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A B S T R A C T   

The study aims to estimate the maximum dynamic response of linear elastic SDOF systems subjected to thun
derstorm outflows. Starting from a recently developed Evolutionary Power Spectral Density (EPSD) model for the 
wind velocity, the dynamic response is decomposed into a time-varying mean and a non-stationary random 
fluctuation. The EPSD and the Non-Geometrical Spectral Moments (NGSMs) of the random fluctuation are 
derived both accounting and neglecting the transient dynamics due to the modulating function of the load. The 
mean value of the maximum nonstationary fluctuating component of the response is estimated based on the 
definition of an equivalent stationary process following an approach proposed in the literature. In order to 
mitigate the overestimations of the maximum dynamic response due to the Poisson approximation, analogously 
to the formulation developed by Der Kiureghian for withe noise excitation, an equivalent expected frequency is 
introduced for thunderstorm excitation. Finally, the maximum dynamic response to thunderstorms is estimated 
as the sum of the maximum mean and fluctuating parts and a numerical validation of the results against real 
recorded thunderstorms is provided, highlighting the reliability of adding up the mean and fluctuating contri
butions and the advantages and limits of neglecting the transient dynamics.   

1. Introduction 

Wind and earthquakes constitute the main natural hazards that strike 
the natural and built environment, causing damages and losses in our 
societies. In this regard, the modelling and prediction of their action and 
the evaluation of their impact on structures represent one of the most 
important goals for civil engineers to design safe and cost-efficient 
structures. 

Wind can occur around the world in the form of tropical and extra- 
tropical cyclones, tornadoes, downslope winds and thunderstorms. In 
particular, the occurrence of extra-tropical cyclones and thunderstorms 
affects the whole planet, dominating the European wind climate. 

For what concerns extra-tropical cyclones, the theory and models for 
the wind velocity and the wind-excited structural response are well- 
established in design codes (Davenport, 1961, 1964, 1967; Solari, 
1982, 1993a, 1993b, 2019). On the other hand, despite the great amount 
of research carried out in the last decades, the representation of wind 
velocity associated to thunderstorm outflows (e.g. Chen and Letchford, 
2005; Holmes et al., 2008; Lombardo et al., 2014; Lombardo and Zickar, 
2019; McConville et al., 2009) and the calculation of the related 

structural dynamic response is still an open issue and a crucial topic in 
wind engineering. Indeed, thunderstorms are mesoscale phenomena 
with extension of few kilometres and short duration, which makes them 
difficult to be detected by one single anemometer. Moreover, the 
nonstationary nature of the wind field generated by thunderstorms 
makes most of the theory and models developed for extra-tropical cy
clones unsuitable and, to date, it has prevented the development of 
robust models for rapid engineering calculations shared by the scientific 
community. In this regard, different methods and advanced techniques 
have been proposed in the literature, including time-domain solutions, 
response spectrum technique and time-frequency analyses. 

Choi and Hidayat (2002), with the aim to generalize the gust factor 
technique, studied the dynamic response of Single Degree Of freedom 
(SDOF) systems subjected to thunderstorm wind loading in time 
domain, expressing the maximum as the sum of the maximum of the 
mean part of the response and the maximum of the standard deviation of 
its fluctuating part multiplied by a peak factor. Chen and Letchford 
(2004a, 2004b) studied a deterministic-stochastic hybrid model of 
thunderstorms and they expressed the maximum dynamic response of a 
real structure as a function of the maximum dynamic magnification 
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factor. Similarly, Holmes et al. (2005) studied the maximum dynamic 
response of a SDOF system to a sample of a real thunderstorm event 
through a response factor, while Chay and Albermani (2005) analysed 
the dynamic response of a SDOF system to a simulated downburst. 

Starting from time domain analysis of real recorded thunderstorms, 
the thunderstorm response spectrum technique (TRST) was developed 
by Solari et al. (2015b) for linear elastic SDOF systems, aiming to pro
vide a robust tool to be used by engineers from an operative perspective. 
Then, the TRST has been extended to MDOF systems through the 
equivalent wind spectrum technique (Solari, 1988, 2016). 

Time-frequency analyses include advanced techniques such as 
wavelets and Evolutionary Power Spectral Density (EPSD) models. The 
wavelet technique was employed by Le and Caracoglia (2017, 2015) to 
study the dynamic response of a tall building subjected to the downburst 
wind load, developing a computer based model for its calculation 
starting from a digitally simulated thunderstorm. Successively, the dy
namic response of a tall building to the downburst wind loading was also 
investigated by means of the Fokker-Planck Equation with a parametric 
study (Caracoglia, 2017). EPSD models for thunderstorms have been 
adopted by different researchers. Chen (2008) studied the alongwind 
response of a tall building to nonstationary winds, deriving the EPSD of 
the response both accounting and neglecting the effect of the transient 
dynamics on the standard deviation. Kwon and Kareem (2009), based on 
an ideal EPSD model of wind velocity, proposed a gust front factor 
approach able to encapsulate the features of the gust-front wind effects. 
They recently revisited the framework providing closed-form solutions 
based on the assumption of long-pulse duration (Kwon and Kareem, 
2019). The effects of the time-varying mean and standard deviation of 
the wind velocity on the dynamic response of tall buildings was inves
tigated by Huang et al. (2013) in time domain, starting from the nu
merical simulation of time-histories compatible with an EPSD estimated 
from a full-scale wind speed record. Peng et al. (2018), based on the 
analysis of two thunderstorm records, introduced a model of a 
time-varying coherence function for downburst winds and adopted it for 
the estimate of the alongwind dynamic response of ideal tall buildings. 
More recently, Kareem et al. (2019) proposed a generalization of the 
original Davenport’s wind loading chain (Davenport, 1967) in 
time-frequency domain for nonstationary winds, employing both 
wavelets and the EPSD to derive the dynamic response of Multi Degree 
Of Freedom (MDOF) systems. 

Nevertheless, even though different models and methods accom
plished with robust theoretical bases have been proposed in the litera
ture, a unified and reliable analytical model for the assessment of the 
maximum dynamic response to thunderstorms coherent with the tech
niques commonly adopted in wind engineering (i.e. gust factor) is not 
yet available. In most cases, applications to a single structure or specific 
case studies have been proposed (Chen and Letchford, 2004a, 2004b; 
Choi and Hidayat, 2002). Moreover, most of the analyses and models are 
either based on few records of thunderstorm wind velocity, on simula
tions of downburst starting from estimated EPSD or even only theoret
ically conceptualized (Holmes et al., 2005; Huang et al., 2013, 2015; 
Huang and Chen, 2009; Kareem et al., 2019; Kwon and Kareem, 2009, 
2019; Le and Caracoglia, 2017; Peng et al., 2018). This is a major 
shortcoming since the time-histories of thunderstorm outflows can be 
significantly different from one another and hence to rely on few or even 
only one record for their modelling can be a rather questionable 
approach. 

In this context, the great seaport monitoring network of anemome
ters in the Tyrrenian sea realized by the Department of Civil, Chemical 
and Environmental Engineering (DICCA) of the University of Genoa, in 
the framework of the European projects “Wind and Ports” and “Wind, 
Ports and Sea” (Repetto et al., 2017, 2018; Solari et al., 2012), includes 
28 ultrasonic anemometers which collected more than 270 nonsta
tionary events in the last seven years. This wide database allowed the 
GS-Windyn Research Group (www.gs-windyn.com) to carry out a 
considerable amount of research both on the characteristics of 

thunderstorm outflows (Burlando et al., 2017, 2018; De Gaetano et al., 
2014; Solari et al., 2015a; Tubino and Solari, 2020; Zhang et al., 2017, 
2018, 2019) and on the related dynamic response of SDOF and MDOF 
systems (Solari, 2016; Solari et al., 2015b, 2017; Solari and De Gaetano, 
2018), laying the foundations to the research project THUNDERR: 
Detection, simulation, modelling and loading of thunderstorm outflows 
to design wind-safer and cost efficient structures. Starting from the 
available large database of thunderstorm records, an EPSD model of 
thunderstorm outflows consistent with full-scale thunderstorm records 
has been developed (Roncallo and Solari, 2019, 2020). 

The present paper aims to study the possibility of extending the 
traditional approach of the gust factor technique to the estimate of the 
maximum dynamic response of linear SDOF systems to thunderstorm 
outflows starting from the consistent EPSD model for the wind velocity 
developed (Roncallo and Solari, 2019, 2020). The mean value of the 
maximum dynamic response should be estimated from its pdf defined on 
the basis of the up-crossing theory of nonstationary processes, taking 
into account the variation in time of the mean part of the response and of 
the standard deviation (Hu and Xu, 2014; Huang et al., 2013; Kareem 
et al., 2019). However, this procedure has the shortcoming of being 
unsuitable to be applied within an operative context and hence to be 
declined in codes for rapid engineering calculations. Hence, an alter
native approach to the direct calculation of the mean value of the 
maximum response is investigated, able to adapt the gust factor 
formulation for synoptic winds to thunderstorm outflows. Coherently 
with the proposal by Kwon and Kareem (2019, 2013, 2009), the 
approach is based on a technique proposed in literature for the estimate 
of the maximum of a nonstationary process with zero-mean, introducing 
suitable equivalent parameters (Michaelov et al., 2001), here called 
Equivalent Parameters Technique (EPT). The application of the EPT for 
the estimate of the maximum of the fluctuating part of the response 
allows to express the global maximum in the same form as for synoptic 
winds. However, its extension to the estimate of the maximum response 
to thunderstorms is a delicate aspect, since the dynamic response is not 
zero-mean and the maxima of the mean and fluctuating parts need to be 
recombined. 

In this study, the EPT is adopted to estimate the mean value of the 
maximum of the fluctuating part of the dynamic response starting from 
an EPSD model for the thunderstorm wind velocity consistent with a 
large number of real thunderstorm records. Analyses are carried out on a 
wide range of linear SDOF systems with variable fundamental fre
quencies and damping ratios both accounting and neglecting the effects 
produced by the transient dynamics. The mean value of the maximum 
response is then derived as the summation of the maxima of the mean 
and of the fluctuating part of the response. Finally, the approach is 
validated comparing the EPSD-based maximum response with the mean 
value of the maximum dynamic response to 129 real thunderstorms 
recorded at full scale, estimated numerically through step-by-step time 
domain analyses (Roncallo and Solari, 2020). The advantage and limits 
of neglecting the transient dynamics and the reliability of the assump
tion of contemporaneity between the maxima of the mean and fluctu
ating part of the response are discussed. 

The paper is articulated as follows: Section 2 provides a brief over
view on the EPSD model adopted for the wind velocity and the deriva
tion of the wind load; Section 3 reports the derivation of the dynamic 
response outlining two different approaches: the first one, named 
Rigorous method, derives the dynamic response directly through the 
NGSMs, while the second approach, named Simplified method, assumes 
the modulating function of the loading as slowly-varying with respect to 
the fundamental period of the structure. Section 4 is dedicated to the 
statistical characterization of the maximum of the fluctuating part of the 
response, introducing an equivalent stationary process to define the 
peak factor both for the Rigorous and Simplified method; Section 5 in
troduces an effective zero-crossing rate based on the method proposed 
by Der Kiureghian with reference to a white noise excitation; Section 6 
deals with the combination of the maximum of the mean and fluctuating 
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parts of the response and the validation against the maximum response 
numerically derived from real recorded events. Finally Section 7 out
lines the conclusions and the prospects of the study. 

2. EPSD model for the wind load 

Let us consider a point-like structure, immersed in a wind field 
generated by a thunderstorm outflow characterized by the wind velocity 

v(t), being t ∈
[

− Tmax
2 , Tmax

2

]

the time and Tmax the temporal interval in 

which the thunderstorm outflow occurs, namely Tmax = 600 s (Roncallo 
and Solari, 2020; Zhang et al., 2017). Neglecting the role of the partial 
wind correlation together with the variation of the velocity along the 
structure and its change of direction, the alongwind force is defined as: 

f (t)=
1
2

ρv2(t)AcD (1)  

where ρ is the air density, A the area exposed to the wind and cD the drag 
coefficient. It is worth to point out that, in general, the drag coefficient, 
being a function of the angle of attack, may be affected by the change of 
direction of the wind velocity during the thunderstorm. However, in this 
study, the effect of the variation of the wind direction is neglected and cD 
is assumed as constant. Following “Method B′′ described in Roncallo and 
Solari (2020), the velocity v(t) is modelled as a uniformly modulated 
process as follows: 

v(t)= vmaxγ(t)[1+ Ivṽ
′

(t)] (2)  

with vmax and γ(t), respectively, the maximum value and the determin
istic modulating function of the slowly-varying mean wind velocity, Iv 

the mean value of the turbulence intensity and ṽ
′

(t) the so-called 
reduced turbulent fluctuation, dealt with as a zero-mean stationary 
Gaussian random process with unitary standard deviation. It is worth to 
point out that in Eq. (2) it is implicitly assumed that the turbulence in
tensity is constant and hence the mean wind velocity and turbulent 
fluctuations are modulated by the same function γ(t). This hypothesis, 
allowing a simpler treatment of the wind load, can lead in some cases to 
slight overestimations of the dynamic response (Roncallo and Solari, 
2020). Substituting Eq. (2) into Eq. (1) and invoking the hypothesis of 
small turbulence, the alongwind force takes the following form: 

f (t)=Cv2
maxγ

2(t)[1+ 2Ivṽ
′

(t)] (3)  

having defined C = 1/2ρAcD. The alongwind force in Eq. (3) can be 
decomposed as follows: 

f (t)= f (t) + f ′

(t) (4)  

where f(t) and f ′

(t) are, respectively, the mean and fluctuating part of 
the loading, given by: 

f (t)=Cv2
maxγ

2(t) (5)  

f
′

(t) = 2CIvv2
maxf̃

′

(t) (6)  

where ̃f
′

(t) is the reduced fluctuating part of the loading: 

f̃
′

(t) = γ2(t)̃v
′

(t) (7) 

Thus, the fluctuating part of the alongwind force (Eq. (6)), as well as 
its reduced counterpart (Eq. (7)) are uniformly modulated random 
processes, making the derivation of their one-sided Evolutionary Power 
Spectral Density (EPSD) straightforward (Lin and Cai, 1995; Priestley, 
1965): 

Sf ′ (n, t)=
(
2CIvv2

max

)2S̃
f
′ (n, t) (8)  

S̃
f
′ (n, t)= γ4(t)S̃

v
′ (n) (9)  

where n is the frequency and S̃
v
′ (n) the one-sided PSD of the reduced 

turbulent fluctuations. For the analyses carried out in the study, the 
function γ(t) is defined as follows (Roncallo and Solari, 2020): 

γ(t) =
1 − γ*

[

1 +

(
t

Tγ

)2
]1

2
+ γ* (10)  

where the parameters γ* and Tγ are, respectively, a measure of the in
tensity of the background mean wind velocity and a measure of the 
duration of the thunderstorm peak. In the literature, different models 
were proposed to describe the modulating function of the slowly-varying 
mean wind velocity (e.g. Abd-Elaal et al., 2013; Chay et al., 2006; Kwon 
and Kareem, 2009; Ponte and Riera, 2010). The model in Eq. (10) fur
nishes the best representation of the trend of the slowly-varying mean 
wind velocity extracted from 129 full-scale thunderstorm records 
(Roncallo and Solari, 2020). It should be pointed out that the parameters 
γ* and Tγ vary from one thunderstorm to one another. In the present 
study, the parameters γ* = 0.45 and Tγ = 26.45 s are assumed, 
providing the best fit of the mean trend of the sample functions of the 
full-scale slowly-varying mean wind velocities (Roncallo and Solari, 
2020). 

The one-sided PSD of the reduced turbulent fluctuations is modelled 
by means of the spectral model introduced by Solari and Piccardo 
(2001): 

S̃
v
′ (n)=

1
n

6.868nLv/vmax

[1 + 10.302nLv/vmax]
5/3 (11)  

assuming Lv/vmax = 1.72 s as evaluated from the thunderstorm time 
histories in (Roncallo and Solari, 2020). 

As an example, Fig. 1 plots the one-sided EPSD of the reduced fluc
tuating part of the load S̃

f
′ as a function of the reduced frequency ñ =

nLv/vmax and reduced time ̃t = t/Tmax. 

3. EPSD and spectral moments of the dynamic response 

Let us consider a linear elastic SDOF system characterized by mass m, 
a fundamental circular frequency ω0 = 2πn0 (being n0 the natural fre
quency), damping ratio ξ and displacement x. Its equation of motion is 
given by: 

Fig. 1. One-sided EPSD of the reduced fluctuating part of the wind load S̃
f
′ as a 

function of the reduced frequency ñ = nLv/vmax and reduced time ̃t = t/Tmax. 
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ẍ(t)+ 2ω0ξẋ(t) + ω2
0x(t) =

1
m

f (t) (12)  

where f(t) is defined in Eq. (3) (and characterized by the one-sided EPSD 
in Eq. (8)). According to the decomposition of the loading in Eq. (4), the 
dynamic response can be expressed as follows: 

x(t)= x(t) + x′

(t) (13)  

where x(t) and x′

(t) are the mean and fluctuating part of the response, 
associated with the mean and fluctuating part of the loading, f(t) (Eq. 
(5)) and f ′

(t) (Eq. (6)), respectively. 
The reduced fluctuating part of the response x̃

′

(t) is the solution of 
Eq. (12), with f(t) substituted by the reduced fluctuating part of the 
loading (Eq. (7)). It is related to the fluctuating part of the response by 
the following Equation: 

x̃
′

(t) =
x′

(t)
(
2CIvv2

max

) (14) 

Two possible approaches are outlined for the statistical character
ization of the dynamic response, here defined as Rigorous (Section 3.1) 
and Simplified (Section 3.2) method. 

3.1. Rigorous method 

The mean part of the response is obtained solving Eq. (12) with f(t)
substituted by f(t) (Eq. (5)). It is given by: 

x(t)=Cv2
max

∫t

−
Tmax

2

h(t − τ)γ2(τ)dτ (15)  

being h(t) the impulse response function of the dynamical system: 

h(t)=
1

mωd
e− ξω0 t sin(ωdt)H (t) (16)  

where H (t) is the Heaviside function and ωd = ω0
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ξ2

√
. 

The fluctuating part of the response is the solution of Eq. (12) with 
f(t) substituted by f ′

(t) (Eq. (6)). Its one-sided EPSD, as outlined in 

Appendix I, is given by Eq. (54) with Sr0 (n) = (2CIvv2
max)

2S̃
v
′ (n): 

Sx′ (n, t) =
(
2CIvv2

max

)2
|Z(n, t)|2S̃

v
′ (n) (17) 

According to Eqs. (14) and (17) the one-sided EPSD of the reduced 
fluctuating part of the response reads: 

S̃
x
′ (n, t)= |Z(n, t)|2S̃

v
′ (n) (18) 

The quantity Z(n, t) in Eqs. (17) and (18) is the EFRF, defined in 
Appendix I (Eq. (55), with a(n, t) = γ2(t) and changing the integration 

limits to 
[

− Tmax
2 , t

]

): 

Z(n, t) =
∫t

−
Tmax

2

h(t − τ)ei2πnτγ2(τ)dτ (19)  

where i is the imaginary unit. As an example, Fig. 2 plots the function 
|Z(n, t)|2 (Fig. 2a) and the one-sided EPSD of the reduced response 
S̃

x
′ (n, t) (Fig. 2b) for a SDOF system with n0 = 0.2 Hz and ξ = 0.2%, 

assuming the wind loading model described in Section 2 (Eq. (10) and 
(11)). 

From Eqs. (17) and (18) it can be deduced that the response is not a 
uniformly modulated process since the EFRF recouples time and fre
quency together. 

The NGSMs of the reduced fluctuating part of the response are 
derived following their definitions reported in Appendix I (Eq. (58)) and 
read: 

c
00,̃x

′ (t) =
∫+∞

0

|Z(n, t)|2S̃
v
′ (n)dn (20)  

c
01,̃x

′ (t) = − i
∫+∞

0

Z*(n, t)Ż(n, t)S̃
v
′ (n)dn (21)  

c
11,̃x

′ (t) =
∫+∞

0

|Ż(n, t)|2S̃
v
′ (n)dn (22) 

Fig. 3 plots, respectively, the spectral moments c
00,̃x

′ (Fig. 3a), c
11,̃x

′

(Fig. 3b) and c01,x′ (Fig. 3c and d) evaluated for n0 = 0.2 Hz and ξ ∈

[0.2%, 5%]. It can be deduced that, on increasing the damping ratio, the 
spectral moments c

00,̃x
′ , c

11,̃x
′ and the real part of c

01,̃x
′ tend to have a 

shape similar to the function γ4(t), with a maximum value in the 
neighbourhood of t = 0 s. Moreover, the more the structure is lowly 
damped, the more the peak of the function is high, while the shape 

Fig. 2. Rigorous method: Dynamic response of a SDOF system with n0 = 0.2 Hz and ξ = 0.2%: (a) EFRF |Z(n, t)|2; (b) one-sided EPSD of the reduced fluctuating part 
of the response S̃

x
′ . 
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changes with respect to γ4(t), losing its symmetry with respect to t = 0 s. 
These results are in agreement with the ones observed in literature 
(Chen, 2008; Huang et al., 2013). 

From the NGSMs in Eqs. (20)-(22) the spectral parameters such as the 
expected frequency, the bandwidth factor and the correlation coeffi
cient, namely ν̃

x
′ (t), q̃

x
′ (t) and ρ

x̃
′ ˙
x̃
′ (t), are obtained and reported in 

Appendix I (Eqs. (61)-(63)). 
The standard deviation of the reduced fluctuating part of dynamic 

response is derived from the first NGSM in Eq. (20) as follows: 

σ̃
x
′ (t)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c

00,̃x
′ (t)

√
(23) 

According to Eq. (17), the standard deviation of the fluctuating 
response reads: 

σx′ (t)= 2CIvv2
max

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c

00,̃x
′ (t)

√
(24) 

Comparing Eqs. (15) and (24) it is worth to notice that the modu
lating function of the mean and standard deviation of the response are 
not the same and hence, in general, their maximum values are not 
simultaneous. This delicate aspect will be further discussed in the next 
Sections. 

3.2. Simplified method 

If Tγ, which is a measure of the duration of the peak of the thun

derstorm, is large compared with the memory of the dynamical system, 
the dynamic effects produced by the modulating function γ(t) in the 
mean and fluctuating parts of the loading can be neglected. This 
assumption, leading to the Simplified method, can be considered as 
approximately verified when Tγ >

3
ξ(2πn0)

(Muscolino, 2012), i.e. for stiff 
and damped systems. Under this hypothesis, the quantity γ2(t) can be 
moved outside the integrals in Eqs. (15) and (19) and, extending the 
integration limits to [ − ∞, + ∞], x(t) and Z(n, t) are given, respectively, 
by the following expressions (Muscolino and Alderucci, 2015): 

x(t)=
Cv2

max

m(2πn0)
2γ2(t) (25)  

Z(n, t) = γ2(t)ei2πntH(n) (26)  

where H(n) is the mechanical admittance function: 

H(n)=
1

m(2πn0)
2

1
1 − n2

n2
0
+ 2iξ n

n0

(27) 

Eq. (25) shows that x(t) is the quasi-static response to f(t) (Eq. (5)), 
whilst Eq. (26) shows that, except from a phase angle, the EFRF co
incides with the mechanical admittance function H(n) modulated in 
time by the function γ2(t). The derivation of the one-sided EPSD of the 
fluctuating response is also straightforward: 

Fig. 3. NGSMs of the dynamic response (n0 = 0.2 Hz): (a) c
00,̃x

′ ; (b) c
11,̃x

′ ; (c) Real part of c
01,̃x

′ ; (d) Imaginary part of c
01,̃x

′ .  
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Sx′ (n, t) = |H(n)|2Sf ′ (n, t) (28) 

Substituting Eq. (26) into Eq. (18), the one-sided EPSD of the reduced 
fluctuating part of the response is given by: 

S̃
x
′ (n, t) = γ4(t)|H(n)|2S̃

v
′ (n) (29) 

As an example, Fig. 4 plots the quantity γ4(t)|H(n)|2 and the one- 
sided EPSD of the reduced fluctuating response S̃

x
′ for a SDOF system 

with n0 = 0.2 Hz and ξ = 0.2%. 
Eq. (29) shows that, as consequence of the hypothesis of a slowly- 

varying modulating function, the dynamic response retains the prop
erty of being a uniformly modulated process. 

The Vanmarcke’s spectral moments of the reduced fluctuating 
response are derived from Eq. (29): 

λ
0,̃x

′ (t)= γ4(t)
∫+∞

0

|H(n)|2S̃
v
′ (n)dn (30)  

λ
1,̃x

′ (t)= γ4(t)
∫+∞

0

(2πn)|H(n)|2S̃
v
′ (n)dn (31)  

λ
2,̃x

′ (t)= γ4(t)
∫+∞

0

(2πn)2
|H(n)|2S̃

v
′ (n)dn (32)  

where S̃
v
′ (n) is the one sided PSD of the reduced turbulent fluctuations 

based on frequency n (Eq. (11)). The spectral moments λ
j,̃x

′ (t) (k = 0,1,

…N) are thus the ones typical of stationary processes except that they 
are modulated in time by the function γ4(t). Accordingly, the expected 
frequency and the bandwidth factor read: 

ν̃
x
′ =

1
2π

̅̅̅̅̅̅̅̅̅̅̅̅̅
λ

2,̃x
′ (t)

λ
0,̃x

′ (t)

√
√
√
√ (33)  

q̃
x
′ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

λ2

1,̃x
′ (t)

λ
0,̃x

′ (t)λ
2,̃x

′ (t)

√
√
√
√
√ (34) 

Since the spectral moments λ
j,̃x

′ (t) posses the same modulating 

function (Eqs. (30)-(32)), the parameters in Eqs. (33) and (34) are not 
time dependent. 

The standard deviation of the reduced fluctuating part of the 
response is derived from the first spectral moment in Eq. (30) as follows: 

σ̃
x
′ (t) = γ2(t)J (35)  

where: 

J =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫+∞

0

|H(n)|2S̃
v
′ (n)dn

√
√
√
√
√ (36) 

According to Eq. (28), the standard deviation of the fluctuating part 
of the response reads: 

σx′ (t) = 2CIvv2
maxγ

2(t)J (37) 

Eqs. (25) and (37) show that both the mean and standard deviation 
of the dynamic response are modulated in time by the same function, i.e. 
γ2(t), and hence their maximum values are simultaneous. 

4. Expected value of the maximum of the fluctuating response, 
peak factor and equivalent parameters 

The extreme pdf of the nonstationary response can be estimated 
based on the Poisson or Vanmarcke models taking into account the 
variation in time of the standard deviation and of the mean part of the 
response. Then, the mean and standard deviation of the maximum can 
be derived from its pdf (Hu and Xu, 2014; Huang et al., 2013; Kareem 
et al., 2019). This procedure is rather unsuitable for rapid engineering 
calculations due to its lack of handiness. With the objective of extending 
the gust factor technique to thunderstorm response analysis, an alter
native approach is considered based on the definition of suitable pa
rameters able to adapt the gust factor formulation commonly adopted 
for synoptic winds. In particular, a time interval over which to calculate 
the peak factor needs to be defined, along with a suitable value of the 
standard deviation. 

This shortcoming can be overcome through the EPT, considering an 
equivalent stationary process defined through suitable equivalent pa
rameters, with the maximum value that coincides with the one of the 
original nonstationary process. The EPT was originally developed by 
Michaelov et al. (2001) for the dynamic response of a linear elastic SDOF 
system to a nonstationary zero-mean white noise modulated by a 
deterministic function. The technique is based on the approximation of 
the cumulative distribution function (CDF) of the extreme value of a 
nonstationary process by the CDF of a corresponding equivalent sta
tionary process defined through an equivalent standard deviation σeq 

Fig. 4. Simplified method: Dynamic response of a SDOF system with n0 = 0.2 Hz and ξ = 0.2%: (a) Modulated mechanical admittance function; (b) one-sided EPSD 
of the reduced fluctuating part of the response S̃

x
′ . 
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and an equivalent period Teq. The EPT was adopted by Kwon and Kar
eem (2019, 2009) in the framework of the dynamic response of struc
tures subjected to thunderstorm outflows to estimate the maximum of 
the fluctuating part of the response. According to Michaelov et al. 
(2001), the maximum value of the reduced fluctuating part of the 
response is given by: 

x̃’max = g̃
x
′

(
ν̃

x
′ Teq
)
σeq (38)  

where g̃
x
′ is the peak factor and ν̃

x
′ is the expected frequency (Eq. (33) 

and (61)). The peak factor reads (Davenport, 1961): 

g̃
x
′

(
ν̃

x
′ Teq
)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ln
(
ν̃

x
′ Teq
)√
+

0.5772
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ln
(
ν̃

x
′ Teq
)√ (39) 

Differently from Michaelov et al. (2001), the peak factor is here 
evaluated considering ν̃

x
′ , dropping the factor 2 adopted in the original 

method. This modification is due to the fact that in this study the dy
namic response is not zero-mean, and the maximum values of interest 
lay on the positive side. As an example, Fig. 5 plots the correlation co
efficient ρ

x̃
′ ˙
x̃
′ (Eq. (63)) and the expected frequency ν̃

x
′ for a system with 

n0 = 0.2 Hz and ξ ∈ [0.2%, 5%]. 
Fig. 5a shows that the correlation coefficient ρ

x̃
′ ˙
x̃
′ is very small. This 

result, valid also for other fundamental frequencies between 0.05 and 3 

Hz, allows to neglect the correlation between ̃x
′

and ˙x̃
′

(Michaelov et al., 
2001) with a certain margin of conservatism as outlined by Kwon and 
Kareem (2013). Concerning the normalized expected frequency 
(Fig. 5b), its trend is almost constant except a small variation in a 
neighbourhood of t = 0 s due to the misalignment of the peaks of c

00,̃x
′ (t)

and c
11,̃x

′ (t). 

The equivalent parameters in Eq. (38) are given by (Michaelov et al., 
2001): 

σ2
eq(η)=

∫+
Tmax

2
−

Tmax
2

[
σ2

x̃
′ (t)
]η+1dt

∫+
Tmax

2
−

Tmax
2

[
σ2

x̃
′ (t)
]ηdt

(40)  

Teq(η)= exp

⎛

⎜
⎜
⎜
⎜
⎜
⎝

η

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∫+
Tmax

2

−
Tmax

2

exp

(

−
ησ2

eq

σ2

x̃
′

(
t
)

)

dt (41)  

qeq =
σeq

Teq
exp

(
x̂2

2σ2
eq

) ∫+
Tmax

2

−
Tmax

2

q̃
x
′ (t)

σ̃
x
′ (t)

exp
(

−
x̂2

2σ2

x̃
′

(
t
)

)

dt (42) 

In Eqs (40) and (41) η is a parameter fixed a-priori (Michaelov et al., 
2001): in this study the value η = 4 is adopted. The parameter qeq in Eq. 
(42) is the equivalent bandwidth factor and it is derived in Michaelov 
et al. (2001) by introducing the Vanmarcke approximation. The band
width factor q̃

x
′ is evaluated by means of Eq. (62) while the recom

mended value for the parameter x̂ is x̂ = g̃
x
′ σeq (Michaelov et al., 2001). 

For the purposes of the study, x̂ has been calculated adopting the ex
pected frequency ν̃

x
′ calculated at the time instant when c

00,̃x
′ (t) is 

maximum. This choice is justified by the fact that, as shown in Fig. 5b, 
the expected frequency does not show significant variations in time and 
the maximum value of c

00,̃x
′ (t) occurs in the middle of the small variation 

of ν̃
x
′ . 

Coherently with the approach normally adopted in wind engineer
ing, Eq. (38) implicitly identifies the maximum response with its ex
pected value. This assumption was shown to be questionable dealing not 
only with the dynamic response to thunderstorm winds (Solari et al., 
2017) but also for the dynamic response to synoptic winds (Piccardo 
et al., 2018) since, in both cases, the extreme pdf results rather spread 
when the damping ratio becomes significantly small. However, with the 
aim of following the traditional approach focusing on the mean value of 
the maximum, this hypothesis has been assumed in the study. Research 
is currently ongoing to investigate whether the mean value may be 
considered representative of the maximum or if this assumption is not 
reliable in some cases. 

The following Sections outline the calculation of the equivalent pa
rameters following both the Rigorous and Simplified method for a set of 

Fig. 5. Rigorous method (n0 = 0.2 Hz): (a) correlation coefficient between x′ and ẋ
′

; (b) normalized expected frequency.  
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SDOF systems. It is worth to point out that the EPT here employed is an 
approximated procedure to estimate the maximum. The statement 
“Rigorous” method is therefore used to identify the approach discussed 
in Section 3.1 for which the EPSD of the response and the NGSMs are 
derived following a rigorous procedure, accounting for the transient 
dynamic effects through the EFRF. 

4.1. Rigorous method 

According to Eqs. (23) and (40)-(42), the evaluation of the equiva
lent parameters requires the estimate of the NGSMs in Eqs. (20)-(22) 
which are employed for the calculation of the equivalent standard de
viation σeq, substituting Eq. (23) into Eq. (40). Successively, the equiv
alent time interval Teq is derived replacing σeq and Eq. (23) into Eq. (41). 
Finally, the two parameters are adopted to calculate the equivalent 
bandwidth factor qeq according to Eq. (42). 

Fig. 6 plots the equivalent parameters σeq and Teq (Eq. (40) and (41)) 
for n0 ∈ [0.05, 3] Hz and ξ ∈ [0.2%, 5%]. 

It can be observed that both the parameters show decreasing trends 
on increasing the fundamental frequency of the system and the damping 
ratio. The trend of σeq remains very similar for all the damping ratios 
considered and its behaviour is in accordance with the standard devia
tion of the response which reduces on increasing the natural frequency 
and the damping ratio. 

The trend of Teq shows remarkable differences varying the damping 
ratio. On increasing it, the curves shift to the left. Furthermore, an upper 
and lower bound are detectable: the former is reached for very low 
frequencies and damping ratios and lays in a neighbourhood of Teq =

300 s, which is half of the total time interval Tmax = 600 s, while the 
latter corresponds to high natural frequencies and lays in a neighbour
hood of Teq = 41.34 s. The parameter Teq represents the time interval in 
which the equivalent stationary process is defined and hence within 
which the maximum of the process of interest is searched. Hence for a 
flexible and lowly-damped structure, since the width of the temporal 
region of the peak of the standard deviation is wider, it is reasonable to 
expect the maximum of the response in a larger time interval and thus 
the duration of the equivalent stationary process is longer; on the other 
hand, for a stiff and damped structure, its response is closer to the static 
one and the maximum is expected in a shorter time interval which does 
not depend on the mechanical properties of the system. 

Moreover, it is clear that the values of Teq are much lower than the 
traditional 600 s considered for extra-tropical cyclones. For this reason, 
the pdf of the maximum response is expected to be more spread as 

pointed out by Solari et al. (2017) and hence the identification of the 
maximum with its mean value may be less accurate. 

Fig. 7 plots the time varying bandwidth factor q̃
x
′ (t) calculated for 

n0 = 0.2 Hz and ξ ∈ [0.2%, 5%] (Fig. 7a) and the equivalent bandwidth 
factor qeq (Eq. (42)), evaluated for n0 ∈ [0.05, 3] Hz and ξ ∈ [0.2%, 5%]

(Fig. 7b). 
In Fig. 7a q̃

x
′ (t) reports steady trends except small variations around 

t = 0 s that increase on decreasing damping ratio, whilst the equivalent 
bandwidth factor (Fig. 7b) shows a regular behaviour, increasing on 
increasing the natural frequency and the damping ratio of the system. 
Overall, Fig. 7 shows that the equivalent bandwidth factor reports very 
low values for small damping ratios. Indeed, for ξ = 0.2% the equivalent 
bandwidth factor remains lower than 0.2, suggesting that the response is 
significantly narrowband. These results, in accordance with the ones 
observed for q̃

x
′ (t), suggest that the Poisson approximation may lead to 

conservative results in the evaluation of the maximum of the response 
for lowly-damped systems. 

4.2. Simplified method 

The derivation of the equivalent parameters with the Simplified 
method does not require the calculation of the NGSMs but merely in
volves the Vanmarcke’s spectral moments in Eqs (30)-(32) that are all 
modulated in time by γ4(t), hence the time-varying nature of these 
spectral moments does not depend on the mechanical properties of the 
structure. For this reason, the parameter Teq is unique for any n0 and ξ 
considered and, substituting Eq. (30) in Eqs. (40) and (41), after very 
simple algebra, it follows: 

σ2
eq(η)= J2σ2

eq,γ(η) (43)  

Teq(η)= exp

⎛

⎜
⎜
⎜
⎜
⎜
⎝

η

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∫+
Tmax

2

−
Tmax

2

exp

(

−
ησ2

eq,γ

γ4(t)

)

dt (44)  

where σ2
eq,γ is defined as: 

σ2
eq,γ(η)=

∫+
Tmax

2
−

Tmax
2

[γ4(t)]η+1dt
∫ −

Tmax
2

−
Tmax

2
[γ4(t)]ηdt

(45) 

Fig. 6. Rigorous method: equivalent parameters for the estimate of the expected value of the maximum of the response: (a) equivalent standard deviation; (b) 
equivalent time interval. 
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which is independent on the mechanical properties of the system. 
Substituting Eq. (10) into Eqs. (44) and (45) and setting η = 4, the 

equivalent time interval results Teq = 41.34 s. This value coincides with 
the lower bound estimated through the Rigorous method (Fig. 6). 

Fig. 8 reports the trends of the parameters σeq and qeq for n0 ∈

[0.05, 3] Hz and ξ ∈ [0.2%, 5%]. 
The trends of σeq in Fig. 8a are very similar to the ones obtained with 

the Rigorous method (Fig. 6) except that at very low frequencies the 
Simplified method leads to greater values. In said region only for large 
damping ratios the two methods give similar values. Concerning the 
parameter qeq (Fig. 8b), the curves obtained are almost the same of the 
ones of the Rigorous method, again with the exception for very low 
frequencies in which Fig. 8b reports slightly higher values. 

5. Revised Der Kiureghian method for thunderstorms outflows 

In Section 4 it has been shown that, for low values of damping ratio, 
the fluctuating part of the response is a narrowband random process. 
Hence, the direct application of the Davenport’s formulation of the peak 
factor may lead to excessive overestimation of the mean value of the 
maximum fluctuating response. 

To overcome this shortcoming, Michaelov et al. (2001) suggest the 
use of a so-called effective zero-crossing rate (or equivalent expected 
frequency) νe introduced by Der Kiureghian (1980) for which empirical 
equations were provided. However, Der Kiureghian formulation applies 
to the dynamic response of SDOF systems excited by stationary white 
noise inputs, rather different from the case under study in which the 
excitation is not a white noise. For this reason, an effective zero-crossing 
rate suitable for the dynamic response to thunderstorm outflows is here 
derived following the same procedure adopted by Der Kiureghian 
(1980), using a total of 129 real-scale thunderstorm records (Roncallo 
and Solari, 2020) as loading condition for the set of SDOF systems 
considered. From each wind velocity record available, the reduced 
turbulent fluctuation is extracted and the normalized nonstationary 
fluctuation of the wind load is obtained from Eq. (7). The dynamic 
response is therefore evaluated in time domain for the whole set of SDOF 
systems (with n0 ∈ [0.05, 3] Hz and ξ∈ [0.2%, 5%]) by solving the 
equation of motion in state space. Hence the maximum response is 
extracted from each time history and the mean value μ̃

x
′

,max 
evaluated 

per each SDOF system among the maxima of the dynamic responses to 
each thunderstorm. 

Through the parameters derived in the previous Section, the 

Fig. 7. Bandwidth factor: (a) time varying bandwidth factor calculated for n0 = 0.2 Hz; (b) equivalent bandwidth factor evaluated for the whole set of SDOF systems.  

Fig. 8. Equivalent parameters for the Simplified method evaluated for the whole set of SDOF: (a) equivalent standard deviation; (b) equivalent bandwidth factor.  
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numerically estimated peak factor g̃
x
′

,num
= μ̃

x
′

,max
/σeq is calculated and 

plotted versus the product ν̃
x
′ Teq, similarly to Der Kiureghian (1980). 

Successively, the effective zero-crossing rate νe is evaluated fitting the 
Davenport formulation for the peak factor with the values of g̃

x
′

,num
, 

deriving a dimensionless parameter ε such that: 

νe = εν̃
x
′ (46)  

g̃
x
′

,num
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ln
(
νeTeq

)√

+
0.5772
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ln
(
νeTeq

)√ (47) 

The parameter ε scales the expected frequency ν̃
x
′ to obtain the 

effective zero-crossing rate νe (Eq. (46)), which allows to apply the 
Davenport peak factor (Eq. (39)) removing the overestimations due to 
the Poisson assumption. The analyses are carried out separately in 
Sections 5.1 and 5.2 for the Rigorous and Simplified method, 
respectively. 

5.1. Rigorous method 

As discussed in Section 4.1, following the Rigorous method the 
parameter Teq varies with n0 and ξ, hence the variation of the product 
ν̃

x
′ Teq depends on the mechanical properties of the system through both 

parameters. With this premise, Fig. 9 plots the numerically estimated 
peak factor as a function of the product ν̃

x
′ Teq, for fixed values of the 

damping ratio, along with the one provided by Davenport formulation 
(dashed line). 

From Fig. 9 it can be deduced that for all the damping ratios 
considered, the Davenport formulation provides a reliable approxima
tion of the peak factor for small values of ν̃

x
′ Teq. For very small damping 

ratios the numerically estimated peak factor tends to become less 
dependent on ν̃

x
′ Teq, assuming very small values. It is worth noting that 

in these cases the process tends to become narrowband and thus the 
Poisson assumption is no longer reliable, leading to conservative results 
when the Davenport formulation is used. On the other hand, for ξ = 2− 5 
% the numerically estimated peak factor is close to the one provided by 
Davenport formulation. 

Following the approach developed in Der Kiureghian (1980), the 
curves in Fig. 9 have been fitted according to Eq. (47) to derive the 
parameter ε. Fig. 10 plots the parameter ε derived from the fitting 
procedure as a function of ν̃

x
′ Teq, along with its average trends (dashed 

lines), for fixed values of the damping ratio. 
In Fig. 10 the average trends show a good fit especially for low ξ and 

high ν̃
x
′ Teq, where the correction is of major interest. On the other hand, 

for higher damping ratios and lower ν̃
x
′ Teq the fit is less accurate. 

However, in these cases the correction is less important since the orig
inal Davenport expression for the peak factor leads to acceptable results. 

5.2. Simplified method 

Differently from the Rigorous case, in the Simplified method the 
parameter Teq is independent on the dynamic properties of the SDOF 
system, hence the variation of the product ν̃

x
′ Teq is related to the vari

ation of the expected frequency ν̃
x
′ , which is independent on the 

modulating function (Eq. (33)). Fig. 11 plots the numerically estimated 
peak factor as a function of ν̃

x
′ Teq for the Simplified method, compared 

with the Davenport formulation (dashed line). 
The curves depicted in Fig. 11 are different from the ones reported 

for the Rigorous method (Fig. 9), with the major differences for low 
values of the quantity ν̃

x
′ Teq and hence for low ν̃

x
′ . Firstly, the trends 

reported are slightly stretched towards lower values of ν̃
x
′ Teq if 

Fig. 9. Rigorous method: g̃
x
′

,num 
evaluated for the whole set of SDOF consid

ered, compared with the Davenport formulation (dashed line). 

Fig. 10. Trends for the parameter ε derived from data (dots) and its average 
trends (dashed lines). 

Fig. 11. Simplified method: g̃
x
′

,num 
evaluated for the whole set of SDOF 

considered, compared with the Davenport formulation (dashed line). 
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compared with Fig. 9. Moreover, while for higher ν̃
x
′ Teq the trend is 

similar to the ones from the Rigorous method, for lower ν̃
x
′ Teq their 

behaviour is significantly different. Said differences are due to the fact 
that the Simplified method furnishes higher values of σeq for flexible and 
lowly-damped systems, consequently reducing the ratio μ̃

x
′

,max
/ σeq. The 

detachment of the curves from the Davenport formulation in Fig. 11 
stresses the reason of the failing of the Simplified method when applied 
for flexible and lowly-damped systems where the hypothesis of slowly- 
varying γ2(t) is no longer reliable, leading to excessive overestimations. 

The lines in Fig. 11 were fitted according to Eq. (47) in order to 
derive the dimensionless parameter ε. In this regard, it is worth to notice 
that, differently from Fig. 9, the lines in Fig. 11 have the same trend, 
nearly shifted depending on the damping ratio. Moreover, they possess a 
trend very similar to the one from the Davenport formulation. For these 
reasons, it is reasonable to search for a unique value of the parameter ε 
per each damping ratio considered (it should be observed that the 
importance of the correction is in this case limited to the higher 
fundamental frequencies and hence to higher ν̃

x
′ Teq, since the applica

tion of the Simplified method itself is not valid for more flexible 
systems). 

The fit has been performed within the limits of applicability of the 
Davenport’s formulation for the peak factor, i.e. ν̃

x
′ Teq > 1, considering 

only the values g̃
x
′

,num
≥ 1.67. Fig. 12 plots the ε parameter evaluated 

per each damping ratio. 
Fig. 12 shows a linear trend of the parameter ε with values higher 

than the unity for ξ = 5 %, coherent with the curves in Fig. 11. It should 
be pointed out that in this case the parameter ε is identified with its raw 
values instead of a fitting procedure as the case of the Rigorous method. 
Hence the correction through the effective zero-crossing rate νe in the 
Simplified method is apported in a more targeted manner. 

6. Maximum value of the dynamic response and numerical 
validation with real thunderstorm records 

In this section, after a discussion about the contemporaneity of the 
maxima of the mean and fluctuating parts (Section 6.1), the maximum 
value of the dynamic response is calculated analytically as the sum of 
these two contributions. The maximum dynamic response estimated 
according to the developed procedure is validated against the mean 
value of the maximum response numerically calculated in time domain, 
employing as loading condition the thunderstorm records available, 
discussing the performance of the Rigorous and Simplified method. The 
comparison is reported in terms of mean reduced response spectrum 

(Solari et al., 2015b) including the correction proposed with the effec
tive zero-crossing rate. 

6.1. Maximum value of the dynamic response 

The maximum value of the dynamic response should be derived by 
recombining the maxima of its mean and fluctuating parts which do not 
necessarily occur simultaneously. In order to establish a proper rule for 
the recombination of the maxima some aspects are worth to be dis
cussed. Firstly, when the system is stiff and sufficiently damped, the 
dynamic response is quasi-static and hence the modulating functions of 
the mean and standard deviation of the response coincide. In this case, 
the maximum of the fluctuating part of the response is reasonably ex
pected in a neighbourhood of the peak of the modulating function and 
the two can be considered simultaneous. However, this hypothesis does 
not hold for the more general case since the modulating functions of the 
mean and fluctuating part of the dynamic response are different, as 
pointed out in Section 4, and estimating the maximum response adding 
up the maxima of the mean and fluctuating response could lead to 
conservative results. As an example, Fig. 13 plots the time histories of 
the dynamic response of two different linear SDOF systems to two ex
amples of thunderstorm events. Fig. 13 c,d refer to a flexible lowly- 
damped SDOF system (n0 = 0.05 Hz, ξ = 0.2%), Fig. 13 e,f refer to a 
stiffer and more damped system (n0 = 3 Hz, ξ = 5 %). In Fig. 13 c,d,e,f 
the quantities xmax, xmax, x’max are the maxima of the dynamic response, 
of the mean and fluctuating part, respectively. 

It can be observed that, for the flexible and lowly-damped system, 
the maximum of the fluctuating part of the response is not simultaneous 
with the maximum of the mean part (Fig. 13c and d). In this framework, 
while in the first event the maximum response occurs close to the 
maximum of its mean part (Fig. 13c), in the second event also the 
maximum response occurs later and coincides with the maximum of the 
fluctuating part. On the other hand, for both events, the maximum of the 
mean and fluctuating part of the response of the stiff system occur 
simultaneously, along with the maximum response (Fig. 13e and f). 
Moreover, it can be observed that the maximum of the mean part occurs 
in a neighbourhood of the peak of the loading in all the cases considered. 
Thus, the dynamic effects concerning the mean part of the response are 
negligible, and the maximum value of the mean part of the response can 
be evaluated as the maximum of Eq. (25). 

In order to recombine the maxima of the mean and fluctuating part of 
the response the possibility of direct summation of the two quantities is 
investigated. This approach implicitly assumes that the two maxima are 
simultaneous and can be overconservative. The amount of the error 
committed is estimated calculating in time domain the quantities xmax, 
xmax, x’max for a set of SDOF systems subjected to the wind load (Eq. (3), 
(5) and (6)) provided by the thunderstorm data available (Roncallo and 
Solari, 2020). Fig. 14 plots the average of the ratios between the 
recombination of the maxima (xmax + x’max) and xmax per each system 
considered. 

Fig. 14 shows that the overestimation provided decreases on 
increasing n0 and ξ and remains confined between 5% and 10% for all 
the damping ratios considered, except for very flexible structures for 
which the error rises to 35% for lowly damped systems. It should be 
noticed that very low values of natural frequencies can characterize 
particularly flexible structures, such as long span bridges for which 
specific analyses may be addressed, but overall the approach gives a 
good estimation. In view of this result, the two maxima can be recom
bined as follows: 

xmax = xmax + 2CIvv2
maxg̃x

′

(
ν̃

x
′ Teq
)
σeq (48)  

6.2. Validation against real recorded thunderstorms 

The validation of the approach developed is carried out against the 
mean value of the maximum response numerically calculated in time Fig. 12. Dimensionless parameter ε.  
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Fig. 13. Dynamic response to two recorded thunderstorm events: (a), (b) normalized wind load; (c), (d) dynamic response of a flexible and lowly damped SDOF system (n0 = 0.05 Hz, ξ = 0.2 %); (e), (f) dynamic 
response of a stiff and damped SDOF system (n0 = 3 Hz, ξ = 5 %). 
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domain, employing as loading condition the thunderstorm records 
available. In particular, for each fundamental frequency and damping 
ratio considered the dynamic response to the 129 thunderstorm records 
is calculated and the mean of the maxima derived. Since this quantity, 
suitably normalized, coincides with the response spectrum (RS) from 
Solari et al. (2015b) and Solari (2016), the comparison is shown in a 
more suitable form normalizing the maximum of the response with the 
maximum of its mean part. This ratio is defined as mean reduced RS and 
reads (Solari et al., 2015b): 

Sd =
xmax

Xmax
(49)  

where Xmax is the static response to the loading due to the maximum 
value of the mean wind velocity: 

Xmax =
Cv2

max

m(2πn0)
2 (50) 

The mean reduced RS is derived according to the definitions of the 
maximum response in Eq. (48). It is worth noticing that the mean 
reduced RS takes the role of the gust factor of the response. 

Substituting Eqs. (48) and (50) into Eq. (49), the mean reduced RS is 
written in the following form: 

Sd = 1 + 2m(2πn0)
2Ivg̃

x
′

(
ν̃

x
′ ,Teq

)
σeq (51) 

The mean value of the mean reduced RS is defined as follows: 

〈Sd〉 = 1 + 2m(2πn0)
2
〈Iv〉g̃x

’
(
ν̃

x
’ , Teq

)
σeq (52)  

where 〈Iv〉 is the mean value of Iv. 
To apply the correction introduced in Section 5 is sufficient to sub

stitute in Eq. (52) the expected frequency with the effective zero- 
crossing rate (Eq. (46)). Accordingly, the mean reduced RS is calcu
lated following both the Rigorous and Simplified method substituting 
the equivalent parameters and the mean value of the turbulence in
tensity, namely 〈Iv〉 = 0.12, in Eq. (52). Fig. 15 compares the numeri
cally estimated mean reduced RS (from the thunderstorm data available 
(Roncallo and Solari, 2020), circles) with the ones obtained through Eq. 
(52) applying both the Rigorous (solid lines) and the Simplified method 
(dashed lines). In particular, Fig. 15a plots the comparison without 
introducing any correction to the zero-crossing rate, while Fig. 15b plots 
the comparison relying on the effective zero-crossing rate defined in 
Section 5. 

Fig. 15a shows that the Simplified method overestimates the mean 
reduced RS with respect to the Rigorous method, especially for flexible 
systems and low damping ratios. Nevertheless, it can be observed that 
the more the system is stiff and damped the more the Rigorous and 
Simplified methods provide comparable results. In particular, it can be 
deduced that the dynamic response provided by the two methods is the 
same when ξn0 > 1

2Tγ
. In this regard, it can be deduced that the results 

provided by the two methods coincide at every fundamental frequency 
for ξ = 5 %. This result stresses the fact that the Simplified method is in 
general conservative for the calculation of the maximum dynamic 
response. Nevertheless, both the EPSD-based RS, compared with the 
numerically estimated RS, furnish significant overestimations even for 
stiff systems, except for large values of the damping ratio. 

Fig. 15b shows that the introduction of the effective zero-crossing 
rate significantly improves the agreement between the numerically 
estimated mean reduced RS and the one derived from the EPSD model. 
Focusing on the Rigorous method, some residual overestimations are 
detectable, especially for low damping ratios and low natural fre
quencies. These overestimations can be due to the hypothesis of constant 
turbulence intensity, embedded in the modelling of the wind velocity as 
pointed out in Section 2, and are enhanced by the addition between the 
maximum values of the mean and fluctuating part of the response since, 
as outlined in Section 6.1, they may not be simultaneous. Concerning the 

Fig. 14. Error in the recombination of the maximum dynamic response.  

Fig. 15. Mean reduced RS: comparison between numerical results (circles), Rigorous method (solid lines) and Simplified method (dashed lines): (a) Eq. (52), (b) Eq. 
(52) with effective zero-crossing rate. 
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Simplified method, the agreement with numerical results is satisfactory 
although its application is limited to a certain region of fundamental 
frequencies depending on the damping ratios except for the case of ξ = 5 
%. It is worth to notice that the Simplified method, where applicable, 
generally offers a better agreement with numerical results if compared 
with the Rigorous one for low natural frequencies. This circumstance is 
due to a compensation between the underestimation of the peak factor 
for flexible systems associated with introduction of the effective zero- 
crossing rate and the overestimation of the standard deviation given 
by the hypothesis of constant turbulence intensity. At higher funda
mental frequencies, where the correction through the effective zero- 
crossing rate is more accurate, the Simplified Method is less reliable 
than the Rigorous one providing a significant overestimation of the 
numerically-estimated RS. 

7. Conclusions 

The present paper studied the reliability of a procedure based on a 
consistent evolutionary model of the wind velocity for the estimate of 
the mean value of the maximum response of a wide set of SDOF systems 
subjected to thunderstorms outflows. 

Thunderstorm wind velocity has been schematized as the superim
position of a deterministic slowly-varying mean and a fluctuating 
component, modelled as a uniformly modulated nonstationary random 
process. The dynamic response is also decomposed as the superimposi
tion of the deterministic response to the slowly-varying mean and a 
random nonstationary component, that is not uniformly modulated. A 
simplified formulation is also applied, based on the assumption of 
slowly-varying modulating function, which allows to represent the 
fluctuating response as a uniformly modulated random process. 

The spectral moments of the fluctuating response, as well as the 
expected value of its maximum, are derived, based on an extension of 
the Davenport theory to nonstationary random processes. This is ach
ieved assuming the maximum of the mean part of the response as the 
maximum static response to the mean part of the load, while the 
maximum of the fluctuating part is estimated employing equivalent 
parameters adapting a technique from the literature. Moreover, a 
correction following Der Kiureghian approach to mitigate the over
estimations of the expected maximum value due to the Poisson 
approximation has been introduced. 

The availability of a large database of thunderstorm records allows to 
check the reliability of the assumptions through a comparison between 
the analytical expression provided by the evolutionary thunderstorm 
model and those obtained numerically from the analysis of real events. 

Results are compared in terms of mean value of the maximum 
response derived in time domain starting from real thunderstorm re
cords. These comparisons show that on the one hand, the rigorous 
formulation offers a trustworthy method except for limited over
estimations for very flexible and lowly damped structures, mainly due to 

the hypothesis of the contemporaneity of the maximum of the mean and 
fluctuating part of the response, along with the assumption of constant 
turbulent intensity inherent in the EPSD model of the wind velocity. 

On the other hand, as previously discussed in literature, for stiffer 
and more damped structures it has been proved that the assumption of 
neglecting the dynamic effects of the modulating function is acceptable 
and consequently the hypothesis of simultaneous maxima of the mean 
and fluctuating part of the response is reliable. Hence, in these cases, the 
simplified formulation furnishes a handy and robust method for the 
prediction of the maximum dynamic response. 

Future studies aim to investigate the reliability of identifying the 
maximum response with its mean value and to derive a closed-form 
solution for the EFRF and the equivalent parameters, in order to pro
pose a handy tool for engineers dealing with the structural design. 
Moreover, since the modified Der Kiureghian method is based on the 
thunderstorm records available, the model may be tested to investigate 
the reliability of the method for thunderstorms from other regions of the 
world if new thunderstorms will be recorded. Finally, further studies aim 
to extend the approach to the dynamic analysis of MDOF systems. 
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Appendix I 

The geometrical spectral moments, also known as Vanmarcke’s spectral moments, were introduced for the first time by Vanmarcke (1972) for 
stationary processes and are key quantities employed in the first passage problem for the assessment of structural failure. Their geometrical inter
pretation is related to the geometrical properties of the PSD of the process for which they offer a complete description. 

Although there are no obstacles from a conceptual point of view to extend these quantities to the nonstationary case, this operation is not 
straightforward since the integral of the first and second moments may result unbounded (Corotis et al., 1972; Michaelov et al., 1999). This short
coming was firstly solved by Di Paola (1985), who introduced the so-called “pre-envelope” process and defined as spectral characteristics its auto- and 
cross-covariances and its derivatives, while the definition of NGSMs is due to Michaelov et al. (1999). In this way the geometrical interpretation of 
these spectral characteristics is left behind replacing efficiently the role of the spectral moments in the case of a nonstationary random process. 

Consider a zero-mean evolutionary process r(t), representative of the loading conditions of a linear elastic SDOF system, characterized by the one- 
sided EPSD: 

Sr(n, t) = |a(n, t)|2Sr0 (n) (53) 
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where a(n, t) is the deterministic complex-valued modulating function and Sr0 (n) the one-sided PSD of the embedded stationary process. The one-sided 
EPSD of the dynamic response of the system, identified by its displacement x(t), reads: 

Sx(n, t)= |Z(n, t)|2Sr0 (n) (54)  

where the function Z(n, t) is the evolutionary frequency response function (EFRF) and can be interpreted as the response of the SDOF system to the 
deterministic complex function φ(n, t) = ei2πnτa(n, τ). 

The EFRF and its derivative respect to time Ż(n, t) are defined as follows: 

Z(n, t)=
∫t

0

h(t − τ)ei2πnτa(n, τ)dτ (55)  

Ż(n, t)=
∫t

0

ḣ(t − τ)ei2πnτa(n, τ)dτ (56)  

where h(t) is the impulse response of the system: 

h(t)=
1

mωd
e− ξω0 t sin(ωdt) (57) 

The NGSMs, namely cjk,x, of the response read (Barbato and Conte, 2008, 2011; Michaelov et al., 2001): 

cjk,x(t) = ( − 1)kij+k
∫+∞

0

Sx(j)x(k) (n, t)dn (58)  

where j, k = 0, 1,…,N are the orders of the derivatives of x with respect to time and Sx(j)x(k) the cross-EPSD of the processes x(j) and x(k). It was proved 
(Alderucci and Muscolino, 2017; Muscolino and Alderucci, 2015) that: 

c00,x(t)=
∫+∞

0

Z*(n, t)Z(n, t)Sr0 (n)dn= σ2
x(t) (59)  

c11,x(t)=
∫+∞

0

Ż*
(n, t)Ż(n, t)Sr0 (n)dn= σẋ

2(t) (60)  

where * denotes the complex conjugate. Hence, the variance of the displacement and velocities of the response, namely σ2
x and σẋ

2, coincide with the 
NGSMs c00,x and c11,x respectively, which are real functions. 

Accordingly, the expected frequency, the bandwidth parameter and the correlation coefficient can be defined as follows (Barbato and Conte, 2008, 
2011, 2014; Michaelov et al., 1999, 2001): 

νx(t)=
1

2π

̅̅̅̅̅̅̅̅̅̅̅̅̅
c11,x(t)
c00,x(t)

√

(61)  

qx(t)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

{
Re
[
c01,x(t)

]}2

c00,x(t)c11,x(t)

√

(62)  

ρxẋ(t) = −
Im
[
c01,x(t)

]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c00,x(t)c11,x(t)

√ (63) 

It is worth to point out that the spectral characteristics in Eqs. (61)-(63) do not have geometrical interpretations, being derived from the NGSMs. 
However, they coincide with the geometric spectral moments when applied to a stationary process (Michaelov et al., 1999, 2001). 
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