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Abstract: Modelling and simulation is presented for a finned cross-flow heat exchanger with the aim
to heat cold air to be fed to air conditioning batteries for marine purposes. The model employed in
this paper is finalized to simulate the dynamic behavior of air and water temperatures fed to the air
conditioning batteries operating in cold environments, in order to predict possible troubles owing to
the change in input parameters, such as unwanted flow rate variations due to system malfunctions.
In the investigated model, heat balance equations are presented and discretized by Laplace transform,
which has the advantage to easily account for the different structures of heaters used for the purpose
of validation. The model was implemented in the Matlab-Simulink environment for its high capacity
of dealing with dynamic systems. The results of the model are satisfactory, as the dynamic behavior
of the air stream temperature is correctly reproduced, as compared to experimental data, providing a
suitable parameter for malfunctions prediction.

Keywords: heat exchanger; Laplace transform; malfunction prediction

1. Introduction

Heat exchangers can be applied to many purposes [1–3], among which is the heating
of an air current for the most disparate scopes. This paper presents the model of a heat
exchanger to be applied to heat cold air in air conditioning batteries operating in cold
environments. The heat exchanger to be modeled in this paper is a cross-flow air–water
unit, equipped with fins in the air side, where a flow of hot water passes into a pipe invested
by the current of air to be heated. The unit is employed for marine purposes.

The main interest of this article is the implementation of a dynamic simulation model
to predict air and water temperature behavior in different dynamic conditions, in order
to detect malfunctions of the system. In fact, the operation in cold environments may
produce, in particularly cold conditions, malfunctions such as the freezing of water in some
sections of the heat exchanger, causing its blocking. Therefore, the model employed needs
to reproduce the dynamics of the main parameters to changing conditions, such as, for
example, the feed-water flow rate or its inlet temperature.

Laplace transforms are quite a popular tool and are well suited in the considered prob-
lem to the modelling of two dimensional heat exchangers using a simple one-dimensional
model.

In the present paper, a technique based on the solution of heat balance equations was
employed by relying on the discretizing of such equations and using Laplace transform.
Laplace transforms allow to easily account for the different structures of heaters, which have
been used for the purpose of validation. The heat exchanger employed in the experiments
is a cross-flow unit, and a discretization operated with the Laplace transform is able to take
into account the bi-dimensional extension of the heat exchanger, as it can sub-divide it into
“ranks”, each one representing one layer of the coils, as explained in the following sections.

In literature, several models for representing heat exchangers behavior are reported,
since the argument is very interesting for many applications and accurate modelling is
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important for control, maintenance, and safety purpose. The articles reported in literature
include simple models in which each stream exchanging heat is modelled as a series of
mixed tanks [4]; such simulation scheme can also be able to represent the dynamic behavior
of the system. The model has been employed to discriminate the more important and less
important features by order of magnitude argumentation.

More complex approaches employ the distributed parameters method as in [5], which
presents a comprehensive and detailed model for both the evaporator and condenser
of refrigerant cycles. It has been shown in literature that the so-called “tube-by-tube
approach” [6] tends to provide a more accurate and realistic prediction in terms of the
interfacial structure for both the evaporator and the condenser. The tube-by-tube method
allows to predict the heat exchanger duty such as air temperature and relative humidity
for each tube. The local data are displayed for the tubes, identifying the tube connection,
which makes a detailed analysis of the conditions that affect the duty of the evaporator and
of the condenser easier.

Other models are employed for reproducing different configurations of heat exchang-
ers [7]; such models are developed in algorithmic form for steady-state simulation. The
configuration is defined by the number of channels, number of passes in each side, fluid lo-
cations, feed connection locations, and type of channel-flow with the purposes of studying
the configuration influence on the heat exchanger performance and to further develop a
method for configuration optimization.

Ordinary differential equations are used too for the purpose of modelling heat ex-
changers [8]. Generally, the thermal circuit models result in sets of ordinary differential
equations which are numerically solved. The system of equations derived from the tradi-
tional thermal resistance capacity model are usually stiff and make results unstable, unless
employing a very small time step, which significantly increases the run time. Instead, the
system of ordinary differential equations described in the cited model is non-stiff and there
is no time step limitation for the stability of the results.

The finite volume method is proposed in [9], where it is applied for the thermal per-
formance prediction of a hybrid earth to air tunnel heat exchanger. Process parameters are
optimized using response surface methodology by the use of a commercial Computational
Fluid Dynamics (CFD) based software to simulate the heat exchanger, the turbulence model,
and to carry out a two-dimensional simulation modelling. Moreover, response surface
methodology is applied to analyze the results of finite volume method and to optimize
the process parameters of the hybrid earth to the air tunnel heat exchanger. Other models
employing CFD can be found in [10–13].

Another modelling technique is the moving boundary method [14]. In particular,
the cited article employs a more accurate moving boundary method that incorporates
analytic enthalpy distributions. The enthalpy profiles are derived by defining a specific
heat capacity at each thermodynamic phase of a binary mixture and by solving crossflow
heat transfer equations.

In literature can also be found a comparison between finite volume methods and
moving boundary methods [15] useful when the governing dynamics of the system are
mainly concentrated in the heat exchangers, as in small Organic Rankine Cycles investi-
gated. The modeling of the system is characterized by evaporation or condensation. This
requires heat exchanger models capable of handling phase transitions. As a consequence,
the accuracy and simulation speed of the higher level system model mainly depend on
the heat exchanger model formulation and the finite volume and the moving boundary
approaches are the most widely used.

Models based on partial differential equations can be found, which can use either
analytical or numerical approaches [16,17]. In [16], the temperature transient response of
a single-phase fluid and a wall in a heat exchanger is analyzed, in order to reproduce the
behavior of the system when the other constant temperature fluid is subjected to a step
change in temperature or when the single-phase fluid is subjected to a step change in mass
flow rate. To reproduce the dynamic behavior of the heat exchanger, an approximation is
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used by an integral method, hypothesizing that the single-phase fluid temperature distri-
bution can be expressed by a combination of the initial and final temperature distributions
and a time function. In [17], an innovative coil dynamic model is presented that utilizes the
exact solution to the coil governing partial differential equation for a step change in water
flow rate.

The analytical solutions of equations describing the dynamics of distributed parameter
systems are usually complicated and difficult to use for the purpose of simulation and
control system design. In [18], an analytical solution of the dynamics of a symmetrically
operated counter flow heat exchanger in the form of transfer function matrix is investigated
in open-loop and close-loop conditions.

Data-based techniques, also known as black box models, can also be found [19]. The
complexity of a mathematical model is critical when the model needs to be employed for
deriving the control law, as it directly affects the complexity of the mathematical transforma-
tions and of the control algorithm. In paper [19], the simplified cross convection model for
a wide class of heat exchangers is suggested. The main frame of this model is derived from
energy conservation and combined with simple dynamics based on ordinary differential
equations. By this method, the simplified tuning procedure of the proposed model is
suggested and verified for plate and spiral tube heat exchangers based on experimental
data.

Finally, artificial neural networks can be employed for the modelling of heat exchang-
ers. In [20], the potentials of neural networks-based control techniques are investigated by
applying a nonlinear generalized minimum variance control methodology to a simulated
application example. In particular, the paper faces the problem of regulating the output
temperature of a liquid-saturated steam heat exchanger by adjusting the liquid flow-rate.
Owing to the non-minimum phase characteristic of the process dynamics, a simple in-
verting minimum variance controller results unsuitable. However, an effective solution is
provided by the introduction of a penalization factor in the control variable. A steady-state
off-set error problem, caused by the neural network approximations, is faced by the use of
a hybrid control structure, which combines a nonlinear integral action block with a neural
controller. In [21], the artificial neural network technique is applied to the simulation of
the time-dependent behavior of a heat exchanger in order to control the temperature of air,
also providing experiments carried out in an open loop test facility. First, a methodology is
proposed for the training and prediction of thermal systems’ dynamic behavior with heat
exchangers. Then, an internal model scheme is developed for the control of the over-tube
air temperature with two artificial neural networks, one to simulate the heat exchanger and
the other employed for the controller. An integral control is implemented in parallel with
the filter of the neural network controller to eliminate the steady-state offset.

The paper is organized as follows: in Section 2, the modelling technique is presented,
introducing the main control variables, the effect of the fins by introducing correction
factors to the classical equations, the dynamic equations to be solved, and the method of
their discretization over the space, paying particular attention to the Laplace transform
methodology; in Section 3 is first provided a calibration of the model parameters based on
the data measured on the plant, and then the simulation of a dynamic situation character-
ized by a shut-down of the hot water inlet valve is described, presenting the diagrams of
water, copper tube, and air temperatures in function of time for measured and simulated
variables, changing the number of discretization elements. In addition, an error analysis is
carried out. Finally, the conclusions are drawn.

2. Modelling Technique

The model of a heat exchanger battery is constructed by applying the heat balance
equations that result from the flow of hot water in the coils, which are finned in the air side.
In practice, the model will be developed for each coil composing the battery. The coils are
spread over m layers, as shown in Figure 1, each of which will be denoted by the name
“rank” in the following. Each of the ranks receives a flow of air from the previous one.
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Figure 1. Sketch of the heat exchanger with its ranks.

The air entering the battery is heated by passing from one rank to the next one, owing
to the heat exchange from the hot water flowing in the tube (made of copper) and from the
finned tube to the air. For the purpose of the heat exchanger, which is to provide heating
to the air conditioning batteries, the water leaving the coil is at a lower temperature as
compared to the entrance temperature.

To model the thermodynamics of such coil system, it is necessary to make the following
assumptions:

(1) thermal dispersion towards the environment is assumed to be zero;
(2) upstream and downstream temperature of the air in each rank is assumed to be

uniform;
(3) upstream and downstream temperature of the coil in each rank is assumed to be

uniform;
(4) the temperature of the hot water and the coil at the coil entrance are assumed to be

equal.

The response time of a lumped capacity system increases with its total capacitance
(also known as thermal mass), and decreases with its surface area, and with the overall
heat transfer coefficient. In the present case, estimations of the capacitance and surface area
are possible and depend also on the total surface area of the heat exchange surface and on
its geometry.

To proceed, it is required to introduce a suitable set of parameters and variables as
follows.

• Inlet air: h1 is the air heat transfer coefficient, r1 is the air density, C1 is the air specific
heat capacity, W1 is the air flow rate, and T1 is the air temperature.

• Inlet hot water: h2 is the water heat transfer coefficient, r2 is the water density, C2 its
specific heat capacity, W2 is the water flow rate, and T2 is the water temperature.

• Tube wall: r3 is the copper density, C3 its specific heat capacity and T3 is the tempera-
ture, considered uniform within the pipe thickness.

• L is the length of the coil.
• A1 and A2 are the outer and inner areas of the tube, respectively.
• S1 is the perimeter of the outer part of the copper tube, while S2 the perimeter of the

inner part of the tube.
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Figure 2 illustrates the main variables required to construct the model, as explained
above. The quantity dx represents the elementary length of the pipe.
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2.1. Effect of the Fins

Concerning the model for the effect of the fins crossing the tube in the air side, in
general the heat exchange occurring between an air flow and a smooth tube provides a
thermal flow q, whose value is given by the formula in Equation (1):

q = hAsmooth(Ttube − Tair) (1)

where h is the heat transfer coefficient of the tube in air, Asmooth is the surface of the tube,
Ttube is the temperature of the tube, and Tair is the temperature of the air. If the tube is
finned, this equation must be modified, taking into account the surface efficiency η0, as in
Equation (2):

q = η0hA f inned(Ttube − Tair) (2)

where A f inned can be obtained from the geometric properties of the tube and of the fins. In
practice, it is useful to define a fin factor F as in Equation (3):

F =
A f inned

Asmooth
(3)

and thus it is possible to proceed by replacing Asmooth with η0FA f inned.

2.2. Balance Dynamic Equations

The dynamic equations of a battery can be obtained by using three thermal balances:

(1) heat balance of the inlet air
(2) heat balance of the inlet hot water
(3) heat balance of the wall of the coil.

Such balance equations have to be computed contemporaneously to attain a lumped
parameter model well-suited to being simulated.

The heat balance for air is based on the first law of thermodynamics, which remarks
the conservation of the enthalpy and takes into account the exchange of heat with the tube,
as in Equation (4):

W1C1T1 + η0Fh1S1dx(T3 − T1)−
(

W1C1T1 + W1C1
dT1

dx
dx

)
= r1 A1dxC1

dT1

dt
(4)
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where W1C1T1 is the heat flow entering with the inlet water, η0Fh1S1dx(T3 − T1) is the heat
flow exchanged with the coil, W1C1T1 + W1C1

dT1
dx dx the output heat flow and r1 A1dxC1

dT1
dt

the variation of the heat accumulated in the air.
Similarly, the heat balance equation for the inlet hot water exchanging heat with the

wall of the tube is obtained, as shown in Equation (5):

W2C2T2 + h2S2dx(T3 − T2)−
(

W2C2T2 + W2C2
dT2

dx
dx

)
= r2 A2dxC2

dT2

dt
(5)

where W2C2T2 is the input heat flow, h2S2dx(T3 − T2) is the heat flow exchanged between
the water and the tube, W2C2T2 + W2C2

dT2
dx dx the output heat flow of the water, and

r2 A2dxC2
dT2
dt the variation of the heat accumulated in the water.

Finally, the thermal balance of the copper tube is provided in Equation (6):

η0Fh1S1dx(T1 − T3) + h2S2dx
(
T2 − T3

)
= r3 A3dxC3

dT3

dt
(6)

where η0Fh1S1dx(T1 − T3) is the heat flow leaving the tube towards the air, h2S2dx
(
T2 − T3

)
the heat flow entering in the tube from the water; r3 A3dxC3

dT3
dt the variation of the heat

accumulated in the copper tube. A3 = A1 − A2, whereas T2 is the average temperature of
the hot water in the considered rank.

2.3. Discretization over the Space

The three enthalpy balance equations need to be discretized over space for being
treated numerically. The coils are divided into n sections. Thus, the following quantities
are defined (see Figure 3):

• the temperature of the hot water in section i is denoted by T2,i
• T1,i is the temperature of the air upstream inlet flow at rank j + 1.
• T1,j+1 is the temperature of the air downstream inlet flow at rank j + 1.
• T3,k is the temperature of the tube at rank k.
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Based on the aforesaid, it is possible to discretize and derive the corresponding Laplace
representation in the complex domain s ∈ C.
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From rank m, by discretizing all the heat balance equations, for the wall of the coil
Equation (7) is obtained:

η0Fh1S1δx(T1,m − T3,m) + h2S2δx
(
T2,m − T3,m

)
= r3 A3δxC3

dT3,m

dt
(7)

where δx = L/nm is space sample step and nm is the number of sections in rank m and
the temperature variable T2,m is the average temperature over the rank m, calculated as in
Equation (8):

T2,m =
1

nm

nm−1

∑
i=0

T2,m−i (8)

Hence, after the application of Laplace transform, the resulting terms appear in
Equation (9):

(r3 A3C3s + η0Fh1S1 + h2S2)T3,m(s) = η0Fh1S1T1,m(s) + h2S2T2,m(s) (9)

where, from now on, T3,m(s) denotes the Laplace transform of T3,m(t) and similarly for the
other state variables. Thus, expressing the equation in a more compact form, it is possible
to write Equation (10):

T3,m(s) =
α3

τ3s + 1
T1,m(s) +

β3

τ3s + 1
T2,m(s) (10)

where the Greek symbols are listed in Equation (11) below as:

τ3 =
r3C3 A3

η0Fh1S1 + h2S2
; α3 =

η0Fh1S1

η0Fh1S1 + h2S2
; β3 =

h2S2

η0Fh1S1 + h2S2
(11)

As the inlet air flow is valid, the discretized energy balance is as reported in
Equation (12):

η0Fh1S1δx(T3,m − T1,m)−W1C1(T1,m − T1,m−1) = r1 A1δxC1
dT1,m

dt
(12)

Hence, by applying the Laplace transform, the mathematical representation reported
in Equation (13) appears:

(r1 A1C1δx s + η0Fh1S1δx + W1C1)T1,m(s) = W1C1T1,m−1(s) + η0Fh1S1δxT3,m(s) (13)

which can also been written, in compact form, as in Equation (14):

T1,m(s) =
α1

τ1s + 1
T1,m−1(s) +

β1

τ1s + 1
T3,m(s) (14)

where the Greek symbols meanings are reported in Equation (15) below as:

τ1 =
r1C1 A1δx

η0Fh1S1δx + W1C1
; α1 =

W1C1

η0Fh1S1δx + W1C1
; β3 =

η0Fh1S1δx
η0Fh1S1δx + W1C1

(15)

Equation (16) expresses the thermal balance equation for the inlet water:

h2S2δx(T3,m − T2,n−1)−W2C2(T2,n − T2,n−1) = r2 A2δxC2
dT2,n

dt
(16)

where δx = L/n, n being the space step samples in which the water pipe has been subdi-
vided. Therefore, by the application of the Laplace transform, the terms in Equation (17)
appear:

(r2 A2C2δx s + h2S2δx + W2C2)T2,n(s) = W2C2T2,n−1(s) + h2S2δxT3,m(s) (17)
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and finally, in compact form:

T2,n(s) =
α2

τ2s + 1
T2,n−1(s) +

β2

τ2s + 1
T3,m(s) (18)

where the Greek symbols appearing in Equation (18) are defined in Equation (19) below:

τ2 =
r2C2 A2δx

h2S2δx + W2C2
; α2 =

W2C2

h2S2δx + W2C2
; β2 =

h2S2δx
h2S2δx + W2C2

(19)

The resulting block diagram, implemented in a Matlab-Simulink environment, is
depicted in Figure 4.
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In Figure 5, it is possible to observe the Simulink blocks by which the whole model of
the heat exchanger is composed, for a heat exchanger equipped with three ranks. In the
picture, it is possible to observe:

• The fault generator, where the water flow reduction simulating the failure is intro-
duced; this block is constituted by a Simulink switch, by which it is possible to select
the faulty-non faulty modality. The faulty modality operates as described in the
following Section 2.4, by influencing the parameter α2 of the water.

• The ranks sequence, in which water, air, and copper temperature are computed rank
by rank; in the picture, three ranks are represented. In particular, for each rank, the
“Water Temperature”, “Copper Temperature”, and “Air Temperature” blocks contain
the Laplace equations dedicated to calculating the corresponding temperatures. Such
equations are, respectively, Equations (10), (14) and (18).

2.4. Accounting for Water Flow Reduction

In principle, the nine system parameters τ1, α1, β1, τ2, α2, β2, τ3, α3, β3, can be
derived by using standard physical constants according to their definitions, but in practice
they need to be tuned.

If the flow of inlet hot water reduces, the heat exchange between the water and the
tube wall and therefore between the tube wall and air, drops. In practice, as pictorially
shown in Figure 6, it is possible to account for this effect by reducing the initial flow rate
from W2 to a fraction of this value, i.e., ρW2, where ρ is a number comprised 0 and 1. The
decrease of W2 of a factor ρ causes a change in the parameter α2.
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3. Results
3.1. Calibration of the Model

Based on the model depicted in Figure 4, the nine system parameters τ1, α1, β1 for the
air flow, τ2, α2, β2 to account for the water dynamics and τ3, α3, β3 to account for copper
pipe dynamics were calibrated by using the records of a test for a particular geometric
configuration of the heat exchanger, employing the data at regime (i.e., constant flow rate
and no action on the water inlet valve) conditions. Specifically, the data considered for
calibration are reported in Figure 7, which shows the air inlet temperature TI, the air outlet
temperature TE, and the water outlet temperature Twr; in the calibration procedure, the
following parameters have been considered: W1 = 3090 m3/h (inlet air flow), W2 = 75 L/h
(measured water flow), and a coil length equal to 4.7 m.
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In the transient test, which has to be replicated by the calibrated model, the hot
feed-water has been inhibited for 30 s by closing the hot water inlet valve.

The calibration procedure is composed of five steps:

1. Selection of the number of sections n;
2. selection of α2, which increases/decreases with the temperature of the inlet water

flow;
3. selection of β1, which increases/decreases with the outflow temperature of the air, TE;
4. selection of τ2 to match the decrease of outflow temperature of the air TE after the

water flow drop;
5. selection of τ1 to match the increase of outflow temperature of the air TE after the

return of full water flow.

3.2. Results and Discussion

A flow rate reduction in the water pipe is a condition, which can be due to multiple
causes—from pipe breaking to pump failure to pipe fouling with time. These are quite
frequent causes of malfunction in heat exchangers.

The model was tested by inhibiting the water flow rate for 30 s, switching off the water
inlet valve in the real plant, and acting on the Failure Generator depicted in Figure 5 in the
model, and observing the behavior of the simulated water, copper, and air temperatures.
Comparison was carried out between model results and the measured parameters for water
and air.

Figures 8–19 show the results by using n = 5, 10, 15, 20 with the time of flow rate
switch-off at t = 100 s, where n is the number of sections in which the water pipe of the heat
exchanger was subdivided. In the diagrams, TWd is water inlet temperature, TWr is the
heat exchanger outlet water temperature, TI is air inlet temperature, and TE is air outlet
temperature. In addition, copper temperature diagrams have been shown.
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Figure 19. Diagram of copper temperature in function of time for a number of sections n = 20.

From the results, it is possible to notice that the number of sections n does not influence
much the results of the simulation, probably because this parameter has been kept low (the
maximum number of sections has been chosen as 20).

However, it is worth noting that, even with a reduced number of sections, the cal-
ibrated model is able to predict the trigger of a low temperature (TL) sensor when the
temperature TE gets to 0 ◦C after the valve shut-off. Air temperature predicted accurate
curve results, showing good dynamic performance of the model. This provides an interest-
ing application for the model, which can be employed for failure prediction in air–water
heat exchangers. The modelling framework developed in this work can be helpful in
designing a fault detection system.
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Concerning the temperature of the water, the model predicts a higher temperature
of the outflow water. This may be ascribed to the fact that typically nonlinear effects are
neglected, such as those due to the fluid inertia.

The valve closure does not provide an instantaneous drop in water temperature, which
partially continues to flow in a small but non-null time, as differently accounted in the
model. This may be ascribed to the fact that parameters as fluid inertia and valve closure
time are neglected. The behavior over time of the outflow water temperature TWr can be
obtained by the same linear model using a nonzero flow.

Based on the aforesaid, a TL sensor in the air flow with triggering at 0 ◦C, including
an adequate margin to account for sensor standard imprecision, is well-suited to ensure
safe use of the coil system because of the worst-case pessimistic conditions adopted in
developing and tuning the model.

Error analysis was performed for an intermediate case, namely the n = 10 case; the
data analyzed was water temperature, representing the variable which presents the most
accentuated errors between the measured and the simulated data.

Error analysis was done by using the “boxplot” command in Matlab, which presents
the median, the 25th percentile, the 75th percentile, and the outlier data in the same picture.
Figure 20 shows the error analysis for the water inlet temperature as a comparative case.
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As visible, in the case of the water inlet temperature, the errors between the model
outputs and the real data are limited within the range of +2.5 ◦C, with an error median of
0.54 ◦C and mean equal to 0.63 ◦C.

Then, the analysis was performed for the water outlet temperature, the behavior of
which can be divided into three main intervals: first, temperature remains constant; then,
between 100 and 130 s, there is a second interval with a temperature drop owing to the
valve closure; finally, a third interval occurs, where temperature is about constant.

The analysis was made separately for the central interval in which the transient occurs
(called “transient” in the images) and for the two time intervals where temperature is
constant (called “regime”).

As visible in Figure 21, the median in the regime zone is 0.8 ◦C, with a mean error
of 0.78 ◦C and peaks of about 1.4 ◦C. Figure 22 highlights how in transient condition, the
median stands in about 1 ◦C; the mean is 3.19 ◦C, but the peak error values reach about
20 ◦C. This highlights that the model is accurate in predicting the water temperature values
at regime conditions, but presents significant errors in the transient conditions. Thus, future
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work will be devoted to improving precision in modelling the transient behavior, which
can be made by more careful identification.
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4. Conclusions

This paper presents a model based on Laplacian transform discretization of the balance
equations to simulate the behavior of the main variables of a cross-flow heat exchanger fi-
nalized to heat the air flow feeding an air conditioning system operating in low temperature
environments.

After a literature review, the paper describes the model and its fundamental param-
eters, other than the methodology employed for modelling, including the discretization
of the balance equations with Laplace transform. Laplace transform is useful because
the discretization of the governing equations by this method permits to treat different
configurations of the heat exchanger, sub-dividing it into ranks and reproducing the bi-
dimensional extension of a cross-flow heat exchanger. Then, the description continues with
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the calibration of the model control parameters based on real data coming from the sensors
installed in the system. Finally, the model functionality is tested, comparing the model
output signals with on-field experimental data, for different numbers of elements in which
the modeled pipe has been subdivided.

The results provided by the model show that the aim of the article, which was to
implement a model able to simulate the dynamic behavior of the temperatures to changing
external conditions, is accomplished, as the change in air temperature to water flow rate
variation was accurate with respect to the experimental data, correctly predicting the
negative peak of air temperature to the shut-off of the hot water. This accomplishes the
initial purpose—to provide an accurate parameter to be exploited in avoiding damages to
the system; for example, feed-water freezing.

The strengths of this model are its simplicity in implementation, rapid computing,
and flexibility in representing different geometrical configurations of heat exchangers.

Future work will provide model modifications for better prediction during transients.
The precision in transient reproduction can be improved by more careful identification.
Based on the preliminary results obtained by the model described in this article, another
improvement may be the development of a concentrated parameter model based on partial
differential equations.
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