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 

Abstract— Network softwarization has paved the way for 5G 

technologies, and a wide-range of (radically new) verticals. As the 

telecommunications infrastructure evolves into a sort of 

distributed datacenter, multiple tenants such as vertical industries 

and network service providers share its aggregate pool of 

resources (e.g., networking, computing, etc.) in a layered “as-a-

Service” approach exposed as slice abstractions. The challenge 

remains in the coordination of various stakeholders’ assets in 

realizing end-to-end network slices and supporting the multi-site 

deployment and chaining of the micro-service components needed 

to implement cloud-native vertical applications (vApps). In this 

context, particular care must be taken to ensure that the required 

resources are identified, made available and managed in a way 

that satisfies the vApp requirements, allows for a fair share of 

resources and has a reasonable impact on the overall vApp 

deployment time. With these challenges in mind, this paper 

presents the Resource Selection Optimizer (RSO) – a software-

service in the MATILDA Operations Support System (OSS), 

whose main goal is to select the most appropriate network and 

computing resources (according to some criterion) among a list of 

options provided by the Wide-area Infrastructure Manager 

(WIM). It consists of three submodules that respectively handle: 

(i) the aggregation of vApp components based on affinities, (ii) the 

forecasting of (micro-) datacenter resources utilization, (iii) and 

the multi-site placement of the (aggregated) vApp micro-service 

components. The RSO’s performance is mainly evaluated in terms 

of the execution times of its submodules while varying their 

respective input parameters, and additionally, three selection 

policies are also compared. Experimental results aim to highlight 

the RSO behavior in both execution times and deployment costs, 

as well as the RSO interactions with other OSS submodules and 

network platform components, not only for multi-site vApp 

deployment but also for other network/services management 

operations. 

 
Index Terms—5G, Multi-site resource allocation, Network 

slicing, OSS microservices, Resource selection, Vertical 

applications. 

I. INTRODUCTION 

IN recent years, emerging network softwarization solutions  

such as the Multi-access Edge Computing (MEC), Network 
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Functions Virtualization (NFV) and Software-defined 

Networking (SDN) paradigms, among others, have been 

established as key enablers of 5G technologies [1], along with  

the realization of a fully converged telecommunications 

infrastructure, able to simultaneously support a wide-range of 

verticals with highly heterogeneous nature and requirements.  

The MEC paradigm [2] brings Cloud-like services closer to 

the end-users by deploying small- to medium-sized computing 

facilities, referred to as micro-datacenters (μDC) hereinafter, to 

support next-generation use-cases with challenging 
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and Low-latency Communications (URLLC) use case category 

defined by the ITU-R [3]. Moreover, the μDCs in the edge and 

the remote Cloud DCs will play central and interworking roles 

in the softwarized network scenario as they will both potentially 
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with network services. With NFV [4], the latter are no longer 

limited to special-purpose physical network functions (PNFs) 

but also include Virtualized Network Functions (VNFs) – the 

software implementation of networking functionalities that run 
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be invaluable in terms of providing programmable 

interconnectivity – whether between vApp/service components, 

between infrastructure nodes and among them, which can also 

be exploited for implementing isolated network slices. As 

regards specifically vApps, they are 5G-ready applications that 

consist of several chainable cloud-native micro-services, i.e., 

components that have to collaborate in order to fulfil their 

operational scope, along with specific properties they should 

possess to be ported to the cloud. Collaboration implies that 

these components form a logical graph based on their 

dependencies. On top of that, the emergence of the 

programmable infrastructure has introduced additional 
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during a “strict” definition of a cloud-native application. 
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are expected to evolve from the traditional Cloud virtualization 

to end-to-end network slicing, where 5G network slices [6] can 

involve both networking and computing resources from 

multiple domains and are exposed as slice abstractions of the 

underlying infrastructure. This will not only empower vertical 

industries, but also lower the barriers for start-ups and 

small/medium-sized enterprises (SMEs) to engage in the rollout 

and/or uptake of 5G technologies and services. In fact, as 

various business-to-business-to-X (B2B2X) opportunities will 

soon arise, service providers are foreseen to move up the value 

chain and, by 2030, they are forecasted to address around US$ 

700 billion of global digitalization revenues across vertical 

industries [7]. 

This has motivated numerous research and/or innovation 

initiatives [8][9], fostering academic-industrial partnerships 

and cross-project synergies, towards building digital platforms 

that integrate verticals into the stakeholder ecosystem and could 

expose the converged infrastructure (based on Cloud, MEC, 

NFV and SDN technologies) to service providers, as well as in 

developing intelligent solutions for automating the deployment 

and orchestration of vApps and network services on a per-slice 

basis. In this respect, the H2020 5G-PPP MATILDA Project 

[10] sought to deliver an end-to-end 5G framework, which 

includes mechanisms for the instantiation of application-aware 

network slices, multi-site deployment of micro-service vApp 

components, as well as for the lifecycle management and 

orchestration of the slice resources, vApp components and 

P/VNFs involved. The MATILDA approach, , further enhanced 

in the subsequent project 5G-INDUCE [11],is based on the 

concept of separation of concerns between the Application 

Orchestrator in the vertical stakeholder’s domain and the 

Network Orchestrator managed by the Telco Providers. A key 

role in the interaction of these two domains is played by the 

Telco Operations Support System (OSS). 

This paper particularly looks into the Resource Selection 

Optimizer (RSO) of the MATILDA platform’s OSS, and on its 

resource selection mechanisms among the Quality of Service 

(QoS)-aware, multi-site (and, possibly, multi-tenant) 

deployment options provided by a Wide-area Infrastructure 

Manager (WIM). Since the selection of the suitable resources is 

crucial for satisfying the requirements of vApps and 

particularly troublesome in a multi-tenant context, this paper 

aims to assess the suitability of the RSO to fulfil this task. 

Starting with a slice intent that encapsulates the vApp 

specifications (i.e., the vApp micro-service components, their 

interconnection, as well as the components’ and their 

interconnecting infrastructural resources’ QoS requirements, 

along with the necessary network services), the RSO is the 

software service in-charge of: 

 aggregating vApp micro-service components according to 

their affinities, and to a set of QoS constraint thresholds, 

defined by the Application Service Provider, on their 

interconnecting infrastructure (which can be abstracted in 

terms of logical “links” in the micro-service chain that makes 

up the application service); 

 forecasting the resources’ utilization (such as the amount of 

free resources of vCPU, RAM and disk, as well as their 

usage) in the μDCs; and 

 placing the (aggregated) vApp micro-service components 

according to their requirements, the deployment options 

provided by the WIM and the utilization forecasts in the 

μDCs involved. 

Tests performed on the three submodules composing the 

RSO allow identifying the different behaviors and trade-offs 

that can improve the interplay with the network platform 

components as well as selecting the setup that is the most 

appropriate to the current network environment and application 

requirements. 

The remainder of this paper is organized as follows. Section 

II provides a summary of the most related works in the 

literature, while Section III describes the architecture, 

deployment and lifecycle management of vApps in the context 

of MATILDA. The RSO’s design and operation are then 

detailed in Section IV, followed by the performance evaluation 

results and discussion in Section V. Finally, conclusions are 

drawn in Section VI. 

II. RELATED WORK 

Resource allocation problems in the literature have been 

recently evolving with an end-to-end notion, as 5G-ready 

applications and their underlying network slices are expected to 

span multiple domains.  

The authors in [12] proposed a framework for the 

management and deployment of the 5G core network, which 

considers the distributed deployment of the functions among 

μDCs; the optimal allocation is a mixed nonlinear integer 

programming problem and is driven by the μDCs’ energy costs 

and processing delays, as well as the delay and bandwidth costs 

in the backhaul. On the other hand, an end-to-end slicing 

framework is proposed in [13], considering both computing and 

communication resources across the full 2-tier MEC 

architecture; each service/slice is allocated resources that are 

merely sufficient to meet its latency requirements.  

In [14], the authors proposed a heuristic for selecting the 

network resources for the slice, based on the utility scores of the 

candidate resources that take into account end-to-end 

availability, reliability and delay constraints. Complex network 

theory is adopted in [15] to obtain the topological information 

of slices and infrastructure network, which are then used to 

define a node importance metric for mapping network slice 

requests to the infrastructure. In [16], a resource allocation 

model for 5G network slices is proposed as a convex 

optimization problem that maximizes the overall system utility, 

taking into account a resource demand vector for the VNFs 

involved in the slice; a distributed solution is further achieved 

through an auction-based approach that maps a system of 

collaborative slices among DCs. Moreover, an optimal model 

for cross-domain network slices deployment is presented in 

[17], which jointly considers the constraints on layered 

placement, resources, link arrangements, latency and 

bandwidth; the authors also proposed a heuristic based on a 

distributed multi-layer knapsack problem, in which items (e.g., 
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VNFs or VNF components) cannot be packed unless the 

required communication resources are met. 

Numerous approaches (e.g., [18]-[23], among others) based 

on network embedding have also been published in recent 

years. In particular, the authors in [18] proposed a virtual 

network embedding problem based on 3-D resources that 

includes computing, network, and storage; [19] looked into a 

network slice embedding problem that considers the 

deployment costs due to the slice’s minimum resource 

requirements (both at the nodes and links), as well as a cost 

related to the end-to-end delay (i.e., propagation and processing 

delays plus the virtualization overhead); [20] proposed an 

efficient heuristic for network slice embedding that allocates 

the network slice resources based on node rankings (four 

possible ranking algorithms are evaluated); and [21] proposed 

an algorithm for automatic virtual network embedding based on 

deep reinforcement learning with a novel multi-objective 

reward function. Meanwhile, [22] and [23] investigated the 

partitioning of multi-domain virtual networks and proposed 

heuristics based on particle swarm optimization; the latter also 

proposed a two-step embedding strategy for the inter- and intra-

domain embedding sub-problems. 

Other works that consider affinity among service 

components include [24] and [25]. The former focused on 

jointly minimizing the deployment cost for service providers, 

response times and inter-cloud traffic in a multi-cloud scenario 

through an integer linear programming problem; a heuristic 

based on VNFs’ traffic affinity is also proposed for service 

chain placement. In the context of user-centric virtual networks, 

the latter proposed a proximity- and affinity-aware clustering of 

virtual objects for scalable management. 

This paper proposes the Resource Selection Optimizer 

(RSO),  a software-service in the MATILDA OSS [26] [27] that 

performs the selection of resources inside the virtual 

infrastructure and across the wide-area interconnected 

infrastructure. The three submodules composing the RSO, and 

the heuristics they enforce, aggregate the micro-service 

components of a vApp graph based on affinity (i.e., the delay, 

jitter, packet loss and throughput requirements between them), 

obtain a list of QoS-aware deployment options from the WIM, 

and selects the placement of the resulting reduced graph from 

this list based on the deployment costs, the number of μDCs 

involved and the utilization forecasts in the μDCs.  

The characteristics of the proposed service that mainly 

differentiate it from the other approaches that we have outlined 

regard the multi-tenancy and the possibility of creating 

interconnected deployments spanning multiple tenant domains, 

as well as how the forecasting and deployment decisions 

explicitly account for the need to deploy Network Services 

(NSs) alongside the vApp components in the μDCs/DCs 

composing the infrastructure. Details on how this goal is 

achieved, as well as the role of the RSO in the creation of a 

network slice, will be presented in Section IV. 

III. 5G-READY VAPPS: ARCHITECTURE, DEPLOYMENT AND 

LIFECYCLE MANAGEMENT 

This section provides a brief background on the architecture of 

5G-ready vApps, as well as how their multi-site deployment 

and lifecycle management can be supported over virtualized 

infrastructures. 

A. Microservices Architecture 

The microservice architectural style has been gaining 

momentum in the research and industry scenes for benefits such 

as improved agility, scalability and autonomy of softwarized 

services’ components [28]. This approach is currently being 

adopted in the design and development of 5G-ready 

applications and network services, whose component instances 

are foreseen to be deployed and scaled among multiple geo-

distributed μDCs in the edge (and remote DCs) according to 

demand dynamics. 

On the applications’ perspective, microservices have been 

around in the last decade, with architectures evolving with the 

software technologies – from hard-coded container-based to 

serverless applications [28]. With the emergence of SDN and 

NFV, this concept has been also extended to network services. 

In fact, the ETSI 3GPP has defined the 5G system with a 

service-based architecture (SBA) [29], such that 5G network 

services, as well as the underlying control and user plane 

functions (C/UPFs), are designed as chains/meshes of 

microservices. Moreover, the smooth rollout of 5G involves 

interworking with 4G technologies in the next years, which 

means that 5G-ready applications and their (wide-area) 

interconnectivity will be jointly supported by 4/5G P/VNFs. 

B. Network Slicing 

The NGMN and 3GPP also introduced the network slicing 

concept into 5G ecosystem specifications [30] [31], where a 

network slice can be roughly summarized as a virtual projection 

of a 5G network with all the functionalities, isolation level, and 

capabilities customized according to the needs of the vertical 

applications. This would further facilitate evolution towards a 

multi-service ecosystem that would simultaneously support 

highly heterogeneous application-specific requirements in a 

differentiated manner. 

In this scenario, the telecommunications infrastructure 

emerges as a sort of distributed datacenter with an aggregate 

pool of networking / computing / storage / radio resources – the 

challenge remains in the coordination and autonomous control 

of this pool in realizing and managing end-to-end network 

slices. It is worth noting that the latter encompass both the 

networking and computing domains, in which applications and 

network services are orchestrated via the slice abstractions. This 

way, vertical industries and service providers can respectively 

manage the complete lifecycle of their application graphs and 

network service chains without needing to know the underlying 

infrastructure – starting from planning (Day-0), initial 

deployment (Day-1), through the in-life operations (Day-2). 

C. The MATILDA Platform 

The MATILDA Project aimed at providing an end-to-end 5G 

framework for the design, development, deployment and 
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orchestration of microservice-based 5G-ready applications 

over a programmable infrastructure. This also involves the 

instantiation and management of application-aware network 

slices, including network and computing resources, as well as 

the necessary network services therein (i.e., P/VNFs). 

As illustrated in Fig. 1, there are three main stakeholders 

involved in MATILDA’s layered approach: (i) the Vertical 

Industry, (ii) the Network Service Provider, and (iii) the 

Network Infrastructure Provider. The vertical industry 

drives the business value of the 5G-ready applications, which is 

taken into account in the design and development, as well as in 

the compute/networking requirement specifications. The 

network service provider then enables the necessary 4/5G 

services (i.e., chaining of P/VNFs) to support the applications, 

and the interconnectivity among their components. Finally, the 

network infrastructure provider offers the underlying network 

and computing resources for the materialization of the 

application-aware network slices. 

The main architectural blocks of the MATILDA platform 

include: 

 the Vertical Application Orchestrator (VAO), in charge 

of the lifecycle management of the application graphs, as 

driven by vertical industry requests and infrastructure-level 

events;  

 the NFV Orchestrator (NFVO), in charge of the lifecycle 

management of application-/slice-specific network 

services; 

 the Wide-area Infrastructure Manager (WIM), which 

maintains a complete knowledge of the status of the wide-

area transport network and the geo-distributed 

infrastructure resources, which are essential for creating 

the network slices’ overlay networks; 

 the Virtual Infrastructure Managers (VIMs), which 

abstract and expose computing, storage, and networking 

capabilities of each μDC or DC within the evolved network 

infrastructure; and 

 the Operations Support System (OSS), in-charge of 

coordinating the operations of the aforementioned blocks 

in order to properly set up the application-aware network 

slices and support the (geo-distributed) applications. 

Note that all platform components and their reference points 

are fully compliant with ETSI NFV architectural specifications 

[32]. Moreover, with the ETSI MEC WG pointing out how the 

user planes of the application and network services could be 

hosted in different isolated tenant spaces within the VIMs [33], 

[34], MEC-NFV attach points (e.g., the virtual networks 

interconnecting application components and VNFs hosted in 

the VIM) are realized as virtual networks interconnecting the 

application and NFV domains. Fig. 1 depicts a deployment 

example of 5G-ready applications that span multiple VIMs, also 

putting in evidence where the different platform components 

reside. It is worth noting that, in MATILDA, the WIM was 

based on the Ericsson Network Manager [35] whose internal 

structure cannot be disclosed. However, a high level description 

of its interaction for the materialization of a slice is reported in 

the next section. 

IV. THE RESOURCE SELECTOR OPTIMIZER 

The MATILDA OSS is designed as a mesh of micro-

services, in which all software services are independently 

deployable, parallelizable and maintain their states in an 

external database. With this in mind, a working prototype has 

been developed as a suite of four software services and two 

databases, as illustrated in Fig. 2.  

In a nutshell, the software suite includes: (i) the Slicing 

Northbound module that supports the communication between 

the VAO and OSS to enable the deployment and lifecycle 

management of application components; (ii) the Resource 

Selection Optimizer (RSO) module that provides the resource 

allocation and reinforcement algorithms/policies regarding the 

multi-site deployment of the applications’ components; (iii) the 

NFV Convergence Layer (NFVCL) module that provides a level 

of abstraction to enable the complete lifecycle management and 

orchestration of network services and P/VNFs instantiated in 

the 5G infrastructure; and (iv) the OSS Core module that 

contains the VIM and WIM convergence layers to provide the 

 
Fig. 1. Deployment of 5G-ready applications spanning multiple VIMs over the evolved network infrastructure with the MATILDA platform. 

 

 
Fig. 2. The MATILDA OSS Architecture. 
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external interfacing of the OSS to the VIMs and WIM(s). 

Moreover, the Persistency Layer includes two different 

databases based on MongoDB [36] and Prometheus [37] for 

storing the configuration and monitoring data, respectively. 

Upon the reception of a slice intent from the VAO, the above 

mentioned micro-services interact to produce a candidate 

materialized slice according to the following procedure: 

1. The Slicing Northbound module receives a slice intent 

message from the VAO. The message is parsed and checked, 

and the slice intent data is stored in the Persistency Layer; then, 

a trigger message is sent to the RSO including the reference to 

the stored data. 

2. The RSO analyses the application graph included in the 

slice intent, and applies a graph reduction algorithm to group 

the components into “macro nodes” that need to be placed in 

the same VIM according to the thresholds provided by the 

VAO. Then, it requests a list of candidate VIMs for the 

deployment of all the groups to the WIM Convergence Layer in 

the OSS Core. It also keeps track of the monitored resources’ 

utilization and provides forecasts. 

3. The WIM Convergence Layer calculates a number of 

possible deployment options and sends them back to the RSO.  

4. The RSO uses the slice intent data and the reduced graph 

to select the network services to be deployed to materialize the 

slice. The RSO asks the NFVCL for the quota of resources to 

be reserved for the NSs in each VIM. 

5. The NFVCL handles the request from the RSO by 

mapping the type of NS against the ones available in the 

selected VIMs, and extracts the amount and type of resources 

to be reserved for each VIM.  

6. The RSO aggregates the amount and the type of resources 

to be reserved for both the vertical application components and 

the VNFs, and it asks the VIM Convergence Layer in the OSS 

Core for the availability of such resources at the selected VIMs. 

7. The VIM Convergence Layer checks for the availability of 

the resources at the selected VIMs. The VIM Convergence 

Layer replies to the RSO with an availability report, and if all 

the requirements are satisfied, it reserves the required resource 

quotas. 

8. The RSO handles the reply from the VIM Convergence 

Layer. If one or more VIMs cannot provide the required types 

or amount of resources, then the RSO will restart from Step 4 

with a different deployment option. If all the requests are 

satisfied, the RSO asks the WIM Convergence Layer to reserve 

the wide-area resources for the chosen deployment option.  

9. The WIM Convergence Layer reserves the wide-area 

resources (i.e., paths) for the chosen deployment option. 

10. The RSO stores in the Persistency Layer all the required 

data to fill the candidate materialized slice message, and to 

proceed to the slice set up in case of positive response from the 

VAO. 

11. The Slicing Northbound Module collects the data stored 

by the RSO, parses them into a candidate materialized slice 

message, and sends it to the VAO. 

With respect to the above procedure, this work particularly 

looks into the design and operational details of the RSO, which 

consists of three submodules that respectively handle the vApp 

graph reduction, VIM resources utilization forecasting and 

multi-site placement optimization of the reduced graph. Since 

the algorithms/policies adopted may have heavy computational 

requirements, can run in parallel, and should provide results 

with short and finite time horizons, the RSO is designed to scale 

horizontally. Multiple instances of the RSO can register 

themselves against the OSS Core module, by indicating which 

algorithms and/or policies they provide. When a certain 

algorithm/policy has to be applied in a workflow, the OSS Core 

triggers the proper RSO instance providing it. 

Each RSO instance is based on an image of the open-source 

SageMath project [38]. By adopting such an advanced 

mathematical framework (which integrates software packages 

in R and Python), it is possible to avoid the porting of the 

algorithms from an environment where they are designed and 

initially tested through simulations (like MatLab, Mathematica, 

etc.), and to directly use them in the production environment. 

This way, the integration effort (and related debugging) can be 

almost zeroed, while providing a familiar and comfortable 

ecosystem to mathematicians and scientists working on 

algorithm design.  

Furthermore, the base image containing SageMath has been 

extended with agents and libraries to communicate with the 

OSS Core and the Persistency Layer. As far as the latter is 

concerned, the RSO can access: (i) the MongoDB database to 

write generated data, or to retrieve requirements and 

configuration data on the slice intents, on the services, and on 

the infrastructure elements; (ii) the Prometheus database to 

retrieve performance metrics stored by the OSS monitoring 

framework. 

The following subsections describe the three RSO 

submodules. Table I reports the notation that will be adopted in 

the remaining of Section IV.  

A vApp has 𝑁 nodes (corresponding to micro-service 

components) and 𝐿 links (specifying the nodes’ logical 

interconnection), the graph specifications define the nodes 

{𝑛𝑜𝑑𝑒𝑛}, 𝑛 = 1,… ,𝑁, links {𝑙𝑖𝑛𝑘𝑙}, 𝑙 = 1,… , 𝐿,  and the link 

TABLE I.  NOTATIONS DEFINITION 

𝑛𝑜𝑑𝑒𝑛 
One of the nodes composing the vApp graph, 𝑛 =
 1,…𝑁 

𝑙𝑖𝑛𝑘𝑙 
One of the links composing the vApp graph, 𝑙 =
1,…𝐿 

{𝑒𝑙
𝑛𝑜𝑑𝑒𝑛 , 𝑒𝑙

𝑛𝑜𝑑𝑒𝑜} 
The couple of nodes representing the endpoints of 

𝑙𝑖𝑛𝑘𝑙 

𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐 
One of the 𝑐 = 1,… , 𝐶 performance metrics for 
the vApp 

𝑐𝑣𝑎𝑙𝑙 
Constraint value for 𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐, the set being 

𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐: [𝑐𝑣𝑎𝑙1, … , 𝑐𝑣𝑎𝑙𝐿] 

𝑚𝑛𝑜𝑑𝑒𝑚 
Macro nodes composing the reduced graph, 𝑚 =
1,…𝑀 

𝑟𝑣𝑎𝑙𝑚 
Set of requirements for vApp and NS for each 

resource type ′𝑣𝑐𝑝𝑢′,′ 𝑟𝑎𝑚′, ′𝑑𝑖𝑠𝑘′ 
𝑑𝑜𝑝𝑡𝑠𝑑 Deployment option, , 𝑑 = 1,…𝐷 

𝑉𝑚
𝑑 

VIM that will host macro node 𝑚𝑛𝑜𝑑𝑒𝑚 in the 

deployment option 𝑑𝑜𝑝𝑡𝑠𝑑 

𝐴𝑐𝑜𝑠𝑡𝜐 Agreement cost for deployment option 𝑣  
𝛼𝑣 Ratio between the usage and the overcommit ratio 

𝐷𝑐𝑜𝑠𝑡𝑑 The cost of a deployment option 𝑑𝑜𝑝𝑡𝑠𝑑 

𝜂d 
Number of VIMs involved in a deployment 
option 
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endpoints 𝑒𝑙 are couples of nodes edges 

 {𝑒𝑙
𝑛𝑜𝑑𝑒𝑛 , 𝑒𝑙

𝑛𝑜𝑑𝑒𝑜}, 𝑛, 𝑜 ∈ 𝑁. Constraint values {𝑐𝑣𝑎𝑙𝑙} are 

indicated according to different subsets of constraints on 

performance metrics {𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐} such as delay, jitter, packet 

loss and/or throughput, 𝑐 = 1,… , 𝐶. The vApp graph is then 

given as 

𝐺𝑟𝑎𝑝ℎ =  [[𝑛𝑜𝑑𝑒1, … , 𝑛𝑜𝑑𝑒𝑁], [𝑙𝑖𝑛𝑘1, … , 𝑙𝑖𝑛𝑘𝐿],  

 [ {𝑒1
𝑛𝑜𝑑𝑒𝑛 , 𝑒1

𝑛𝑜𝑑𝑒𝑜},… , {𝑒𝐿
𝑛𝑜𝑑𝑒𝑛 , 𝑒𝐿

𝑛𝑜𝑑𝑒𝑜}],  

{𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐 : [𝑐𝑣𝑎𝑙1 , … , 𝑐𝑣𝑎𝑙𝐿], … }]                    (1) 

On the other hand, the constraint thresholds {𝑐𝑡ℎ𝑟𝑒𝑠ℎ𝑐} (i.e., 

upper bounds on the corresponding vApp graph links’ QoS 

constraints) can assume adaptable values, as defined by the 

application service provider. 

The reduced graph obtained in Step 2 has 𝑀 macro nodes 

defined by {𝑚𝑛𝑜𝑑𝑒𝑚}, 𝑚 = 1,… ,𝑀, with corresponding 

application and NFV domain requirements {𝑟𝑣𝑎𝑙𝑚} for each 

resource type {′𝑣𝑐𝑝𝑢′,′ 𝑟𝑎𝑚′, ′𝑑𝑖𝑠𝑘′}; then the slice requirements 

are given as 

𝑆𝑙𝑖𝑐𝑒_𝑟𝑒𝑞𝑠 =  [[𝑚𝑛𝑜𝑑𝑒1, … , 𝑚𝑛𝑜𝑑𝑒𝑀],  
 {′𝑣𝑐𝑝𝑢′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙𝑀],  

′𝑟𝑎𝑚′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙𝑀],  
′𝑑𝑖𝑠𝑘′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙𝑀]}]                           (2) 

The deployment options calculated in Step 3 by the WIM 

Convergence Layer are given as tuples of VIMs mapped with 

the vApp graph (macro) nodes. For instance, if 𝐷 deployment 

options are given for 𝑀 macro nodes, we have: 

𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡_𝑜𝑝𝑡𝑠 =  [(𝑉1
1, … , 𝑉𝑀

1), … , (𝑉1
𝐷, … , 𝑉𝑀

𝐷)]          (3) 

where 𝑉𝑚
𝑑, 𝑚 = 1,… ,𝑀, 𝑑 = 1,… , 𝐷, is the VIM that will host 

macro node 𝑚𝑛𝑜𝑑𝑒𝑚 in the deployment option 𝑑𝑜𝑝𝑡𝑠𝑑. Note 

that  𝑉𝑚1
𝑑 ≡ 𝑉𝑚2

𝑑  if 𝑚𝑛𝑜𝑑𝑒𝑚1 and 𝑚𝑛𝑜𝑑𝑒𝑚2, 𝑚1,𝑚2 ∈
{1, … ,𝑀}, are hosted on the same VIM in deployment option 

𝑑𝑜𝑝𝑡𝑠𝑑.  

A. The Graph Reduction Submodule 

Given the graph specifications in the slice intent and a set of 

graph link QoS constraint thresholds, this submodule 

aggregates vApp components according to the latter, generating 

a reduced graph of macro nodes such that all components in the 

same macro node will be collectively handled in the subsequent 

deployment actions on μDCs/DCs in the infrastructure. The 

goal is to ensure that the same macro-nodes will be treated as 

an inseparable set in the following placement and deployment 

operations/actions. Since the threshold parameters determine 

which components are part of the same macro-node and, then, 

need to be placed in the same VIM, tuning these parameters can 

result in different outcomes. Therefore, these values need to be 

carefully pondered, for instance by considering the peculiarities 

of the telecom infrastructure (e.g., the average end-to-end 

delays among the VIMs). It is worth noting that computing 

parameters are taken into account in the next stages. 

The RSO adopts a fairly straightforward graph reduction 

 

 

 
Fig. 3. vApp graph reduction results according to different threshold values. 
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policy that jointly considers the vApp graph specifications 

provided by the VAO, and groups together the nodes with 

logical link constraint values that meet the thresholds (i.e., 

𝑑𝑒𝑙𝑎𝑦 ≤  𝐷𝑒𝑙𝑎𝑦_𝑡ℎ, 𝑗𝑖𝑡𝑡𝑒𝑟 ≤  𝐽𝑖𝑡𝑡𝑒𝑟_𝑡ℎ, 𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 ≤
 𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠_𝑡ℎ and 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ≥  𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑡ℎ) as 

macro nodes. The output is a reduced graph, whose 

specification is defined in a similar format as the input graph 

specifications; it will then be passed to the WIM convergence 

layer that will provide a list of deployment options, each one 

specifying the potential VIMs that could host the (macro) nodes 

of the vApp graph. 

Considering the case of a slice intent with 𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐 = 𝑑𝑒𝑙𝑎𝑦 

as the only constraint, we can write the pseudocode reported in 

Algorithm 1: 

For instance, consider a simple slice intent with 4 application 

components (e.g., nodes) {1, 2, 3, 4} interconnected by 4 links 

labelled as {445, 456, 480, 500}, with only delay constraints (in 

ms). Fig. 3 shows how the resulting reduced graph changes with 

the threshold. The graph reduction affects both nodes and links, 

as some may be no longer required (for instance, see link (1,4) 

in the first example) once two nodes are merged. 

Undefined parameters are treated as “wildcards” and as such 

their assignment is determined by the peculiarities of the 

telecom infrastructure. Moreover, in the case that more 

constraint metrics are specified in the slice intent, the link 

constraints will be updated with the union of the most stringent 

requirements for each metric.  

B. The Utilization Forecasting Submodule 

Given the list of candidate VIMs provided by the WIM 

convergence layer, it is necessary to first define a set of metrics 

to be used in the selection of the most suitable VIMs for the 

(macro) nodes. With this in mind, we consider the monitoring 

metrics on vCPU, RAM and disk utilization of the candidate 

VIMs collected on the MATILDA platform available in the 

Prometheus database for the previous observation period (e.g., 

time series data of the last three weeks), such as the amounts of 

free resources and actual usage. 

This submodule has two functions: (a) the modeling, and 

(b) the forecasting functions. The former runs periodically 

in the background for keeping the resource models up-to-date, 

while the latter can be called at runtime (or also periodically in 

the background, since we consider either the Maximum values 

or the Quantiles of the forecasts rather than the current values 

of the monitoring metrics, in order to provide the necessary 

headroom in the allocation of resources, while supporting 

different dynamics in the time series) to generate utilization 

forecasts for VIM resources based on the most recently updated 

models. Either way, the execution times of this submodule do 

not impact on the overall slice creation described in Section IV. 

Moreover, thread-based parallelism is adopted to update the 

 
(a). # of free vCPUs historical time series and forecast 

 
(b). vCPU usage historical time series and forecast 

Fig. 4. Multi-seasonal vCPU utilization forecasting example with observation period set to three weeks and forecasting horizon to three days. 
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models with a running window of training data in the 

background, as well as to use the most recently updated models 

for the forecasts.  

With R’s forecast library, this submodule models the 

multi-seasonality (i.e., daily and weekly) of the time series data 

using the msts function. The resulting models are in turn used 

as input to the forecast function to predict the time series 

values for a certain horizon (e.g., for the next three days).  

Five different forecasting methods have been tested on three 

different time windows, e. g., one, three and seven days., with 

samples taken every ten minutes. While the execution time of 

the individual methods does not show significant differences, 

and the main difference, as will be shown in Section V, depends 

on the level of parallelism, we used a “Multiple Seasonal Holt-

Winters” method [39], which represents an extension of Holt-

Winters that not only captures Weekday/Weekend differences, 

but also supports multiple seasonalities (e.g., day, week, 

month,...).  

Since, as will be shown in the results, the forecasting function 

runs for over an order of magnitude longer than the modeling 

function, running the two sequentially allows for forecasts that 

are always up-to-date. 

For instance, Fig. 4 shows the resulting forecasts regarding 

the vCPUs of a candidate VIM in terms of the number of free 

vCPUs and VIM-wide usage. In all the tests performed on the 

available traces, 99% of the measured values fall within the 

confidence interval, with an error below 5% of the forecasted 

values.  

C. The Placement Submodule 

Finally, given the aggregate computing-network slice 

requirements (i.e., macro nodes plus network services provided 

by the NFVCL in Step 5), the list of deployment options (i.e., 

the mapping between the macro nodes and VIMs) from the 

WIM convergence layer in Step 3 and the corresponding 

utilization forecasts (in terms of Maximum values or the 

Quantiles) of the candidate VIMs, this submodule seeks to 

select the most suitable deployment of the slice. 

In more detail, the slice requirements are derived from the 

minimum amount of resources (i.e., vCPU, RAM and disk) 

required by the (components of the macro) nodes of the vApp 

graph and by the necessary network services (depending on the 

network services available in the candidate VIMs), as specified 

in the slice intent.  

Given the set of VIMs involved in the deployment options, 

the information on the necessary VIM resources includes the 

Maximum values (or the Quantiles) of the forecasted amount of 

free resources and usages, as well as their pre-defined 

overcommit ratios (e.g., the OpenStack compute service uses 

the default overcommit ratios of 16, 1.5 and 1 for CPU, RAM 

and disk, respectively [40]), and agreement costs (e.g., the cost 

applied by the owner of the VIM to give access to its resources); 

the latter are particularly useful for supporting scenarios in 

which the candidate VIMs have different owners and/or costs. 

Suppose that there are Υ candidate VIMs in the deployment 

options defined by {𝑉𝜐}, each corresponding to an agreement 

cost 𝐴𝑐𝑜𝑠𝑡𝜐, 𝜐 = 1,… , Υ; the VIM resources information is 

collectively expressed as: 

𝑉𝐼𝑀𝑠_𝑟𝑒𝑠 =  [[𝑉1, … ,  𝑉Υ], [𝐴𝑐𝑜𝑠𝑡1 , … , 𝐴𝑐𝑜𝑠𝑡Υ],   
 {′𝑣𝑐𝑝𝑢_𝑓𝑟𝑒𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],  
 ′𝑟𝑎𝑚_𝑓𝑟𝑒𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],  
 ′𝑑𝑖𝑠𝑘_𝑓𝑟𝑒𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ]},  

 {′𝑣𝑐𝑝𝑢_𝑢𝑠𝑎𝑔𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],  
 ′𝑟𝑎𝑚_𝑢𝑠𝑎𝑔𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],  
 ′𝑑𝑖𝑠𝑘_𝑢𝑠𝑎𝑔𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ]},  
 {′𝑣𝑐𝑝𝑢_𝑜𝑐𝑟𝑎𝑡𝑖𝑜′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],  
 ′𝑟𝑎𝑚_𝑜𝑐𝑟𝑎𝑡𝑖𝑜′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],  
 ′𝑑𝑖𝑠𝑘_𝑜𝑐𝑟𝑎𝑡𝑖𝑜′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ]}]            (4) 

With the goal of drawing the line between deployment 

options, the coefficient 𝛼𝑣 is further defined as the ratio 

between the usage and the overcommit ratio computed for the 

three resource types 𝑥 ∈ {′𝑣𝑐𝑝𝑢′,′ 𝑟𝑎𝑚′, ′𝑑𝑖𝑠𝑘′} in a VIM as 

𝛼𝑣 = (𝛼𝑣
𝑣𝑐𝑝𝑢

, 𝛼𝑣
𝑟𝑎𝑚, 𝛼𝑣

𝑑𝑖𝑠𝑘)                         (5) 

where 𝛼𝑣
𝑥  =  𝑥_𝑢𝑠𝑎𝑔𝑒/𝑥_𝑜𝑐𝑟𝑎𝑡𝑖𝑜. These coefficients will act 

as weighting factors (dynamically) differentiating the costs of 

VIM resources, such that their low usage and/or high 

overcommit ratio suggest lower costs. 

1) Decision Rules 

In this work, two decision rules are considered in the 

development of algorithms/policies for the selection among 

vApp graph deployment options.  

R1. Minimizing the cost of the required resources 

The cost 𝐷𝑐𝑜𝑠𝑡𝑑  of a deployment option 𝑑𝑜𝑝𝑡𝑠𝑑  is derived 

firstly with a two-step aggregation approach, where the macro 

node requirements per resource type are summed up according 

to the hosting VIM 𝑉𝜐, multiplied by their respective 𝛼𝑣
𝑥 and 

𝐴𝑐𝑜𝑠𝑡𝜐; then, the weighted requirements per resource type are 

again summed up for each deployment option. Subsequently, 

the resulting values for all 𝐷 deployment options are 

normalized, still per resource type, before computing their 

corresponding square resultants. 𝐷𝑐𝑜𝑠𝑡𝑑  is then given by 

𝐷𝑐𝑜𝑠𝑡𝑑 =∑(‖ ∑ 𝐴𝑐𝑜𝑠𝑡𝑣 𝛼𝑣
𝑥 ∑ 𝑟𝑣𝑎𝑙𝑚𝑛𝑜𝑑𝑒𝑚

𝑚𝑛𝑜𝑑𝑒𝑚↦𝑉𝜐𝑉𝜐∈𝑑𝑜𝑝𝑡𝑠𝑑

‖

𝐷

)

2

𝑥

 

     (6) 

where ‖∙ ‖𝐷 is the normalization operator with respect to all 

deployment options, and 𝑚𝑛𝑜𝑑𝑒𝑚 ↦ 𝑉𝜐 identifies all macro nodes 

𝑚𝑛𝑜𝑑𝑒𝑚 that are mapped to the VIM 𝑉𝜐. 

R2. Minimizing the number of VIMs involved 

The number of VIMs involved in a deployment option, 𝜂d, 

can range from 1 through M – the former means that all macro 

nodes are hosted on the same VIM, while the latter means that 

each one of them is hosted on a different VIM. By minimizing 

the number of VIMs involved, we seek to also minimize the 

complexity of managing the interconnectivity among the macro 

nodes. Two approaches can be followed to incorporate this rule; 

the number of VIMs involved per deployment option can be 

used: (i) as a weighting factor to Eq. (6) prior to the 

minimization of rule R1, and (ii) as the cost of an independent 

minimization rule that can be performed before/after rule R1. 
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2) Selection Policies 

Three policies are then derived to jointly consider both R1 

and R2 in a multi-objective optimization whose solution is 

performed in a heuristic manner as a combinatorial problem; 

the policies are differentiated according to how the rules are 

incorporated in the implementation. 

P1. MinReqMinV 

This policy selects the deployment option with the minimum 

of the deployment cost multiplied by the number of VIMs 

involved per deployment option: 

𝐷𝑐𝑜𝑠𝑡𝑑 ′ = 𝜂𝑑𝐷𝑐𝑜𝑠𝑡𝑑                            (7) 

If multiple solutions exist, one is randomly chosen according to 

a uniform distribution. Algorithm 2 illustrates the policy: 

P2. MinReq+MinV 

This policy sequentially executes the minimization of 

𝐷𝑐𝑜𝑠𝑡𝑑 , and then of 𝜂𝑑. If a unique solution is found in the first 

minimization step, there is no need to execute the Else 

statement and perform the second Sort. If multiple solutions 

exist after the two steps, one is randomly chosen according to a 

uniform distribution, as shown in Algorithm 3. 

P3. MinV+MinReq 

This policy is similar to P2, but with a reversed sequence. 

Particularly, the minimization of 𝜂𝑑 is first executed, to find the 

option with the minimum number of VIMs involved, and then 

that of 𝐷𝑐𝑜𝑠𝑡𝑑  (to find the solution with the minimum 𝐷𝑐𝑜𝑠𝑡 in 

the subset, if the first solution is not unique). If a unique solution 

is found in the first minimization step, there is no need to 

execute the second one. If multiple solutions exist after the two 

steps, one is randomly chosen according to a uniform 

distribution (see Algorithm 4). 

As previously anticipated, various RSO instances may adopt 

different algorithms/policies, which are not limited to the ones 

evaluated in this study, nor to the decision rules considered. 

V. PERFORMANCE EVALUATION 

The performance of the RSO is mainly evaluated in terms of 

the execution times of its submodules – Graph Reduction, 

Utilization Forecasting and Placement Optimization – while 

varying their respective input parameters. For the latter, the 

deployment costs corresponding to the three selection policies 

are also compared. Since the submodules are executed 

sequentially, the analysis is done in a similar fashion. A 

breakdown of the impact of the RSO within the procedure 

described in Section IV can be found in [26]. 

A. Graph Reduction 

Random vApp graph topologies are considered in this 

evaluation – particularly, graphs with 𝑁 = {2, 5, 10, 15, 20} 
nodes and links 𝐿 ranging from 𝐿𝑚𝑖𝑛 = 𝑁 − 1 through 𝐿𝑚𝑎𝑥 =
𝑁(𝑁 − 1)/2 have been generated. As previously anticipated, 

different subsets of constraint metrics {𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐} (e.g., delay, 

jitter, packet loss and throughput) can be specified in the slice 

intent, hence defining different combinations with 1 to 4 

constraint metrics. All constraint values are drawn from discrete 

uniform distributions. Delay constraint values from 𝐷𝑑𝑖𝑠𝑡 =
𝑈{25, 50, 75, 100, 125, 150} ms; jitter constraint values from 

𝐽𝑑𝑖𝑠𝑡 = 𝑈{5, 10, 15, 25, 30} ms; packet loss constraint values 

from 𝑃𝑑𝑖𝑠𝑡 = 𝑈{0.0025,0.005,0.0075, 0.01, 0.0125, 0.015}, 
and; throughput constraint values from 𝑇𝑑𝑖𝑠𝑡 =
𝑈{0.5, 1, 1.5, 2, 2.5} Gbps. The tests are repeated for 10 runs 

with varying seeds, generating a different topology and/or 

constraint values for each (𝑁, 𝐿) combination.  

Based on the constraint values’ distributions above, four 

different threshold levels are defined and considered in the 

evaluations. 

T1. In=Out 

𝐷𝑒𝑙𝑎𝑦_𝑡ℎ < 𝐷𝑑𝑖𝑠𝑡, 𝐽𝑖𝑡𝑡𝑒𝑟_𝑡ℎ < 𝐽𝑑𝑖𝑠𝑡 , 𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠_𝑡ℎ <
𝑃𝑑𝑖𝑠𝑡 and 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑡ℎ > 𝑇𝑑𝑖𝑠𝑡 , such that no logical link 

constraint values meet the thresholds – hence the input and 

output vApp graphs are the same. 

T2. Min 

𝐷𝑒𝑙𝑎𝑦_𝑡ℎ = min (𝐷𝑑𝑖𝑠𝑡), 𝐽𝑖𝑡𝑡𝑒𝑟_𝑡ℎ = min (𝐽𝑑𝑖𝑠𝑡), 
𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠_𝑡ℎ = min (𝑃𝑑𝑖𝑠𝑡) and 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑡ℎ =
max (𝑇𝑑𝑖𝑠𝑡), such that the number of logical link constraint 

values that meet the thresholds per metric is minimized. 
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T3. Med 

𝐷𝑒𝑙𝑎𝑦_𝑡ℎ = median (𝐷𝑑𝑖𝑠𝑡), 𝐽𝑖𝑡𝑡𝑒𝑟_𝑡ℎ = median (𝐽𝑑𝑖𝑠𝑡), 
𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠_𝑡ℎ = median (𝑃𝑑𝑖𝑠𝑡) and 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑡ℎ =
median (𝑇𝑑𝑖𝑠𝑡), such that logical link constraint values have 

more/less 50% probability to meet the thresholds. 

T4. Max 

𝐷𝑒𝑙𝑎𝑦_𝑡ℎ = 𝑚𝑎𝑥 (𝐷𝑑𝑖𝑠𝑡), 𝐽𝑖𝑡𝑡𝑒𝑟_𝑡ℎ = 𝑚𝑎𝑥 (𝐽𝑑𝑖𝑠𝑡), 
𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠_𝑡ℎ = 𝑚𝑎𝑥 (𝑃𝑑𝑖𝑠𝑡) and 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑡ℎ =
𝑚𝑖𝑛 (𝑇𝑑𝑖𝑠𝑡), such that all the logical link constraint values 
meet the thresholds.  

Fig. 5 shows how the average execution times of the Graph 

Reduction submodule vary with 𝑁 for each threshold level. 

Two different trends can be observed that correspond to the 

cases 𝑁 = 2 and 𝑁 > 2. The first case is simply a linear trend 

– which is expected, since there is only 1 logical link and the 

probability that its constraint value(s) meet the threshold(s) 

increases with the threshold level – and results in a binary 

decision (i.e., all or none) on executing the code for merging the 

nodes. On the other hand, the second case is trickier, since 

merging nodes can result in a chain effect that highly depends 

on the vApp graph topology. Starting from the In=Out 

threshold level that does not merge any nodes, the Min level 

result in more involved chained effects that, on average, 

increase with 𝑁 (considering all possible values of 𝐿 ∈
[𝐿𝑚𝑖𝑛 , 𝐿𝑚𝑎𝑥]); more involved in the sense that the size (𝑀 and 

𝐿’) of the reduced vApp graph is not greatly decreased, and the 

logical link specifications need to be updated. Then, as the 

threshold level is further increased to Med and to Max, 𝑀 and 

𝐿’ decrease accordingly and, hence, the execution time of the 

code for updating logical link specifications is also reduced. 

Note that each point of the curves Fig. 5 is averaged not only 

over all possible values of 𝐿 ∈ [𝐿𝑚𝑖𝑛 , 𝐿𝑚𝑎𝑥], but also over 

different numbers of constraint metrics. 

B. Utilization Forecasting 

The execution times of both the modeling and forecasting 

functions of the Utilization Forecasting submodule are 

evaluated individually and jointly at the resource and VIM 

levels, for varying number of VIMs involved in the deployment 

options. As shown in Fig. 6, the forecasting function runs for 

over an order of magnitude longer than the modeling function 

– on average, building/updating a resource model takes around 

0.09 s, while generating a forecast takes around 4.42 s. This 

provides an indication for deciding how often they should be 

run. Since updating the model does not take so long, it may be 

reasonable to also run them sequentially to generate updated 

forecasts. Moreover, with thread-based parallelism, the values 

at the VIM level can correspond to those at the resource level if 

the modeling and/or forecasting for VIMs’ vCPU, RAM and 

disk resources are run in parallel; otherwise, the average time 

required for their sequential execution linearly increases with 

the number of resource types per VIM (i.e., approximately 3×, 

given the three resource types considered).  

Fig. 7 illustrates how the runtime execution times vary with 

the number of VIMs involved in the deployment options. The 

tag ‘SS’ means that the modeling and/or forecasting 

functions are executed sequentially per resource type and per 

VIM, ‘PS’ means that they are executed in parallel per resource 

type and sequentially per VIM, and ‘PP’ means that they are 

executed in parallel per resource type and per VIM. Finally, 

simple accessing of the forecasted values is executed 

sequentially per VIM, which is tagged as ‘S:get’, where each 

execution takes around 42 μs on average, which has a negligible 

impact on the overall execution times: it can be observed how 

sequential execution results in a linear increase in the time 

measurements, growing from 12 to 119 s, while the execution 

in parallel remains constantly around 5 s regardless of the 

number of VIMs involved. 

C. Placement Optimization 

Reduced vApp graphs with 𝑀 = {1, 2, … ,10} macro nodes 

are considered in this evaluation. Particularly, all outputs from 

the Reduce Graph submodule for 𝑁 = 10 (with varying 

number of links 𝐿, number of constraint metrics and threshold 

levels) have been sorted according to the resulting macro nodes.  

For simplicity, but without loss of generality, we suppose that 

all of the original ten nodes have the same flavor (i.e., 1 vCPU, 

 
Fig. 5. Average execution times of the Graph Reduction 

submodule for varying input vApp graph sizes and threshold 
levels. 

 
(a). per resource 

 
(b). per VIM (sequential) 

Fig. 6. Average execution times for building/updating the models 

and generating forecasts at the resource and VIM levels. 

 

In=Out Min Med Max
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2048 MB of RAM, 20 GB of disk), such that the slice 

requirements ( 𝑆𝑙𝑖𝑐𝑒_𝑟𝑒𝑞𝑠) can be easily derived based on the 

size of the macro nodes. Similarly, all the VIMs involved are 

supposed to have the same default resource information given 

as triples corresponding to (vCPU, RAM, disk): (a) free 

resources (50 vCPUs, 102400 MB, 100 GB), (b) usage (50%, 

50%, 50%), and (c) overcommit ratios (16, 1.5, 1). These values 

are chosen such that each VIM has the capability to host even 

the entire slice. Since the WIM performance is out of the scope 

of this work, the network topology is irrelevant.  

With the above considerations, the evaluation space for the 

deployment options is greatly reduced while still granting a 

meaningful analysis. In particular, Fig. 8 shows trends in the 

average execution times of the Placement Optimization 

submodule according to the number of macro nodes (𝑀), VIMs 

involved (Υ′) and deployment options (𝐷). For a given 𝑀, it can 

be understood that 𝐷 has a stronger influence than Υ′ on the 

execution times. Moreover, while the results presented are 

obtained with the selection policy P1, it is interesting to note 

that similar trends are observed using P2 and P3.  

The placement optimization is then evaluated in terms of the 

deployment costs and execution times. Reduced vApp graphs 

with 𝑀 = {1,… ,5} macro nodes are considered; particularly, all 

outputs from the Reduce Graph submodule for 𝑁 = 5 (with 

varying number of logical links 𝐿, number of constraint metrics 

and threshold levels) have been sorted according to the resulting 

macro nodes. Further, the number of candidate VIMs is limited 

to Υ = 3 to better understand the impact of other deployment 

parameters, such as the agreement costs (𝐴𝑐𝑜𝑠𝑡𝜐, 𝜐 = 1, 2, 3), 

the resources’ usage and overcommit ratios, the deployment 

options, and whether the parameter Υ′ is considered as a fixed 

value (e.g., if Υ′ = 3, each deployment option should have three 

different VIMs involved), or as a maximum value (e.g., if Υ′ =
3, deployment options can either have one / two / three VIM(s) 

involved) in generating the options. In more detail, the VIMs 

can assume the agreement costs [𝐴𝑐𝑜𝑠𝑡1, 𝐴𝑐𝑜𝑠𝑡2, 𝐴𝑐𝑜𝑠𝑡3] ∈
{[1,1,1], [5,5,1], [10,5,1]}; then the resource usage and 

overcommit ratios are chosen according to the two settings 

below: 

S1. Default 

All VIMs adopt the default values for (vCPU, RAM, disk) 

usage (50%, 50%, 50%) and overcommit ratios (16, 1.5, 1). 

S2. Distinct 

Each of the three VIMs adopts distinct values for the (vCPU, 

RAM, disk) usage – (30%, 30%, 30%), (50%, 50%, 50%), 

(80%, 80%, 80%), and overcommit ratios – (16, 1.5, 1), (8, 1.3, 

1), (1, 1, 1), respectively. 

1) Deployment Costs 

When the number of VIMs involved in each deployment 

option is strictly equal to 𝛶′, Fig. 9 illustrates how the cost of 

the deployment (normalized to the maximum value) varies with 

the default / distinct resource settings and agreement costs. As 

for Fig. 8, the selection policies are not reported as their impact 

is not significant with both Default and Distinct resource 

settings as the agreement costs are varied. In the former, the cost 

difference between having 1 through 3 VIMs in the deployment 

increases with the agreement costs. This may be attributed to 

the interaction between the two weighting coefficients (𝛼𝑣 and 

𝐴𝑐𝑜𝑠𝑡𝑣) included in the policies. Note that default resource 

settings will give the same values for 𝛼𝑣; in that case the VIMs 

are only differentiated according to the 𝐴𝑐𝑜𝑠𝑡𝑣 . Apparently, the 

Distinct setting gives slightly higher costs, but this behavior is 

 
Fig. 7. Average execution times for runtime modeling and/or forecasting, 

for varying number of VIMs involved. 

 
Fig. 8. Average execution times of the Placement Optimization 

submodule for varying number of macro nodes, VIMs involved and 

deployment options. 

 
(a). [𝑨𝒄𝒐𝒔𝒕𝟏, 𝑨𝒄𝒐𝒔𝒕𝟐, 𝑨𝒄𝒐𝒔𝒕𝟑] = [𝟏, 𝟏, 𝟏] 

 
(b). [𝑨𝒄𝒐𝒔𝒕𝟏, 𝑨𝒄𝒐𝒔𝒕𝟐, 𝑨𝒄𝒐𝒔𝒕𝟑] = [𝟓, 𝟓, 𝟏] 

 
(c). [𝑨𝒄𝒐𝒔𝒕𝟏, 𝑨𝒄𝒐𝒔𝒕𝟐, 𝑨𝒄𝒐𝒔𝒕𝟑] = [𝟏𝟎, 𝟓, 𝟏] 

Fig. 9. Comparing the deployment costs for varying number of VIMs 

involved, deployment options (D=3, 6, 9, 15), agreement costs and 

resource settings with fixed 𝛶′. 
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inversely proportional to the number of VIMs, and in fact costs 

are the same for 3 VIMs. For both settings, costs grow with the 

number of VIMs but this growth is quicker when 𝐴𝑐𝑜𝑠𝑡 is 

lower. Regarding the deployment options, they have a stronger 

impact as 𝐴𝑐𝑜𝑠𝑡 grows. The cost has a spike for D=15, which, 

in addition to the following considerations on the execution 

time, must be taken into account when interacting with the 

WIMs. 

Figure 10 reports the same results as in Fig. 9, Distinct 

setting, [𝐴𝑐𝑜𝑠𝑡1, 𝐴𝑐𝑜𝑠𝑡2, 𝐴𝑐𝑜𝑠𝑡3] = [10,5,1], but it also reports 

the error in the deployment cost caused by using the forecasted 

amount of free resources and usages instead of the measured 

ones. For all values of involved VIMs and deployment options, 

the error stays below 5%. 

2) Execution Times 

As regards the execution times of the three selection policies, 

the data further support the initial analysis of the results shown 

in Fig. 8– that is, the execution time is mostly influenced by the 

number of deployment options (𝐷). Particularly, the variations 

in the resource settings and agreement costs did not affect much 

the execution times.  

Fig. 11 shows the average execution times of the selection 

policies with 𝛶′ fixed and as a maximum, also indicating the 

number of deployment options for both cases plotted as a black 

line in the figure. When 𝛶′ is fixed, the policies run for similar 

durations; whereas when 𝛶′ is considered as a maximum, the 

MinV+MinReq policy results in shorter durations by around 

40~50% as 𝛶′ (and 𝐷) increases. Note that the deployment 

option included for 𝛶′ in the second case is simply the union of 

all deployment options for ≤ 𝛶′ in the first case (i.e., Fig. 11b 

indicates 9 (=3+6, from Fig. 11a) for 𝛶′ = 2, and 15 (=3+6+6, 

from Fig. 11a) for 𝛶′ = 3). It can be noticed that, even when 𝛶′ 

is considered as a maximum and the execution time grows with 

the number of deployment options, such growth is far from 

being linear with D and the effect on the execution time is 

limited. 

Based on the results obtained in both the deployment cost and 

execution time evaluations, it can be deduced that the 

MinV+MinReq policy presents a promising compromise. 

Among the works reported in Section II, [20] presents a 

deployment algorithm that can help draw some considerations 

on the effectiveness of our work. Although the referred study 

proposes an evaluation of the execution time for multiple slices, 

it is apparent that the order of magnitude is in the range of the 

seconds. As shown in this section and corroborated by the 

overall evaluation performed in [26], the contribution of the 

three RSO submodules stays in the ms range making it a 

valuable asset for a realistic deployment. 

VI. CONCLUSIONS 

Emerging network softwarization solutions such as the MEC, 

NFV and SDN paradigms are key enablers of 5G technologies, 

as well as towards telecommunications infrastructure 

convergence and a distributed, multi-service ecosystem. In this 

scenario, multi-tenancy and the as-a-Service concept will also 

advance in the end-to-end network slicing direction, enabling 

vertical industries and network service providers to 

access/manage their assets via slice abstractions. The challenge 

remains in the instantiation and management of application-

aware network slices necessary to support the multi-site 

deployment of vApps. 

This paper presented the design and operation details of the 

RSO – a software-service in the MATILDA OSS, whose main 

goal is to select the best deployment among a list of options 

provided by the WIM. It consists of the Graph Reduction, 

Utilization Forecasting and Placement Optimization 

submodules, which respectively handle the aggregation of 

vApp components based on affinities, the forecasting of μDC 

resources utilization, and the optimization of the QoS-aware, 

multi-site deployment of the (aggregated) vApp components.  

The RSO’s performance is mainly evaluated in terms of the 

execution times of its submodules, while varying their input 

parameters, such as the vApp graph topology, constraint 

metrics, execution method, slice requirements, VIM resources, 

deployment options, etc. For the Placement Optimization 

submodule, three selection policies are also compared in terms 

of both execution times and deployment costs. Experimental 

results allowed to assess the suitability of the RSO to be a 

relevant asset for the upcoming 5G ecosystems. Moreover, 

results identified a number of different behaviors and trade-offs 

that can be exploited in engineering its inputs to improve the 

interactions with other OSS submodules and network platform 

components, not only for multi-site vApp deployment but also 

for other network/services management operations, while 

applying the most appropriate setup to the current environment 

and requirements. 

Furthermore, it is worth noting that the highly flexible, 

microservice-based design of the RSO allows for seamless 

integration of other next-generation forecasting and 

optimization algorithms. 

 
Fig. 10. Error bars representing the distance between deployment costs for 

the Distinct setting c) obtained by using forecasted data and measured 
ones.  

 
(a). Fixed Υ′ (b). Υ′ as maximum 

Fig. 11. Comparing the average execution times of the three selection 

policies with 𝜰′ fixed and as maximum. 
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