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Abstract: This paper introduces a new variant of the Shortest Path Problem (SPP) called the
Cost-Balanced Path Problem (CBPP). Various real problems can either be modeled as BCPP or
include BCPP as a sub-problem. We prove several properties related to the complexity of the CBPP
problem. In particular, we demonstrate that the problem is NP-hard in its general version, but it
becomes solvable in polynomial time in a specific family of instances. Moreover, a mathematical
formulation of the CBPP, as a mixed-integer programming model, is proposed, and some additional
constraints for modeling real requirements are given. This paper validates the proposed model and
its extensions with experimental tests based on random instances. The analysis of the results of
the computational experiments shows that the proposed model and its extension can be used to
model many real applications. Obviously, due to the problem complexity, the main limitation of the
proposed approach is related to the size of the instances. A heuristic solution approach should be
required for larger-sized and more complex instances.

Keywords: shortest path problem; mixed-integer linear programming; cost-balanced paths

1. Introduction

This paper introduces a new variant of the Shortest Path Problem (SPP) called the
Cost-Balanced Path Problem (CBPP). The CBPP is defined on a directed graph G(N, A),
where N is the set of nodes and A is the set of directed arcs. For each arc (i, j) ∈ A is also
defined a cost cij ∈ R. Let the nodes o, d ∈ N, respectively, called origin and destination. A
feasible solution of this problem is an acyclic path p = ((o, ni), (ni, nj), . . . , (nh, nk), (nk, d))
in the graph G from node o to node d. Let c(p) = ∑(i,j)∈p cij the cost of the pah p, i.e., the
sum of the cost of all the arcs used in the path p; the objective of CBPP is the minimization
of the absolute value of this cost: MIN|c(p)|.

Various real problems that present some elements in common with the cost-balanced
path problem can either be modeled as BCPP or include BCPP as a sub-problem; some
are here briefly discussed. The first mentioned problem is related to the path of an electric
vehicle. The route choices of drivers of battery electric vehicles are affected by the many
factors related to the battery recharge [1]. The cost-balanced path problem can be solved
when defining the path that an electric vehicle has to perform for going from an origin
point to a destination one, with the aim of maintaining the same level of electric charge.
Suppose that a vehicle starts its trip in the origin node with a charge of 80% and has to
arrive at a destination node with the same charge. During the trip, the vehicle can recharge
the battery on the downhill roads, while the vehicle reduces its charge on the roads that
go uphill. This problem can be formulated on a direct graph G where the weights of arcs
represent the charge consumption (negative arc costs) and the recharge (positive costs). In
this case, additional constraints are required, such as the level of electric charge to maintain
along the whole path that can range from 0 to 100%.
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In the bike-sharing systems [2], a particular problem linked to bikes management can
be modeled as a CBPP. Suppose to have to re-locate bikes among a set of points that can
be modeled as arcs in a direct graph G, with weights on the arcs representing the number
of bikes to deliver (negative costs) and the number of bikes to pick up (positive costs). A
vehicle has to perform a path in such a way to redistribute the bikes. In this example, the
additional constraints are related to the number of bikes on the vehicle, that can range from
zero to the vehicle capacity; moreover, additional requirements can be added for obtaining
a constrained path concerning the duration, the number of arcs visited, the length, that,
for example, should be maintained within a given range. Alternatively, suppose to have a
depot and a vehicle that has to deliver a certain number of bikes to some points that are
the locations for bikes. The vehicle has to deliver bikes to some locations, while eventually
re-locate some bikes, that is, to pick up bikes from some locations. In the end, the vehicle
has to finish its trip, possibly without bikes on board; the same additional requirements
cited here above can be added.

This paper introduces a new problem, thus it can be helpful to summarize the novelties
of this work in the following list: (i) definition of a new problem, the CSPP; (ii) proof that
CSPP is NP-hard; (iii) proof that it is possible to solve the CSPP in polynomial time under
specific configurations of the arc costs; (vi) first mathematical formulation for CSPP.

The remaining of the paper is organized as follows. Section 2 summarizes the
literature related to BCPP. Section 3 presents an evaluation of the BCPP complexity,
the BCPP mathematical formulation and some model extensions, while Section 4 reports
the computational experiments for the validation of the proposed model and its extensions.
Section 5 gives some conclusions and perspectives.

2. Literature Review

To the authors’ knowledge, the BCPP has never been studied in the literature, although
there are many variants of the classic SPP, and there is a paper related to the Traveling
Salesman Problem (TSP) that introduces the same objective function of BCPP [3]. The
authors of [3] introduce the cost-balanced TSP, in which the main objective is to find a
Hamiltonian cycle with total travel cost as close as possible to 0. The authors assumed a
cost/length matrix, while negative costs are allowed. To solve the cost-balanced TSP, they
proposed a variable neighborhood search algorithm. A similar problem is the balanced
TSP, which is related to the uniform (equitable) distribution of resources [4]. In [5], the
multiple balanced traveling salesmen problem is proposed to model and optimize the
problems with multiple objectives (salesmen). The goal is to find m Hamiltonian cycles in
G by minimizing the difference between the highest edge cost and the smallest edge cost in
the tours. The SPP [6,7] and many variants have been proposed in the literature for facing
problems arising in various fields, together with ever more efficient algorithms (see, for
example, in [8–11]). Although the SPP can be solved in polynomial time using various
algorithms, many of its variants are known to be NP-hard. Among these variants of the SPP,
in the k-Color Shortest Path Problem proposed by Ferone et al. [12,13], the classic SPP is
solved on graphs with colored arcs. In the recent Steiner bi-objective Shortest Path Problem
introduced in [14], the authors present this new variant of the SPP capable of preprocessing
data to solve the well-known vehicle routing problem. SPP in which the cost of the arcs is
not known in advance has been studied in the recent literature [15,16]. Stochastic shortest
path (SSP) dealing with applications in routing problems and in road networks can be
found in [17,18]. Another problem on graphs linked to the balance concept is the balanced
trees [19], which are the appropriate structures (balanced tree structures) for managing
networks with the aim of balancing two objectives. The constrained path has been studied
in [20]; the authors proposed a robust formulation for the Resource-Constrained Shortest
Path Problem that is the problem of determining a path p from an origin to a destination
with the smallest cost, such that the consumption of a given resource for that path is lower
or equal to the maximum amount of available resource.
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In the following section the complexity of CSPP is investigated and a mathematical
formulation is proposed.

3. Problem Complexity and Mathematical Formulation for CBPP

Many variants of SPP are known to be NP-hard; thus, in this section, before presenting
a mathematical formulation for modeling and solving CBPP, the problem complexity is
investigated. In particular, thanks to a reduction algorithm [21,22], it has been proved that
the problem is NP-hard in its general form.

3.1. Problem Complexity

Theorem 1. If not all costs have the same sign, the Cost-Balanced Path Problem is NP-hard.

Proof of Theorem 1. To prove the theorem, we will describe a reduction algorithm which
in polynomial time, reduces the classic Hamiltonian Path Problem (HPP) in an instance
of the Cost-Balanced Path Problem. The HPP is a classic problem belonging to the
NP-complete complexity class [23]. Let a directed graph G(N, A) where N is a set of
nodes, and A is a set of arcs. Let us suppose we want to compute the Hamiltonian path
that goes from node h to node k of the graph G. We create the graph G′(N′, A′) such that
N′ = N ∪ {o}, A′ = A ∪ {(o, h)}. We create the cost cij such that cij = 1 ∀(ij) ∈ A and
coh = 1− |N|. Considering that |N′| = |N|+ 1 and that the longest path in G′ can contain
|N| arcs. Considering that in every feasible solution the arc (o, h) will always be present
and that the value of a solution with k arcs will be equal to 1− |N|+ (k− 1). If the value
of the solution of CBPP on the graph G′ is equal to zero, then in G, there is a Hamiltonian
path between the nodes h and k (see Figure 1).

Figure 1. (a) An example of a graph G. (b) Graph G′ derived from G. (c) A solution of CBPP with
cost zero. (d) The Hamiltonian path.

Figure 1 shows an example useful to understand Proof of Theorem 1. In Figure 1a,
a direct graph (i.e., G) with six nodes is depicted, while in Figure 1b, a graph G′ derived
from G is represented: node o has been added together with the weights for the arcs. In
Figure 1c, the solution for the CBPP is shown. Finally, the Hamiltonian path from node h
to node k, is depicted in Figure 1d).

Corollary 1 (Corollary of Theorem 1). Given a generic instance of CBPP, if even one cost has
the opposite sign to the others, then the problem is NP-hard.
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Proposition 1. If all costs are non-negative cij ≥ 0, the problem is equivalent to the classic Shortest
Path Problem, therefore it can be solved in polynomial time.

Proposition 2. If all costs are non-positive cij ≤ 0, the problem is equivalent to the classic Shortest
Path Problem, therefore it can be solved in polynomial time.

Proof of Proposition 2. By inverting the sign of each cost, we will obtain a scenario in
which all costs are positive. Proposition 1 assures us that we can solve the resulting
problem in polynomial time. The obtained solution is an optimal solution also for the initial
problem with the unique difference that the value of the objecting function is negative.

A graph with particular characteristics for CBPP is the graph in which the cost of the
arc is a function of the elevation difference of the two nodes associated with the arc. This
graph could represent points positioned at different altitudes (see Figure 2).

Figure 2. Example of an altimetric graph.

Proposition 3 (Elevation difference). Given a directed graph G(N, A) in which for each node
i ∈ N is defined a value vi ∈ R, and such that cij = vj − vi ∀(ij) ∈ A. The Cost-Balanced Path
Problem is solvable in polynomial times.

Proof of Proposition 3. Given a graph G created as described in Proposition 3, let be p a
path in G, such that p = ((n1, n2), (n2, n3), (n3, n4), . . . , (nh, nk)), c(p) = c12 + c23 + c34 +
. . . + chk = (v2 − v1) + (v3 − v2) + (v4 − v3) + . . . . + (vk − vh) = −v1 + (v2 − v2) + (v3 −
v3) + (v4 − v4) + . . . + (vh − vh) + vk =⇒ c(p) = vk − v1. This implies that the cost of
a path depends only on the starting node and the destination node, so each path is also
optimal (see Figure 3).

Figure 3. Example of a graph in which the cost of an arc depends on the elevation of the nodes.

3.2. Mathematical Model

In this sub-section, a model for solving CBPP is presented; it is a mixed integer
linear programming with binary variables (MILP). Let us introduce the following decision
variables:

xij ∈ {0, 1}, ∀i, j ∈ N: xij = 1 if and only if arc (i, j) is included in the problem solution.
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ti, ∀i ∈ N that represents the flow leaving node i and is used to prevent the creation of
loops in the solution.

b represents the costs (in absolute value) of the optimal path.
The resulting model is the following:

z = Min b (1)

subject to:

∑
(i,j)∈A

cijxij ≤ b (2)

− ∑
(i,j)∈A

cijxij ≤ b (3)

∑
(o,j)∈A

xoj = 1 (4)

∑
(i,d)∈A

xid = 1 (5)

∑
(j,i)∈A

xji − ∑
(i,j)∈A

xij = 0 ∀i ∈ N \ {o, d} (6)

∑
(i,j)∈A

xij ≤ 1 ∀j ∈ N \ {o, d} (7)

∑
(i,j)∈A

xij ≤ 1 ∀i ∈ N \ {o, d} (8)

to = 0 (9)

tj − ti ≥ 1− |N|(1− xij) ∀(i, j) ∈ A (10)

xij ∈ {0, 1} ∀(i, j) ∈ A (11)

ti ∈ [0, |N| − 1] ∀i ∈ N (12)

Equation (1) minimizes variable b that represents the cost of the selected path in
absolute value. Variable b is defined thanks to Equations (2) and (3). Equations (4) and
(5) impose that one arc leaves the origin node o, and one arc enters the destination node
d. (6) impose, for each node of the network that is different from either the origin or the
destination node, that the number of arcs entering the node is equal to the number of arcs
exiting it. Equations (7) and (8) impose that at most one arc can enter in and exit from
each node, except for the origin and the destination ones. Equations (9) and (10) defines
variables ti; to is set to zero (i.e., from the origin node the outflow is equal to zero), while tj
is set greater than the flow leaving node i, if arc (i, j) is selected. Finally, in (11) and (12) the
decision variables are defined.

3.3. Model Extensions

In the introduction, some real applications that can be solved by the here above
proposed model have been briefly described. Unfortunately, some additional constraints
should be required, and thus in this sub-section, some of the additional constraints for
model (1)–(12) are described.

CBPP has the objective of cost balancing instead of cost minimization. The cost that it
is necessary to balance may represent a measure of a level of a particular element that has
to be maintained near a pre-defined value (for example, the electric charge, the load of a
vehicle, etc.). Each decision, expressed in the graph by the selection of an arc, may increase
or decrease the level of the considered element. The scope is to take a sequence of decisions
in such a way to have at the end of the process the same starting level that, in particular
cases, can be zero.

In real applications, there is often the necessity to maintain this level within given
upper and lower limits after each decision, that is, along the selected path. This means that,
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i.e., in the example of the electric car, the charge must always be within a lower and an
upper bound. The same can be required for the cargo loaded on a vehicle.

Constraints for limiting the variance of the level within the given interval (amin, amax)
are based on flow variables defined as follows:

fij, ∀i, j ∈ N: fij represents the level reached at node i, that will leave node i for
reaching node j if and only if arc (i, j) is included in the selected path, i.e., xji = 1.

Thanks to Equations (13) and (14), the flow ( fij) on each selected arc must be less or
equal to its maximum value and greater or equal to the minimum required, while thanks to
Equation (15) the outflow from the origin node ( foj) is fixed equal to the starting level (ao).

Equation (16) gives the flow conservation constraints. For each node i, different from
either the origin node or the destination one, the flow that leaves node i is equal to the flow
that leaves the initial node of the arc entering in i, plus the cost of arc entering in node i.

fij ≤ amaxxij, ∀(i, j) ∈ A (13)

fij ≥ aminxij, ∀(i, j) ∈ A (14)

∑
(d,j)∈A

fdj = ao (15)

∑
(j,i)∈A

f ji + ∑
(j,i)∈A

cjixji = ∑
(i,j)∈A

fij, ∀i ∈ N \ {o, d} (16)

Thanks to the above constraints, we are able to balance the cost and maintain it in the
given required interval along the whole path.

Sometimes, together with the aim of cost balancing some other objectives must be
included in the problem. In fact, when dealing with paths, the most common problem
is the shortest path problem. For example, in the problem of the electric car, it should be
required to have a path not too expensive in terms of either kilometers traveled or times. In
this case, it is possible to insert an additional constraint that permits to find a path from
origin to destination no longer than a given % of the shortest path.

Let dij be the distance associated to the arc (i, j), and cSP the distance associated to the
shortest path from the origin node to the destination one in the graph under investigation,
α the percentage of deterioration accepted, the resulting constraint is the following:

∑
(i,j)∈A

dijxij ≤ (1 + α)cSP (17)

In other cases, the limitations may concern the length of the path in terms of number
of arcs belonging to the path; the model can be extended by simply adding the following
constraints that are related, respectively, to the maximum number of arcs that can build the
path (bmax) and the minimum number of arcs to select (bmin).

∑
(i,j)∈A

xij ≤ bmax (18)

∑
(i,j)∈A

xij ≥ bmin (19)

4. Results

In this section, the computational results obtained by applying the proposed mathematical
model (1)–(12) are described. Some computational experiments related to the extended
model are presented too. The computational campaigns are based on some generated
instances described in the following subsection.
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The MILP model has been implemented in Java, using CPLEX version 12.8 as a
solver. The computational tests were performed on a MacBook Pro, with a 2.9 GHz Intel
i9 processor and 32 GB of RAM. Figure 4 shows the flow chart of the proposed approach.
Step 1 load the input graph G(N, A) from the text file. Step 2 creates the mathematical
model. Its complexity depends on the number of constraints created, which is in the order
of |A|. Using the MILP solver of the CPLEX software, in Step 3, the problem is solved.
The computation time for Step 3 is exponential [24] as stated in Theorem 1. In Step 4, all
the values associated with the model decision variables are extracted to create a textual
representation of the solution.

Figure 4. Algorithm flowchart.

4.1. Instances

The proposed mathematical model has been validated with two sets of generated
instances for the above described problem. The first set of instances, named Grid, is
characterized by complete square grids where each node is connected to its four neighbors.
In the name of these instances, the first value represents the number of nodes; the second
value represents the size of the grid. The second set of instances named Rand is characterized
by connected graphs in which each node is randomly connected to other nodes until the
desired density is reached. In the name of these instances, the first value represents the
number of nodes; the second value represents the percentage of arcs incident on each vertex.
The costs associated with the arcs of each instance were generated following 5 different
schemes.

[−10, 10] Random homogeneous distribution of costs in the range [−10, 10].
[−100, 100] Random homogeneous distribution of costs in the range [−100, 100].
[−1k, 1k] Random homogeneous distribution of costs in the range [−1000, 1000].
EL After associating a random height to each node, the cost of the arc represents the
displacement in height.
P-EL Perturbation of the 1% random of the EL costs.

4.2. Computational Results for the Proposed Model

Tables 1–3 show the results of the computational tests performed on the grid instances.
Each row reports the average of five instances. The last row of each table AVG is the average
of all solved scenarios. We used 1800 s as the time limit for the CPLEX solver (Step 3).
This implies that in the event of a higher running time, the optimality of the obtained
solution is not guaranteed. Table 1 shows the computational times. It is interesting to
note that the running time is mainly related to the costs associated with the arcs rather
than to the size of the graph. Table 2 shows the number of zero-value solutions identified.
For instances with random costs, in the scenarios with homogeneous weight distribution
([−10, 10], [−100, 100], [−1k, 1k]), it is always possible to obtain a solution with a cost equal
to zero. Using the EL policy to create the costs, all paths will have a cost equal to the
difference in height between the source node and the destination node. It is interesting to
see that analyzing the P-EL policy is sufficient a 1% perturbation of the EL policy cost in
order to identify solutions with a cost equal to zero, in particular as the graph size increases.
Table 3 shows the obtained objective function values. The analysis of Table 3 shows that as
the size of the graph increases, the solution for the P-EL policy will tend to approach zero.
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Table 1. Running times for the grid instances.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Grid_100_10 0.27 0.79 1.71 0.02 38.23
Grid_225_15 0.43 0.95 3.60 0.07 1502.42
Grid_400_20 0.69 1.66 4.30 0.11 961.81

AVG 0.46 1.13 3.20 0.07 834.15

Table 2. Number of solutions with an objective function value equal to zero.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Grid_100_10 5 5 5 0 0
Grid_225_15 5 5 5 0 0
Grid_400_20 5 5 5 0 3

AVG 5 5 5 0 1

Table 3. Objective function value for the grid instances.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Grid_100_10 0 0 0 4467 3806
Grid_225_15 0 0 0 4809 3405
Grid_400_20 0 0 0 2920 878

AVG 0 0 0 4065 2696

Tables 4–6 show the results of the computational tests performed on the random generated
instances. As before, each row reports the average of five solved instances, while the two
rows AVG refer to the average of all solved scenarios, respectively, for the instances with
100 and 200 nodes. Table 4 shows the computational times. In this test, the running time
remains highly dependent on the used cost scheme, but the P-EL scheme is much easier to
solve than the [−1k, 1k] scheme. Table 5 shows the number of zero-value solutions identified.
For instances with random costs, in the scenarios with homogeneous weight distribution
([−10, 10],[−100, 100],[−1k, 1k]), it is always possible to obtain a solution with a cost equal to
zero. This test confirms the results obtained previously for the grid instances. In this scenario,
it becomes even more evident that the cost scheme P-EL tends as the graph grows to produce
instances with cost zero solution (see also Table 6). Table 6 shows the obtained objective
function values. Considering that the execution of the model stops reaching a solution equal
to zero (Lower Bound), we justify the computational times shown in Table 4.

Table 4. Running times for the random instances.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Rand_100_02 0.06 0.09 1.28 0.01 0.05
Rand_100_03 0.13 0.29 1.17 0.02 0.13
Rand_100_04 0.18 0.29 2.40 0.02 0.82
Rand_100_05 0.12 0.48 2.37 0.03 0.50
Rand_100_10 0.13 0.42 2.25 0.05 0.23
Rand_100_20 0.18 0.68 4.14 0.10 0.46

AVG 0.13 0.38 2.27 0.04 0.36

Rand_200_02 0.30 1.18 3.91 0.05 0.50
Rand_200_03 0.22 1.11 4.53 0.06 0.71
Rand_200_04 0.16 0.35 6.63 0.09 1.30
Rand_200_05 0.25 0.59 6.28 0.11 0.66
Rand_200_10 0.23 3.88 4.95 0.18 1.01
Rand_200_20 0.15 12.66 23.08 0.38 6.66

AVG 0.22 3.30 8.23 0.14 1.81
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Table 5. Number of solutions with an objective function value equal to zero.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Rand_100_02 5 5 5 0 1
Rand_100_03 5 5 5 0 0
Rand_100_04 5 5 5 0 2
Rand_100_05 5 5 5 0 1
Rand_100_10 5 5 5 0 2
Rand_100_20 5 5 5 0 2

AVG 5 5 5 0 1

Rand_200_02 5 5 5 0 1
Rand_200_03 5 5 5 0 1
Rand_200_04 5 5 5 0 1
Rand_200_05 5 5 5 0 2
Rand_200_10 5 5 5 0 2
Rand_200_20 5 5 5 0 4

AVG 5 5 5 0 2

Table 6. Objective function value for the random instances.

Instance [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

Rand_100_02 0 0 0 3634 1435
Rand_100_03 0 0 0 3040 6005
Rand_100_04 0 0 0 3358 434
Rand_100_05 0 0 0 2343 2982
Rand_100_10 0 0 0 3330 1888
Rand_100_20 0 0 0 2107 1762

AVG 0 0 0 2969 2418

Rand_200_02 0 0 0 2959 2835
Rand_200_03 0 0 0 4109 2559
Rand_200_04 0 0 0 4240 1545
Rand_200_05 0 0 0 2550 1762
Rand_200_10 0 0 0 2512 1676
Rand_200_20 0 0 0 2721 74

AVG 0 0 0 3182 1742

4.3. Results for the Extended Model

In this section, some results related to the extended model are presented. In particular,
these tests are based on the 50 instances named Grid_100_10 and Grid_225_15. In all
experiments, amax is equals to −amin. Looking at Table 7, it is possible to note that by
decreasing the value of alpha, the computational time decreases, according to the decrease
in the dimension of the admissible region. On the other hand, by introducing in the
model the constraints associated with the parameter amax, the computational time increases,
according to the increase in the number of decision variables and constraints associated
with the problem. As in Table 8, we can see that obviously, as the number of constraints
increases, it becomes increasingly challenging to identify zero-sum solutions. Table 9 shows
that as the number of constraints increases, it becomes even more difficult to identify
feasible solutions: the values reported in round brackets indicate the number of unfeasible
solutions. Analyzing Tables 8 and 9, it is possible to state that as the size of the graph
increases, the quality of the solutions worsens less by adding further constraints. This is
probably due to the increase in alternative paths between source and destination nodes.
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Table 7. Running times in seconds.

|N| α amax [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

100

∞ ∞ 0.27 0.79 1.71 0.02 38.23
0.2 ∞ 0.14 0.54 1.43 0.03 0.04
0.1 ∞ 0.13 0.27 0.29 0.03 0.04
0.1 4C 0.27 0.77 1.12 0.15 0.16
0.1 3C 0.39 0.60 0.88 0.14 0.16
0.2 3C 0.73 0.86 2.38 0.22 0.20

225

∞ ∞ 0.43 0.95 3.60 0.07 1502.42
0.2 ∞ 0.99 10.15 113.64 0.13 0.50
0.1 ∞ 1.47 5.09 11.57 0.16 0.24
0.1 4C 4.94 30.00 30.21 0.75 0.49
0.1 3C 5.81 9.16 12.77 0.90 0.79
0.2 3C 13.15 19.65 144.18 0.85 0.60

Table 8. Number of solutions with an objective function value equal to zero.

|N| α amax [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

100

∞ ∞ 5 5 5 0 0
0.2 ∞ 3 2 1 0 0
0.1 ∞ 2 0 1 0 0
0.1 4C 2 0 0 0 0
0.1 3C 2 0 0 0 0
0.2 3C 2 2 0 0 0

225

∞ ∞ 5 5 5 0 0
0.2 ∞ 5 4 2 0 0
0.1 ∞ 4 2 0 0 0
0.1 4C 2 1 0 0 0
0.1 3C 1 0 0 0 0
0.2 3C 4 2 1 0 0

Table 9. Objective function value—values in round brackets indicate the number of unfeasible
solutions.

|N| α amax [−10, 10] [−100, 100] [−1k, 1k] EL P-EL

100

∞ ∞ 0 0 0 4467 3806
0.2 ∞ 6 15 13 4467 4379
0.1 ∞ 12 95 233 4467 4402
0.1 4C 3 (2) 15 (2) 260 4467 4402
0.1 3C 3 (2) 15 (2) 179 (1) 4467 (1) 5003 (1)
0.2 3C 3 (1) 4 (2) 100 4467 4379

225

∞ ∞ 0 0 0 4809 3405
0.2 ∞ 0 1 10 4809 4870
0.1 ∞ 1 4 175 4809 4900
0.1 4C 3 5 (1) 5 (2) 4809 4900
0.1 3C 1 (2) 17 (2) 18 (3) 4809 4900
0.2 3C 1 (1) 26 35 4809 4870

5. Conclusions

This paper deals with the Cost-Balanced Path Problem (CBPP), a variant of the classic
Shortest Path Problem introduced in this paper for the first time. The characteristic of
this problem is that it can be used as a sub-problem to model many real scenarios. Using
the mixed-integer linear programming model introduced in Section 3.2, we computed the
optimal solution for many test instances. It is interesting to note that analyzing the results
shown in Section 4, in the case of uniform distribution of the costs of the arcs, there is
always an optimal solution with an objective function value equal to zero. To prevent or
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make the presence of solutions with an objective function value equal to zero rarer, smart
methods for defining the cost of the edges (EL, P− EL) have been used. Note that when
the model reaches an objective function value equal to zero, it stops instantaneously having
reached its lower bound; this implies that the computational time for instances that do not
have zero as an optimal solution is significantly higher. Considering these observations,
the future developments for this work are manifold. First of all, it would be interesting
to develop instance generators capable of preventing or minimizing the presence of zero
solutions in order to create computationally complex instances. Using more complex
instances, realizing heuristic or meta-heuristic approaches for this problem would become
necessary. A constructive approach based on the Dijkstra algorithm [25] improved through
the Carousel Greedy, an enhanced Greedy algorithm proposed in [26,27], might identify a
feasible solution to the problem. According to the authors’ experience, the tabu search, a
technique introduced by Glover [28] and widely used in the literature, also by the authors
of this work, for example, in [29], might be used to improve the Greedy solution.
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