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BACKGROUND	
  

Nowadays,	
  radiomics	
  [1]	
  is	
  one	
  of	
  the	
  most	
  promising	
  techniques,	
  with	
  the	
  potential	
  

to	
  improve	
  cancer	
  treatment.	
  Radiomics	
  is	
  an	
  advanced,	
  quantitative	
  feature-­‐based	
  

methodology	
   for	
   image	
   analysis	
   defined	
   as	
   the	
   conversion	
   of	
   images	
   to	
   higher	
  

dimensional	
   data	
   and	
   the	
   subsequent	
  mining	
   of	
   these	
   data	
   for	
   improved	
   decision	
  

support	
   [1].	
   Plasma	
   cell	
   dyscrasias	
   (PCDs)	
   are	
   pathological	
   conditions	
   including	
  

Monoclonal	
   Gammopathy	
   of	
   Undetermined	
   Significance	
   (MGUS),	
   Smoldering	
  

Multiple	
   Myeloma	
   (SMM),	
   and	
   full-­‐blown	
  Multiple	
   Myeloma	
   (MM).	
   MM	
   definition	
  

can	
  rely	
  on	
  the	
  International	
  Myeloma	
  Working	
  Group	
  (IMWG)	
  consensus	
  updates,	
  

yet	
  the	
  significant	
  clinical	
  heterogeneity	
  of	
  MM	
  patients	
  implies	
  that,	
  as	
  far	
  as	
  now,	
  

we	
   lack	
   a	
   set	
   of	
   consolidated	
   biomarkers	
   able	
   to	
   predict	
   the	
   outcome	
   and	
   risk	
   of	
  

progression,	
   independently	
   from	
  the	
   therapeutic	
  approach.	
  Risk	
  stratification	
  gold	
  

standard	
   is	
   usually	
   performed	
   at	
   diagnosis,	
   by	
  means	
   of	
   the	
   International	
   Staging	
  

System	
  (ISS)	
  (which	
  combines	
  serum	
  beta2-­‐microglobulin	
  and	
  serum	
  albumin	
  for	
  a	
  

three-­‐stage	
   classification),	
   and	
   cytogenetics	
   (which	
  provides	
   a	
   binary	
  normal-­‐high	
  

risk	
   stadiation).	
   In	
  2003,	
   IMWG	
  replaced	
   the	
  Durie–Salmon	
   system	
  with	
  a	
   revised	
  

version	
   (Durie–Salmon	
   system	
   plus),	
   replacing	
   radiography	
   with	
   Magnetic	
  

Resonance	
   Imaging	
   (MRI)	
   and	
  PET/CT	
  data	
  with	
   [18F]	
  Fluorodeoxyglucose	
   (FDG)	
  

as	
  tracer.	
  The	
  extent	
  of	
  the	
  bone	
  disease	
  is	
  negatively	
  related	
  to	
  a	
  decreased	
  quality	
  

of	
   life	
   and	
   bone	
   disease	
   in	
  MM	
   increases	
  morbidity	
   and	
  mortality.	
   Therefore,	
   the	
  

detection	
   of	
   lytic	
   bone	
   lesions	
   on	
   imaging,	
   especially	
   CT	
   and	
   MRI,	
   is	
   becoming	
  

crucial	
  from	
  the	
  clinical	
  viewpoint	
  to	
  separate	
  asymptomatic	
  from	
  symptomatic	
  MM	
  

patients;	
  meanwhile,	
   the	
  detection	
  of	
   focal	
   lytic	
   lesions	
   is	
   becoming	
   relevant	
   even	
  

when	
  no	
  clinical	
  symptoms	
  are	
  present	
  [3].	
  Therefore,	
  an	
  analysis	
  of	
  multiple	
  bone	
  

lesions	
   could	
   be	
   performed	
   using	
   AI	
   and	
   radiomics.	
   A	
   recent	
   application	
   of	
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radiomics	
  in	
  MM,	
  by	
  our	
  research	
  group	
  showed	
  that,	
  in	
  clinical	
  practice,	
  radiomics	
  

improves	
  the	
  radiological	
  evaluation	
  of	
  focal	
  and	
  diffuse	
  pattern	
  on	
  CT	
  by	
  increasing	
  

the	
  Area	
  Under	
  the	
  Curve	
  (AUC)	
  of	
  radiologists	
  [2].	
  Accuracy	
  in	
  terms	
  of	
  the	
  AUC	
  of	
  

radiologists	
  compared	
  to	
  the	
  reference	
  standard	
  was	
  lower	
  (64%)	
  than	
  the	
  accuracy	
  

computed	
   using	
   a	
   radiomics	
   approach,	
  which	
   obtained	
   a	
  maximum	
  value	
   of	
   79%.	
  

However,	
   the	
  diagnostic	
  and	
  prognostic	
  capabilities	
  of	
  medical	
   imaging	
   in	
  MM	
  are	
  

still	
   under	
   investigation	
   and	
   development.	
   Significant	
   variability	
   in	
   image-­‐based	
  

prognostic	
  scores	
  is	
  present	
  among	
  different	
  centers	
  and	
  in	
  clinical	
  practice	
  [3-­‐8].	
  In	
  

addition,	
  although	
   the	
  updated	
  version	
  of	
   the	
   IMWG	
  criteria	
  accepts	
   the	
  use	
  of	
  CT	
  

and	
   PET/CT	
   to	
   diagnose	
   lytic	
   bone	
   disease	
   in	
  MM,	
   there	
   is	
   still	
   a	
   lack	
   of	
   reliable	
  

quantitative	
   and	
   computational	
   tools	
   for	
   increasing	
   the	
   prognostic	
   value	
   of	
   these	
  

modern	
  imaging	
  modalities	
  [3-­‐8].	
  	
  

The	
   study	
   hypothesis	
   is	
   that,	
   if	
   aided	
   by	
   AI-­‐based	
   methods,	
   data	
   extracted	
   from	
  

clinical	
  images	
  used	
  in	
  the	
  routine	
  clinical	
  practice	
  for	
  MM	
  can	
  predict	
  its	
  outcome,	
  

with	
   specific	
   focus	
   on	
   the	
   identification	
   of	
   patients	
   at	
   high-­‐risk	
   of	
   progression	
   or	
  

non-­‐responding	
  to	
  current	
  therapy.	
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Purpose	
  of	
  the	
  research	
  	
  

The	
  aim	
  of	
  our	
  research	
  activities	
  is	
  to:	
  

-­‐	
  create	
  comprehensive,	
  solid	
  and	
  validated	
  quantitative	
  scores	
  for	
  CT	
  and	
  MRI	
  and	
  

PET-­‐CT	
  that	
  can	
  be	
  adopted	
  in	
  clinical	
  practice.	
  

-­‐	
   To	
   introduce	
   a	
   set	
   of	
   novel	
   biomarkers	
   extracted	
   from	
   X-­‐ray	
   Computed	
  

Tomography	
  (CT)	
  and	
  Magnetic	
  Resonance	
  Imaging	
  (MRI)	
  data	
  by	
  means	
  of	
  reliable	
  

and	
  sophisticated	
  artificial	
  intelligence	
  tools.	
  

-­‐	
  To	
  introduce	
  a	
  personalized	
  predictive	
  process	
  for	
  MM	
  integrating	
  quantitative	
  CT	
  

and	
  MRI	
  and	
  machine	
   learning,	
  which	
   relies	
  on	
   the	
  application	
  of	
  AI	
  processes	
  on	
  

radiomics	
  features	
  in	
  order	
  to	
  forecast	
  the	
  disease	
  behaviour.	
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CHAPTER	
  1:	
  	
  FEASIBILITY	
  STUDY	
  

1.1	
  Introduction	
  

The	
  limitations	
  of	
  the	
  use	
  of	
  imaging	
  for	
  MM	
  assessment	
  are	
  essentially	
  due	
  to	
  three	
  

open	
   issues:	
   the	
   lack	
  of	
   accuracy	
   in	
  differentiating	
   focal	
   from	
  diffuse	
  patterns,	
   the	
  

difficulty	
   in	
   extracting	
   reliable	
   prognostic	
   biomarkers	
   from	
   pattern	
   allocation,and	
  

the	
  low	
  agreement	
  in	
  staging	
  MM	
  patients	
  based	
  on	
  imaging	
  outcomes.	
  

The	
   application	
   of	
   pattern	
   recognition	
   algorithms	
   for	
   the	
   extraction	
   of	
   radiomics	
  

descriptors	
  from	
  images	
  of	
  MM	
  patients	
  and	
  the	
  post-­‐processing	
  of	
  such	
  radiomics	
  

features	
  by	
  means	
  of	
  procedures	
  based	
  on	
  artificial	
   intelligence	
  (AI)	
  are	
  nowadays	
  

introducing	
  a	
  novel	
  approach	
  for	
  increasing	
  the	
  reliability	
  of	
  imaging	
  in	
  MM	
  clinical	
  

assessment	
  [4,6,9,10].	
  

The	
  objective	
  of	
  the	
  present	
  study	
  is	
  to	
  assess	
  the	
  feasibility	
  of	
  an	
  AI-­‐based	
  approach	
  

for	
  the	
  automatic	
  stratification	
  of	
  MM	
  patients	
  from	
  CT	
  data,	
  and	
  for	
  the	
  automatic	
  

identification	
   of	
   radiological	
   biomarkers	
   with	
   a	
   possible	
   prognostic	
   value.	
  

Specifically,	
   relying	
   on	
   radiomics	
   and	
   AI-­‐based	
   computational	
   analysis	
   [9,11,12],	
  

this	
  feasibility	
  study	
  shows	
  that	
  a	
  set	
  of	
  descriptors	
  of	
  the	
  focal	
  lesions	
  in	
  MM	
  X-­‐ray	
  

CT	
   at	
   diagnosis	
   allows	
   for	
   the	
   automatic	
   stratification	
   of	
   a	
   cohort	
   of	
  MM	
  patients	
  

who	
  have	
  undergone	
   transplantation	
   in	
   two	
  clusters,	
  whose	
  characteristics	
  can	
  be	
  

interpreted	
  via	
  comparison	
  with	
  clinical	
  data,	
  biological	
  biomarkers,	
  and	
  the	
  clinical	
  

outcome	
  of	
  the	
  disease.	
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CHAPTER	
  2:	
  	
  METHODOLOGY	
  

2.1	
  Study	
  Populations,	
  Inclusion	
  Criteria,	
  and	
  Risk	
  Stratification	
  

This	
   study	
   was	
   performed	
   according	
   to	
   the	
   Declaration	
   of	
   Helsinki	
   and	
   the	
  

International	
  Conference	
  on	
  Harmonization	
  of	
  Good	
  Clinical	
  Practice	
  Guidelines.	
  An	
  

institutional	
   review	
   board	
   was	
   obtained	
   (054REG2019).	
   All	
   patients	
   signed	
  

informed	
  consent	
  for	
  retrospective	
  research	
  before	
  CT	
  examination;	
  data	
  collection	
  

did	
  not	
  influence	
  patient	
  care.	
  We	
  considered	
  51	
  consecutive	
  patients	
  (mean	
  age,	
  56	
  

years	
  ±	
  8;	
  range,	
  31–73	
  years;	
  18	
  females;	
  33	
  males)	
  admitted	
  to	
  the	
  Hospital	
  in	
  the	
  

last	
   five	
   years	
   because	
   of	
   biopsy	
   confirmed	
   MM.	
   Inclusion	
   criteria	
   were	
   baseline	
  

whole-­‐body	
   CT	
   from	
   the	
   Hospital	
   PACS	
   or	
   outpatient	
   clinic.	
   Among	
   these	
   51	
  

patients,	
   we	
   selected	
   the	
   33	
   presenting	
   at	
   least	
   one	
   focal	
   lesion	
   in	
   one	
   of	
   the	
   CT	
  

slices,	
  i.e.,	
  at	
  least	
  one	
  >5	
  mm	
  lytic	
  lesion	
  in	
  the	
  axial	
  or	
  extra-­‐axial	
  skeleton	
  [16-­‐18].	
  

Two	
   radiologists	
  blinded	
   to	
   the	
  diagnosis	
   and	
   to	
   each	
  other’s	
   conclusion	
  assessed	
  

whether	
  the	
  CT	
  pattern	
  was	
  diffuse	
  or	
  focal,	
  and,	
  for	
  each	
  patient	
  presenting	
  at	
  least	
  

one	
  focal	
  lesion,	
  we	
  identified	
  the	
  largest	
  one.	
  

Risk	
  stratification	
  was	
  performed	
  at	
  diagnosis	
  by	
  the	
  Revised	
  International	
  Staging	
  

System	
   (ISS)	
   combining	
   serum	
   beta2-­‐microglobulin	
   and	
   serum	
   albumin,	
   lactate	
  

dehydrogenase	
  for	
  three-­‐stage	
  classification,	
  and	
  cytogenetics	
  determining	
  a	
  binary	
  

normal-­‐high	
   risk	
   stadiation	
   [13,14].	
   Table	
   1	
   provides	
   a	
   summary	
   of	
   the	
   clinical	
  

features	
  (diameter	
  of	
  focal	
  lesion:	
  mean:	
  19.9	
  mm,	
  STD:	
  13.4	
  mm,	
  min:	
  4.5	
  mm,	
  max:	
  

62.4	
  mm).	
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Table	
  1.	
  Clinical	
  features	
  of	
  the	
  33	
  MM	
  patients	
  included	
  in	
  the	
  analysis.	
  R-­‐ISS	
  stage:	
  
I:	
  ISS	
  stage	
  I	
  and	
  standard-­‐risk	
  CA	
  by	
  iFISH	
  and	
  normal	
  LDH.	
  II:	
  Not	
  R-­‐ISS	
  stage	
  I	
  or	
  
III;	
  III:	
  ISS	
  stage	
  III	
  and	
  either	
  high-­‐risk	
  CA	
  by	
  iFISH	
  or	
  high	
  LDH.	
  CA—chromosomal	
  
abnormalities;	
   iFISH—interphase	
   fluorescent	
   in	
   situ	
   hybridization;	
   ISS—
International	
   Staging	
   System;	
   LDH—lactate	
   dehydrogenase;	
   MM—multiple	
  
myeloma;	
  R-­‐ISS—revised	
  International	
  Staging	
  System	
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2.2	
  Image	
  Analysis	
  

To	
   compute	
   each	
  patient’s	
   overall	
   skeletal	
   asset,	
  we	
  utilized	
   a	
   published	
   software	
  

tool(Bone-­‐GUI,	
   http://mida.dima.unige.it/software/bone-­‐gui/;	
   accessed	
   on	
   20	
  

September	
   2021)	
   combining	
   thresholding	
   and	
   active	
   contours.	
   For	
   each	
   subject,	
  

Bone-­‐GUI	
   provided	
   24	
   features.	
   Separately	
   for	
   the	
   whole,	
   axial,	
   and	
   skeleton	
  

districts,	
   it	
   computed	
   the	
   following:	
   the	
   mean	
   medullary	
   Hounsfield	
   value	
   with	
  

standard	
   deviation,	
   the	
   volume	
   of	
   the	
   global	
   medullary	
   asset,	
   the	
   mean	
   cortical	
  

Hounsfield	
  value	
  with	
  standard	
  deviation,	
  the	
  volume	
  of	
  the	
  cortical	
  asset,	
  the	
  rate	
  

of	
  volume	
  occupied	
  by	
  the	
  medullary	
  tissue,	
  and	
  the	
  overall	
  volume.	
  We	
  also	
  applied	
  

an	
   open	
   source	
   tool	
   for	
   radiomics	
   (Slicer,	
  

https://www.radiomics.io/slicerradiomics.html;	
   accessed	
   on	
   20	
   September	
   2021)	
  

[4,6]	
  to	
  the	
  33	
  lytic	
  lesions	
  on	
  the	
  compact	
  bone	
  tissue	
  to	
  extract	
  109	
  Slicer	
  features	
  

for	
  each	
  focal	
  lesion.	
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2.3	
  Reduction	
  of	
  Redundancy	
  

Our	
  AI-­‐based	
  analysis	
  for	
  patients’	
  stratification	
  utilized	
  Slicer	
  features	
  as	
  the	
  input.	
  

To	
   reduce	
   information	
   redundancy,	
   we	
   considered	
   two	
   approaches.	
   In	
   the	
   first	
  

approach,	
  principal	
  component	
  analysis	
  (PCA)	
  [19]	
  projected	
  the	
  feature	
  space	
  onto	
  

a	
  principal	
   components’	
   subspace	
   explaining	
   at	
   least	
  80%	
  of	
   the	
  data	
   variance.	
   In	
  

the	
  second	
  approach,	
  we	
  performed	
  two	
  Pearson’s	
  correlation	
  processes	
  (p	
  >	
  95%)	
  

involving	
   the	
   Slicer	
   features	
   and	
   (a)	
   the	
   binary	
   feature	
   encoding	
   patient’s	
   relapse	
  

one	
  year	
  after	
  transplantation,	
  and	
  (b)	
  all	
  24	
  Bone-­‐GUI	
  features.	
  We	
  applied	
  PCA	
  to	
  

the	
   features	
  selected	
  using	
   the	
   two	
  correlation	
  processes.	
  Figure	
   1	
   illustrates	
   this	
  

redundancy	
  reduction	
  pipeline.	
  

	
  

	
  

Figure	
  1.	
  The	
  pipeline	
  of	
  the	
  radiomics	
  features	
  analysis.	
  For	
  each	
  patient,	
  the	
  focal	
  
lesion	
  was	
  pointed	
   out	
   and	
   the	
   corresponding	
  CT	
   image	
  was	
   fed	
   into	
   a	
   radiomics	
  
tool	
   (Slicer),	
   which	
   computed	
   109	
   radiomics	
   features;	
   these	
   descriptors	
   were	
  
correlated	
  with	
  both	
  the	
  clinical	
  outcome	
  of	
  the	
  disease	
  at	
  one	
  year,	
  and	
  the	
  global	
  
radiological	
   features	
   extracted	
   by	
   means	
   of	
   a	
   segmentation	
   tool	
   (Bone-­‐GUI);	
   the	
  
resulting	
  mostly	
  correlated	
  features	
  and	
  the	
  set	
  of	
  all	
  local	
  features.	
  
	
  
	
   	
  



	
  

	
   9	
  

2.4	
  Clustering	
  

Clustering	
   organized	
   a	
   set	
   of	
   unlabeled	
   samples	
   into	
   clusters	
   based	
   on	
   data	
  

similarity	
  [20].	
  Data	
  partition	
  was	
  obtained	
  by	
  minimizing	
  a	
  cost	
  function	
  involving	
  

the	
  distances	
  between	
   the	
  data	
  and	
  cluster	
  prototypes.	
   In	
  Fuzzy	
  C-­‐Means	
   (FCM)	
  a	
  

degree	
  of	
  membership	
   is	
   assigned	
   to	
   each	
   sample	
  with	
   respect	
   to	
   each	
   cluster.	
   In	
  

addition	
   to	
   FCM,	
   we	
   applied	
   a	
   non-­‐linear	
   approach	
   based	
   on	
   the	
   filtering	
   of	
   an	
  

extended	
   version	
   of	
   the	
   Hough	
   transform	
   (HTF)	
   [21],	
   according	
   to	
   the	
   following	
  

steps:	
  

1.	
  Downstream	
  of	
  the	
  PCA	
  process,	
  the	
  two-­‐dimensional	
  feature	
  space	
  given	
  by	
  the	
  

two	
  components	
  explaining	
  most	
  of	
   the	
  data	
  variance	
   (namely,	
  PC1	
  and	
  PC2)	
  was	
  

constructed	
  for	
  each	
  data	
  set.	
  

2.	
  Given	
  a	
  feature	
  space,	
  the	
  Hough	
  transform	
  of	
  each	
  point	
  in	
  the	
  patient’s	
  set	
  with	
  

respect	
   to	
   the	
   family	
   of	
   all	
   parabolas	
   was	
   computed.	
   As	
   this	
   family	
   was	
  

characterized	
  by	
  three	
  parameters,	
  i.e.,	
  its	
  equation	
  is	
  y_PC2	
  =	
  ax_PC1ˆ2	
  +	
  bx_PC1	
  +	
  

c,	
  with	
  a,	
  b,	
  and	
  c	
  being	
  the	
  parameters,	
  and	
  the	
  corresponding	
  parameter	
  space	
  has	
  

three	
  dimension.	
  

3.	
   The	
   Hough	
   accumulator	
   was	
   computed	
   by	
   counting	
   the	
   number	
   of	
   times	
   each	
  

Hough	
  transform	
  passed	
  through	
  one	
  of	
  the	
  cells	
  of	
  the	
  discretized	
  parameter	
  space.	
  

4.	
  The	
  Hough	
  accumulator	
  was	
  filtered	
  by	
  a	
  5-­‐pixel-­‐side	
  cube	
  centered	
  on	
  the	
  pixel	
  

with	
  a	
  maximum	
  grey	
  value.	
  This	
  cube	
  was	
  the	
  smallest	
  one	
  enclosing	
  the	
  cells,	
  

with	
  accumulator	
  values	
  higher	
  than	
  50%	
  of	
  the	
  maximum	
  [22].	
  

	
  

Each	
  line	
  passing	
  through	
  the	
  filtered	
  region	
  was	
  projected	
  back	
  to	
  the	
  image	
  space,	
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thus	
  generating	
  a	
  cluster	
  of	
  points	
  in	
  a	
  strip	
  around	
  the	
  parabola	
  corresponding	
  to	
  

the	
  maximum	
  in	
  the	
  Hough	
  accumulator.	
  The	
  remaining	
  points	
  represent	
  the	
  second	
  

cluster	
  made	
  of	
  points	
  outside	
  of	
  the	
  strip	
  of	
  parabolas	
  previously	
  identified.	
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CHAPTER	
  3:	
  RESULTS	
  

3.1	
  Clinical	
  Findings	
  

Focal	
   lesion	
  searching	
   led	
   to	
   the	
   selection	
  of	
  33/51	
   (65%)	
  patients	
   (mean	
  age,	
  56	
  

years	
   ±	
   7;	
   range,	
   45–69	
   years;	
   12	
   females;	
   21	
   males)	
   whose	
   imaging	
   data	
   were	
  

considered	
   for	
   our	
   computational	
   analysis.	
   Inter-­‐observer	
   agreement	
   in	
  

differentiating	
   diffuse	
   from	
   focal	
   pattern	
   between	
   the	
   two	
   groups	
   of	
   radiologists	
  

resulted	
   in	
   0.75	
   (95%	
   Confidence	
   Interval:	
   0.31–0.67)	
   and	
   0.96	
   (95%	
   Confidence	
  

Interval:	
  0.79–0.99)	
  for	
  the	
  selection	
  of	
  patients	
  with	
  focal	
  lesions.	
  

	
  

3.2	
  AI-­‐Based	
  Analysis	
  

The	
   AI-­‐based	
   analysis	
   involved	
   three	
   data	
   sets:	
   data	
   set	
   1,	
   made	
   of	
   all	
   109	
   local	
  

features	
  extracted	
  by	
  Slicer	
  from	
  each	
  focal	
  lesion;	
  data	
  set	
  2,	
  made	
  of	
  the	
  eight	
  local	
  

features	
  mostly	
  correlating	
  with	
  the	
  relapsed/non-­‐relapsed	
  binary	
  feature;	
  and	
  data	
  

set	
  3,	
  made	
  of	
  the	
  17	
  local	
  features	
  mostly	
  correlating	
  with	
  the	
  24	
  Bone-­‐GUI	
  global	
  

features.	
  The	
  application	
  of	
  PCA	
  to	
  these	
  three	
  data	
  sets	
  led	
  to	
  three	
  features	
  spaces,	
  

with	
  n	
  =	
  5	
  axes	
  for	
  data	
  set	
  1,	
  n	
  =	
  3	
  axes	
  for	
  data	
  set	
  2,	
  and	
  n	
  =	
  2	
  axes	
  for	
  data	
  set	
  3.	
  

In	
  each	
  one	
  of	
  these	
  three	
  feature	
  spaces,	
  FCM	
  and	
  HTF	
  computed	
  two	
  clusters:	
  

in	
  each	
  cluster,	
  the	
  black	
  circles	
  are	
  associated	
  with	
  patients	
  that	
  underwent	
  relapse	
  

within	
   one	
   year	
   of	
   bone	
   marrow	
   transplantation.	
   Cluster	
   A	
   (B)	
   contained	
   the	
  

maximum	
  (minimum)	
  number	
  of	
  relapsed	
  patients.	
  

In	
  order	
  to	
  assess	
  the	
  performances	
  of	
  the	
  clustering	
  algorithms,	
  we	
  computed	
  the	
  

confusion	
  matrices	
  for	
  the	
  observed	
  relapsed	
  patients;	
  specifically,	
  we	
  counted	
  the	
  

number	
  of	
  true	
  positives	
  (TPs),	
  true	
  negatives	
  (TNs),	
  false	
  positives	
  (FPs),	
  and	
  false	
  

negatives	
  (FNs)	
  using	
  cluster	
  A	
  as	
  the	
  reference	
  cluster	
  for	
  the	
  “relapsed”	
  class	
  and	
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cluster	
  B	
  as	
   the	
  reference	
  cluster	
   for	
   the	
  “non-­‐relapsed”	
  class.	
  Using	
   the	
  entries	
  of	
  

such	
  matrices,	
  we	
  computed	
  four	
  different	
  skill	
  scores:	
  

Sensitivity	
  =	
  TP/(TP	
  +	
  FN)	
  

Specificity	
  =	
  TN/(TN	
  +	
  FP)	
  

Youden’s	
  index	
  =	
  Sensitivity	
  +	
  Specificity	
  −	
  1	
  

Critical	
  Success	
  Index	
  (CSI)	
  =	
  TP/(TP	
  +	
  FN	
  +	
  FP).	
  

We	
  show	
  that	
  the	
  CSI	
  ranged	
  from	
  0	
  to	
  1	
  and	
  it	
  was	
  higher	
  as	
  much	
  as	
  the	
  number	
  

of	
  FPs	
  and	
  FNs	
  was	
  small,	
   regardless	
   the	
  number	
  of	
  TNs.	
  CSI	
   is	
   therefore	
  a	
  useful	
  

score	
   in	
  conditions	
   like	
   the	
  one	
  we	
  considered	
  here,	
  where	
  we	
  had	
  an	
  unbalanced	
  

data	
  set	
  with	
  more	
  non-­‐relapsed	
  cases	
  than	
  relapsed	
  ones.	
  

We	
  tested	
  the	
  robustness	
  of	
  our	
  results	
  by	
  performing	
  a	
  bootstrap	
  analysis	
  on	
  the	
  

set	
   33	
   17-­‐dimension	
   feature	
   vectors	
   of	
   that	
   set.	
   We	
   constructed	
   100	
   random	
  

realizations	
  of	
   training	
   sets	
  made	
  of	
  20	
   feature	
  vectors	
   (of	
  which	
  10	
   representing	
  

relapsed	
  patients)	
  and,	
  for	
  each	
  realization,	
  we	
  applied	
  the	
  HTF	
  clustering	
  process.	
  

Then,	
  for	
  each	
  realization	
  of	
  the	
  training	
  set,	
  we	
  computed	
  the	
  membership	
  cluster	
  

for	
   each	
  one	
  of	
   the	
   remaining	
  13	
  vectors	
   representing	
   the	
   test	
   set.	
  Repeating	
   this	
  

procedure	
  for	
  each	
  one	
  of	
  the	
  100	
  realizations	
  of	
  the	
  training-­‐test	
  set	
  pairs	
  led	
  to	
  the	
  

construction	
   of	
   100	
   confusion	
   matrices	
   and,	
   therefore,	
   to	
   100	
   sets	
   of	
   skill	
   score	
  

values	
  that	
  we	
  averaged,	
  together	
  with	
  the	
  corresponding	
  standard	
  deviations.	
  We	
  

also	
  performed	
  a	
  bootstrap	
  analysis	
  on	
  the	
  cytogenetics	
  values.	
  In	
  order	
  to	
  compute	
  

the	
  entries	
  of	
   these	
   last	
  confusion	
  matrices,	
  we	
  compared	
  the	
  relapse/non-­‐relapse	
  

with	
   the	
   high/standard	
   cytogenetic	
   stages:	
   a	
   relapsed	
   patient	
   with	
   a	
   “high”	
  

cytogenetic	
   stage	
   was	
   a	
   TP	
   event,	
   while	
   a	
   relapsed	
   patient	
   with	
   a	
   “standard”	
  

cytogenetic	
  stage	
  was	
  an	
  FN.	
  A	
  non-­‐relapsed	
  patient	
  with	
  a	
  “standard”	
  cytogenetic	
  

stage	
  was	
  a	
  TN	
  event	
  and	
  a	
  non-­‐relapsed	
  patient	
  with	
  a	
  “high”	
  cytogenetic	
  stage	
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was	
   an	
   FP	
   event.	
   We	
   show	
   that	
   the	
   separation	
   between	
   the	
   standard	
   and	
   high	
  

cytogenetic	
  stage	
  was	
  realized	
  according	
  to	
  the	
  standard	
  cytogenetic	
  evaluation	
  for	
  

separating	
   patients	
   with	
   a	
   high-­‐risk	
   mutation	
   (poor	
   prognosis	
   in	
   general)	
   from	
  

patients	
  without	
  high-­‐risk	
  mutations	
  [14,23].	
  

	
  

3.3	
  Feature	
  Ranking	
  

To	
   investigate	
   which	
   radiomics	
   features	
   mostly	
   contribute	
   to	
   an	
   effective	
  

stratification	
  of	
  the	
  MM	
  patients,	
  we	
  focused	
  on	
  the	
  case	
  of	
  data	
  set	
  3.	
  The	
  reason	
  for	
  

this	
  choice	
  is	
  because,	
  when	
  analyzed	
  with	
  HTF,	
  this	
  set	
  provided,	
  by	
  far,	
  the	
  highest	
  

sensitivity	
  values	
  and,	
  significantly,	
  the	
  highest	
  CSI	
  values	
  among	
  the	
  three	
  data	
  sets	
  

considered.	
   Therefore,	
   we	
   analyzed	
   the	
   feature	
   compositions	
   of	
   the	
   two	
   axes	
  

produced	
   by	
   the	
   application	
   of	
   PCA	
   on	
   the	
   original	
   feature	
   space	
   of	
   this	
   data	
   set,	
  

made	
   of	
   17	
   features.	
   	
   These	
   contributions	
   were	
   weighted	
   by	
   the	
   percentage	
   of	
  

explained	
   variance	
   of	
   the	
   two	
   PCs	
   (77%	
   and	
   9%	
   for	
   the	
   first	
   and	
   second	
   PC,	
  

respectively).	
  A	
  Mann–Whitney	
  U-­‐test	
   on	
   these	
   features	
   showed	
   that	
   just	
   three	
  of	
  

them	
  did	
  not	
  pass	
  the	
  null	
  hypothesis	
  (p	
  >	
  99%):	
  “MaskMaximum”,	
  which	
  denotes	
  

the	
  maximum	
  grey	
  level	
  value	
  in	
  the	
  mask	
  segmenting	
  the	
  focal	
  lesion	
  (172.6	
  ±	
  64.4	
  

in	
  Cluster	
  A;	
  321.9	
  ±	
  48.6	
  in	
  Cluster	
  B);	
  “firstorderRange”,	
  which	
  denotes	
  the	
  range	
  

of	
  the	
  distribution	
  of	
  the	
  voxel	
  intensities	
  (194.7	
  ±	
  61.8	
  in	
  Cluster	
  A;	
  343.4	
  ±	
  66.9	
  in	
  

Cluster	
  B);	
  and	
  “ngtdmComplexity”	
  (29.8	
  ±	
  24.9	
  in	
  Cluster	
  A;	
  79.4	
  ±	
  43.5	
  in	
  Cluster	
  

B),	
  which	
   is	
   a	
  measure	
  of	
   the	
  non-­‐uniformity	
  of	
   the	
   lesion	
   image	
   in	
   the	
  grey	
   level	
  

intensity.	
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DISCUSSION	
  

This	
  study	
  demonstrates	
  that	
  AI	
  supported	
  radiomics	
  realize	
  a	
  clustering	
  of	
  MM	
  

patients	
  with	
  a	
  statistical	
  reliability	
  that,	
  for	
  some	
  skill	
  scores,	
  is	
  higher	
  than	
  the	
  one	
  

provided	
  by	
  standard	
  biochemical	
  staging.	
  The	
  possibility	
  to	
  increase	
  the	
  predictive	
  

potential	
  of	
  the	
  standard	
  CT	
  images	
  of	
  patients	
  with	
  multiple	
  myeloma	
  is	
  clinically	
  

relevant	
  for	
  several	
  reasons.	
  

The	
   first	
   is	
   that	
   although	
   MM	
   is	
   still	
   considered	
   a	
   single	
   disease,	
   it	
   is	
   actually	
   a	
  

collection	
  of	
  several	
  different	
  cytogenetically	
  distinct	
  plasma	
  cell	
  malignancies	
  [24].	
  

Trisomies	
   	
   and	
   IgH	
   translocations	
   are	
   considered	
   primary	
   cytogenetic	
  

abnormalities,	
  and	
  occur	
  at	
  	
  the	
  time	
  of	
  establishment	
  of	
  MGUS	
  [24].	
  At	
  the	
  present	
  

time,	
  there	
  are	
  three	
  specific	
  biomarkers	
  for	
  MM	
  with	
  an	
  approximately	
  80%	
  risk	
  of	
  

progression	
  to	
  symptomatic	
  endorgan	
  damage	
  in	
  two	
  or	
  more	
  independent	
  studies:	
  

clonal	
   bone	
  marrow	
   plasma	
   cells	
   	
   ≥60%,	
   serum	
   free	
   light	
   chain	
   (FLC)	
   ratio	
   ≥100	
  

(provided	
   involved	
   FLC	
   level	
   is	
   ≥100	
  mg/L),	
   	
   and	
  more	
   than	
   one	
   focal	
   lesion	
   on	
  

magnetic	
   resonance	
   imaging	
   (MRI).	
   It	
   is	
   known	
   that	
   	
   almost	
   all	
   patients	
  with	
  MM	
  

eventually	
  relapse	
  and	
  the	
  choice	
  of	
  a	
   treatment	
  regimen	
  at	
   	
  relapse	
   is	
  affected	
  by	
  

many	
   factors,	
   including	
   the	
   timing	
   of	
   relapse,	
   response	
   to	
   prior	
   therapy,	
  

aggressiveness	
  of	
  relapse,	
  and	
  performance	
  status	
  (TRAP)	
  [24].	
  	
  

Therefore,	
  the	
  prediction	
  of	
  relapse	
  early	
  is	
  important	
  to	
  foresee	
  a	
  therapy.	
  Second,	
  

several	
   studies	
   have	
   correlated	
   bone	
   patterns	
   in	
   MM	
  with	
   their	
   prognostic	
   value	
  

using	
  MRI	
  and	
  CT	
  [4,6,11,25].	
  MRI	
  can	
  be	
  used	
   to	
  differentiate	
  up	
   to	
   five	
  different	
  

patterns	
  of	
  plasma	
  cell	
  infiltration,	
  including	
  normal	
  appearance,	
  focal	
  involvement,	
  

homogeneous	
   diffuse	
   infiltration,	
   diffuse	
   infiltration	
   with	
   additional	
   focal	
   lesions,	
  

and	
  variegated	
  or	
  salt-­‐and-­‐pepper	
  patterns;	
  on	
  the	
  other	
  hand,	
  CT	
  is	
  well	
  suited	
  for	
  

small	
  (below	
  5	
  mm)	
  focal	
  bone	
  lesions	
  due	
  to	
  its	
  high	
  spatial	
  resolution	
  capabilities.	
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The	
  AI-­‐based	
  analysis	
  of	
  the	
  radiomics	
  properties	
  extracted	
  from	
  the	
  focal	
  lesions	
  

essentially	
  pointed	
  out	
  two	
  aspects.	
  First,	
  the	
  redundancy	
  of	
  the	
  radiomics	
  features	
  

seem	
   to	
   impact	
   the	
   prognostic	
   power	
   of	
   the	
   clustering	
   methods.	
   However,	
   the	
  

stratification	
  power	
   increases	
  when	
  correlation-­‐based	
  and	
  PCA-­‐based	
  reduction	
  of	
  

redundancy	
   processes	
   are	
   applied.	
   Second,	
   the	
   use	
   of	
   a	
   non-­‐linear	
   approach	
   to	
  

clustering,	
   namely	
   HTF,	
   seems	
   to	
   provide	
   better	
   results	
   with	
   respect	
   to	
   a	
   more	
  

standard	
   fuzzy	
   clustering	
   algorithm;	
   this	
   may	
   be	
   explained	
   because	
   of	
   the	
   high	
  

degree	
  of	
  heterogeneity	
  that	
  characterizes	
  MM.	
  

The	
  skill	
  scores	
  computed	
  for	
  each	
  data	
  set	
  and	
  each	
  classification	
  method	
  helped	
  us	
  

to	
   determine	
   which	
   approach	
   to	
   redundancy	
   reduction	
   and	
   which	
   algorithm	
  

performs	
   better	
   for	
   stratification	
   purposes.	
   Among	
   the	
   four	
   skill	
   scores,	
   CSI	
  

probably	
   represents	
   the	
   one	
   that	
   best	
   interprets	
   the	
   outcomes	
   of	
   the	
   confusion	
  

matrices	
   in	
   this	
   context.	
   Indeed,	
   this	
   score	
   emphasizes	
   the	
   correct	
   prediction	
   of	
  

relapses	
   in	
   correspondence	
  with	
   a	
   low	
   rate	
   of	
  misclassification.	
   Interestingly,	
   the	
  

application	
  of	
  HTF	
  on	
  the	
  focal	
  features	
  mostly	
  correlating	
  with	
  the	
  skeleton	
  asset’s	
  

global	
  properties	
  (which	
  are	
  extracted	
  by	
  Bone-­‐GUI)	
   leads	
  to	
  the	
  highest	
  value	
   for	
  

this	
   score:	
   this	
   seems	
   to	
   point	
   out	
   a	
   favorable	
   prognostic	
   role	
   for	
   the	
   interplay	
  

between	
  local	
  and	
  global	
  descriptors	
  of	
  the	
  MM	
  bone	
  tissue.	
  In	
  this	
  case,	
  

the	
   CSI	
   value	
   is	
   higher	
   than	
   the	
   discriminative	
   value	
   provided	
   by	
   the	
   cytogenetic	
  

data,	
  which	
  supports	
  the	
  reliability	
  of	
  radiomics	
  as	
  a	
  prognostic	
  tool	
  for	
  MM	
  clinical	
  

practice.This	
  conclusion	
  is	
  confirmed	
  by	
  a	
  bootstrap	
  analysis	
  performed	
  on	
  data	
  set	
  

3.	
  Data	
  set	
  3	
  is	
  made	
  of	
  the	
  focal	
  descriptors	
  that	
  mostly	
  correlate	
  with	
  the	
  whole	
  

skeleton’s	
   asset	
   properties.	
   Therefore,	
   this	
   correlation	
   analysis	
   per	
   se	
   realizes	
   a	
  

feature	
   selection	
   process	
   whose	
   outcome	
   is	
   a	
   set	
   of	
   17	
   features.	
   A	
   finer	
   feature	
  

selection	
  is	
  provided	
  by	
  PCA.	
  This	
  figure	
  and	
  the	
  related	
  Mann–Whitney	
  U-­‐test	
  point	
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to	
   a	
   significant	
   emphasis	
   on	
   properties	
   related	
   to	
   the	
   heterogeneity	
   of	
   the	
   focal	
  

lesion,	
  such	
  as	
  the	
  Hounsfield	
  unit	
  range	
  and	
  maximum	
  values	
  found	
  in	
  the	
   lesion,	
  

and	
   the	
   complexity,	
   which	
   measures	
   the	
   non-­‐uniformity	
   of	
   the	
   image	
   and	
   the	
  

presence	
  of	
  rapid	
  changes	
  in	
  intensity.	
  

We	
  finally	
  show	
  that	
  the	
  data	
  collection	
  for	
  this	
  study	
  has	
  been	
  realized	
  by	
  means	
  

of	
   a	
   single,	
   specific	
   CT	
   scanner,	
   so	
   that	
   the	
   images	
  we	
  used	
   for	
   feature	
   extraction	
  

were	
  homogeneous.	
  Recent	
  studies	
  [26]	
  have	
  shown	
  that	
  the	
  characteristics	
  of	
  the	
  

extracted	
  features	
  may	
  depend	
  on	
  non-­‐tumor	
  related	
  factors	
  like	
  the	
  signal-­‐to-­‐noise	
  

ratio	
  of	
  the	
  experimental	
  data.	
  Therefore,	
  in	
  the	
  case	
  of	
  studies	
  that	
  utilize	
  data	
  from	
  

more	
   than	
  one	
   scanner,	
   data	
  homogenization	
   should	
  be	
   implemented	
  prior	
   to	
   the	
  

data	
  extraction	
  process	
  [27].	
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CONCLUSIONS	
  

This	
  computational	
  approach	
  to	
  the	
  interpretation	
  of	
  radiomics	
  focal	
  features	
  shows	
  

the	
   potential	
   for	
   the	
   stratification	
   of	
   relapsed	
   and	
   non-­‐relapsed	
  MM	
  patients,	
   and	
  

could	
  represent	
  a	
  prognostic	
  procedure	
   for	
  determining	
  the	
  disease	
   follow-­‐up	
  and	
  

therapy.	
  

Concerning	
   the	
   technical	
   issues	
   to	
   be	
   discussed,	
   the	
   present	
   study	
   has	
   several	
  

strengths:	
   the	
   use	
   of	
   clinically	
   available	
   CT	
   images	
   collected	
   in	
   the	
   normal	
   daily	
  

workup	
  did	
  not	
   influenced	
  patient	
   care	
   in	
   any	
  way.	
   Second,	
  we	
  used	
   a	
   free	
   open-­‐

source	
  tool	
  for	
  radiomics	
  assessment	
  of	
  the	
  focal	
  lytic	
  lesions.	
  Among	
  the	
  limitations	
  

of	
  the	
  present	
  study,	
  we	
  acknowledge	
  the	
  retrospective	
  nature,	
  which	
  did	
  not	
  allow	
  

for	
   perfect	
   timing	
   between	
   CT,	
   diagnosis,	
   and	
   therapy	
   or	
   relapse.	
   In	
   addition,	
   the	
  

evaluation	
  of	
  the	
  radiomics	
  features	
  was	
  made	
  only	
  with	
  one	
  open-­‐source	
  tool,	
  and	
  

we	
   did	
   not	
   evaluate	
   whether	
   the	
   usage	
   of	
   other	
   tools	
   would	
   have	
   introduced	
  

variability	
   to	
   a	
   significant	
   extent.	
   Finally,	
   the	
   overall	
   number	
   of	
   patients	
   included	
  

was	
  relatively	
   low:	
   indeed,	
  a	
  correct	
  sample	
  size	
   in	
  radiomics	
   is	
  at	
   least	
   five	
   times	
  

the	
   number	
   of	
   extracted	
   features	
   [28],	
   and	
   this	
   condition	
   would	
   require	
   a	
  

population	
   of	
   at	
   least	
   100	
   MM	
   patients.	
   Nonetheless,	
   the	
   possibility	
   to	
   obtain	
   a	
  

cluster	
  of	
  features	
  to	
  identify	
  relapses	
  even	
  in	
  a	
  33	
  patient	
  sample	
  is	
  in	
  favor	
  of	
  the	
  

validity	
  of	
   this	
  method.	
  This	
   initial	
  study	
  warrants	
  prospective	
  studies	
  with	
  a	
  high	
  

number	
   of	
   patients,	
   which	
   are	
   currently	
   underway,	
   in	
   order	
   to	
   validate	
   this	
  

approach,	
  with	
   the	
  aim	
  of	
   implementing,	
   it	
   in	
  a	
  more	
  systematic	
  way,	
  a	
  method	
  of	
  

obtaining	
  a	
  more	
  robust	
  prognostic	
  score	
  for	
  MM	
  patients.	
  

Summing	
  up	
  the	
  results	
  of	
  this	
  study,	
  we	
  remind	
  that	
  our	
  objective	
  was	
  to	
  validate	
  

the	
  feasibility	
  of	
  the	
  automatic	
  stratification	
  of	
  MM	
  patients	
  by	
  means	
  of	
  an	
  analysis	
  

of	
   the	
   descriptors	
   extracted	
   fromCT	
   data	
   within	
   the	
   framework	
   of	
   a	
   radiomics	
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retrospective	
  study.	
  This	
  analysis	
  showed	
  that	
  unsupervised	
  AI	
  can	
  predict	
  relapse	
  

within	
   one	
   year	
   after	
   transplantation	
   and	
   can	
   identify	
   a	
   few	
   imaging	
   features	
  

associated	
  with	
  the	
  heterogeneity	
  of	
  the	
  focal	
  lesion	
  with	
  a	
  high	
  prognostic	
  value.	
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INTRODUCTION
Sarcopenia is the loss of skeletal muscle mass leading 
to a decline in physical performance and worse heath 
outcomes.1–26 The development of sarcopenia is complex 
and multifactorial not only linked to the physiological age-
related decline of physical movement but also to a proin-
flammatory status due to decreased myokines muscular 
production.27,28 Indeed, the skeletal muscle is an organ 
not only related to movement, but it is also an organ with 
endocrine function.27 Muscular myokines regulating 
metabolic homeostasis influence other targets such as the 
adipose tissue, the liver, the kidney, the brain and event the 
bone.10,27–30 The bone is the target organ in patients affected 
by multiple myeloma (MM). Indeed, MM is a hematologic 

malignancy of differentiated plasma cells that accumu-
lates and proliferates in the bone marrow leading to bone 
lesions. In addition, MM is also characterized by an exces-
sive activation of osteoclasts leading to typical osteolytic 
lesions.31–51 The MM associated bone disease has a strong 
impact on the quality of life of MM patients increasing 
both morbidity and mortality.34–43 Imaging plays a crucial 
role when diagnosing MM. Indeed, both muscle and bone 
involvement can be easily assessed with imaging methods, 
especially CT and MRI. CT is not only considered the gold-
standard to evaluate muscle mass on imaging2,20,26,31–34 
but it is also one of the best methods to assess the bone 
in MM.31–43 Detection of bone lesions and sarcopenia are 
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Objective: Sarcopenia or low muscle mass is related 
to worse prognosis in cancer patients. We investigated 
whether muscle mass is related to bone damage on CT 
in patients with multiple myeloma (MM).
Methods: Approval from the institutional review board 
was obtained. N = 74 consecutive patients (mean age, 
60.8 years ± 9.24 [standard deviation]; range, 36–89 
years) for MM who underwent transplant were included. 
Sarcopenia cut-off points defined as skeletal muscle 
index (SMI) used were<41 cm2/m2. To assess bone 
damage in MM the MSBDS (myeloma spine and bone 
damage score) was used. One-way analysis of variance 
and the X2 test were used. Kaplan–Meier analysis was 
performed to generate progression and survival curves 
according to SMI and MSBDS. The testing level was set 
at 0.05.
Results: The median SMI was 47.1 ± 14.2 and according 
to SMI 18/74 (24%) had sarcopenia which was more 

prevalent in females (p.001). A strong and significant 
association between patients with low muscle mass and 
elevated bone damage (24/74, 32.4%) and patients with 
normal/non-low muscle mass low bone damage (30/74, 
40.5%) was present. Multiple Logistic regression did 
not show any significant relationship or confounding 
influence among SMI and MSBDS regarding sex (p.127), 
cytogenetic status (p.457), staging (p.756) and relapse 
(.126). Neither SMI nor MSBDS resulted significantly 
related to overall survival as shown in Kaplan–Meier 
analysis.
Conclusion: Sarcopenia and bone damage affected MM 
patients undergoing stem cell transplantation and are 
significantly associated.
Advances in knowledge: Quantitative measurement of 
sarcopenia and bone damage on CT resulted present in 
MM patients undergoing stem cell transplantation and 
are significantly associated.
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clinically relevant because they are amenable of treatment, espe-
cially to prevent pathologic fractures or neurologic complica-
tions.31,32,35–37 Both the presence of sarcopenia and bone lesions 
(not osteoporosis) are linked to poor prognosis in MM33,39 and 
both conditions are amenable of treatments. However, it is not 
known if sarcopenia and bone lytic lesions are associated and 
to what extent. Given the fact that sarcopenia is amenable of 
treatment (muscular training and nutritional supplementation 
protein, amino acid, vitamin D and creatine for example) and the 
skeletal muscle is also a secondary secretory organ with endo-
crine functions via the myokines system influencing metabolism, 
patients with low muscle mass have an increased risk of falls and 
subsequent fractures.1–4 Detection of an association between 
sarcopenia and bone damage could lead to changes in manage-
ment in MM patients and offer new insights into pathophysio-
logical evaluation of MM.

As such, we sought to examine the relationship of muscle mass 
estimated using CT and bone damage using the myeloma spine 
and bone damage score (MSBDS) which is a descriptive criteria 
easy to be used, highly reproducible and developed for harmo-
nizing total body CT interpretation in MM.44

METHODS AND MATERIALS
Study population
This study was conducted following the available version of the 
Declaration of Helsinki and the International Conference on 
Harmonization of Good Clinical Practice Guidelines. The stan-
dard procedure of our center foresees for every patient a written 
informed consent form, encompassing the use of anonimized 
data for retrospective research purposes, before every radiolog-
ical procedure. Muscle mass and bone quantitative analysis was 
applied to CT data collected in the clinical workup and did not 
influence patient care in the present study. Approval from the 
institutional review board was obtained accordingly with the 
Italian laws (054REG2019). This study is a substudy of a mixed 
prospective and retrospective study on MM Radiomics and 
sarcopenia of our center and funded by the Italian Ministry of 
Health (rif.19117). N = 74 consecutive patients (mean age, 60.8 
years ± 9.24 [standard deviation]; range, 36–89 years) evaluated 
at the IRCCS Ospedale Policlinico San Martino Hospital (Genoa, 
Italy) for confirmed MM in the last 5 years and who underwent 
transplant. N = 66 patients received autotransplant from periph-
eral blood stem cells (PBSC), N = 6 patients received allogeneic 
stem cell transplantation from a sibling or human leukocyte 
antigen‐matched donor, N = 2 unknown type of transplant. 
Inclusion criteria were pre-transplant total-body CT available 
and fully retrievable from the Hospital picture archiving and 
communication system (PACS). Minimal and standard technical 
inclusion parameters for total-body CT resulted to be:

•	 number of detector rows: 16 or more up to 128; minimum scan 
coverage: skull base to femur;

•	 tube voltage(kV)/time–current product (mAs) 120/50–70, 
adjusted as clinically needed;

•	 thickness ≤3 mm;
•	 matrix, rotation time, table speed and pith index: 256 × 256, 

0.5 s, 24 mm per gantry rotation and 0.8, respectively.

CTs were acquired as total-body CT not only for bone evaluation 
but also for visceral organ involvement before transplantations.

Exclusion criteria were as follows: patients who did not receive 
transplantation, patients unable to understand or execute written 
informed consent, unable or unwilling to agree to follow-up during 
observation period, CT images not retrievable from PACS or 
images inaccurate due to artifacts (e.g. periprosthetic beam hard-
ening, or significant motion artifacts). In addition other causes of 
sarcopenia, e.g. post trauma, surgery infection, prolonged immo-
bilization were excluded. Clinical (including height and weight 
values) and follow-up data were recorded by hospital staff.

The patient baseline and clinical characteristics are summarized 
in Table 1. In the n = 74 patients were CT-derived data were eval-
uated, the median period between the date of the image taken 
and date of diagnosis was 22 days. The median follow-up period 
was 530 days. In total, eight patients relapsed and eight patients 
died during this period. All but two of these patients died from 
myeloma related causes. 12 patients had high-risk cytogenetic 
abnormalities separating patients with high-risk mutation (poor-
prognosis in general) from patients without high-risk mutations 
according to standard of care45–47

Imaging measurements
Muscle mass
To assess reproducible measurement, a strict and largely vali-
dated method was used as follows.3–15 Reconstructed axial CT 
images of different vendors (GE and SIEMENS) with 5 mm 
slice thickness were analyzed using the software installed on 
the workstations of our Radiology Department (Suite-Estensa 
1.9-Ebit-Esaote Group company. 2015© and Horos v. 3, LGPL-
3.0) (Figure  1). The third lumbar vertebra (L3), at the level in 
which both transverse processes are clearly visible, was used as 
a bony landmark to properly identify the psoas muscle. Verte-
brae were counted down from the cervical spine using scout 
images of the whole body or multiplanar reformatted (MPR) 
images from source thin-section axial images using the software 
on our workstations. In this study, scout images were available 
for each patient. If there is no scout image of the whole spine 
or reformatted images, it is possible to identify the first lumbar 
vertebrae (L1) that is the first vertebrae without a rib attachment. 
Once L1 has been found, the transverse processes can be used 
to downward to L3. The L3 region contains psoas, paraspinal 
muscles (erector spinae, quadratus lumborum), and abdom-
inal wall muscles (transversus abdominus, external and internal 
obliques, rectus abdominis). Skeletal muscle was identified and 
quantified by use of Hounsfield unit (HU) thresholds (–29 to 
+150) and then the muscle contours were manually adjusted 
to avoid pitfalls.4 Cross-sectional areas (cm²) of the sum of all 
these muscles were computed for each image. Cross-sectional 
area value is linearly related to whole-body muscle mass and was 
therefore normalized for stature (L3 skeletal muscle index- SMI-, 
cm²/m²).

Sarcopenia cut-off points defined as SMI used were <41 cm2/
m2 as suggested in literature.2–4 The worst data of SMI and 
MSBDS for each patient were considered for data analysis. To 
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assess interrater reliability, 30 images were randomly selected to 
be analysed by both readers. Readers were experienced muscu-
loskeletal radiologists involved in muscular CT evaluation and 
bone damage scores (AT, FR) with different level of experience 
in musculoskeletal and total body CT: Reader 1 (AT), >10 years; 
Reader 2 (FR), 5 years. Readers were blinded to the clinical data 
of the patients.

Bone damage
To assess bone damage in MM patients we used the MSBDS 
(Myeloma Spine and Bone Damage Score) which is a simple 
score tailored MM patients to be used on standard total-body 
CT in the routine clinical a complement of standard evalua-
tions in patients undergoing stem cells transplantation.44,48 The 
MSBDS is a recently introduced quantitative score to provide a 
semi-quantitative objective tool to evaluate the status of bone 
damage and risk of fracture and instability in MM patients.44,48 
The MSBDS score resulted to be fast, reproducible and appro-
priate for usage on standard CT. The MSBDS has the potential 
not only to assess spinal instability, but also bony involvement 
for prognosis. Bone density on CT was not estimated because 
calibration of CT scanners was not possible in standard clinical 
practice and in the retrospective nature of the study. MSBDS 
consists of an additive scale where the total score is given by the 
sum of single items scores for abnormalities detected. MSBDS 
values range from 0 (minimum) to values >10 where 10 is repre-
sented by high-risk patients requiring immediate surgical or 
radiation oncologist evaluation.

Statistical analysis
The one-way analysis of variance and the χ2 test were used to 
compare the characteristics of the study participants in the two 
groups. In detail, psoas muscle sizes and MSBDS scores were 
dichotomized according to average psoas area used to estimate 
SMI and average MSBDS score and evaluated for association 
with χ2 test as already done in literature.49 Multiple logistic 

Table 1. Baseline characteristics, SMI, MSBDS, ISS and Durie Salmon Plus

Total (n = 74) Male (n = 37) Female (n = 37) p (Male vs Female)
SMI 47.1 ± 14.2 (20.6–70.0) 55.1 ± 12.64 (29.0–70.0) 37.5 ± 9.8 (20.6–53.3) .001

Sarcopenia number 18 6 12 .001

MSBDS 4.2 ± 2.7 (1–10) 4.5 ± 2.5 (1–10) 4.0 ± 3.1 (1–9) .639

ISS .770

1 44 20 24

2 21 9 11

3 9 4 5

Durie Salmon Plus .770

1 3 1 2

2 8 3 5

3 53 27 26

4 10 4 6

High-risk cytogenetic abnormalities

Causes of death 12 7 5

Number 8 5 3

MM progression 4 2 1

Infection 3 2 1

Other 1 1 1

ISS, International Staging System; MSBDS, myeloma spine bone damage score; SMI, skeletal muscle index.

Figure 1. Examples of muscle (region of interests around 
psoas muscles, bliaterally, in a sarcopenic MM patient with 
purple and bullet line) and bone (green arrow showing a 
focal lesion >5 mm in diameter) evaluation on CT. See text for 
details. MM, multiple myeloma.
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regression was used to study any possible significant relationship 
or influence among SMI, MSBDS and standard confounders. 
The intra- and interobserver agreement of the SMI and MSBDS 
score was then calculated. K statistics were used and K values 
were reported as weighed k with linear weights. 95% confidence 
intervals (CIs) and standard error were also reported. Agree-
ment was defined on the basis of Fleiss classification: <0.40, 
poor; 0.40–0.59, moderate; 0.60–0.75, good; >0.75, excellent.50 
Kaplan–Meier analysis was performed to generate progression 
and survival curves according to SMI and MSBDS. The testing 
level was set at 0.05. All analyses were performed using STATA 
(STATA Corp 4905 Lakeway College Station, TX).

RESULTS
The median SMI as shown in Table  1 was 47.1 ± 14.2 and 
according to SMI 18/74 (24%) had sarcopenia which was more 
prevalent in female (p.001). When evaluating dichotomized SMI 
according to average psoas area and average MSBDS score, as 
shown in Table  2, there was a strong and significant associa-
tion between patients with low muscle mass and elevated bone 
damage (24/74, 32.4%) and patients with normal/non-low 
muscle mass and low bone damage (30/74, 40.5%). Multiple 
logistic regression did not show any significant relationship or 
confounding influence among SMI and MSBDS regarding sex (p. 

127), cytogenetic status (p. 457), staging (p. 756) and relapse (p. 
126). Neither SMI nor MSBDS resulted significantly related to 
overall survival as shown in Kaplan–Meier analysis (Figure 2).

Interobserver agreement among the two readers considering the 
items of the MSBDS scoring scale and SMI estimation using K 
value, 95% confidence intervals and standard error were 0.84with 
95% C.I. (0.65–0.93); 0.88 95% C.I. (0.71–0.94), respectively.

DISCUSSION
Our results show that patients with MM undergoing stem cells 
transplantation with low muscle mass may have an increased 
level of bone damage as evaluated quantitatively with standard 
CT. Psoas area measured at the L3 level used to estimate SMI and 
average MSBDS score resulted to have a strong and significant 
association. Low muscle mass and elevated bone damage were 
present in 24/74 (32.4%) of and normal/non-low muscle mass 
and low bone damage were present in 30/74 (40.5%) of patients. 
This relationship was not related to other confounding factors 
as evaluated sex, cytogenetic status, staging and relapse. In our 
group of patients, the number of female patients with sarco-
penia was higher than male patients with sarcopenia. This study 
examines the relationship of muscle mass estimated using CT 
and bone damage using a quantitative score recently introduced 

Table 2. Association between muscle mass estimated with SMI and bone damage in multiple myeloma patients estimated with 
MSBDS

Normal/non-low muscle mass Low muscle mass Total
MSBDS high 8 24 32 (43.2%)

MSBDS low 30 12 42 (56.8%)

Total 38 (51.4%) 36 (48.6%) 74

MSBDS, myeloma spine and bone damage score; SMI, skeletal muscle index.
p = 0.001 for McNemar’s test for paired binary data.

Figure 2. a) Kaplan–Meyer for SMI of patients with low (blue line) and normal muscular mass (green line). (b) Kaplan–Meyer plot 
for MSBDS of patients with high (blue line) and low bone damge scores (green line). MSBDS, myeloma spine and bone damage 
score; SMI, skeletal muscle index.
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and tailored to MM patients. Few data are present in literature 
regarding body composition evaluation made on CT images in 
patients with MM. Takeoka at al51 in 2016 studied the associ-
ation between several body composition indexes (such as SMI, 
subcutaneous adipose tissue index and visceral adipose tissue 
index) and the overall survival in consecutive MM patients with 
newly diagnosed symptomatic disease. This study showed that 
low subcutaneous adipose tissue at baseline could be considered 
a predictor of poor survival outcome,52 not only in MM patients, 
but also in other neoplastic conditions, such as colon, prostate, 
renal cell carcinoma or diffuse large B-cell lymphoma.53

Although sarcopenia evaluated on CT images is widely recog-
nized as a poor prognostic factor in several oncological and 
non-oncological diseases,5,11,12,14,21,24,26,32,36–40,42,48,51–60 few 
and controversial data regarding the role of sarcopenia and 
bone damage in MM are present. Williams et al61 conducted a 
single-centre retrospective study to assess the impact of muscle 
quality in MM finding that sarcopenia was found in 72 (51%) 
of patients and associated with increased early post-transplant 
cardiovascular complications in MM. In the study by Williams 
et al sarcopenia was defined as ≤80% high-density muscle which 
is different from our definition of CT-based sarcopenia. We used 
a more widely accepted cut-off for the SMI of <41 cm2/m2.2,3 
Compared to the study by Williams et al,61 the prevalence of 
patients with MM and sarcopenia was 18/74 (24%), which is 
lower than previously reported. Zakaria et al62 found that CT-de-
rived morphometric analysis of psoas size as a hallmark of sarco-
penia, could predict overall survival in patients with lung cancer, 
breast cancer, prostate cancer, and MM metastases to the spine 
even after multivariate analysis accounting for demographic, 
oncologic, functional, and therapeutic factors. Zakaria et al62 
stated that patients with spinal metastases (from lung, breast, 
prostate, or MM) and clinical signs of sarcopenia, as measured by 
psoas size, have decreased overall survival. However, the patients 
with MM in this study were only 46 and it is not clear if the 
decreased overall survival of the 417 patients considered is true 
also for the minority of MM patients. In our study, the presence 
of sarcopenia was not related to poorer survival as shown in the 
Kaplan–Meyer curve as well as the presence of bone damage was 
not related to worse survival. However, our study suggest that 
it is possible that muscular status and bone damage are linked 

is some way. Indeed, recent researches on the skeletal muscle 
showed that the skeletal muscle is not only the organ related to 
mobility, but also a secondary secretory organ with endocrine 
functions via the myokines system. Myokines regulates meta-
bolic homeostasis and represent an effective and underevaluated 
crosstalk between skeletal muscle and other target organs, such 
as the adipose tissue and the bone.10,27,29,30 Our study generates a 
hypothesis that in MM patients, muscular status and bone lesions 
typical of MM, such as the lytic lesions, evaluated specifically by 
the MSBDS, are somehow linked. Due to the retrospective nature 
of this study, we are not able to explore further this association 
with the data available, but we suggest that further investigations 
are needed to better describe the relationship and prognostic 
significance of bone damage and sarcopenia in MM patients.

Our study is limited by the retrospective nature of the data collec-
tion, by the relatively small number of patients considered, by the 
novelty of the quantitative score used to assess bone damage on 
CT, however we were not able to find another quantitative score 
tailored on MM, and by the necessity to arbitrary define sarco-
penia and high bone damage. Further analysis could include 
the evaluation of serial CT scans and increasing the number of 
patients.

We conclude that sarcopenia and bone damage, affected MM 
patients undergoing stem cell transplantation, are significantly 
associated. Our study results can be used for further future 
investigations to support our hypothesis about the relationship 
between muscle and bone in MM patients.
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Abstract: Multiple myeloma is a plasma cell dyscrasia characterized by focal and non-focal bone
lesions. Radiomic techniques extract morphological information from computerized tomography
images and exploit them for stratification and risk prediction purposes. However, few papers so far
have applied radiomics to multiple myeloma. A retrospective study approved by the institutional
review board: n = 51 transplanted patients and n = 33 (64%) with focal lesion analyzed via an
open-source toolbox that extracted 109 radiomics features. We also applied a dedicated tool for
computing 24 features describing the whole skeleton asset. The redundancy reduction was realized
via correlation and principal component analysis. Fuzzy clustering (FC) and Hough transform
filtering (HTF) allowed for patient stratification, with effectiveness assessed by four skill scores.
The highest sensitivity and critical success index (CSI) were obtained representing each patient, with
17 focal features selected via correlation with the 24 features describing the overall skeletal asset. These
scores were higher than the ones associated with a standard cytogenetic classification. The Mann–
Whitney U-test showed that three among the 17 imaging descriptors passed the null hypothesis.
This AI-based interpretation of radiomics features stratified relapsed and non-relapsed MM patients,
showing some potentiality for the determination of the prognostic image-based biomarkers in disease
follow-up.

Keywords: multiple myeloma; computerized tomography; image processing; pattern recognition;
artificial intelligence

1. Introduction

Plasma cell dyscrasias (PCDs) include monoclonal gammopathy of undetermined
significance (MGUS), smoldering multiple myeloma (SMM), and full-blown multiple
myeloma (MM) [1]. Around 5% of the population over 70 are MGUS patients, and for
around 1% of them MGUS will probably turn into MM every year. Around 10% of the SMM
population evolves into full-blown MM, whose early mortality is nowadays around 28%
five years after diagnosis [2]. MM is still an incurable disease, whose definition relies on the
International Myeloma Working Group (IMWG) consensus updates, which is characterized
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by a notable clinical heterogeneity, so that the search for consolidated biomarkers predicting
the disease outcome and progression is still a crucial open issue [3–5].

The presence of either single or multiple bone lesions is a typical signature of MM,
which is related to the proliferation of tumor cells from a single clone, so that the unbalanced
activation of osteoclasts erodes the medullary and even the cortical bone [6].Therefore,
the CRAB criteria of IMWG underlines the importance of imaging for MM assessment,
and recent staging systems rely on the use of imaging modalities like magnetic resonance
imaging (MRI), computerized tomography (CT) and hybrid positron emission tomography
with CT (PET/CT) [3,4,6–15]. However, just the availability of different imaging modalities
and the high variability of image interpretation imply a notable heterogeneity as far as the
use of imaging for MM clinical practice is concerned [6,12,16].

At a more specific level, the limitations of the use of imaging for MM assessment are
essentially due to three open issues: the lack of accuracy in differentiating focal from diffuse
patterns, the difficulty in extracting reliable prognostic biomarkers from pattern allocation,
and the low agreement in staging MM patients based on imaging outcomes [17,18].

The application of pattern recognition algorithms for the extraction of radiomics de-
scriptors from images of MM patients and the post-processing of such radiomics features
by means of procedures based on artificial intelligence (AI) are nowadays introducing a
novel approach for increasing the reliability of imaging in MM clinical assessment [17–20].
The objective of the present study is to assess the feasibility of an AI-based approach for
the automatic stratification of MM patients from CT data, and for the automatic identifi-
cation of radiological biomarkers with a possible prognostic value. Specifically, relying
on radiomics and AI-based computational analysis [19,21,22], this feasibility study shows
that a set of descriptors of the focal lesions in MM X-ray CT at diagnosis allows for the
automatic stratification of a cohort of MM patients who have undergone transplantation in
two clusters, whose characteristics can be interpreted via comparison with clinical data,
biological biomarkers, and the clinical outcome of the disease.

2. Materials and Methods
2.1. Study Populations, Inclusion Criteria, and Risk Stratification

This study was performed according to the Declaration of Helsinki and the Interna-
tional Conference on Harmonization of Good Clinical Practice Guidelines. An institutional
review board was obtained (054REG2019). All patients signed informed consent for retro-
spective research before CT examination; data collection did not influence patient care. We
considered 51 consecutive patients (mean age, 56 years ± 8; range, 31–73 years; 18 females;
33 males) admitted to the Hospital (BLIND for REVIEW) in the last five years because of
biopsy confirmed MM. Inclusion criteria were baseline whole-body CT from the Hospital
PACS or outpatient clinic. Among these 51 patients, we selected the 33 presenting at least
one focal lesion in one of the CT slices, i.e., at least one >5 mm lytic lesion in the axial or
extra-axial skeleton [17,18] (see Figure 1). Two radiologists blinded to the diagnosis and to
each other’s conclusion assessed whether the CT pattern was diffuse or focal, and, for each
patient presenting at least one focal lesion, we identified the largest one.

Risk stratification was performed at diagnosis by the Revised International Staging
System (ISS) combining serum beta2-microglobulin and serum albumin, lactate dehy-
drogenase for three-stage classification, and cytogenetics determining a binary normal-high
risk stadiation [23,24]. Table 1 provides a summary of the clinical features (diameter of
focal lesion: mean: 19.9 mm, STD: 13.4 mm, min: 4.5 mm, max: 62.4 mm).
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Table 1. Clinical features of the 33 MM patients included in the analysis. R-ISS stage: I: ISS stage I
and standard-risk CA by iFISH and normal LDH. II: Not R-ISS stage I or III; III: ISS stage III and
either high-risk CA by iFISH or high LDH. CA—chromosomal abnormalities; iFISH—interphase
fluorescent in situ hybridization; ISS—International Staging System; LDH—lactate dehydrogenase;
MM—multiple myeloma; R-ISS—revised International Staging System.

Characteristic Number %

Patients 33 100
Age (years) Mean 56

Age SD 1 6.7
Males 21 66.4

Females 12 34.6
Cytogenetics

Normal 22 66,7
High risk 11 33,3
Relapsed 17/33 51,5

Days before Relapse (mean) 1138
Days of follow-up (mean) 1317

International Staging
System
Stage I 15 45.4
Stage II 9 27.3
Stage III 9 27.3

1 Standard Deviation.

2.2. Image Analysis

To compute each patient’s overall skeletal asset, we utilized a published software tool
(Bone-GUI, http://mida.dima.unige.it/software/bone-gui/; accessed on 20 September
2021) [25] combining thresholding and active contours. For each subject, Bone-GUI pro-
vided 24 features. Separately for the whole, axial, and skeleton districts, it computed the
following: the mean medullary Hounsfield value with standard deviation, the volume of
the global medullary asset, the mean cortical Hounsfield value with standard deviation,
the volume of the cortical asset, the rate of volume occupied by the medullary tissue,
and the overall volume.

http://mida.dima.unige.it/software/bone-gui/
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We also applied an open source tool for radiomics (Slicer, https://www.radiomics.io/
slicerradiomics.html; accessed on 20 September 2021) [26–28] to the 33 lytic lesions on the
compact bone tissue to extract 109 Slicer features for each focal lesion.

2.3. Reduction of Redundancy

Our AI-based analysis for patients’ stratification utilized Slicer features as the input.
To reduce information redundancy, we considered two approaches. In the first approach,
principal component analysis (PCA) [29] projected the feature space onto a principal
components’ subspace explaining at least 80% of the data variance. In the second approach,
we performed two Pearson’s correlation processes (p > 95%) involving the Slicer features
and (a) the binary feature encoding patient’s relapse one year after transplantation, and (b)
all 24 Bone-GUI features. We applied PCA to the features selected using the two correlation
processes. Figure 2 illustrates this redundancy reduction pipeline.
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Figure 2. The pipeline of the radiomics features analysis. For each patient, the focal lesion was pointed out and the
corresponding CT image was fed into a radiomics tool (Slicer), which computed 109 radiomics features; these descriptors
were correlated with both the clinical outcome of the disease at one year, and the global radiological features extracted by
means of a segmentation tool (Bone-GUI); the resulting mostly correlated features and the set of all local features were
processed by means of two unsupervised AI algorithms (FCM and HTF) for stratification purposes.

2.4. Clustering

Clustering organized a set of unlabeled samples into clusters based on data similar-
ity [30]. Data partition was obtained by minimizing a cost function involving the distances
between the data and cluster prototypes. In Fuzzy C-Means (FCM) a degree of membership
is assigned to each sample with respect to each cluster. In addition to FCM, we applied a
non-linear approach based on the filtering of an extended version of the Hough transform
(HTF) [31], according to the following steps (Figure 3):

1. Downstream of the PCA process, the two-dimensional feature space given by the two
components explaining most of the data variance (namely, PC1 and PC2) was constructed
for each data set.

2. Given a feature space, the Hough transform of each point in the patient’s set with
respect to the family of all parabolas was computed. As this family was characterized
by three parameters, i.e., its equation is y_PC2 = ax_PC1ˆ2 + bx_PC1 + c, with a, b,
and c being the parameters, and the corresponding parameter space has three dimensions.

https://www.radiomics.io/slicerradiomics.html
https://www.radiomics.io/slicerradiomics.html
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3. The Hough accumulator was computed by counting the number of times each Hough
transform passed through one of the cells of the discretized parameter space.

4. The Hough accumulator was filtered by a 5-pixel-side cube centered on the pixel
with a maximum grey value. This cube was the smallest one enclosing the cells,
with accumulator values higher than 50% of the maximum [32].
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Figure 3. The HTF process for stratification. The feature space is constructed by applying PCA to the set of feature vectors
(top left panel); for each point in the feature space the HT is computed with respect to the family of all parabolas (top
right panel); the corresponding Hough accumulator is filtered by the smallest cube, including the cells with values higher
than 50% of the accumulator maximum (bottom left panel); each filtered line is projected back into the feature space, thus
generating the cluster of points associated to the parabola corresponding to the maximum of the Hough accumulator
(bottom right panel).

Each line passing through the filtered region was projected back to the image space,
thus generating a cluster of points in a strip around the parabola corresponding to the
maximum in the Hough accumulator. The remaining points represent the second cluster
made of points outside of the strip of parabolas previously identified.
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3. Results
3.1. Clinical Findings

Focal lesion searching led to the selection of 33/51 (65%) patients (mean age, 56 years
± 7; range, 45–69 years; 12 females; 21 males) whose imaging data were considered for
our computational analysis. Inter-observer agreement in differentiating diffuse from focal
pattern between the two groups of radiologists resulted in 0.75 (95% Confidence Interval:
0.31–0.67) and 0.96 (95% Confidence Interval: 0.79–0.99) for the selection of patients with
focal lesions.

3.2. AI-Based Analysis

The AI-based analysis involved three data sets (see Table 2): data set 1, made of all
109 local features extracted by Slicer from each focal lesion; data set 2, made of the eight
local features mostly correlating with the relapsed/non-relapsed binary feature; and data
set 3, made of the 17 local features mostly correlating with the 24 Bone-GUI global features.
The application of PCA to these three data sets led to three features spaces, with n = 5 axes
for data set 1, n = 3 axes for data set 2, and n = 2 axes for data set 3.

Table 2. Radiomics features extracted by means of image and correlation analysis.

Data Set Name Vector
Dimension SW Tool Feature Type Correlation

Data set 1 109 Slicer focal no
Data set 2 8 Slicer focal relapses
Data set 3 17 Slicer focal global features

In each one of these three feature spaces, FCM and HTF computed two clusters:
in each cluster, the black circles are associated with patients that underwent relapse within
one year of bone marrow transplantation. Cluster A (B) contained the maximum (minimum)
number of relapsed patients; in Figure 4, Clusters A (B) are coded with blue (orange).
Table 3 contains a summary of how the clusters are populated for each of the three data
sets and each of the two AI methods utilized for the analysis.

In order to assess the performances of the clustering algorithms, we computed the
confusion matrices for the observed relapsed patients; specifically, we counted the number
of true positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs)
using cluster A as the reference cluster for the “relapsed” class and cluster B as the reference
cluster for the “non-relapsed” class. Using the entries of such matrices, we computed four
different skill scores:

Sensitivity = TP/(TP + FN)
Specificity = TN/(TN + FP)
Youden’s index = Sensitivity + Specificity − 1
Critical Success Index (CSI) = TP/(TP + FN + FP).
We show that the CSI ranged from 0 to 1 and it was higher as much as the number

of FPs and FNs was small, regardless the number of TNs. CSI is therefore a useful score
in conditions like the one we considered here, where we had an unbalanced data set with
more non-relapsed cases than relapsed ones.

We tested the robustness of our results by performing a bootstrap analysis on the
set 33 17-dimension feature vectors of that set. We constructed 100 random realizations
of training sets made of 20 feature vectors (of which 10 representing relapsed patients)
and, for each realization, we applied the HTF clustering process. Then, for each realization
of the training set, we computed the membership cluster for each one of the remain-
ing 13 vectors representing the test set. Repeating this procedure for each one of the
100 realizations of the training-test set pairs led to the construction of 100 confusion ma-
trices and, therefore, to 100 sets of skill score values that we averaged in Table 4, together
with the corresponding standard deviations. We also performed a bootstrap analysis on
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the cytogenetics values. In order to compute the entries of these last confusion matrices, we
compared the relapse/non-relapse with the high/standard cytogenetic stages: a relapsed
patient with a “high” cytogenetic stage was a TP event, while a relapsed patient with a
“standard” cytogenetic stage was an FN. A non-relapsed patient with a “standard” cyto-
genetic stage was a TN event and a non-relapsed patient with a “high” cytogenetic stage
was an FP event. We show that the separation between the standard and high cytogenetic
stage was realized according to the standard cytogenetic evaluation for separating patients
with a high-risk mutation (poor prognosis in general) from patients without high-risk
mutations [24,33].
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Table 3. Results of the clustering process provided by a fuzzy clustering method (FCM) and a non-linear filtering approach
based on an extended version of the Hough transform (HTF). The symbol # denotes the cardinality of the set of vectors.

Method Data Set # of Vectors
Cluster A

# of Vectors
Cluster B

# of Relapses
Cluster A

# of Relapses
Cluster B

FCM 1 16 17 6 10
FCM 2 25 8 8 8
FCM 3 23 10 11 5
HTF 1 20 13 8 8
HTF 2 12 21 7 9
HTF 3 25 8 16 0

Table 4. Skill scores corresponding to the clustering analysis performed by means of FCM and HTF
on the three data sets considered in the paper. The mean and standard deviation values are obtained
by means of a bootstrap analysis that generated 100 random training sets made of 30 patients and,
correspondingly, 100 random validation sets made of 13 patients. The last two rows contain the
results of the analysis for the cytogenetics data associated with the patients.

Method Data Set Sensitivity Specificity Youden CSI

FCM 1 0.46 ± 0.12 0.5 ± 0.14 −0.04 ± 0.13 0.3 ± 0.08
FCM 2 0.58 ± 0.35 0.55 ± 0.48 0.13 ± 0.15 0.3 ± 0.08
FCM 3 0.4 ± 0.24 0.55 ± 0.22 −0.06 ± 0.15 0.25 ± 0.12
HTF 1 0.38 ± 0.13 0.55 ± 0.16 −0.06 ± 0.15 0.25 ± 0.09
HTF 2 0.63 ± 0.19 0.33 ± 0.25 −0.04 ± 0.34 0.37 ± 0.16
HTF 3 0.87 ± 0.14 0.4 ± 0.13 0.27 ± 0.2 0.52 ± 0.1

Cytogenetics 0.45 ± 0.16 1.00 ± 0.02 0.44 ± 0.16 0.44 ± 0.16

3.3. Feature Ranking

To investigate which radiomics features mostly contribute to an effective stratification
of the MM patients, we focused on the case of data set 3. The reason for this choice is
because, when analyzed with HTF, this set provided, by far, the highest sensitivity values
and, significantly, the highest CSI values among the three data sets considered. Therefore,
we analyzed the feature compositions of the two axes produced by the application of
PCA on the original feature space of this data set, made of 17 features. In Figure 5,
we show the contribution of the 17 features to the first (light blue) and second (dark
purple) principal component (PC). These contributions were weighted by the percentage of
explained variance of the two PCs (77% and 9% for the first and second PC, respectively).
A Mann–Whitney U-test on these features showed that just three of them did not pass the
null hypothesis (p > 99%): “MaskMaximum”, which denotes the maximum grey level value
in the mask segmenting the focal lesion (172.6 ± 64.4 in Cluster A; 321.9 ± 48.6 in Cluster
B); “firstorderRange”, which denotes the range of the distribution of the voxel intensities
(194.7 ± 61.8 in Cluster A; 343.4 ± 66.9 in Cluster B); and “ngtdmComplexity” (29.8 ± 24.9
in Cluster A; 79.4 ± 43.5 in Cluster B), which is a measure of the non-uniformity of the
lesion image in the grey level intensity.
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4. Discussion

This study demonstrates that AI supported radiomics realize a clustering of MM
patients with a statistical reliability that, for some skill scores, is higher than the one
provided by standard biochemical staging. The possibility to increase the predictive
potential of the standard CT images of patients with multiple myeloma is clinically relevant
for several reasons.

The first is that although MM is still considered a single disease, it is actually a col-
lection of several different cytogenetically distinct plasma cell malignancies [2]. Trisomies
and IgH translocations are considered primary cytogenetic abnormalities, and occur at the
time of establishment of MGUS [2]. At the present time, there are three specific biomarkers
for MM with an approximately 80% risk of progression to symptomatic end-organ damage
in two or more independent studies: clonal bone marrow plasma cells ≥60%, serum free
light chain (FLC) ratio ≥100 (provided involved FLC level is ≥100 mg/L), and more than
one focal lesion on magnetic resonance imaging (MRI). It is known that almost all patients
with MM eventually relapse and the choice of a treatment regimen at relapse is affected by
many factors, including the timing of relapse, response to prior therapy, aggressiveness
of relapse, and performance status (TRAP) [2]. Therefore, the prediction of relapse early
is important to foresee a therapy. Second, several studies have correlated bone patterns
in MM with their prognostic value using MRI and CT [9,10,17,18,21,34]. MRI can be used
to differentiate up to five different patterns of plasma cell infiltration, including normal
appearance, focal involvement, homogeneous diffuse infiltration, diffuse infiltration with
additional focal lesions, and variegated or salt-and-pepper patterns; on the other hand, CT
is well suited for small (below 5 mm) focal bone lesions due to its high spatial resolution
capabilities [9].
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The AI-based analysis of the radiomics properties extracted from the focal lesions
essentially pointed out two aspects. First, the redundancy of the radiomics features seem to
impact the prognostic power of the clustering methods. However, the stratification power
increases when correlation-based and PCA-based reduction of redundancy processes are
applied. Second, the use of a non-linear approach to clustering, namely HTF, seems to
provide better results with respect to a more standard fuzzy clustering algorithm; this
may be explained because of the high degree of heterogeneity that characterizes MM.
The skill scores computed for each data set and each classification method helped us to
determine which approach to redundancy reduction and which algorithm performs better
for stratification purposes. Among the four skill scores, CSI probably represents the one
that best interprets the outcomes of the confusion matrices in this context. Indeed, this
score emphasizes the correct prediction of relapses in correspondence with a low rate
of misclassification. Interestingly, the application of HTF on the focal features mostly
correlating with the skeleton asset’s global properties (which are extracted by Bone-GUI)
leads to the highest value for this score: this seems to point out a favorable prognostic role
for the interplay between local and global descriptors of the MM bone tissue. In this case,
the CSI value is higher than the discriminative value provided by the cytogenetic data,
which supports the reliability of radiomics as a prognostic tool for MM clinical practice.
This conclusion is confirmed by a bootstrap analysis performed on data set 3.

Data set 3 is made of the focal descriptors that mostly correlate with the whole
skeleton’s asset properties. Therefore, this correlation analysis per se realizes a feature
selection process whose outcome is a set of 17 features. A finer feature selection is provided
by PCA, as shown in Figure 5. This figure and the related Mann–Whitney U-test point
to a significant emphasis on properties related to the heterogeneity of the focal lesion,
such as the Hounsfield unit range and maximum values found in the lesion, and the
complexity, which measures the non-uniformity of the image and the presence of rapid
changes in intensity.

We finally show that the data collection for this study has been realized by means
of a single, specific CT scanner, so that the images we used for feature extraction were
homogeneous. Recent studies [35] have shown that the characteristics of the extracted
features may depend on non-tumor related factors like the signal-to-noise ratio of the
experimental data. Therefore, in the case of studies that utilize data from more than
one scanner, data homogenization should be implemented prior to the data extraction
process [36].

5. Conclusions

This computational approach to the interpretation of radiomics focal features shows
the potential for the stratification of relapsed and non-relapsed MM patients, and could
represent a prognostic procedure for determining the disease follow-up and therapy.
Concerning the technical issues to be discussed, the present study has several strengths:
the use of clinically available CT images collected in the normal daily workup did not
influenced patient care in any way. Second, we used a free open-source tool for radiomics
assessment of the focal lytic lesions. Among the limitations of the present study, we
acknowledge the retrospective nature, which did not allow for perfect timing between CT,
diagnosis, and therapy or relapse. In addition, the evaluation of the radiomics features was
made only with one open-source tool, and we did not evaluate whether the usage of other
tools would have introduced variability to a significant extent. Finally, the overall number
of patients included was relatively low: indeed, a correct sample size in radiomics is at
least five times the number of extracted features [37], and this condition would require
a population of at least 100 MM patients. Nonetheless, the possibility to obtain a cluster
of features to identify relapses even in a 33 patient sample is in favor of the validity
of this method. This initial study warrants prospective studies with a high number of
patients, which are currently underway, in order to validate this approach, with the aim of
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implementing, it in a more systematic way, a method of obtaining a more robust prognostic
score for MM patients.

Summing up the results of this study, we remind that our objective was to validate
the feasibility of the automatic stratification of MM patients by means of an analysis of
the descriptors extracted fromCT data within the framework of a radiomics retrospective
study. This analysis showed that unsupervised AI can predict relapse within one year after
transplantation and can identify a few imaging features associated with the heterogeneity
of the focal lesion with a high prognostic value.
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Abstract: Background and objectives: In order to increase the accuracy of lytic lesion detection in multiple
myeloma, a dedicated second-opinion interpretation of medical images performed by subspecialty
musculoskeletal radiologists could increase accuracy. Therefore, the purpose of this study is to
evaluate the added value (increased accuracy) of subspecialty second-opinion (SSO) consultations
for Computed Tomography (CT) examinations in Multiple Myeloma (MM) patients undergoing
stem cell transplantation on standard computed tomography with a focus on focal lesion detection.
Materials and Methods: Approval from the institutional review board was obtained. This retrospective
study included 70 MM consecutive patients (mean age, 62 years ± 11.3 (standard deviation); range,
35–88 years) admitted in the last six years. Pre-transplant total-body CT (reported by general
radiologists) was the only inclusion criteria. Each of these CT examinations had a second-opinion
interpretation by two experienced subspecialty musculoskeletal (MSK) radiologists (13 years of
experience and 6 years of experience, mean: 9.5 years), experts in musculoskeletal radiology and
bone image interpretation with a focus on lytic lesions. Results: Per lesion intra- and inter-observer
agreement between the two radiologists was calculated with K statistics and the results were good
(K = 0.67: Confidence Inteval (CI) 95%: 0.61–0.78). When the initial CT reports were compared with
the re-interpretation reports, 46 (65%) of the 70 cases (95% CI: 37–75%) had no discrepancy. There
was a discrepancy in detecting a clinically unimportant abnormality in 10/70 (14%) patients (95% CI:
7–25%) unlikely to alter patient care or irrelevant to further clinical management. A discrepancy
in interpreting a clinically important abnormality was registered in 14/70 (21%) patients for focal
lesions. The mean diameter of focal lesions was: 23 mm (95% CI: 5–57 mm). The mean number of
focal lesions per patient was 3.4 (95% CI). Conclusions: subspecialty second-opinion consultations
in multiple myeloma CT is more accurate to identify lesions, especially lytic lesions, amenable to
influence patients’ care.

Keywords: multiple myeloma; computed tomography; second-look; lytic lesions; bone; staging

1. Introduction

Multiple myeloma (MM) is a hematologic disorder characterized by an excessive production of the
immunoglobulin M component of plasma cells. In MM, the bone lesions of myeloma are determined
by the proliferation of cells from a single clone. Then, osteoclasts are activated and destroy the bone [1].
MM, known with the abbreviation CRAB (hyperCalcemia, Renal failure, Anaemia, and lytic Bone lesions)
is a cytogenetically heterogenous disorder of clonal plasma cells [1]. The extent of the bone disease
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negatively influences patients’ quality of life, increasing both morbidity and mortality. The detection of
lytic bone lesions on imaging separates asymptomatic from symptomatic MM patients, even if no clinical
symptoms are present [1–4]. Medical imaging is pivotal in the management of patients with MM. Imaging
is used to detect bone lesions, to predict the risk of early progression from smoldering MM (sMM) to
active MM, to identify extra-medullary disease and to identify the sites of possible pathologic fractures
or neurologic complications [3]. In patients with a recent diagnosis of MM, focal lesions detected with
Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) or Positron Emission Tomography
(PET)/CT are important for correct treatment and for prognosis [3]. In MM, “focal lesions” detected
by MRI should not be confused with “lytic lesions” detected by CT. Indeed, the detection of at least
one lytic lesion is a negative prognostic factor for patients with MM [2,5,6]. In 2014, the International
Myeloma Working Group (IMWG) updated the definition of MM: the presence of at least one lytic lesion
detected not only by conventional radiography but also by CT, WBLDCT, or PET/CT was included in
the definition [7]. The incorporation of imaging modalities such as CT and PET/CT is recommended
(grade A) according to the recent literature [3]. However, in MM patients, differentiation between a focal
and a diffuse pattern on CT is still difficult even with Radiomics [6]. To increase the accuracy in lytic
lesion detection, a dedicated second-opinion interpretation of medical images performed by subspecialty
musculoskeletal radiologists could be more accurate.

In many centres, consultation and second-opinion interpretation of medical images by subspecialty
radiologists are routinely performed [8–12]. Therefore, the purpose of this study is to evaluate the
increased detection of focal lesions and other radiological findings of subspecialty second-opinion
(SSO) consultations for CT examinations in MM patients undergoing stem cell transplantation on
standard computed tomography.

2. Materials and Methods

Approval from the institutional review board was obtained (003REG2019). All patients signed
a written, informed consent form for retrospective research purposes, before CT examination. SSO
was applied to CT data collected in the clinical workup and did not influence patient care in any way
because the study was made retrospectively.

2.1. Inclusion Criteria

This retrospective study evaluated n = 70 consecutive patients (mean age, 62 years ± 11.3 (standard
deviation); range, 35–73 years) treated at the IRCCS Policlinico San Martino Hospital (Genoa, Italy) for
MM in the last six years. Pre-transplant total-body CT with minimal technical standard (Table 1) available
in the Hospital Picture Archiving and Communication System (PACS) or available in DICOM format
from CT acquired outside the hospital were the only inclusion criteria—the initial CT reading was done
by general radiologists with no known formal (ESSR Diploma, track record in MSK radiological activities)
or informal (staff rounds, reports of specialized MSK exams) specialized experience in MSK radiology.

Table 1. Minimal and standard Computed Tomography Technical parameters for inclusion.

Number of Detector Rows 16 or More up to 128

Minimum Scan coverage Skull base to femur

Tube voltage(kV)/time-current product (mAs) 120/50–70, adjusted as clinically needed

Reconstruction convolution kernel
Sharp, high-frequency (bone) and smooth (soft tissue).

Middle-frequency kernel for all images are adjusted by the
radiologist as deemed necessary

Iterative reconstruction algorithms Yes (to reduce image noise and streak artefacts)

Thickness ≤5 mm

Multiplanar Reconstructions (MPRs) Yes (sagittal, coronal and parallel to long axis of proximal limbs)

Matrix, Rotation time, table speed, pith index 128 × 128, 0.5 s, 24 mm per gantry rotation, 0.8
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2.2. Study Design

CT examinations were studied with a second-opinion interpretation by two experienced MSK
radiologists (A.T. 13 years of experience, F.R. 6 years of experience, mean: 9.5 years). The two
radiologists evaluated the CT examination blindly and in different sessions. To avoid reading
biases, an independent medical student was enrolled as data controller (DC). The DC checked that
second-opinion interpretation was done after removing all the information of the original CT. The
original report was removed. In addition, the DC made sure not to include a CT examination when the
radiologists had already been involved in image re-interpretation. The use of a DC has already been
explored in the literature [12].

Second-opinion consultation was made independently by using a 3-point scoring system.
The scoring system is similar to a scoring system already published and now adapted to MM patients [12]:
1, no discrepancy; 2, discrepancy in detecting an unimportant abnormality (e.g., interpreting a bone
infarct as a bone island, osteophytes, disc degeneration, old vertebral collapse, not neoplastic or clearly
benign bone lesions); 3, discrepancy in interpreting an important abnormality (e.g., interpreting the
presence of a lytic lesion >5 mm). Lytic bone lesions, size or number, non-lytic lesions, extramedullary
manifestations and osteonecrosis (only if not detected by general radiologists), and fractures were
considered. The clinically important differences were defined as those likely to change patient care
or diagnoses according to suggestions given by our clinician on a per patient analysis (for example,
a lytic lesion in a CT reported as negative at initial reading). For example, a lytic lesion could be used
to stage the disease according to the Durie and Salmon PLUS staging system. After per lesion intra-
and inter-observer agreement calculation, reports were re-evaluated together when their scorings were
discordant. Discrepancies, mainly lytic lesions, that were significant enough to warrant a change in
diagnosis, prognosis, invalidity (for medico-legal implications) or treatment or referral (e.g., orthopedic
surgeon, radiation oncologist specialist) were recorded.

2.3. Reference Standard

For this study, radiologists’ consensus was the best feasible reference standard available [2,6]
because biopsy is not always available for all suspicious areas on CT. The best valuable comparator, or
reference standard (BVC), was constructed as described elsewhere [5–7,13,14]. One hematologist, two
radiologists and one radiation oncologist, all with > 10-year clinical experience, reviewed CT, MRI
and PET/CT examinations and clinical follow-up for clinical significance. True positive or negative
examinations were defined by lesion progression or by new lesions on follow-up imaging, or lesion
response with therapy, and evolution of biologic parameters. False positive examinations were defined
by an absence of new lesions on follow-up imaging studies. False negative examinations were defined
by the failure of lesion detection [15]. Diffuse bone marrow infiltration in the skeleton was recorded
according to Staebler et al. (lesions <5 mm, not osteoporosis) [15]. Focal pattern was defined as the
presence of at least one >5 mm focal or lytic lesion. The presence of at least one focal or lytic lesion was
considered relevant because it is a prognostic factor MM [5,6].

2.4. Statistical Analysis

(1) Per lesion intra- and Inter-observer agreement between the two radiologists was calculated
with K statistics. p values below 0.05 were considered statistically significant. Agreement was assessed
according to Altman [16] and adapted from Landis and Koch [17]. Values of 0.81–1.00 indicated
very good agreement, 0.61–0.80 indicated good agreement, 0.41–0.60 indicated moderate agreement,
0.21–0.40 indicated fair agreement, and 0.20 or lower indicated poor agreement;

(2) Statistical comparisons of rates were performed using a chi-square test with Bonferroni
corrections. Statistical tests were done using statistical software (STATA MP, StataCorp, 4905 Lakeway
Dr, College Station, TX, USA and MedCalc).
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3. Results

Intra- and Inter-observer agreement between the two radiologists was calculated with K statistics
and the results were good (K = 0.67: IC 95%: 0.61–0.78) in scoring the discrepancies between
subspecialized second-opinion consultations and standard CT reports, but consensus scores were used
for further analysis as planned in the study protocol. Overall scores of subspecialized second-opinion
consultations versus outside reports are summarized in Table 2.

Table 2. Consensus Scores of Subspeciality Second-Opinion Consultation Versus Standard
CT Interpretation.

Discrepancy Score Category No. (%) of Examinations

1, no discrepancy. 46 (65%)

2, discrepancy in detecting a clinically unimportant abnormality (e.g., a
missed case of mild degenerative disease, interpreting a bone infarct as a
bone island).

10 (14%)

3, discrepancy in interpreting a clinically important abnormality (e.g.,
interpreting the presence of a lytic lesion >5 mm or the presence of
osteonecrosis or vice versa).

14 (21%)

Total 70 (100%)

As reported in Table 2, when the initial CT reports were compared with the re-interpretation
reports, 46 (65%) of the 70 cases (95% CI: 37–75%) were graded 1, no discrepancy. There was a
discrepancy in detecting a clinically unimportant abnormality in 10/70 (14%) patients (95% CI: 7–25%)
unlikely to alter patient care or irrelevant to further clinical management. A discrepancy in interpreting
a clinically important abnormality (e.g., interpreting the presence of a lytic lesion >5 mm) was registered
in 14/70 (21%) patients. As shown in Table 3, the majority of discrepancies that were clinically significant
(Score Category 3) were due to significant focal lesion detection discrepancies. The mean diameter of
all detected focal lesions was: 23 mm (95% CI: 5–57 mm). The mean number of focal lesions per patient
was 3.4 (range: 0-20; 95% CI:1.1–4.7). As a whole, n = 60 patients had focal lesions and n = 10 had
none. In n = 14 patients without detected lesions by the initial report SSO found “new” lesions, thus
potentially changing further treatment planning.

Table 3. Disease Category Versus Discrepancy Rates.

Disease Category Discrepancy Score
Category 1

Discrepancy Score
Category 2

Discrepancy Score
Category 3

Focal Lesion Detection 46 - 14

Diffuse Pattern 17 4 -

Osteonecrosis - 1 -

Number of Focal Lesion - 6 -

4. Discussion

In radiological clinical practice, it is quite common to have dedicated subspecialty second-opinion
consultations, especially in tertiary academic centres with tumor board meetings, often known as
disease management teams. However, we were not able to find the relevant literature regarding
subspecialty second-opinion consultations in multiple myeloma CT. Indeed, there is growing interest
in the evaluation of bone status in MM due to the increasing evidence that the presence of certain bone
marrow patterns may be useful to stage and predict the outcome of MM [5–7,13,18,19]. In addition,
there is a growing interest in the evaluation of lytic lesions due to their possible influence on
prognosis [5]. For example, Rasche et al. [5] investigated the prognostic value of focal lesion size
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in 404 transplant-eligible, newly diagnosed, MM patients with Magnetic Resonance Imaging. The
authors [5] used a diffusion-weighted sequence to identify the presence of multiple large focal lesions.
They found that focal lesions are strong prognostic factors. According to Rasche et al. [5], of patients
with at least three large focal lesions with a product of the perpendicular diameters >5 cm, two were
associated with poor progression-free survival and overall survival. This pattern was seen in 13.8% of
patients and was independent of the Revised International Staging System [5]. In 2010, Hillengass et
al. [18], using Whole Body Magnetic Resonance Imaging, found that the presence of focal lesions is the
strongest adverse prognostic factor for progression. CT and PET/CT are now highly recommended in
MM evaluation [3] and the lytic lesion assessment in MM is difficult [6]. Therefore, the focus of the
present study is to improve the detection and characterization of clinically significant lytic lesions. In
the past, discrepancies between reports by radiologists at different levels of training and radiologists at
different clinical settings had discrepancy rates from 0.1% to 15% [12,20]. Compared to the published
literature, we found that the discrepancy rate in interpreting a clinically important abnormality
(e.g., interpreting the presence of a lytic lesion >5 mm) was 21% (14/70 patients), which is slightly higher
than the literature data. However, we do not have any MM-related data for comparison, but only
data derived from other pathological conditions. Our results highlight the necessity and the potential
benefit of a subspecialty second-opinion consultation in multiple myeloma CT, in order to avoid
medico-legal consequences. Furthermore, the main pathological finding that determined discrepancies
was the presence of a lytic lesion. The lytic lesion of MM could be difficult to detect, especially when
the diameter was between 5 and 10 mm and when located in an osteoporotic and degenerated vertebral
body. In these cases, the experience of dedicated MSK radiologists could be important. Some small
lytic lesions, for example, could be confused with Schmorl nodes, also referred to as intravertebral disc
herniations. This study has several limitations. We acknowledge that some CTs were not primarily
acquired to evaluate and detect focal lesions, therefore it is likely that these focal abnormalities were
under-reported. Perhaps a more focused clinical indication before CT acquisition and report could
improve focal lesion detection. Proper education of radiologists reporting MM radiological evaluation,
could improve the quality of the report further. There is no clear instruction at present in the primary
report for how to categorize disease entities regarding clinical relevance, therefore some of those
related to MM may be overlooked or even overestimated. In addition, second-look interpretations and
primary readings have been performed in different environments with different clinical priorities and
different levels of expertise. Furthermore, in certain radiological environments, there is an emphasis
on the quantity of work produced, which is easier to measure than the quality of interpretation [11].
Another limitation is that the scenario where expert MSK radiologists are present to reevaluate the CTs
of MM patients is difficult to propose. Indeed, subspecialty radiologists practice in large and academic
departments and are rare in smaller centres. In many developing countries, only general radiologists
are available and imaging interpretation is sometimes performed by physicians with very limited
training [21]. Finally, no correlation between discrepancies and the clinical outcome of MM patients
was possible to report due to the limited number of patients, the retrospective nature of the study, and
the fact that the presence of focal lesion is not the only determinant of poor prognosis.

5. Conclusions

In conclusion, our study demonstrated that subspecialty second-opinion consultation in multiple
myeloma CT could identify lytic lesions, previously missed, amenable to influence patients’ care.
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A B S T R A C T

Purpose: Focal pattern in multiple myeloma (MM) seems to be related to poorer survival and differentiation from
diffuse to focal pattern on computed tomography (CT) has inter-reader variability. We postulated that a
Radiomic approach could help radiologists in differentiating diffuse from focal patterns on CT.
Methods: We retrospectively reviewed imaging data of 70 patients with MM with CT, PET-CT or MRI available
before bone marrow transplant. Two general radiologist evaluated, in consensus, CT images to define a focal (at
least one lytic lesion> 5mm in diameter) or a diffuse (lesions< 5mm, not osteoporosis) pattern. N= 104
Radiomics features were extracted and evaluated with an open source software.
Results: The pathological group included: 22 diffuse and 39 focal patterns. After feature reduction, 9 features
were different (p < 0.05) in the diffuse and focal patterns (n= 2/9 features were Shape-based:
MajorAxisLength and Sphericity; n= 7/9 were Gray Level Run Length Matrix (Glrlm)). AUC of the Radiologists
versus Reference Standard was 0.64 (95 % CI: (0.49–0.78) p= 0.20. AUC of the best 4 features
(MajorAxisLength, Median, SizeZoneNonUniformity, ZoneEntropy) were: 0.73 (95 % CI: 0.58–0.88); 0.71 (95 %
CI: 0.54–0.88); 0.79 (95 % CI: 0.66–0.92); 0.68 (95 % CI: 0.53–0.83) respectively.
Conclusion: A Radiomics approach improves radiological evaluation of focal and diffuse pattern of MM on CT.

1. Introduction

Abnormal production of monoclonal immunoglobulin M component
of plasma cells and bone marrow increase of plasma cells is the typical
characteristic of multiple myeloma (MM). The bone lesions of myeloma
are caused by the proliferation of tumor cells from a single clone and
the activation of osteoclasts that destroy the bone [1]. Indeed, bone
disease reduces patients’ quality of life increasing both morbidity and
mortality, therefore the role of imaging is crucial in the management of
patients with MM. Imaging is important to detect bone lesions requiring
immediate start of therapy of follow-up after treatment, to predict the
risk of early progression from smoldering MM (SMM) to active disease,
to identify sites of extra-medullary disease and to identify sites of bone
disease at potential risk of pathologic fractures or neurologic compli-
cations [2]. According to recent staging systems for MM, in patients
with newly diagnosis, a correct treatment approach and evaluation of
prognostic factors rely also on focal lesion identification on Magnetic

Resonance Imaging (MRI), Computed Tomography (CT) or PET/CT [3].
Indeed, the role of conventional radiography, the standard of care for
many years, is going to be replaced by more sensitive methods. Com-
pared to conventional radiography, PET/CT [4] and whole-body low-
dose CT (WBLDCT) are able to detect the presence of active disease in
up to 25 %–40 % of cases, according to large retrospective studies [4].
It was demonstrated that the presence of at least one lytic lesion is a
negative prognostic factor for patients with MM [5]. In 2014, the In-
ternational Myeloma Working Group (IMWG) updated the definition of
MM including in the definition the presence of at least one lytic lesion
detected not only by conventional radiography but also by one of the
novel morphologic imaging techniques, such as CT, WBLDCT, or PET/
CT; and the presence of more than one FL on MRI [6]. At diagnosis the
incorporation of new imaging modalities

(WBLDCT and PET/CT) for accurate diagnostic purposes is re-
commended with a grade A recommendation [2]. However, there is still
considerable heterogeneity in clinical practice regarding imaging usage
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in MM [2] and, as for every radiological techniques, variability among
readers could reduce the diagnostic efficacy due to difficulties in dif-
ferentiating small lesion of approximately 5mm in diameter typical of a
focal pattern with a worse prognosis [3]. Even among expert, agree-
ment in detecting lytic lesions on PET/CT for staging using the Italian
myeloma criteria for PET USe (IMPeTUs) criteria was 0.54 (0.41_0.68)
using Krippendorff’s alpha for lesions probably> 5mm in diameter
[7]. The cutting-edge research topic of Radiomics analysis aim to ex-
tract complex data from clinical images to help radiologists and clin-
icians in both diagnosis and prognosis. [8–10]. We made the hypothesis
that Radiomics analysis could help radiologists to unveil imaging
characteristic on CT specific of a MM pattern, especially to identify lytic
lesions. Therefore, the aim of this study was to assess if a Radiomics
approach could improve radiological accuracy in differentiating a focal
pattern from a diffuse pattern on CT.

2. Methods

The study was performed in accordance with the current version of
the Declaration of Helsinki and the International Conference on
Harmonization of Good Clinical Practice Guidelines. Approval from the
institutional review board was obtained (003REG2019). According to
our standard procedure, all patients signed a written informed consent
form, encompassing the use of anonimized data for retrospective re-
search purposes, before CT examination. Radiomic analysis was applied
to CT data collected in the clinical workup and did not influence patient
care in any way. According to the nature of the study, STARD checklist
was followed as appropriate [11].

2.1. Study design, inclusion criteria

Our retrospective study included 70 consecutive patients (mean age,
60 years± 9.2 [standard deviation]; range, 35–88 years) admitted to
the IRCCS Policlinico San Martino Hospital (Genoa, Italy) because they
were suspected of having MM in the last five years. Inclusion criteria
were pre-transplant total-body CT available and retrievable from the
Hospital Picture archiving and communication system (PACS) or
available from outpatient clinic with minimal technical standard.
Minimal and standard technical inclusion parameters for CT are re-
ported in Table 1.

All CT scans were read in consensus by two groups of radiologists.
The first group included two general radiologists (G.S. 15 years of

experience, A.C. 1 year of experience) one of them, the senior, with
extensive track record in CT reporting and musculoskeletal radiology.
The two general radiologists were blinded to the diagnosis of the pa-
tients and they were asked to assess if the CT pattern was diffuse or
focal (Fig. 1).

The second group included two experienced radiologists (A.T. 12
years of experience, F.R. 5 years of experience) expert in musculoske-
letal Radiology and bone image interpretation, one of them with
European Diploma and Member of tumour sub-committee of the
European Society of Musculoskeletal Radiology. After six months to
avoid biases, the two expert radiologists worked in consensus aware of
the diagnosis of MM and able to check follow-up radiological

evaluation to assess if the pattern on CT had to be considered diffuse or
focal, and their consensus was the reference standard of our study.
Considering that biopsy is not available for all suspicious area identified
on CT, radiologists’ consensus could be considered the best feasible
reference standard, as already done in literature [12].

2.2. Test methods

2.2.1. Index test1 - Computed Tomography
Diffuse bone marrow infiltration in the skeleton was recorded ac-

cording to the criteria proposed by Staebler (lesions< 5mm, not os-
teoporosis) [13,14]. Focal pattern was defined as the presence of at
least one> 5mm of focal or lytic lesion in the axial skeleton (ie, spine
and sacral bone) or extra-axial skeleton (ie, all other parts of the ske-
leton). Soft tissue lesions were not considered because outside the scope
of the study. Lesions in typical locations for degenerative changes and
osteoporotic changes were not counted. The presence of at least one
focal or lytic lesion was considered clinically relevant because it is a
highly significant adverse prognostic factors for patients with MM, and
recored [5].

2.2.2. Index test2 - radiomics analysis
Radiomics analysis was performed on all CT images suspected of

having pathology within
manually selected regions of interest (ROIs) including all the bone

of axial and extra-axial skeleton on single slices where the bone was
visually judged different from a normal bone by radiological assess-
ment. All images were read and processed in the raw Digital Imaging
and Communications in Medicine (DICOM) format. Raw imaging data
underwent pre-processing to discriminate the signal from the noise.
ROIs were placed by two researchers (A.T. and F.R.) expert in quanti-
tative image analysis (9 and 3 years of experience). Theoretically, ROIs
placement would have been independent from the kind of bone lesion
present on CT. From CT images, we extracted 104 image features using
an open-source software platform for medical image informatics, image
processing, and three-dimensional visualization (3D Slicer 4.10; www.
slicer.org) built over two decades through support from the National
Institutes of Health and a worldwide developer community and largely
used in literature [15]. 3D-Slicer can be employed for quantitative
image feature extraction and image data mining research in large pa-
tient cohorts [15]. Definitions, descriptions and subdivisions into
classes of Radiomics features are available in literature [16]. We com-
puted a total of n=104 features per patient. This feature initial pool
was subjected to the selection procedure. From the total of n=104
features, z-score normalization was applied making the range of the
features more uniform and removing features that had high similarity
with other features. Therefore, we selected strongly correlated features
(P value below 0.05) and eliminated the redundancies as normally done
in literature [17].

Mean time for single patient Radiomics analysis was calculated with
a commercially available stopwatch, including the time to download
images, perform image adjustment and analysis and finally data col-
lection in the database. Radiologists were well trained in the usage of
Radiomics tools and probably reduced the reading time.Statistical

Table 1
Minimal* and standard Computed Tomography Technical parameters for inclusion.

Number of detector rows* 16 or more up to 128
Minimum Scan coverage* Skull base to femur
Tube voltage(kV)/time-current product (mAs) 120/50–70, adjusted as clinically needed
Reconstruction convolution kernel Sharp, high-frequency (bone) and smooth (soft tissue). Middle-frequency kernel for all images are adjusted by the radiologist as

deemed necessary
Iterative reconstruction algorithms Yes (to reduce image noise and streak artifacts)
Thickness* ≤5mm
Multiplanar Reconstructions (MPRs) Yes (sagittal, coronal and parallel to long axis of proximal limbs)
Matrix, Rotation time, table speed, pith index 128×128, 0.5 s,24 mm per gantry rotation, 0.8
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Analysis
Inter-observer agreement in differentiating diffuse from focal pat-

tern was estimated among the two groups of radiologists to confirm the
need of more accurate (Radiomics) measurements to improve CT in-
terpretation. For research purposes Cronbach's alpha was considered
acceptable if between 0.7 and 0.8. Comparison of Radiomics features of
diffuse and focal pattern was done with non-parametric tests (Mann-
Whitney U test for unpaired data with 1000 bootstraps samples) con-
sidering a p value of 0.05 as statistically significant; then feature re-
duction was done to avoid over-fitting. Accuracy was measured using
receiver operating characteristic (ROC) analyses to estimate the area
under the curve (AUC) and compare Radiologists and Radiomics eva-
luation against reference standard using statistical software, p values
below 0.05 were considered statistically significant.

Kaplan–Meier analysis was performed to generate progression and
survival curves according to diffuse or focal pattern. Time to event and
survival between groups was compared with the two-tailed log-rank
test. Statistical tests were done using statistical software (STATA MP,
StataCorp, 4905 Lakeway Dr, College Station, TX, USA and MedCalc).

3. Results

N=9/70 did not have any CT available before bone marrow
transplant and were excluded, therefore the study group included 60
patients: 27 men (mean age, 59,7 years± 9,1; range, 35–72 years) and
34 women (mean age, 61,7 years± 9,2; range, 49–88 years).

Inter-observer agreement in differentiating diffuse from focal pat-
tern among the two groups of radiologists resulted to be 0.57 (95 %
Confidence Intervals: 0.32–0.64), p < 0.03.

After feature reduction and selection, n= 16/104 (15 %) of
Radiomics features were different in focal and diffuse pattern (Table 2).

AUC of the radiologists' evaluation and AUC of the best four features
(MajorAxisLength; Median; SizeZoneNonUniformity; ZoneEntropy) re-
sulted to be between 0.642 (95 % Confidence Intervals: 0.494 to 0.789)
and 0.790 (0.665 to 0.916) as shown in Fig. 2 and Table 3. The lowest
value of AUC belonged to radiologist's evaluation.

Mean time for single patient Radiomics analysis resulted to be 1 h
per patient± 20min. The time to read the CT scan without Radiomics

was 10min.
Kaplan-Meier plots for relapse of patients who had focal pattern

compared with patients who had diffuse pattern demonstrated that the
median time to progression was significantly worse for patients with a
focal pattern (Fig. 3).

4. Discussion

The present study demonstrated that a Radiomics approach on
standard CT images of patients with multiple myeloma acquired before
transplantation strongly improves accuracy in differentiating focal from
diffuse patterns. Indeed, accuracy in terms of area under the curve of
Radiologists compared to the reference standard was lower (64 %) than
accuracy calculated using a Radiomics approach which obtained a
maximum value of 79 %. The possibility to increase diagnostic accuracy
in differentiating focal from diffuse pattern on standard CT images of
patients with multiple myeloma is clinically relevant for several

Fig. 1. Examples of focal and diffuse bone
patterns on CT.
In a.1) graphical example of focal lytic lesion
(> 5mm) of the spine on CT. In a.2) the same
lesion with manually selected regions of in-
terest (ROIs) in green using 3D Slicer 4.10. In
b.1) graphical example of diffuse bone pattern
lesion of the left hemi-sacrum and left iliac
bone. In b.2) the same lesion with manually
selected regions of interest (ROIs) in green
using 3D Slicer 4.10.

Table 2
Summary of n= 16/104 Radiomics features resulted to be different in
focal and diffuse pattern. P values< 0.05 are considered statistically
significant.

Feature Name P value

MajorAxisLength ,030
Sphericity ,012
SmallDependenceLowGrayLevelEmphasis ,032
ZoneVariance ,006
Correlation ,041
SumEntropy ,031
Skewness ,004
RunEntropy ,001
Median ,001
LowGrayLevelEmphasis ,013
Energy ,024
ShortRunLowGrayLevelEmphasis ,023
LowGrayLevelRunEmphasis ,045
SizeZoneNonUniformity ,001
LowGrayLevelZoneEmphasis ,038
SmallAreaLowGrayLevelEmphasis ,038
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reasons.
First, new staging systems suggested to replace standard radio-

graphy with more sensitive methods such as CT, due to its higher
capability of differentiate bone inner texture [2,7]. Therefore, more
patients will undergo CT for staging of MM [2].

Second, several studies correlate pattern allocation with prognostic
value [18]. Although MRI can differentiate up to five different patterns
of plasma cell infiltration, including normal appearance, focal in-
volvement, homogeneous diffuse infiltration, diffuse infiltration with

additional focal lesions and variegated or salt-and-pepper pattern, CT
can also identify patterns similarly to MRI [18] and CT is well suited for
small (below 5mm) focal bone lesions due to high spatial resolution
capabilities [18].

Third, the low agreement between reader in staging patients af-
fected by multiple myeloma is well known in literature [8], as con-
firmed by our study. Indeed, we found that the agreement among
radiologists in differentiating between focal and diffuse patters was
0.57 (95 % Confidence Intervals: 0.32–0.64), p < 0.03 which is below
the values considered acceptable for research and clinical purposes.
Nanni et al. [7], calculating inter-observer variability with Krippen-
dorff’s alpha, found values of 0.56 to 0.58 indicating only moderate
agreement for focal lesions. Data reported in the study by Nanni et al.
[7] are consistent with our results and underlines the need of im-
provement to correctly identify patients with a focal pattern. In addi-
tion, the use of slight different modalities of agreement calculation such
as Cronbach's alpha in the present study versus Krippendorff’s alpha
which automatically corrects for a casual agreement between re-
viewers, is not sufficient to stop seeking for better methods, such as
Radiomics, to improve focal pattern recognition.

Nowadays, there is still a certain lack of agreement about the exact
definition of a diffuse imaging pattern [18] In our study, we defined the
presence of a focal pattern as the presence of at least one>5mm of
focal lytic lesion in the axial skeleton or extra-axial skeleton because it
has been demonstrated that the presence of more than one focal lesion
could be an optimal cut-off point: indeed patients with greater than one
focal lesions had significantly shorter progression-free survival than
those without [5], and our results confirmed the worse prognosis for
patients with focal pattern.

Concerning technical issues to be discussed, the present study has
several strengths: we used clinically available CT images collected in
the normal clinical workup without influencing patient care in any way
and we used a free open source software for Radiomics assessment of
involved bones. Finally, Radiomics assessment was made in a
Radiological environment with significant expertise in quantitative
imaging assessment and software development [10,19].

Concerning Radiomics feature assessment, we found that 15 % of
features (16/104) were different in diffuse and focal patterns reflecting
a significant difference in bone phenotype in patients with the same
disease.

Among the limitations of the present study we acknowledge the
retrospective nature which did not allow a perfect timing between CT
acquired before transplantation and diagnosis. In addition, the eva-
luation of Radiomics features was made only with one software and we
do not know if the usage of other software could introduce variability in

Fig. 2. The Area Under the Curve (AUC) of the radiologists' evaluation and the AUC of the best four features.

Table 3
Area Under the Curve (AUC) of the best four features. P values< 0.05 are
considered statistically significant.

Feature Name AUC P value 95 % CI (lower
limit)

95 % CI (upper
limit)

MajorAxisLength 0,733 0,005 0,580 0,885
Median 0,715 0,010 0,549 0,881
SizeZoneNonUniformity 0,790 0,010 0,665 0,916
ZoneEntropy 0,682 0,029 0,531 0,833

Fig. 3. Kaplan Meyer plot for relapse of patients with focal pattern (blue line)
compared with patients with diffuse pattern (green line).
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feature assessment. Finally, we did not correlate CT patterns with sta-
ging before transplant, but Kaplan-Meyer results confirmed the worse
prognosis for patients with focal pattern.

In conclusion, in this work we have proven that, in multiple mye-
loma patients, differentiation between focal and diffuse pattern on CT is
difficult, but a Radiomic approach strongly improves standard radi-
ological evaluation with implications for prognosis, patient stratifica-
tion and therapeutical choices.
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