representing the Ny = 1024 solution and dashed red (dashed green) corresponding to
Ny = 256 (Ny = 64).

Fig. 10. Comparison of the coronal evolution obtained from the sheared arcade simultaions run with different levels of transverse resolution
(Sect. 4.2). The panels show the coronal averaged temperature and density as functions of time, where the spatial average was calculated in both x
and y over the uppermost 25% of the computational domain. The lines are colour coded in the same way as Fig. 9.

results suggest that high levels of accuracy can be obtained with
grid cell widths of order 50 km in the field-aligned direction,
which is achievable in current three-dimensional MHD models.
Therefore, the method helps to free up computational resources
to better resolve the heating mechanism and subsequent shear

flow dynamics. Furthermore, the MHD TRAC method is simple to
implement, fast to run and is easily employed in MHD simulations
of coronal heating that study the build-up of magnetic energy in
complex field configurations and subsequent dissipation through
magnetic reconnection.
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Appendix A: Influence of numerical resolution on
coronal response to heating

Figure A.1 shows the temporal evolution of the coronal aver-
aged temperature and density at y = 1.2 Mm, for the non-
uniform coronal heating pulse considered in Sect. 3.3. The blue
curves correspond to the TRAC method (first row) and the red
curves represent the SH conduction method (second row). In
the panels of each method, each curve corresponds to a simu-
lation run with a different number of grid points that are uni-
formly spaced along the length of the loop. Simulations run with
Nx = [512, 1024, 2048, 4096, 8192, 16384] are identified with
different line styles, as shown in the figure legend on the tem-
perature plot.

Consistent with JB19, the coronal density evolution in the
TRAC simulations is only weakly dependent on the spatial res-
olution. Grid cell widths of approximately 60 km (Nx = 1024)
are sufficient to observe convergence between the TRAC results.

Therefore, TRAC solutions that are calculated using local cut-
off temperatures show the same fundamental properties as those
employing global cutoff temperatures (Johnston et al. 2020),
accurately capturing the interaction between the corona and
chromosphere through all phases of an impulsive heating event.

On the other hand, the SH solutions are strongly depen-
dent on the spatial resolution. In agreement with the detailed
investigation of Bradshaw & Cargill (2013), even when using
Nx = 16384, the grid cells widths remain too large to observe
convergence in the SH runs. Furthermore, we note that we have
had to limit the most refined resolution used here because of
the increased computation time that is required every time the
number of grid points is doubled (Johnston et al. 2017a). Thus,
it is not computationally feasible to obtain a fully resolved SH
solution when using a uniform grid. Therefore, in this paper, we
benchmark the MHD implementation of TRAC using 1D field-
aligned TRAC simulations.

Fig. A.1. Results for the non-uniform coronal heating pulse using one-dimensional HD simulations of the unsheared arcade (Sect. 3.3). The panels
show the coronal averaged temperature (left-hand column) and density (right-hand column) at y = 1.2 Mm, as functions of time. The various
curves represent different values of Nx, which converge as Nx increases (higher spatial resolution in the field-aligned direction is associated with
larger Nx). Rows 1 and 2 correspond to simulations run with the HD implementation of TRAC (Sect. 2.2.1) and the SH conduction method,
respectively. The lines are colour-coded in a way that reflects the conduction method used.
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