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Abstract
In this paper, we survey the theory of Cartwright–Sturmfels ideals. These are Z

n-graded
ideals, whose multigraded generic initial ideal is radical. Cartwright–Sturmfels ideals have
surprising properties, mostly stemming from the fact that their Hilbert scheme only con-
tains one Borel-fixed point. This has consequences, e.g., on their universal Gröbner bases
and on the family of their initial ideals. In this paper, we discuss several known classes
of Cartwright–Sturmfels ideals and we find a new one. Among determinantal ideals of
same-size minors of a matrix of variables and Schubert determinantal ideals, we are able to
characterize those that are Cartwright–Sturmfels.

Keywords Cartwright–Sturmfels ideals · Determinantal ideals · Radical ideals ·
Multidegrees

Mathematics Subject Classification (2010) Primary 13C40 · 13P10 · 05E40 ·
Secondary 14M99

1 Introduction

In 2010, Cartwright and Sturmfels published a paper [6] containing surprising results on
certain multigraded ideals. More precisely, they proved that any Z

n-multigraded ideal that
has the Zn-multigraded Hilbert function of the ideal of 2-minors of an m×n generic matrix
must be radical and Cohen–Macaulay. During our stay at MSRI in 2012, we realised that a
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2 Institut de Mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000

Neuchâtel, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10013-022-00551-w&domain=pdf
http://orcid.org/0000-0001-5897-9985
mailto: conca@dima.unige.it
mailto: denegri@dima.unige.it
mailto: elisa.gorla@unine.ch


A. Conca et al.

similar phenomenon was related to the universal Gröbner basis theorem for maximal minors
proved in the nineties by Bernstein, Sturmfels, and Zelevinsky [3, 31]. We managed to
identify a notion that “explains” the common features behind these two settings and that
is flexible enough to be useful in other contexts. The key idea is to consider the family of
multigraded ideals with radical multigraded generic ideals, that we named after Cartwright
and Sturmfels. We wrote four papers related to the subject [8–11]. The goal of this note
is to give a short introduction to Cartwright–Sturmfels ideals, to highlight their properties,
and to present some classes of Cartwright–Sturmfels ideals, both old and new. In particular,
in Section 4 we classify determinantal ideals that are Cartwright–Sturmfels in the generic
case and derive results for the non-generic case. In Section 5 we characterize Schubert
determinantal ideals that are Cartwright–Sturmfels. In Section 6 we take the occasion to
correct a mistake in the proof of Theorem 2.1 of [9] asserting that any binomial edge ideals
is Cartwright–Sturmfels. Finally, in Section 7 we recall another result from [9] asserting that
the multiprojective closure of any linear ideal is Cartwright–Sturmfels and conclude with a
question suggested by it.

The authors thank Anna Weigandt and Patricia Klein for useful discussions on the
material of this paper.

2 Multigraded Generic Initial Ideals andMultidegree

Let n ∈ N+ and m1, . . . , mn ∈ N. Let S = K[xij | 1 ≤ j ≤ n, 0 ≤ i ≤ mj ] be a
polynomial ring over a field K endowed with the standard Z

n-grading induced by setting
deg(xij ) = ej , where ej ∈ Z

n is the j -th standard basis vector.
We will deal with Z

n-graded ideals and modules of S. We use the words Zn-graded and
multigraded interchangeably. For simplicity we always assume the term orders on S satisfy
x0j > x1j > · · · > xmj j for all j = 1, . . . , n.

The ring S may be thought of as the coordinate ring of the product of n projective spaces,
i.e.

Proj(S) = P
(m1,...,mn) = P

m1 × · · · × P
mn .

A multigraded prime ideal P of S is relevant if P does not contain S(1,1,...,1) and irrelevant
otherwise. When K is algebraically closed relevant prime ideals correspond to irreducible
subvarieties of P(m1,...,mn).

2.1 TheMultigin

The group G = GLm1+1(K) × · · · × GLmn+1(K) acts naturally on S as the group of
multigraded K-algebra automorphisms, i.e., coordinate changes that fix each factor in the
product of projective spaces. Let I be a multigraded ideal of S and let σ be a term order
on S. As in the standard Z-graded situation, if K is infinite there exists a nonempty Zariski
open U ⊆ G such that inσ (gI) = inσ (g′I ) for all g, g′ ∈ U . This leads to the definition of
multigraded generic initial ideal. We refer the reader to [13, Theorem 15.23] for details on
the generic initial ideals in the Z-graded case and to [1, Section 1] for a similar discussion
in the Zn-graded case.

Definition 2.1 The multigraded generic initial ideal ginσ (I ) of I with respect to σ is the
ideal inσ (gI), where g is a generic multigraded coordinate change, i.e. g ∈ U and U is a
nonempty Zariski open subset of G.
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Let B = Bm1+1(K) × · · · × Bmn+1(K) be the Borel subgroup of G, consisting of the
upper triangular invertible matrices in G. One knows that ginσ (I ) is Borel fixed, that is, it
is fixed by the action of every g ∈ B.

2.2 Multidegree and Dual Multidegree

For a finitely generated Zn-graded module M = ⊕a∈ZnMa over a standard Zn-graded poly-
nomial ring S, one may define the multigraded Hilbert function as the function HF(M,−)

that associates to a = (a1, . . . , an) ∈ Z
n the number HF(M, a) = dimK Ma . As in the

Z-graded case, for a � 0 the multigraded Hilbert function agrees with a polynomial in n

variables PM(Z) = PM(Z1, . . . , Zn), the multigraded Hilbert polynomial of M .
Let d(M) be the total degree of PM(Z). Under mild assumptions, for example when all

the minimal primes of M are relevant, one has that d(M) = dim(M)−n. The homogeneous
component of degree d(M) of PM(Z) can be written as

∑ eb(M)

b1!b2! · · · bn!Z
b1
1 · · · Zbn

n ,

where the sum ranges over all b ∈ N
n with bi ≤ mi such that |b| = d(M). The numbers

eb(M) are the multidegrees (or mixed multiplicities) of M . It turns out that they are non-
negative integers. The multidegree of M is the polynomial

DegM(Z1, . . . , Zn) =
∑

eb(M)Z
b1
1 · · ·Zbn

n ,

where the sum is over all b ∈ N
n such that |b| = d(M).

One can regard M as a Z-graded module by Mv = ⊕|a|=vMa . With respect to this
Z-grading, M has an ordinary multiplicity e(M) and, if all the minimal primes of M are
relevant, one has

e(M) =
∑

b

eb(M), (2.1)

where the sum ranges over all the b ∈ N
n such that |b| = dim(M) − n. This is proved in

[7, Theorem 2.8], but a special case appears already in [32].
When M is the coordinate ring of an irreducible multiprojective variety X ⊆ P

(m1,...,mn)

over an algebraically closed field, the multidegrees eb(M)’s have a geometric interpretation.
Indeed, in that case eb(M) is the number of points of P(m1,...,mn) that one gets by intersecting
X with L1×L2×· · ·×Ln where each Li is a general linear subspace of Pmi of codimension
bi .

Definition 2.2 A Z
n-graded module M has a multiplicity-free multidegree if eb(M) ∈

{0, 1} for all b with |b| = d(M).

The relevant prime ideals P of S such that S/P have a multiplicity-free multidegree are
studied in [4] by Brion (in a more general setting) who proves in particular that S/P is
Cohen–Macaulay.

The word multidegree is used in the literature also to refer to another polynomial invari-
ant of M , which we call dual multidegree throughout this paper, in order to avoid confusion.
The dual multidegree is defined as follows: The multigraded Hilbert series of M is

HS(M,Z) =
∑

a∈Zn

(dimK Ma) Za ∈ Q[[Z1, . . . , Zn]][Z−1
1 , . . . , Z−1

n ].



A. Conca et al.

Let

KM(Z) = HS(M,Z)

n∏

i=1

(1 − Zi)
mi+1.

It turns out that KM(Z) ∈ Z[Z±1
1 , . . . , Z±1

n ]. The dual multidegree Deg∗
M(Z) of M is the

homogeneous component of smallest total degree of KM(1 − Z1, . . . , 1 − Zn). One can
show that Deg∗

M(Z) ∈ N[Z1, . . . , Zn]. Notice that the dual multidegree corresponds to the
multidegree as defined in e.g. [24, 27].

2.3 Multidegrees of Radical Monomial Ideals

Let J be a radical monomial ideal of S with associated simplicial complex Δ ⊆ 2T . Here
T = {(i, j) : 1 ≤ j ≤ n, 0 ≤ i ≤ mj }. The ideal J is naturally Z

|T |-graded, however
here we consider its Zn-graded structure and describe its multigraded Hilbert polynomial in
terms of Δ. For each F ∈ Δ and j ∈ [n] we set

cj (F ) = |{(0, j), . . . , (mj , j)} ∩ F |
and c(F ) = (c1(F ), . . . , cn(F )) ∈ N

n. A face F is relevant if the corresponding prime
ideal (xij : (i, j) 
∈ F) is relevant, i.e., cj (F ) > 0 for every j = 1, . . . , n. Let us denote by
R(Δ) the set of the relevant faces of Δ, i.e.,

R(Δ) = {F ∈ Δ : cj (F ) > 0 for all j ∈ [n]}.

Lemma 2.3 For every a = (a1, . . . , an) ∈ N
n+ one has

HF(S/J, a) =
∑

F∈R(Δ)

n∏

j=1

(
aj − 1

cj (F ) − 1

)
,

in particular

PS/J (Z1, . . . , Zn) =
∑

F∈R(Δ)

n∏

j=1

(
Zj − 1

cj (F ) − 1

)
.

Proof First we observe that HF(S/J, a) is the number of monomials in S of multidegree
a which are not contained in J . To a monomial xv = ∏

x
vij

ij we may associate its sup-
port F(xv) = {(i, j) : vij > 0}. Since ai > 0 for all i, by construction we have xv 
∈ J

and deg(xv) = a if and only if F(xv) ∈ R(Δ). We partition the set of monomials of
degree a which do not belong J according to their support. The monomials of degree a

supported on a given F ∈ R(Δ) have the form (
∏

(i,j)∈F xij )x
v , where xv is a mono-

mial with support contained in F and degree a − c(F ). The number of these monomials is
∏n

j=1

(
aj − 1

cj (F ) − 1

)
.

Denote by F(Δ) the set of the facets of Δ. Recall that Δ is a pure simplicial complex if
all the facets of Δ have the same dimension. As an immediate corollary we have

Lemma 2.4 Assume that Δ is a pure simplicial complex and that F(Δ) ∩ R(Δ) 
= ∅. Then
DegS/J (Z1, . . . , Zn) =

∑

F∈F(Δ)∩R(Δ)

Z
c1(F )−1
1 · · · Zcn(F )−1

n .
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3 Cartwright–Sturmfels Ideals

In this section we recall the definition of Cartwright–Sturmfels ideals and some facts about
them, which were discussed in our papers [8–11].

Definition 3.1 A multigraded ideal I of S is a Cartwright–Sturmfels ideal if there exists a
radical Borel-fixed multigraded ideal which has the same multigraded Hilbert series as I .
If the ground field is infinite, this is equivalent to the fact that I has a radical multigraded
generic initial ideal [11, Proposition 2.6].

We denote by CS(S), or simply by CS if S is clear from the context, the family of
Cartwright–Sturmfels ideals of S.

Example 3.2 The Z-graded Cartwright–Sturmfels ideals are exactly those generated by lin-
ear forms. In fact, if I is not generated by linear forms, let d > 1 be the least degree of a
minimal generator of I which is not linear. Then the generic initial ideal of I has a minimal
generator which is the d-th power of a variable. In particular, the generic initial ideal of I

with respect to any term order is not radical.

Notice that the property of being Cartwright–Sturmfels depends on the multigrading.

Example 3.3 If I ⊆ S is generated by a non-zero element of degree (1, 1, . . . , 1) ∈ Z
n

then I is a Zn-graded Cartwright–Sturmfels ideal for obvious reasons. However, as we have
observed in Example 3.2, the ideal I is not a Z-graded Cartwright–Sturmfels ideal if n > 1.

Cartwright–Sturmfels ideals have many interesting properties. The next proposition
summarizes some of them.

Proposition 3.4 Let I ∈ CS and let J be a radical Borel fixed ideal such that HF(I, a) =
HF(J, a) for all a ∈ N

n. Then:

(1) I is radical and ginτ (I ) = J for every term order τ [11, Proposition 2.6].
(2) inτ (I ) ∈ CS, in particular it is square free, for every term order τ [11, Remark 2.5].
(3) reg(I ) ≤ n [11, Corollary 2.15].
(4) If K is algebraically closed, then P ∈ CS for every minimal prime P of I [4], see also

[10, Corollary 1.12].
(5) I is generated by elements of multidegree ≤ (1, . . . , 1) [11, Proposition 2.6].
(6) All reduced Gröbner bases of I consist of elements of multidegree ≤ (1, . . . , 1).

In particular, I has a universal Gröbner basis of elements of multidegree ≤ (1, . . . , 1)
[11, Proposition 2.6].

The family CS is closed under some natural operations.

Proposition 3.5 ([11], Theorem 2.16) Let L be a Zn-homogeneous linear form of S. In the
following S/(L) is identified with a polynomial ring with the induced Z

n-graded structure.
Let Ui ⊆ Sei

be vector subspaces for all i = 1, . . . , n and let R = K[U1, . . . , Un] be the
Z

n-graded polynomial subring of S that they generate. Then:

(1) If I ∈ CS(S), then I : L ∈ CS(S).
(2) If I ∈ CS(S), then I + (L) ∈ CS(S) and I + (L)/(L) ∈ CS(S/(L)).
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(3) If I ∈ CS(S), then I ∩ R ∈ CS(R).

Moreover one has

Proposition 3.6 (1) If I ∈ CS(S) then S/I has multiplicity-free multidegree.
(2) Vice versa, suppose that K is algebraically closed, I is a relevant prime ideal of S,

and S/I has multiplicity-free multidegree. Then I ∈ CS(S).

Part (2) is proved in [4] using a different terminology.

4 Determinantal Cartwright–Sturmfels Ideals

The goal of this section is to discuss Cartwright–Sturmfels ideals that are generated by
minors of matrices. New results on the family of Schubert determinantal ideals will be
presented in Section 5.

We start by discussing generic determinantal ideals, i.e., ideals of same-size minors of
the matrix of variables. Let X = (xij ) be an m × n matrix of variables over a field K and
S = K[xij : 1 ≤ j ≤ n and 1 ≤ i ≤ m]. We consider the Zn-graded structure on S induced
by deg(xij ) = ej ∈ Z

n. In the notation of Section 2 we have mj = m − 1 for j = 1, . . . , n
and, in accordance with usual notation for matrices, the index i varies from 1 to m. Let
It (X) be the ideal of S generated by the t-minors of X. Clearly It (X) is Zn-graded and our
first goal is to compute the multidegree of S/It (X).

The multigraded Hilbert function, hence the multidegree, does not change if we replace
It (X) with an initial ideal. The ideal It (X) has a well-known square free initial ideal, dis-
cussed in [5, 21, 30]. It is the ideal generated by the products of the entries on the main
diagonals of the t-minors, whose associated simplicial complex will be denoted by �t . The
facets of�t can be identified with the families of non-intersecting paths in the grid [m]×[n]
from the starting points p1 = (1, n), p2 = (2, n), . . . , pt−1 = (t − 1, n) to the endpoints
q1 = (m, 1), q2 = (m, 2), . . . , qt−1 = (m, t − 1).

For example, form = 4, n = 5, and t = 3, we have p1 = (1, 5), p2 = (2, 5), q1 = (4, 1),
and q2 = (4, 2). The following is a facet of �3:

− 1 1 1 1 ← p1
1 1 − 2 2 ← p2
1 − 2 2 −
1 2 2 − −
↑ ↑
q1 q2

depicted using the matrix coordinates and marking with “1” the lattice points which belong
to the first path (from p1 to q1) and with “2” the lattice points of the second path (from p2
to q2).

Each family of non-intersecting paths must have at least t − 1 points on each column.
Therefore, each facet of �t is relevant if t > 1. With the notation of Section 2, F(�t ) ⊆
R(�t). Summing up, by Lemma 2.4 we have

DegS/It (X)(Z1, . . . , Zn) =
∑

F∈F(�t )

Z
c1(F )−1
1 · · ·Zcn(F )−1

n , (4.1)

where cj (F ) = |{(a, b) ∈ F : b = j}|.



Radical Generic Initial Ideals

We introduce the generating function associated to the statistics c(F ). Given a collection
U of subsets of [m] × [n] we set

W(U,Z1, . . . , Zn) =
∑

F∈U

Z
c1(F )
1 · · ·Zcn(F )

n ,

so that we may rewrite (4.1) as

DegS/It (X)(Z1, . . . , Zn) = (Z1 · · ·Zn)
−1W(F(�t ), Z1, . . . , Zn). (4.2)

Next, we give a determinantal formula for W(F(�t ), Z1, . . . , Zn). One observes that the
Gessel–Viennot involution [17], used in [21] to compute |F(�t )|, is compatible with any
weight given to the lattice points. Hence one gets immediately

W(F(�t ), Z1, . . . , Zn) = det
(
W(Paths(pi, qj ), Z1, . . . , Zn)

)
i,j=1,...,t−1 , (4.3)

where Paths(pi, qj ) is the set of the paths from pi to qj .
In the sequel, hv(L) denotes the complete homogeneous symmetric polynomial of degree

v on the set L, i.e., the sum of all monomials of degree v in the elements of L.

Lemma 4.1 Given p = (a, b) and q = (c, d) with a ≤ c and b ≥ d , we have

W(Paths(p, q), Z1, . . . , Zn) =
(

b∏

i=d

Zi

)
hc−a(Zd, Zd+1, . . . , Zb).

Proof Any path P from p to q is uniquely determined by the the number of points of
intersection with the columns. Any such path must have at least one point on column j for
all d ≤ j ≤ b, and no points on the other columns. The only other constraint is that the
path has (b − d) + (c − a) + 1 points in total. In terms of c(P ) = (c1(P ), . . . , cn(P )) the
constraints are cj (P ) > 0 if and only if d ≤ j ≤ b and

∑b
j=d cj (P ) = (b−d)+(c−a)+1.

Expressing this in terms of generating functions yields the desired result.

We can now compute the multidegree of generic determinantal rings.

Theorem 4.2 The multidegree of the determinantal ring S/It (X) of an m × n matrix of
variables X with 2 ≤ t ≤ min{m, n} and with respect to the Zn-graded structure induced
by deg(xij ) = ej is

DegS/It (X)(Z1, . . . , Zn) = (Z1 · · · Zn)
t−2 det

(
hm+1−t−i+j (Z1, . . . , Zn)

)
i,j=1,2,...,t−1 .

Proof Combining (4.2) and (4.3) with Lemma 4.1 we obtain

DegS/It (X)(Z1, . . . , Zn)=(Z1 · · · Zn)
−1 det

⎛

⎝

⎛

⎝
n∏

k=j

Zk

⎞

⎠ hm−i (Zj , . . . , Zn)

⎞

⎠

i,j=1,2,...,t−1

.

For j = 1, . . . , t − 1, the factor
∏n

k=j Zk can be extracted from the determinant, hence the
monomial in front of the determinant becomes

Z2Z
2
3 · · ·Zt−3

t−2Z
t−2
t−1Z

t−2
t · · · Zt−2

n ,

while the determinant becomes

det
(
hm−i (Zj , . . . , Zn)

)
i,j=1,2,...,t−1 .
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It now suffices to prove that the latter equals

Zt−2
1 Zt−3

2 · · ·Zt−2 det
(
hm+1−t−i+j (Z1, . . . , Zn)

)
.

Let us explain this last equality in full detail in the case t = 4, which is general enough
to show all the relevant features. We wish to prove the equality

det

⎛

⎝
hm−1(Z1, . . . , Zn) hm−1(Z2, . . . , Zn) hm−1(Z3, . . . , Zn)

hm−2(Z1, . . . , Zn) hm−2(Z2, . . . , Zn) hm−2(Z3, . . . , Zn)

hm−3(Z1, . . . , Zn) hm−3(Z2, . . . , Zn) hm−3(Z3, . . . , Zn)

⎞

⎠

= Z2
1Z2 det

⎛

⎝
hm−3(Z1, . . . , Zn) hm−2(Z1, . . . , Zn) hm−1(Z1, . . . , Zn)

hm−4(Z1, . . . , Zn) hm−3(Z1, . . . , Zn) hm−2(Z1, . . . , Zn)

hm−5(Z1, . . . , Zn) hm−4(Z1, . . . , Zn) hm−3(Z1, . . . , Zn)

⎞

⎠ . (4.4)

In the first term of (4.4), we subtract the second column from the third and
the first column from the second. Since hv(Zj+1, . . . , Zn) − hv(Zj , . . . , Zn) =
−Zjhv−1(Zj , . . . , Zn), we can factor out −Z2 from the third column and −Z1 from the
second. The first term of (4.4) therefore becomes

Z1Z2 det

⎛

⎝
hm−1(Z1, . . . , Zn) hm−2(Z1, . . . , Zn) hm−2(Z2, . . . , Zn)

hm−2(Z1, . . . , Zn) hm−3(Z1, . . . , Zn) hm−3(Z2, . . . , Zn)

hm−3(Z1, . . . , Zn) hm−4(Z2, . . . , Zn) hm−4(Z2, . . . , Zn)

⎞

⎠ .

Subtracting the second column from the third and factoring −Z1, we obtain

−Z2
1Z2 det

⎛

⎝
hm−1(Z1, . . . , Zn) hm−2(Z1, . . . , Zn) hm−3(Z1, . . . , Zn)

hm−2(Z1, . . . , Zn) hm−3(Z1, . . . , Zn) hm−4(Z1, . . . , Zn)

hm−3(Z1, . . . , Zn) hm−4(Z2, . . . , Zn) hm−5(Z1, . . . , Zn)

⎞

⎠ .

Finally we exchange rows one and three and then transpose. This yields

Z2
1Z2 det

⎛

⎝
hm−3(Z1, . . . , Zn) hm−2(Z1, . . . , Zn) hm−1(Z1, . . . , Zn)

hm−4(Z1, . . . , Zn) hm−3(Z1, . . . , Zn) hm−2(Z1, . . . , Zn)

hm−5(Z1, . . . , Zn) hm−4(Z1, . . . , Zn) hm−3(Z1, . . . , Zn)

⎞

⎠

which is the second term of (4.4).

The determinant that appears in the statement of Theorem 4.2 is a Schur polynomial. We
refer to [26] and [29] for a treatment of the theory of symmetric functions and Schur polyno-
mials. Here we collect only the definitions and the properties that we will use in the sequel.
A partition λ is a weakly decreasing sequence of non-negative integers λ1, λ2, . . . , λr .
Given a partition λ = λ1, λ2, . . . , λr the Schur polynomial sλ(Z) associated λ and with
respect to the variables

Z = Z1, . . . , Zn

is
sλ(Z) = det

(
hλi−i+j (Z)

)
i,j=1,...,r .

By construction sλ(Z) is a symmetric homogeneous polynomial of degree |λ| = ∑r
i=1 λi

with integral coefficients. Denote by mμ(Z) the monomial symmetric polynomial associ-
ated with the partition μ = μ1 ≥ μ2 ≥ · · · ≥ μn ≥ 0, that is, the sum of the monomials in
the Sn-orbit of Z

μ1
1 · · ·Zμn

n .
Since the mμ(Z)’s form a K-basis of the space of symmetric polynomials, one can

express sλ(Z) as

sλ(Z) =
∑

μ : |μ|=|λ|
Kλ,μmμ(Z).
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The coefficients Kλ,μ are known as the Kostka numbers of the pair of partitions λ, μ. We
recall their main properties. We refer to [29, p. 309] for the definition of semi-standard
(Young) tableau.

Proposition 4.3 For every pair of partitions λ = λ1, λ2, . . . , λr and μ = μ1, μ2, . . . , μn

with |λ| = |μ| one has:
(1) Kλ,μ ∈ N.
(2) Kλ,μ > 0 if and only if λ ≥ μ in the dominance order, i.e.,

∑s
i=1 λi ≥ ∑s

i=1 μi for
every s = 1, . . . , r .

(3) Kλ,μ is the number of semi-standard tableaux of shape λ with entries 1, . . . , n and
multiplicities given by μ (i.e., μ1 entries are equal to 1, μ2 entries are equal to 2, and
so on).

This allows us to reformulate Theorem 4.2 in terms of Schur polynomials.

Theorem 4.4 The multidegree of the determinantal ring S/It (X) of an m × n matrix of
variables X with 2 ≤ t ≤ min{m, n} and with respect to the Zn-graded structure induced
by deg(xij ) = ej is

DegS/It (X)(Z1, . . . , Zn) = (Z1 · · ·Zn)
t−2sλ(Z)

where

λ = �(t−1) = �, �, . . . , �︸ ︷︷ ︸
(t−1)-times

where � = m + 1 − t .

Summing up, we have the following combinatorial description of the multidegrees of
determinantal rings.

Theorem 4.5 Let X be an m × n matrix of variables and consider S = K[X] with the Zn-
graded structure induced by deg(xij ) = ej . Let 2 ≤ t ≤ min{m, n} and let S/It (X) be the
associated Z

n-graded determinantal ring. Set λ = �(t−1) with � = m + 1 − t . For b ∈ N
n

with |b| = dim S/It (X) − n, the multidegrees eb(S/It (X)) satisfy the following properties:

(1) eb(S/It (X)) is a symmetric function of b.
(2) eb(S/It (X)) > 0 if and only if t − 2 ≤ bi ≤ m − 1 for every i = 1, . . . , n.
(3) Set ci = bi + 1 for i = 1, . . . , n. Then eb(S/It (X)) is the number of families of non-

intersecting paths from p1 = (1, n), p2 = (2, n), . . . , pt−1 = (t − 1, n) to q1 =
(m, 1), q2 = (m, 2), . . . , qt−1 = (m, t − 1) with exactly ci points on the i-th column
for i = 1, . . . , n.

(4) Set μi = bi − (t − 2) for i = 1, . . . , n. Then eb(S/It (X)) equals the Kostka number
Kλ,μ, that is, the number of semi-standard tableaux of shape λ with entries 1, . . . , n
and multiplicities given by μ.

Proof (1) The fact that eb(S/It (X)) is a symmetric function of b follows from the fact that
It (X) is invariant under the permutation of the columns or from Theorem 4.2. Furthermore,
(3) and (4) are reformulations of Theorem 4.2 and (4.2). Finally (2) follows by applying
Proposition 4.3 part (2).



A. Conca et al.

Example 4.6 For m = n = 4 and t = 3 we have that � = m + 1 − t = 2, t − 1 = 2 and
λ = 2, 2. With Z = Z1, . . . , Z4 and z = ∏4

i=1 Zi we have

DegR/I3(X)(Z) = z s2,2(Z) = z
(
m(2,2,0,0) + m(2,1,1,0) + 2m(1,1,1,1)

)

= m(3,3,1,1) + m(3,2,2,1) + 2m(2,2,2,2).

By Proposition 4.3, the coefficients appearing in the expression have two combina-
torial interpretations. For example, the coefficient 2 of m(2,2,2,2) is the Kostka number
K22,1111, i.e., the number of semistandard tableaux of shape 2,2 with entries 1, . . . , 4 and
multiplicities given by (1, 1, 1, 1):

1 2
3 4

1 3
2 4

Moreover, it is also the number of families of non-intersecting paths from p1 = (1, 4),
p2 = (2, 4) to q1 = (4, 1), q2 = (4, 2) with 3 points on each column:

− 1 1 1
1 1 − 2
1 − 2 2
1 2 2 −

− − 1 1
1 1 1 2
1 2 2 2
1 2 − −

We have also a geometric interpretation of the coefficient of m(2,2,2,2): it is the number of
points that one gets by intersecting the variety of 4× 4 matrices of rank at most 2, regarded
as a multigraded subvariety of (P3)4, with L1 × · · · × L4. Here each Li is a generic linear
space of codimension 2 of P3. Interpreting the four columns of the matrix as points in P

3,
the rank 2 condition means that the four points belong to a line in P

3 that must intersect
the four generic lines L1, . . . , L4. How many lines intersect four general lines in P

3? The
answer is 2 and this a classical instance of Schubert calculus, see [14, Sect. 3.4.1] for a
modern exposition.

The computation in Example 4.6 appears also in [32] and it can be easily generalised.

Example 4.7 For m = n and t = n − 1 we have that � = m + 1 − t = 2 and λ = 2(n−2).
With Z = Z1, . . . , Zn and z = ∏n

i=1 Zi we have

DegR/In−1(X)(Z) = zn−2 s2(n−2) (Z) = zn−2 (
mμ1 + mμ2 + 2mμ3

)

with

μi =
⎧
⎨

⎩

(2(n−4), 2, 2, 0, 0) if i = 1,
(2(n−4), 2, 1, 1, 0) if i = 2,
(2(n−4), 1, 1, 1, 1) if i = 3.

Remark 4.8 In [27, Chapter 15] the authors compute the multidegree for a large family of
determinantal ideals, the Schubert determinantal ideals, with respect to the finer multigrad-
ing degXij = (ei, −fj ) ∈ Z

m ⊕Z
n with {e1, . . . , em} and {f1, . . . , fn} being the canonical

bases ofZm andZn. The ideal It (X) is a Schubert determinantal ideals. For them the authors
observe in that the multidegree is given by a Schur polynomial [27, 15.39] (also known as
supersymmetric Schur polynomial, see [25]) which is, at least apparently, different from the
Schur polynomial that we have identified.

We are ready to state the main consequence of Theorem 4.5.
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Theorem 4.9 Let S/It (X) be the determinantal ring of the m × n matrix of variables X

with the Z
n-graded structure induced by deg(xij ) = ej , with 2 ≤ t ≤ min{m, n}. Then

S/It (X) has a multiplicity-free multidegree if and only if t = 2 or t = min{m, n}.

Proof We need to prove two assertions:

Claim 1. If t = 2 or t = min{m, n}, then eb(S/It (X)) ∈ {0, 1} for all b ∈ Z
n with

|b| = dim S/It (X) − n.

Claim 2. If 2 < t < min{m, n}, then there exists b ∈ Z
n with |b| = dim S/It (X) − n

such that eb(S/It (X)) > 1.
Claim 1 for t = 2 follows immediately from Theorem 4.2. Claim 1 for t = m ≤ n

follows from the description of eb(S/It (X)) in Theorem 4.5(4) in terms of semi-standard
tableau, since the corresponding shape is a single column. Finally, Claim 1 for t = n ≤ m

can be treated as follows. By Theorem 4.5(1), eb(S/In(X)) > 0 if and only if n − 2 ≤ bi ≤
m − 1 and |b| = dim S/In(X) − n. Setting bi = (m − 1) − ci and rewriting the conditions
with respect to (c1, . . . , cn), we have that eb(S/In(X)) > 0 if and only if (c1, . . . , cn) ∈ N

n

and
∑n

i=1 ci = m − n + 1. Hence, there are exactly

(
m

n − 1

)
elements b ∈ N

n such that

eb(S/In(X)) > 0. By (2.1),
∑

b eb(S/In(X)) gives the ordinary multiplicity of S/In(X),

which is

(
m

n − 1

)
. It follows that eb(S/In(X)) = 1 whenever eb(S/In(X)) > 0.

For Claim 2, by Theorem 4.5(4) it suffices to show that there exists a μ ∈ N
n with

|μ| = (t − 1)�, � = m + 1 − t , and such that there are at least two semi-standard tableaux
of shape �(t−1) and entries 1, . . . , n with multiplicities given by μ. One can take

μi =

⎧
⎪⎪⎨

⎪⎪⎩

� if i = 1, 2, . . . , t − 3,
� − 1 if i = t − 2, t − 1,
1 if i = t, t + 1,
0 if i = t + 2, . . . , n.

For i = 1, . . . , t − 3, the i-th row of any semi-standard tableau of shape �(t−1) and multi-
plicities given by μ consists of exactly � entries equal to i. So we may simply assume that
t = 3. Similarly, we may assume that n = t + 1 = 4, so that μ = (� − 1, � − 1, 1, 1). Now
for j = 1, . . . , m−4 the j -th column must have entries 1 and 2. Again we may then assume
that m = 4, hence � = 2. Now it is clear that there are exactly two tableaux of shape 2,2
and multiplicities given by (1, 1, 1, 1), namely those described in Example 4.6.

As a corollary of Theorem 4.9 we have

Corollary 4.10 Let S/It (X) be the determinantal ring of the m × n matrix of variables X

with the Z
n-graded structure induced by deg(xij ) = ej , with 1 ≤ t ≤ min{m, n}. Then

It (X) is Cartwright–Sturmfels if and only if t = 1, 2 or t = min{m, n}.

Proof The case t = 1 is obvious, so we may assume t > 1. Since It (X) is a relevant prime,
the conclusion follows combining Theorem 4.9 and Proposition 3.6.

The fact that I2(X) is Cartwright–Sturmfels has been proved directly (i.e., without using
Proposition 3.6) by Cartwright and Sturmfels in [6], hence the name. For It (X) with t =
min{m, n} it has been proved directly in [8].
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Combining Corollary 4.10 with Proposition 3.5, which states that any multigraded lin-
ear section of a Cartwright–Sturmfels ideal remains Cartwright–Sturmfels, we obtain the
following result, originally proved in [11, Main Theorem].

Theorem 4.11 Let A = (aij ) be an m × n matrix whose entries are Zn-multigraded with
deg(aij ) = ej for all i, j . Let It (A) be the ideal of t-minors of A. Then It (A) is Cartwright–
Sturmfels for t = 1, 2,min{m, n}.

In particular when t = 1, 2,min{m, n} then It (A) has all the properties of the
Cartwright–Sturmfels ideals listed in Proposition 3.4. When m ≤ n every maximal minor
of A has a different Zn-degree and we obtain a more precise statement.

Corollary 4.12 Under the assumptions of Theorem 4.11, if m ≤ n then the maximal minors
of A form a universal Gröbner basis of Im(A).

Remark 4.13 It is natural to ask whether the ideal It (A) can be Cartwright–Sturmfels, under
the assumptions of Theorem 4.11 and for 2 < t < min{m, n}. The answer is yes if A is
very special (for example when It (A) = 0) and no for a general enough A (for example
if It (A) has the expected codimension). Nevertheless, notice that the generators of It (A)

have squarefree Zn-degrees, hence cannot have factors of multiplicity larger than one. This
suggest that It (A) might always be radical. It turns out that this is not the case: In [12,
Example 7.2] the authors give examples of non-radical coordinate sections of determinantal
ideals.

The multidegree of S/It (A) for t = 2,min{m, n} was essentially computed in [9].
Indeed, in that paper we computed the prime decomposition of the multigraded gin of It (A),
from which the multidegree is easily derived.

5 Schubert Determinantal Ideals andMatrix Schubert Varieties

Matrix Schubert varieties were introduced by Fulton in [16]. They are defined by rank
conditions. In this section, we show that many defining ideals of matrix Schubert varieties
are Cartwright–Sturmfels. We start by fixing the notation and recalling the definitions.

LetX = (xi,j ) be an n×nmatrix of variables over a fieldK and let S = K[X] = K[xij :
1 ≤ i, j ≤ n]. We consider the Zn-graded structure on S induced by deg(xij ) = ej ∈ Z

n.
In the notation of Section 2, this corresponds to letting mj = n − 1 for j = 1, . . . , n. For
M a matrix of size n × n and a, b ∈ {1, . . . , n}, let Ma×b be the submatrix of M consisting
of the entries in position (i, j) where i ≤ a and j ≤ b.

Denote by Sn the group of permutations on the set {1, . . . , n} and let ω ∈ Sn. We write
ω in line notation, i.e., ω = ω1 · · · ωn if ω(i) = ωi . We associate to ω the rank function
rω : {1, . . . , n}2 → N defined by

rω(i, j) = |{(k, �) ≤ (i, j) | k = ω�}|,
where (k, �) ≤ (i, j) is the coefficentwise inequality. In other words, let Pω be the permu-
tation matrix corresponding to ω, that is, Pωej = eωj

. Then rω(i, j) is the number of ones
in the submatrix (Mω)i×j . Notice that this is the transpose of the usual definition of rank
function, see e.g. [24, Section 1.3]. We choose this notation in order to be coherent with the
Z

n-grading that we defined in Section 2.
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Definition 5.1 Let m ≤ n and let ω = ω1 · · ·ωn ∈ Sn and υ = υ1 · · · υm ∈ Sm. We say that
ω contains υ if there are 1 ≤ i1 < . . . < im ≤ n such that ωij < ωi� if and only if υj < υ�.

Else, we say that ω avoids υ. A permutation ω ∈ Sn is vexillary if it avoids the
permutation 2143 ∈ S4. In particular every permutation in Sn with n ≤ 3 is vexillary.

To each permutation, one associates a Rothe diagram and an essential set as follows.

Definition 5.2 The Rothe diagram associated to ω ∈ Sn is

Dω = {(i, j) | 1 ≤ i, j ≤ n, ωj > i, (ω−1)i > j}.
The essential set of ω is

Ess(ω) = {(i, j) ∈ Dω | (i + 1, j), (i, j + 1) 
∈ Dω}.

Notice that, as for the rank function, these are the transpose of the usual Rothe diagram
and essential set of a permutation.

Example 5.3 Let ω = 1432 ∈ S4. The permutation 1432 is vexillary and has Rothe diagram
D1432 = {(2, 2), (2, 3), (3, 2)} and essential set Ess(1432) = {(2, 3), (3, 2)}. The Rothe
diagram can be visualized as follows: We draw a 4 × 4 grid and place a bullet in position
(ωi, i) for each i. For each bullet in the grid, we draw a segment starting from it and ending
on the right side of the grid and one starting from the bullet and ending on the bottom of the
grid. Then D1432 is the set of boxes in the grid without a bullet in them or a segment through
them. The elements of D1432 appear in gray in the figure and the elements of Ess(1432) are
the lower outside corners of the Rothe diagram, that is, the boxes in the Rothe diagram so
that neither the box on their right nor the box below them belongs to the Rothe diagram.

Finally, the rank function can be easily read off the above figure as follows: r1432(i, j) is
the number of bullets which are contained in the top-left justified subgrid of size i × j . For
example, from the figure above one sees that r1432(i, j) = 1 if i + j ≤ 5, r1432(i, j) = 2 if
i + j = 6, r1432(i, j) = 3 if i + j = 7, and r1432(4, 4) = 4.

Definition 5.4 Let ω ∈ Sn. The Schubert determinantal ideal associated to ω is

Iω =
∑

i,j=1,...,n

Irω(i,j)+1(Xi×j ) ⊆ S.

The matrix Schubert variety associated with ω is the corresponding affine variety, i.e.,

Xω = {M ∈ Kn×n | rk(Mi×j ) ≤ rω(i, j) for all 1 ≤ i, j ≤ n}.

Notice that Schubert determinantal ideals are Zn-graded, since the minors that generate
them are. Moreover, by [16, Lemma 3.10] we have that

Iω =
∑

(i,j)∈Ess(ω)

Irω(i,j)+1(Xi×j ).
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Let
Yω = ∪(i,j)∈Ess(ω)Xi×j

be the one-sided subladder of X whose lower outside corners are the elements of the essen-
tial set of ω. Yω is the set of variables of X that appear in at least one of the generators
of Iω. Consider the ideal generated in K[Yω] by the minors that generate Iω, that is, con-
sider Iω ∩ K[Yω] ⊆ K[Yω]. Then Iω ∩ K[Yω] is Zν-graded, where ν = max{j | (i, j) ∈
Ess(ω) for some i} is the number of columns of Yω.

The family of Schubert determinantal ideals contains that of one-sided ladder determi-
nantal ideals. More precisely, consider mixed one-sided ladder determinantal ideals. These
are a generalization of the classical one-sided ladder determinantal ideals, where the lad-
der can have corners in the same row or column and we take minors of different sizes in
different regions of the ladder, see e.g. [19, Definition 1.4]. In [16, Proposition 9.6] it is
shown that the family of mixed one-sided ladder determinantal ideals coincides with that
of Schubert determinantal ideals associated to vexillary permutations. Every permutation is
vexillary for n ≤ 3 and the only non-vexillary permutation in S4 is 2143. However, for large
n, the proportion of vexillary permutations tends to zero as n tends to infinity [25]. There-
fore, for large enough n, (mixed) one-sided ladder determinantal ideals are a small subset
of Schubert determinantal ideals.

Example 5.5 Consider the permutation ω = 1432 ∈ S4 from Example 5.3. Its Schubert
determinantal ideal is I1432 = I2(X2×3) + I2(X3×2) = I2(Y1432) where Y1432 = X2×3 ∪
X3×2 is the subladder of X3×3 consisting of its first two rows and columns.

The ideal I1432 ⊆ K[xij | 1 ≤ i, j ≤ 4] is Z
4-graded with respect to the grading

induced by letting deg(xij ) = ej ∈ Z
4. One can also regard I1432 as an ideal in K[Y1432] =

K[xij | 1 ≤ i, j ≤ 3, (i, j) 
= (3, 3)], which is Z3-graded graded with respect to the grading
induced by letting deg(xij ) = ej ∈ Z

3.

The next result follows by combining a recent result by Fink, Mészáros, and St. Dizier
[15] with results by Knutson and Miller [24] and by Brion [4]. It characterizes the Schubert
determinantal ideals which are Cartwright–Sturmfels.

Theorem 5.6 Assume that K is algebraically closed. Let ω ∈ Sn and let Iω ⊆ S be the
associated Schubert determinantal ideal. The following are equivalent:

(1) Iω ∈ CS(S),
(2) Iω ∩ K[Yω] ∈ CS(K[Yω]),
(3) ω avoids the permutations 12543, 13254, 13524, 13542, 21543, 125364, 125634,

215364, 215634, 315264, 315624, and 315642.

If this is the case, then the multigraded generic initial ideal and all the initial ideals of Iω

are Cohen–Macaulay. Moreover, Iω has a universal Gröbner basis consisting of elements of
multidegree ≤ (1, . . . , 1, 0, . . . , 0) ∈ Z

n, where the number of ones appearing in the vector
is equal to the number of columns of Yω.

Proof By [15, Theorem 4.8], the Schubert polynomial of ω is multiplicity-free if and only
if ω avoids the permutations 12543, 13254, 13524, 13542, 21543, 125364, 125634, 215364,
215634, 315264, 315624, and 315642. Moreover, the Schubert polynomial of ω coincides
with the dual multidegree of S/Iω by [24, Theorem A]. Therefore, ω avoids the 12 permu-
tations listed above if and only if the only coefficients appearing in the dual multidegree of
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S/Iω are zero and one. Notice moreover that S/Iω and K[Yω]/Iω ∩ K[Yω] have the same
dual multidegree.

If Iω is Cartwright–Sturmfels, then S/Iω and K[Yω]/Iω ∩ K[Yω] have multiplicity-free
multidegree by Proposition 3.6. Moreover, the ideal Iω ⊆ S is prime by [16, Proposi-
tion 3.3]. In [10, Lemma 2.3], we discussed the relation between the multidegree DegM(Z)

and the dual multidegree Deg∗
M(Z). In particular we showed that, under our assumptions,

they are two different encodings of the same numerical data. In particular, DegM(Z) is
multiplicity-free if and only if the only coefficients in Deg∗

M(Z) are zero and one. This
proves that (1) implies (3) and (2) implies (3).

Conversely, suppose that (3) holds. Then S/Iω and K[Yω]/Iω ∩K[Yω] have multiplicity-
free multidegrees by [10, Lemma 2.3]. Since Iω ⊆ S is prime, the multigraded generic initial
ideal of Iω is radical and Cohen–Macaulay by [4, Theorem 1] (see also [10, Theorem 1.11]
for a formulation in our terminology). This proves (1). The same argument proves (2). The
rest of the statement follows from Proposition 3.4.

The next result follows by combining Theorem 5.6 and Proposition 3.5.

Corollary 5.7 Let S = K[xij | 1 ≤ j ≤ n, 0 ≤ i ≤ mj ] be endowed with the standard
Z

n-grading induced by deg(xij ) = ej ∈ Z
n and assume that K is algebraically closed. Let

A = (aij ) be an n × n matrix whose entries are Zn-multigraded with deg(aij ) = ej ∈ Z
n

for all i, j . Let ω ∈ Sn and assume that ω avoids the permutations 12543, 13254, 13524,
13542, 21543, 125364, 125634, 215364, 215634, 315264, 315624, and 315642. Let

Iω(A) =
∑

i,j=1,...,n

Irω(i,j)+1(Ai×j ) =
∑

(i,j)∈Ess(ω)

Irω(i,j)+1(Ai×j ) ⊆ S.

Then Iω(A) is Cartwright–Sturmfels.

In [20] Hamaker, Pechenik, and Weigandt study the following system of generators for
Schubert determinantal ideals.

Definition 5.8 Let X′ be the matrix obtained from X = (xij ) by specializing xij to 0
whenever rω(i, j) = 0. The CDG generators of Iω are the elements of the set

{xij | rω(i, j) = 0} ∪ {(rω(i, j) + 1)-minors of X′
i×j | (i, j) ∈ Ess(ω)}.

In their paper, Hamaker, Pechenik, and Weigandt formulate the following conjecture,
which was later proved by Klein in [23]. We recall that a diagonal Gröbner basis is a Gröbner
basis with respect to a diagonal term order, that is, a term order that selects the product of
the elements on the main diagonals of the minors as initial monomials.

Theorem 5.9 (Conjecture 7.1 in [20], Corollaries 3.17 and 4.2 in [23])) Let ω ∈ Sn.
The CDG generators are a diagonal Gröbner basis for Iω if and only if ω avoids the
permutations 13254, 21543, 214635, 215364, 215634, 241635, 315264, and 4261735.

Combining Theorems 5.6 and 5.9, one obtains the following immediate corollary.

Corollary 5.10 Let ω ∈ Sn. If Iω is Cartwright–Sturmfels, then the CDG generators are a
diagonal Gröbner basis.
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Proof Notice that the permutations 214635 and 241635 contain 13524 and the permutation
4261735 contains 315624. Therefore, if ω avoids the list of permutations in the statement
of Theorem 5.6, then it also avoids the permutations listed in Theorem 5.9.

By comparing the lists of permutations in the statements of Theorems 5.6 and 5.9, one
sees immediately that there are Schubert determinantal ideals which are not Cartwright–
Sturmfels, but whose CDG generators are a diagonal Gröbner basis.

Example 5.11 Let ω = 13524 ∈ S5 and let Iω = I2(X2×3) + I3(X4×3) be the associated
Schubert determinantal ideal. Since the generators of Iω are minors of Yω = X4×3, we may
replace X by X4×3 and let S = K[X4×3] = K[xij | 1 ≤ i ≤ 4, 1 ≤ j ≤ 3]. In particular, S
and Iω are Z3-graded by letting deg(xij ) = ej ∈ Z

3.
The dual multidegree of S/Iω is Z2

1Z2 + Z2
1Z3 + Z1Z

2
2 + 2Z1Z2Z3 + Z1Z

2
3 + Z2

2Z3 +
Z2Z

2
3, in particular it is not multiplicity-free, so Iω is not Cartwright–Sturmfels.

The CDG generators of Iω are the 2-minors of X2×3 and the 3-minors of X4×3. Fix the
lexicographic order with xij > xk� if either i < k or i = k and j < �. This is a diagonal
term order. One can check by direct computation that the CDG generators are a Gröbner
basis of Iω.

6 Binomial Edge Ideals

The next theorem appeared first as [9, Theorem 2.1]. Giulia Gaggero [18] pointed out to us
that the proof given in [9] contains a mistake. Indeed the equation

u(x2F1n − x1F2n) = uxnF12

that is used in [9, p. 242] is not correct. The problem comes from the fact that in the proof
we treated the Fij as if they were the 2-minors of the matrix φ(X) (notations as in [9]) but
that it is true only up to a scalar that has been used to make them monic, hence the mistake.
Here we present a correct and somehow simpler proof of [9, Theorem 2.1].

Let us set up the notation. Let G be a graph on the vertex set {1, . . . , n} and let X be the
2 × n matrix of variables

X =
(

x1 x2 · · · xn

y1 y2 · · · yn

)
.

Denote by Δij the 2-minor of X corresponding to columns i, j , i.e., Δij = xiyj − xjyi . We
consider the binomial edge ideal of G

JG = (Δij : {i, j} is an edge of G)

of S = K[x1, . . . , xn, y1, . . . , yn]. Binomial edge ideals were introduced in [22] and [28].
We consider the Zn-graded structure on S induced by letting deg(xi) = deg(yi) = ei ∈ Z

n.

Theorem 6.1 ([9, Theorem 2.1]) The multigraded generic initial ideal of JG is generated
by the monomials ya1 · · · yavxixj , where i, a1, · · · , av, j is a path inG. In particular JG is a
Cartwright–Sturmfels ideal, therefore all the initial ideals of JG are radical and reg(JG) ≤ n.

Proof Consider any term order such that xi > yi for all i. To compute the generic initial
ideal, we first apply a multigraded upper triangular transformation φ to JG, i.e., for every i

we have φ(xi) = xi and φ(yi) = αixi + yi with αi ∈ K . We obtain the matrix

φ(X) =
(

x1 x2 · · · xn

α1x1 + y1 α2x2 + y2 · · · αnxn + yn

)
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whose 2-minors are

φ(Δij ) =
∣∣∣∣

xi xj

αixi + yi αj xj + yj

∣∣∣∣ = (αj − αi)xixj + Δij .

Assume that αj 
= αi for i 
= j . We multiply φ(Δij ) by the inverse of αj − αi and obtain

Fij = xixj − λijΔij

with
λij = (αi − αj )

−1,

so that Fij is monic. For later reference, we observe the following: for indices 1 ≤ i < j <

k ≤ n, consider the S-polynomial S(Fik, Fjk). Expanding S(Fik, Fjk) we have

S(Fik, Fjk) = xjFik − xiFjk = −λjkyj xixk + λikyixj xk + (λjk − λik)ykxixj .

Performing division with reminder by Fik , Fjk , Fij we obtain

S(Fik, Fjk) = −λjkyjFik + λikyiFjk + (λjk − λik)ykFij + r .

The remainder r is

r = −λjkyjλikΔik + λikyiλjkΔjk + (λjk − λik)ykλijΔij ,

that is,
r = λjkλik(−yjΔik + yiΔjk) + (λjk − λik)ykλijΔij .

Using the syzygy among minors

yiΔjk − yjΔik + ykΔij = 0

we have

r = λjkλik(−ykΔij ) + (λjk − λik)ykλijΔij = (−λjkλik + λjkλij − λikλij )ykΔij

and
−λjkλik + λjkλij − λikλij = 0,

which can be checked by direct computation. Hence r = 0 and

S(Fik, Fjk) = −λjkyjFik + λikyiFjk + (λjk − λik)ykFij . (6.1)

Now we return to the ideal JG and its image under φ:

φ(JG) = (Fij : {i, j} is an edge of G).

Set
F = {yaFij : i, a1, . . . , av, j is a path in G},

where
ya = ya1 · · · yav .

It suffices to prove that F is a Gröbner basis for φ(JG), for every φ such that αj 
= αi for
i 
= j . We first observe that F ⊆ φ(JG), i.e., yaFij ∈ φ(JG) for every path i, a1, . . . , av, j

in G. Since Fij and φ(Δij ) differ only by a non-zero scalar, we may as well prove that
yaφ(Δij ) ∈ φ(JG) for every path i, a1, . . . , av, j in G. This is proved easily by induction
on v, the case v = 0 being trivial, applying to the matrix φ(X) the relation

(z1i , z2i )Δjk(Z) ⊆ (Δij (Z),Δik(Z))

that holds for every 2 × n matrix Z = (zij ) and every triplet of column indices i, j, k. In
order to prove that F is a Gröbner basis, we take two elements yaFij and ybFhk in F and
prove that the corresponding S-polynomial reduces to 0 via F . Here a = a1, . . . , av and
b = b1 . . . , br and i, a, j and h, b, k are paths in G. We distinguish three cases:
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Case 1. If {i, j} = {h, k}, we may assume i = h and j = k. The corresponding S-
polynomial is 0.

Case 2. If {i, j} ∩ {h, k} = ∅. Let u = GCD(ya, yb). Then yaFij = u(ya/u)Fij and
ybFhk = u(yb/u)Fhk . Notice that (ya/u)Fij and (yb/u)Fhk have coprime leading terms,
hence they form a Gröbner basis. If a Gröbner basis is multiplied with a single polynomial,
the resulting set of polynomials is still a Gröbner basis. Hence {yaFij , ybFhk} is a Gröbner
basis and the S-polynomial of yaFij , ybFhk reduces to 0 using only yaFij , ybFhk .

Case 3. If |{i, j} ∩ {h, k}| = 1. Up to permuting the columns of X, we may assume that
i = 1, h = 2 and j = k = n. Let u = LCM(ya, yb). We have

S(yaF1n, ybF2n) = uS(F1n, F2n).

Using (6.1) with i = 1, j = 2 and k = n, and multiplying both sides by u, we obtain

S(yaF1n, ybF2n) = −λ2ny2uF1n + λ1ny1uF2n + (λ2n − λ1n)ynuF12. (6.2)

Since (6.1) is a division with reminder 0 of S(F1n, F2n) with respect to F1n, F2n, F12, we
may conclude that (6.2) is a division with reminder 0 of S(yaF1n, ybF2n) with respect to the
set F , provided that y2uF1n, y1uF2n and ynuF12 are multiples of elements of F . Clearly
y2uF1n is a monomial multiple of yaF1n and y1uF2n is a monomial multiple of ybF1n.
So we are left with ynuF12. If u is divisible by a monomial yd = yd1 · · · ydt such that
1, d1, . . . , dt , 2 is a path in G, then ynuF12 is a multiple of ydF12 ∈ F . On the other hand,
if u is not divisible by a monomial yd = yd1 · · · ydt such that 1, d1, . . . , dt , 2 is a path in G,
then

{1, a1, . . . , av} ∩ {2, b1, . . . , br } = ∅ and u = yayb.

In this case, 1, a, n, b, 2 is a path from 1 to 2 in G, hence ynuF12 = ynyaybF12 ∈ F .
This concludes the proof that the set F is a Gröbner basis. The rest of the statement now

follows from Proposition 3.4.

7 Multigraded Closures of Linear Spaces

We now return to the notation of Section 2, in particular we let S = K[xij | 1 ≤ j ≤ n, 0 ≤
i ≤ mj ] with the standard Zn-grading induced by deg(xij ) = ej .

Let T = K[xij | 1 ≤ j ≤ n, 1 ≤ i ≤ mj ] ⊆ S. Given a non-zero polynomial f ∈ T

we use the variables x01, x02, . . . , x0n to transform f into a polynomial of S which is Zn-
graded in a “minimal” way. Explicitly, let f = ∑r

i=1 λiwi ∈ T \ 0 where λi ∈ K \ {0}
and wi is a monomial of degree bi = (bi1, . . . , bin) ∈ Z

n. Let d = (d1, · · · dn) with
dj = max{b1j , . . . , brj }. Then the Zn-homogenization f hom ∈ S of f is defined as

f hom =
r∑

i=1

λi

⎛

⎝
n∏

j=1

x
dj −bij

0j

⎞

⎠ wi .

Notice that f hom is Zn-homogeneous of degree d ∈ Z
n.

Given an ideal I ⊆ T , its multigraded homogenization is the Zn-graded ideal of S

I hom = (f hom : f ∈ I \ 0) ⊆ S.

Geometrically I hom corresponds to the closure in P
(m1,...,mn) of the affine variety defined

by I .
We denote by I  the largest Zn-graded ideal of T contained in I , i.e., the ideal generated

by the Zn-graded elements of I .
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Theorem 7.1 ([9, Theorem 3.1]) Let J be an ideal of T generated by homogeneous
polynomials of degree 1 with respect to the Z-graded structure. Then J hom and J  are
Cartwright–Sturmfels ideals.

Remark 7.2 Theorem 7.1 was inspired by work of Ardila and Boocher. In their paper [2],
they consider the situation m1 = · · · = mn = 1. Our result recovers and generalises some
of their results. Indeed the case treated by Ardila and Boocher is special, in the sense that
the ideal J hom is not only a Cartwright–Sturmfels ideal but also Cartwright–Sturmfels∗,
a dual notion that is discussed in [10]. One important consequence of this fact is that the
multigraded Betti numbers of J equal the multigraded Betti numbers of any Z

n-graded
ideal with the same multigraded Hilbert function as J . In addition, any minimal multigraded
system of generators is a universal Gröbner basis of J .

Example 7.3 Let n = 3 and m1 = m2 = m3 = 4. We consider J = (xi1 + xi2 + xi3 : i ∈
[4]). With

X =

⎛

⎜⎜⎝

x11 x12 x13
x21 x22 x23
x31 x32 x33
x41 x42 x43

⎞

⎟⎟⎠

we observe that

X

⎛

⎝
1
1
1

⎞

⎠ = 0 mod J,

hence I3(X) ⊆ J . Since I3(X) is Z3-graded we have also I3(X) ⊆ J . It turns out that
actually one has I3(X) = J . This example can be generalised, see [9, Example 5.2.] where
the result is presented with the transposed graded convention, i.e., with respect to the graded
structure induced by deg(xij ) = ei . Summing up, one has that for every m ≥ n and X =
(xij ) matrix of variables with deg(xij ) = ej , the ideal In(X) of maximal minors of X is
equal to J  where J = (

∑n
j=1 xij : i = 1, . . . , m).

The ideals generated by linear forms are the only Z-graded Cartwright–Sturmfels ideals.
Hence, Theorem 7.1 could be a special instance of a more general fact, that we formulate as
a question.

Question 7.4 Let I be a Cartwright–Sturmfels Zn-graded ideal of S. Suppose that we intro-
duce a finer graded structure on S, say a Z

r -graded structure with r > n such that if two
variables have the same Zr -degree then they have the same Zn-degree. Then I is not nec-
essarily Z

r -graded and we may consider its Zr -homogenization I hom ⊆ S[y1, . . . , yr ] and
homogeneous Zr -part I ∗. Are I hom and I ∗ Cartwright–Sturmfels ideals?
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