
1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract— Network softwarization has paved the way for 5G

technologies, and a wide-range of (radically new) verticals. As the

telecommunications infrastructure evolves into a sort of

distributed datacenter, multiple tenants such as vertical industries

and network service providers share its aggregate pool of

resources (e.g., networking, computing, etc.) in a layered “as-a-

Service” approach exposed as slice abstractions. The challenge

remains in the coordination of various stakeholders’ assets in

realizing end-to-end network slices and supporting the multi-site

deployment and chaining of the micro-service components needed

to implement cloud-native vertical applications (vApps). In this

context, particular care must be taken to ensure that the required

resources are identified, made available and managed in a way

that satisfies the vApp requirements, allows for a fair share of

resources and has a reasonable impact on the overall vApp

deployment time. With these challenges in mind, this paper

presents the Resource Selection Optimizer (RSO) – a software-

service in the MATILDA Operations Support System (OSS),

whose main goal is to select the most appropriate network and

computing resources (according to some criterion) among a list of

options provided by the Wide-area Infrastructure Manager

(WIM). It consists of three submodules that respectively handle:

(i) the aggregation of vApp components based on affinities, (ii) the

forecasting of (micro-) datacenter resources utilization, (iii) and

the multi-site placement of the (aggregated) vApp micro-service

components. The RSO’s performance is mainly evaluated in terms

of the execution times of its submodules while varying their

respective input parameters, and additionally, three selection

policies are also compared. Experimental results aim to highlight

the RSO behavior in both execution times and deployment costs,

as well as the RSO interactions with other OSS submodules and

network platform components, not only for multi-site vApp

deployment but also for other network/services management

operations.

Index Terms—5G, Multi-site resource allocation, Network

slicing, OSS microservices, Resource selection, Vertical

applications.

I. INTRODUCTION

IN recent years, emerging network softwarization solutions

such as the Multi-access Edge Computing (MEC), Network

Manuscript submitted on the 30th June 2021. This work has been partially

supported by the Horizon 2020 5G-PPP Innovation Action 5G-INDUCE (Grant

Agreement no. 101016941) and by the Horizon 2020 Innovation Action
SPIDER (Grant Agreement no. 833685).

R. Bolla, R. Bruschi and F. Davoli are with the Department of Electrical,

Electronic and Telecommunications Engineering, and Naval Architecture
(DITEN) of the University of Genoa, and with the National Laboratory of Smart

Functions Virtualization (NFV) and Software-defined

Networking (SDN) paradigms, among others, have been

established as key enablers of 5G technologies [1], along with

the realization of a fully converged telecommunications

infrastructure, able to simultaneously support a wide-range of

verticals with highly heterogeneous nature and requirements.

The MEC paradigm [2] brings Cloud-like services closer to

the end-users by deploying small- to medium-sized computing

facilities, referred to as micro-datacenters (μDC) hereinafter, to

support next-generation use-cases with challenging

performance/operating requirements, such as the Ultra-reliable

and Low-latency Communications (URLLC) use case category

defined by the ITU-R [3]. Moreover, the μDCs in the edge and

the remote Cloud DCs will play central and interworking roles

in the softwarized network scenario as they will both potentially

host (components of) the vertical applications (vApps), together

with network services. With NFV [4], the latter are no longer

limited to special-purpose physical network functions (PNFs)

but also include Virtualized Network Functions (VNFs) – the

software implementation of networking functionalities that run

on general-purpose hardware and can be (dynamically) placed

practically anywhere in the Cloud-MEC domain. While

network/services management complexity is foreseen to

escalate in this highly virtual environment, SDN [5] proves to

be invaluable in terms of providing programmable

interconnectivity – whether between vApp/service components,

between infrastructure nodes and among them, which can also

be exploited for implementing isolated network slices. As

regards specifically vApps, they are 5G-ready applications that

consist of several chainable cloud-native micro-services, i.e.,

components that have to collaborate in order to fulfil their

operational scope, along with specific properties they should

possess to be ported to the cloud. Collaboration implies that

these components form a logical graph based on their

dependencies. On top of that, the emergence of the

programmable infrastructure has introduced additional

characterizations that should be taken under consideration

during a “strict” definition of a cloud-native application.

Along this line, multi-tenancy and the as-a-Service concept

and Secure Networks (S2N) of the Italian National Consortium for

Telecommunications (CNIT), Genoa, Italy (e-mail: roberto.bruschi@unige.it,

franco.davoli@unige.it).
C. Lombardo is with the CNIT S2N National Laboratory, Genoa, Italy (e-

mail: chiara.lombardo@cnit.it).

J. F. Pajo is with Telenor Research, Norway (e-mail: jane-
frances.pajo@telenor.com).

Multi-site Resource Allocation in a QoS-Aware

5G Infrastructure

Raffaele Bolla, Senior Member, IEEE, Roberto Bruschi, Senior Member, IEEE, Franco Davoli, Life

Senior Member, IEEE, Chiara Lombardo and Jane Frances Pajo

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

are expected to evolve from the traditional Cloud virtualization

to end-to-end network slicing, where 5G network slices [6] can

involve both networking and computing resources from

multiple domains and are exposed as slice abstractions of the

underlying infrastructure. This will not only empower vertical

industries, but also lower the barriers for start-ups and

small/medium-sized enterprises (SMEs) to engage in the rollout

and/or uptake of 5G technologies and services. In fact, as

various business-to-business-to-X (B2B2X) opportunities will

soon arise, service providers are foreseen to move up the value

chain and, by 2030, they are forecasted to address around US$

700 billion of global digitalization revenues across vertical

industries [7].

This has motivated numerous research and/or innovation

initiatives [8][9], fostering academic-industrial partnerships

and cross-project synergies, towards building digital platforms

that integrate verticals into the stakeholder ecosystem and could

expose the converged infrastructure (based on Cloud, MEC,

NFV and SDN technologies) to service providers, as well as in

developing intelligent solutions for automating the deployment

and orchestration of vApps and network services on a per-slice

basis. In this respect, the H2020 5G-PPP MATILDA Project

[10] sought to deliver an end-to-end 5G framework, which

includes mechanisms for the instantiation of application-aware

network slices, multi-site deployment of micro-service vApp

components, as well as for the lifecycle management and

orchestration of the slice resources, vApp components and

P/VNFs involved. The MATILDA approach, , further enhanced

in the subsequent project 5G-INDUCE [11],is based on the

concept of separation of concerns between the Application

Orchestrator in the vertical stakeholder’s domain and the

Network Orchestrator managed by the Telco Providers. A key

role in the interaction of these two domains is played by the

Telco Operations Support System (OSS).

This paper particularly looks into the Resource Selection

Optimizer (RSO) of the MATILDA platform’s OSS, and on its

resource selection mechanisms among the Quality of Service

(QoS)-aware, multi-site (and, possibly, multi-tenant)

deployment options provided by a Wide-area Infrastructure

Manager (WIM). Since the selection of the suitable resources is

crucial for satisfying the requirements of vApps and

particularly troublesome in a multi-tenant context, this paper

aims to assess the suitability of the RSO to fulfil this task.

Starting with a slice intent that encapsulates the vApp

specifications (i.e., the vApp micro-service components, their

interconnection, as well as the components’ and their

interconnecting infrastructural resources’ QoS requirements,

along with the necessary network services), the RSO is the

software service in-charge of:

 aggregating vApp micro-service components according to

their affinities, and to a set of QoS constraint thresholds,

defined by the Application Service Provider, on their

interconnecting infrastructure (which can be abstracted in

terms of logical “links” in the micro-service chain that makes

up the application service);

 forecasting the resources’ utilization (such as the amount of

free resources of vCPU, RAM and disk, as well as their

usage) in the μDCs; and

 placing the (aggregated) vApp micro-service components

according to their requirements, the deployment options

provided by the WIM and the utilization forecasts in the

μDCs involved.

Tests performed on the three submodules composing the

RSO allow identifying the different behaviors and trade-offs

that can improve the interplay with the network platform

components as well as selecting the setup that is the most

appropriate to the current network environment and application

requirements.

The remainder of this paper is organized as follows. Section

II provides a summary of the most related works in the

literature, while Section III describes the architecture,

deployment and lifecycle management of vApps in the context

of MATILDA. The RSO’s design and operation are then

detailed in Section IV, followed by the performance evaluation

results and discussion in Section V. Finally, conclusions are

drawn in Section VI.

II. RELATED WORK

Resource allocation problems in the literature have been

recently evolving with an end-to-end notion, as 5G-ready

applications and their underlying network slices are expected to

span multiple domains.

The authors in [12] proposed a framework for the

management and deployment of the 5G core network, which

considers the distributed deployment of the functions among

μDCs; the optimal allocation is a mixed nonlinear integer

programming problem and is driven by the μDCs’ energy costs

and processing delays, as well as the delay and bandwidth costs

in the backhaul. On the other hand, an end-to-end slicing

framework is proposed in [13], considering both computing and

communication resources across the full 2-tier MEC

architecture; each service/slice is allocated resources that are

merely sufficient to meet its latency requirements.

In [14], the authors proposed a heuristic for selecting the

network resources for the slice, based on the utility scores of the

candidate resources that take into account end-to-end

availability, reliability and delay constraints. Complex network

theory is adopted in [15] to obtain the topological information

of slices and infrastructure network, which are then used to

define a node importance metric for mapping network slice

requests to the infrastructure. In [16], a resource allocation

model for 5G network slices is proposed as a convex

optimization problem that maximizes the overall system utility,

taking into account a resource demand vector for the VNFs

involved in the slice; a distributed solution is further achieved

through an auction-based approach that maps a system of

collaborative slices among DCs. Moreover, an optimal model

for cross-domain network slices deployment is presented in

[17], which jointly considers the constraints on layered

placement, resources, link arrangements, latency and

bandwidth; the authors also proposed a heuristic based on a

distributed multi-layer knapsack problem, in which items (e.g.,

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

VNFs or VNF components) cannot be packed unless the

required communication resources are met.

Numerous approaches (e.g., [18]-[23], among others) based

on network embedding have also been published in recent

years. In particular, the authors in [18] proposed a virtual

network embedding problem based on 3-D resources that

includes computing, network, and storage; [19] looked into a

network slice embedding problem that considers the

deployment costs due to the slice’s minimum resource

requirements (both at the nodes and links), as well as a cost

related to the end-to-end delay (i.e., propagation and processing

delays plus the virtualization overhead); [20] proposed an

efficient heuristic for network slice embedding that allocates

the network slice resources based on node rankings (four

possible ranking algorithms are evaluated); and [21] proposed

an algorithm for automatic virtual network embedding based on

deep reinforcement learning with a novel multi-objective

reward function. Meanwhile, [22] and [23] investigated the

partitioning of multi-domain virtual networks and proposed

heuristics based on particle swarm optimization; the latter also

proposed a two-step embedding strategy for the inter- and intra-

domain embedding sub-problems.

Other works that consider affinity among service

components include [24] and [25]. The former focused on

jointly minimizing the deployment cost for service providers,

response times and inter-cloud traffic in a multi-cloud scenario

through an integer linear programming problem; a heuristic

based on VNFs’ traffic affinity is also proposed for service

chain placement. In the context of user-centric virtual networks,

the latter proposed a proximity- and affinity-aware clustering of

virtual objects for scalable management.

This paper proposes the Resource Selection Optimizer

(RSO), a software-service in the MATILDA OSS [26] [27] that

performs the selection of resources inside the virtual

infrastructure and across the wide-area interconnected

infrastructure. The three submodules composing the RSO, and

the heuristics they enforce, aggregate the micro-service

components of a vApp graph based on affinity (i.e., the delay,

jitter, packet loss and throughput requirements between them),

obtain a list of QoS-aware deployment options from the WIM,

and selects the placement of the resulting reduced graph from

this list based on the deployment costs, the number of μDCs

involved and the utilization forecasts in the μDCs.

The characteristics of the proposed service that mainly

differentiate it from the other approaches that we have outlined

regard the multi-tenancy and the possibility of creating

interconnected deployments spanning multiple tenant domains,

as well as how the forecasting and deployment decisions

explicitly account for the need to deploy Network Services

(NSs) alongside the vApp components in the μDCs/DCs

composing the infrastructure. Details on how this goal is

achieved, as well as the role of the RSO in the creation of a

network slice, will be presented in Section IV.

III. 5G-READY VAPPS: ARCHITECTURE, DEPLOYMENT AND

LIFECYCLE MANAGEMENT

This section provides a brief background on the architecture of

5G-ready vApps, as well as how their multi-site deployment

and lifecycle management can be supported over virtualized

infrastructures.

A. Microservices Architecture

The microservice architectural style has been gaining

momentum in the research and industry scenes for benefits such

as improved agility, scalability and autonomy of softwarized

services’ components [28]. This approach is currently being

adopted in the design and development of 5G-ready

applications and network services, whose component instances

are foreseen to be deployed and scaled among multiple geo-

distributed μDCs in the edge (and remote DCs) according to

demand dynamics.

On the applications’ perspective, microservices have been

around in the last decade, with architectures evolving with the

software technologies – from hard-coded container-based to

serverless applications [28]. With the emergence of SDN and

NFV, this concept has been also extended to network services.

In fact, the ETSI 3GPP has defined the 5G system with a

service-based architecture (SBA) [29], such that 5G network

services, as well as the underlying control and user plane

functions (C/UPFs), are designed as chains/meshes of

microservices. Moreover, the smooth rollout of 5G involves

interworking with 4G technologies in the next years, which

means that 5G-ready applications and their (wide-area)

interconnectivity will be jointly supported by 4/5G P/VNFs.

B. Network Slicing

The NGMN and 3GPP also introduced the network slicing

concept into 5G ecosystem specifications [30] [31], where a

network slice can be roughly summarized as a virtual projection

of a 5G network with all the functionalities, isolation level, and

capabilities customized according to the needs of the vertical

applications. This would further facilitate evolution towards a

multi-service ecosystem that would simultaneously support

highly heterogeneous application-specific requirements in a

differentiated manner.

In this scenario, the telecommunications infrastructure

emerges as a sort of distributed datacenter with an aggregate

pool of networking / computing / storage / radio resources – the

challenge remains in the coordination and autonomous control

of this pool in realizing and managing end-to-end network

slices. It is worth noting that the latter encompass both the

networking and computing domains, in which applications and

network services are orchestrated via the slice abstractions. This

way, vertical industries and service providers can respectively

manage the complete lifecycle of their application graphs and

network service chains without needing to know the underlying

infrastructure – starting from planning (Day-0), initial

deployment (Day-1), through the in-life operations (Day-2).

C. The MATILDA Platform

The MATILDA Project aimed at providing an end-to-end 5G

framework for the design, development, deployment and

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

orchestration of microservice-based 5G-ready applications

over a programmable infrastructure. This also involves the

instantiation and management of application-aware network

slices, including network and computing resources, as well as

the necessary network services therein (i.e., P/VNFs).

As illustrated in Fig. 1, there are three main stakeholders

involved in MATILDA’s layered approach: (i) the Vertical

Industry, (ii) the Network Service Provider, and (iii) the

Network Infrastructure Provider. The vertical industry

drives the business value of the 5G-ready applications, which is

taken into account in the design and development, as well as in

the compute/networking requirement specifications. The

network service provider then enables the necessary 4/5G

services (i.e., chaining of P/VNFs) to support the applications,

and the interconnectivity among their components. Finally, the

network infrastructure provider offers the underlying network

and computing resources for the materialization of the

application-aware network slices.

The main architectural blocks of the MATILDA platform

include:

 the Vertical Application Orchestrator (VAO), in charge

of the lifecycle management of the application graphs, as

driven by vertical industry requests and infrastructure-level

events;

 the NFV Orchestrator (NFVO), in charge of the lifecycle

management of application-/slice-specific network

services;

 the Wide-area Infrastructure Manager (WIM), which

maintains a complete knowledge of the status of the wide-

area transport network and the geo-distributed

infrastructure resources, which are essential for creating

the network slices’ overlay networks;

 the Virtual Infrastructure Managers (VIMs), which

abstract and expose computing, storage, and networking

capabilities of each μDC or DC within the evolved network

infrastructure; and

 the Operations Support System (OSS), in-charge of

coordinating the operations of the aforementioned blocks

in order to properly set up the application-aware network

slices and support the (geo-distributed) applications.

Note that all platform components and their reference points

are fully compliant with ETSI NFV architectural specifications

[32]. Moreover, with the ETSI MEC WG pointing out how the

user planes of the application and network services could be

hosted in different isolated tenant spaces within the VIMs [33],

[34], MEC-NFV attach points (e.g., the virtual networks

interconnecting application components and VNFs hosted in

the VIM) are realized as virtual networks interconnecting the

application and NFV domains. Fig. 1 depicts a deployment

example of 5G-ready applications that span multiple VIMs, also

putting in evidence where the different platform components

reside. It is worth noting that, in MATILDA, the WIM was

based on the Ericsson Network Manager [35] whose internal

structure cannot be disclosed. However, a high level description

of its interaction for the materialization of a slice is reported in

the next section.

IV. THE RESOURCE SELECTOR OPTIMIZER

The MATILDA OSS is designed as a mesh of micro-

services, in which all software services are independently

deployable, parallelizable and maintain their states in an

external database. With this in mind, a working prototype has

been developed as a suite of four software services and two

databases, as illustrated in Fig. 2.

In a nutshell, the software suite includes: (i) the Slicing

Northbound module that supports the communication between

the VAO and OSS to enable the deployment and lifecycle

management of application components; (ii) the Resource

Selection Optimizer (RSO) module that provides the resource

allocation and reinforcement algorithms/policies regarding the

multi-site deployment of the applications’ components; (iii) the

NFV Convergence Layer (NFVCL) module that provides a level

of abstraction to enable the complete lifecycle management and

orchestration of network services and P/VNFs instantiated in

the 5G infrastructure; and (iv) the OSS Core module that

contains the VIM and WIM convergence layers to provide the

Fig. 1. Deployment of 5G-ready applications spanning multiple VIMs over the evolved network infrastructure with the MATILDA platform.

Fig. 2. The MATILDA OSS Architecture.

Slicing Northbound Module

OSS Core
Module

Resource Selection
Optimizer Module

NFV Convergence Layer

MATILDA 5G Operations Support System

Persistency
Layer

1

VAO

VIM

10

3
4

5
7

WIM

9

2,6,8

11

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

external interfacing of the OSS to the VIMs and WIM(s).

Moreover, the Persistency Layer includes two different

databases based on MongoDB [36] and Prometheus [37] for

storing the configuration and monitoring data, respectively.

Upon the reception of a slice intent from the VAO, the above

mentioned micro-services interact to produce a candidate

materialized slice according to the following procedure:

1. The Slicing Northbound module receives a slice intent

message from the VAO. The message is parsed and checked,

and the slice intent data is stored in the Persistency Layer; then,

a trigger message is sent to the RSO including the reference to

the stored data.

2. The RSO analyses the application graph included in the

slice intent, and applies a graph reduction algorithm to group

the components into “macro nodes” that need to be placed in

the same VIM according to the thresholds provided by the

VAO. Then, it requests a list of candidate VIMs for the

deployment of all the groups to the WIM Convergence Layer in

the OSS Core. It also keeps track of the monitored resources’

utilization and provides forecasts.

3. The WIM Convergence Layer calculates a number of

possible deployment options and sends them back to the RSO.

4. The RSO uses the slice intent data and the reduced graph

to select the network services to be deployed to materialize the

slice. The RSO asks the NFVCL for the quota of resources to

be reserved for the NSs in each VIM.

5. The NFVCL handles the request from the RSO by

mapping the type of NS against the ones available in the

selected VIMs, and extracts the amount and type of resources

to be reserved for each VIM.

6. The RSO aggregates the amount and the type of resources

to be reserved for both the vertical application components and

the VNFs, and it asks the VIM Convergence Layer in the OSS

Core for the availability of such resources at the selected VIMs.

7. The VIM Convergence Layer checks for the availability of

the resources at the selected VIMs. The VIM Convergence

Layer replies to the RSO with an availability report, and if all

the requirements are satisfied, it reserves the required resource

quotas.

8. The RSO handles the reply from the VIM Convergence

Layer. If one or more VIMs cannot provide the required types

or amount of resources, then the RSO will restart from Step 4

with a different deployment option. If all the requests are

satisfied, the RSO asks the WIM Convergence Layer to reserve

the wide-area resources for the chosen deployment option.

9. The WIM Convergence Layer reserves the wide-area

resources (i.e., paths) for the chosen deployment option.

10. The RSO stores in the Persistency Layer all the required

data to fill the candidate materialized slice message, and to

proceed to the slice set up in case of positive response from the

VAO.

11. The Slicing Northbound Module collects the data stored

by the RSO, parses them into a candidate materialized slice

message, and sends it to the VAO.

With respect to the above procedure, this work particularly

looks into the design and operational details of the RSO, which

consists of three submodules that respectively handle the vApp

graph reduction, VIM resources utilization forecasting and

multi-site placement optimization of the reduced graph. Since

the algorithms/policies adopted may have heavy computational

requirements, can run in parallel, and should provide results

with short and finite time horizons, the RSO is designed to scale

horizontally. Multiple instances of the RSO can register

themselves against the OSS Core module, by indicating which

algorithms and/or policies they provide. When a certain

algorithm/policy has to be applied in a workflow, the OSS Core

triggers the proper RSO instance providing it.

Each RSO instance is based on an image of the open-source

SageMath project [38]. By adopting such an advanced

mathematical framework (which integrates software packages

in R and Python), it is possible to avoid the porting of the

algorithms from an environment where they are designed and

initially tested through simulations (like MatLab, Mathematica,

etc.), and to directly use them in the production environment.

This way, the integration effort (and related debugging) can be

almost zeroed, while providing a familiar and comfortable

ecosystem to mathematicians and scientists working on

algorithm design.

Furthermore, the base image containing SageMath has been

extended with agents and libraries to communicate with the

OSS Core and the Persistency Layer. As far as the latter is

concerned, the RSO can access: (i) the MongoDB database to

write generated data, or to retrieve requirements and

configuration data on the slice intents, on the services, and on

the infrastructure elements; (ii) the Prometheus database to

retrieve performance metrics stored by the OSS monitoring

framework.

The following subsections describe the three RSO

submodules. Table I reports the notation that will be adopted in

the remaining of Section IV.

A vApp has 𝑁 nodes (corresponding to micro-service

components) and 𝐿 links (specifying the nodes’ logical

interconnection), the graph specifications define the nodes

{𝑛𝑜𝑑𝑒𝑛}, 𝑛 = 1,… ,𝑁, links {𝑙𝑖𝑛𝑘𝑙}, 𝑙 = 1,… , 𝐿, and the link

TABLE I. NOTATIONS DEFINITION

𝑛𝑜𝑑𝑒𝑛
One of the nodes composing the vApp graph, 𝑛 =
 1,…𝑁

𝑙𝑖𝑛𝑘𝑙
One of the links composing the vApp graph, 𝑙 =
1,…𝐿

{𝑒𝑙
𝑛𝑜𝑑𝑒𝑛 , 𝑒𝑙

𝑛𝑜𝑑𝑒𝑜}
The couple of nodes representing the endpoints of

𝑙𝑖𝑛𝑘𝑙

𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐
One of the 𝑐 = 1,… , 𝐶 performance metrics for
the vApp

𝑐𝑣𝑎𝑙𝑙
Constraint value for 𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐, the set being

𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐: [𝑐𝑣𝑎𝑙1, … , 𝑐𝑣𝑎𝑙𝐿]

𝑚𝑛𝑜𝑑𝑒𝑚
Macro nodes composing the reduced graph, 𝑚 =
1,…𝑀

𝑟𝑣𝑎𝑙𝑚
Set of requirements for vApp and NS for each

resource type ′𝑣𝑐𝑝𝑢′,′ 𝑟𝑎𝑚′, ′𝑑𝑖𝑠𝑘′
𝑑𝑜𝑝𝑡𝑠𝑑 Deployment option, , 𝑑 = 1,…𝐷

𝑉𝑚
𝑑

VIM that will host macro node 𝑚𝑛𝑜𝑑𝑒𝑚 in the

deployment option 𝑑𝑜𝑝𝑡𝑠𝑑

𝐴𝑐𝑜𝑠𝑡𝜐 Agreement cost for deployment option 𝑣
𝛼𝑣 Ratio between the usage and the overcommit ratio

𝐷𝑐𝑜𝑠𝑡𝑑 The cost of a deployment option 𝑑𝑜𝑝𝑡𝑠𝑑

𝜂d
Number of VIMs involved in a deployment
option

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

endpoints 𝑒𝑙 are couples of nodes edges

 {𝑒𝑙
𝑛𝑜𝑑𝑒𝑛 , 𝑒𝑙

𝑛𝑜𝑑𝑒𝑜}, 𝑛, 𝑜 ∈ 𝑁. Constraint values {𝑐𝑣𝑎𝑙𝑙} are

indicated according to different subsets of constraints on

performance metrics {𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐} such as delay, jitter, packet

loss and/or throughput, 𝑐 = 1,… , 𝐶. The vApp graph is then

given as

𝐺𝑟𝑎𝑝ℎ = [[𝑛𝑜𝑑𝑒1, … , 𝑛𝑜𝑑𝑒𝑁], [𝑙𝑖𝑛𝑘1, … , 𝑙𝑖𝑛𝑘𝐿],

 [{𝑒1
𝑛𝑜𝑑𝑒𝑛 , 𝑒1

𝑛𝑜𝑑𝑒𝑜},… , {𝑒𝐿
𝑛𝑜𝑑𝑒𝑛 , 𝑒𝐿

𝑛𝑜𝑑𝑒𝑜}],

{𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐 : [𝑐𝑣𝑎𝑙1 , … , 𝑐𝑣𝑎𝑙𝐿], … }] (1)

On the other hand, the constraint thresholds {𝑐𝑡ℎ𝑟𝑒𝑠ℎ𝑐} (i.e.,

upper bounds on the corresponding vApp graph links’ QoS

constraints) can assume adaptable values, as defined by the

application service provider.

The reduced graph obtained in Step 2 has 𝑀 macro nodes

defined by {𝑚𝑛𝑜𝑑𝑒𝑚}, 𝑚 = 1,… ,𝑀, with corresponding

application and NFV domain requirements {𝑟𝑣𝑎𝑙𝑚} for each

resource type {′𝑣𝑐𝑝𝑢′,′ 𝑟𝑎𝑚′, ′𝑑𝑖𝑠𝑘′}; then the slice requirements

are given as

𝑆𝑙𝑖𝑐𝑒_𝑟𝑒𝑞𝑠 = [[𝑚𝑛𝑜𝑑𝑒1, … , 𝑚𝑛𝑜𝑑𝑒𝑀],
 {′𝑣𝑐𝑝𝑢′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙𝑀],

′𝑟𝑎𝑚′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙𝑀],
′𝑑𝑖𝑠𝑘′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙𝑀]}] (2)

The deployment options calculated in Step 3 by the WIM

Convergence Layer are given as tuples of VIMs mapped with

the vApp graph (macro) nodes. For instance, if 𝐷 deployment

options are given for 𝑀 macro nodes, we have:

𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡_𝑜𝑝𝑡𝑠 = [(𝑉1
1, … , 𝑉𝑀

1), … , (𝑉1
𝐷, … , 𝑉𝑀

𝐷)] (3)

where 𝑉𝑚
𝑑, 𝑚 = 1,… ,𝑀, 𝑑 = 1,… , 𝐷, is the VIM that will host

macro node 𝑚𝑛𝑜𝑑𝑒𝑚 in the deployment option 𝑑𝑜𝑝𝑡𝑠𝑑. Note

that 𝑉𝑚1
𝑑 ≡ 𝑉𝑚2

𝑑 if 𝑚𝑛𝑜𝑑𝑒𝑚1 and 𝑚𝑛𝑜𝑑𝑒𝑚2, 𝑚1,𝑚2 ∈
{1, … ,𝑀}, are hosted on the same VIM in deployment option

𝑑𝑜𝑝𝑡𝑠𝑑.

A. The Graph Reduction Submodule

Given the graph specifications in the slice intent and a set of

graph link QoS constraint thresholds, this submodule

aggregates vApp components according to the latter, generating

a reduced graph of macro nodes such that all components in the

same macro node will be collectively handled in the subsequent

deployment actions on μDCs/DCs in the infrastructure. The

goal is to ensure that the same macro-nodes will be treated as

an inseparable set in the following placement and deployment

operations/actions. Since the threshold parameters determine

which components are part of the same macro-node and, then,

need to be placed in the same VIM, tuning these parameters can

result in different outcomes. Therefore, these values need to be

carefully pondered, for instance by considering the peculiarities

of the telecom infrastructure (e.g., the average end-to-end

delays among the VIMs). It is worth noting that computing

parameters are taken into account in the next stages.

The RSO adopts a fairly straightforward graph reduction

Fig. 3. vApp graph reduction results according to different threshold values.

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

policy that jointly considers the vApp graph specifications

provided by the VAO, and groups together the nodes with

logical link constraint values that meet the thresholds (i.e.,

𝑑𝑒𝑙𝑎𝑦 ≤ 𝐷𝑒𝑙𝑎𝑦_𝑡ℎ, 𝑗𝑖𝑡𝑡𝑒𝑟 ≤ 𝐽𝑖𝑡𝑡𝑒𝑟_𝑡ℎ, 𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 ≤
 𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠_𝑡ℎ and 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ≥ 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑡ℎ) as

macro nodes. The output is a reduced graph, whose

specification is defined in a similar format as the input graph

specifications; it will then be passed to the WIM convergence

layer that will provide a list of deployment options, each one

specifying the potential VIMs that could host the (macro) nodes

of the vApp graph.

Considering the case of a slice intent with 𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐 = 𝑑𝑒𝑙𝑎𝑦

as the only constraint, we can write the pseudocode reported in

Algorithm 1:

For instance, consider a simple slice intent with 4 application

components (e.g., nodes) {1, 2, 3, 4} interconnected by 4 links

labelled as {445, 456, 480, 500}, with only delay constraints (in

ms). Fig. 3 shows how the resulting reduced graph changes with

the threshold. The graph reduction affects both nodes and links,

as some may be no longer required (for instance, see link (1,4)

in the first example) once two nodes are merged.

Undefined parameters are treated as “wildcards” and as such

their assignment is determined by the peculiarities of the

telecom infrastructure. Moreover, in the case that more

constraint metrics are specified in the slice intent, the link

constraints will be updated with the union of the most stringent

requirements for each metric.

B. The Utilization Forecasting Submodule

Given the list of candidate VIMs provided by the WIM

convergence layer, it is necessary to first define a set of metrics

to be used in the selection of the most suitable VIMs for the

(macro) nodes. With this in mind, we consider the monitoring

metrics on vCPU, RAM and disk utilization of the candidate

VIMs collected on the MATILDA platform available in the

Prometheus database for the previous observation period (e.g.,

time series data of the last three weeks), such as the amounts of

free resources and actual usage.

This submodule has two functions: (a) the modeling, and

(b) the forecasting functions. The former runs periodically

in the background for keeping the resource models up-to-date,

while the latter can be called at runtime (or also periodically in

the background, since we consider either the Maximum values

or the Quantiles of the forecasts rather than the current values

of the monitoring metrics, in order to provide the necessary

headroom in the allocation of resources, while supporting

different dynamics in the time series) to generate utilization

forecasts for VIM resources based on the most recently updated

models. Either way, the execution times of this submodule do

not impact on the overall slice creation described in Section IV.

Moreover, thread-based parallelism is adopted to update the

(a). # of free vCPUs historical time series and forecast

(b). vCPU usage historical time series and forecast

Fig. 4. Multi-seasonal vCPU utilization forecasting example with observation period set to three weeks and forecasting horizon to three days.

180

160

140

120

100

80

60

40

20
w-3 w-2 w-1

Week

d1 d2 d3

w

Fr
e

e
 v

C
P

U
s

1

0.75

0.50

0.25

0

-0.25

-0.50

w-3 w-2 w-1

Week

d1 d2 d3

w

vC
P

U
 U

sa
ge

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

models with a running window of training data in the

background, as well as to use the most recently updated models

for the forecasts.

With R’s forecast library, this submodule models the

multi-seasonality (i.e., daily and weekly) of the time series data

using the msts function. The resulting models are in turn used

as input to the forecast function to predict the time series

values for a certain horizon (e.g., for the next three days).

Five different forecasting methods have been tested on three

different time windows, e. g., one, three and seven days., with

samples taken every ten minutes. While the execution time of

the individual methods does not show significant differences,

and the main difference, as will be shown in Section V, depends

on the level of parallelism, we used a “Multiple Seasonal Holt-

Winters” method [39], which represents an extension of Holt-

Winters that not only captures Weekday/Weekend differences,

but also supports multiple seasonalities (e.g., day, week,

month,...).

Since, as will be shown in the results, the forecasting function

runs for over an order of magnitude longer than the modeling

function, running the two sequentially allows for forecasts that

are always up-to-date.

For instance, Fig. 4 shows the resulting forecasts regarding

the vCPUs of a candidate VIM in terms of the number of free

vCPUs and VIM-wide usage. In all the tests performed on the

available traces, 99% of the measured values fall within the

confidence interval, with an error below 5% of the forecasted

values.

C. The Placement Submodule

Finally, given the aggregate computing-network slice

requirements (i.e., macro nodes plus network services provided

by the NFVCL in Step 5), the list of deployment options (i.e.,

the mapping between the macro nodes and VIMs) from the

WIM convergence layer in Step 3 and the corresponding

utilization forecasts (in terms of Maximum values or the

Quantiles) of the candidate VIMs, this submodule seeks to

select the most suitable deployment of the slice.

In more detail, the slice requirements are derived from the

minimum amount of resources (i.e., vCPU, RAM and disk)

required by the (components of the macro) nodes of the vApp

graph and by the necessary network services (depending on the

network services available in the candidate VIMs), as specified

in the slice intent.

Given the set of VIMs involved in the deployment options,

the information on the necessary VIM resources includes the

Maximum values (or the Quantiles) of the forecasted amount of

free resources and usages, as well as their pre-defined

overcommit ratios (e.g., the OpenStack compute service uses

the default overcommit ratios of 16, 1.5 and 1 for CPU, RAM

and disk, respectively [40]), and agreement costs (e.g., the cost

applied by the owner of the VIM to give access to its resources);

the latter are particularly useful for supporting scenarios in

which the candidate VIMs have different owners and/or costs.

Suppose that there are Υ candidate VIMs in the deployment

options defined by {𝑉𝜐}, each corresponding to an agreement

cost 𝐴𝑐𝑜𝑠𝑡𝜐, 𝜐 = 1,… , Υ; the VIM resources information is

collectively expressed as:

𝑉𝐼𝑀𝑠_𝑟𝑒𝑠 = [[𝑉1, … , 𝑉Υ], [𝐴𝑐𝑜𝑠𝑡1 , … , 𝐴𝑐𝑜𝑠𝑡Υ],
 {′𝑣𝑐𝑝𝑢_𝑓𝑟𝑒𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],
 ′𝑟𝑎𝑚_𝑓𝑟𝑒𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],
 ′𝑑𝑖𝑠𝑘_𝑓𝑟𝑒𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ]},

 {′𝑣𝑐𝑝𝑢_𝑢𝑠𝑎𝑔𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],
 ′𝑟𝑎𝑚_𝑢𝑠𝑎𝑔𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],
 ′𝑑𝑖𝑠𝑘_𝑢𝑠𝑎𝑔𝑒′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ]},
 {′𝑣𝑐𝑝𝑢_𝑜𝑐𝑟𝑎𝑡𝑖𝑜′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],
 ′𝑟𝑎𝑚_𝑜𝑐𝑟𝑎𝑡𝑖𝑜′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ],
 ′𝑑𝑖𝑠𝑘_𝑜𝑐𝑟𝑎𝑡𝑖𝑜′: [𝑟𝑣𝑎𝑙1, … , 𝑟𝑣𝑎𝑙Υ]}] (4)

With the goal of drawing the line between deployment

options, the coefficient 𝛼𝑣 is further defined as the ratio

between the usage and the overcommit ratio computed for the

three resource types 𝑥 ∈ {′𝑣𝑐𝑝𝑢′,′ 𝑟𝑎𝑚′, ′𝑑𝑖𝑠𝑘′} in a VIM as

𝛼𝑣 = (𝛼𝑣
𝑣𝑐𝑝𝑢

, 𝛼𝑣
𝑟𝑎𝑚, 𝛼𝑣

𝑑𝑖𝑠𝑘) (5)

where 𝛼𝑣
𝑥 = 𝑥_𝑢𝑠𝑎𝑔𝑒/𝑥_𝑜𝑐𝑟𝑎𝑡𝑖𝑜. These coefficients will act

as weighting factors (dynamically) differentiating the costs of

VIM resources, such that their low usage and/or high

overcommit ratio suggest lower costs.

1) Decision Rules

In this work, two decision rules are considered in the

development of algorithms/policies for the selection among

vApp graph deployment options.

R1. Minimizing the cost of the required resources

The cost 𝐷𝑐𝑜𝑠𝑡𝑑 of a deployment option 𝑑𝑜𝑝𝑡𝑠𝑑 is derived

firstly with a two-step aggregation approach, where the macro

node requirements per resource type are summed up according

to the hosting VIM 𝑉𝜐, multiplied by their respective 𝛼𝑣
𝑥 and

𝐴𝑐𝑜𝑠𝑡𝜐; then, the weighted requirements per resource type are

again summed up for each deployment option. Subsequently,

the resulting values for all 𝐷 deployment options are

normalized, still per resource type, before computing their

corresponding square resultants. 𝐷𝑐𝑜𝑠𝑡𝑑 is then given by

𝐷𝑐𝑜𝑠𝑡𝑑 =∑(‖ ∑ 𝐴𝑐𝑜𝑠𝑡𝑣 𝛼𝑣
𝑥 ∑ 𝑟𝑣𝑎𝑙𝑚𝑛𝑜𝑑𝑒𝑚

𝑚𝑛𝑜𝑑𝑒𝑚↦𝑉𝜐𝑉𝜐∈𝑑𝑜𝑝𝑡𝑠𝑑

‖

𝐷

)

2

𝑥

 (6)

where ‖∙ ‖𝐷 is the normalization operator with respect to all

deployment options, and 𝑚𝑛𝑜𝑑𝑒𝑚 ↦ 𝑉𝜐 identifies all macro nodes

𝑚𝑛𝑜𝑑𝑒𝑚 that are mapped to the VIM 𝑉𝜐.

R2. Minimizing the number of VIMs involved

The number of VIMs involved in a deployment option, 𝜂d,

can range from 1 through M – the former means that all macro

nodes are hosted on the same VIM, while the latter means that

each one of them is hosted on a different VIM. By minimizing

the number of VIMs involved, we seek to also minimize the

complexity of managing the interconnectivity among the macro

nodes. Two approaches can be followed to incorporate this rule;

the number of VIMs involved per deployment option can be

used: (i) as a weighting factor to Eq. (6) prior to the

minimization of rule R1, and (ii) as the cost of an independent

minimization rule that can be performed before/after rule R1.

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

2) Selection Policies

Three policies are then derived to jointly consider both R1

and R2 in a multi-objective optimization whose solution is

performed in a heuristic manner as a combinatorial problem;

the policies are differentiated according to how the rules are

incorporated in the implementation.

P1. MinReqMinV

This policy selects the deployment option with the minimum

of the deployment cost multiplied by the number of VIMs

involved per deployment option:

𝐷𝑐𝑜𝑠𝑡𝑑 ′ = 𝜂𝑑𝐷𝑐𝑜𝑠𝑡𝑑 (7)

If multiple solutions exist, one is randomly chosen according to

a uniform distribution. Algorithm 2 illustrates the policy:

P2. MinReq+MinV

This policy sequentially executes the minimization of

𝐷𝑐𝑜𝑠𝑡𝑑 , and then of 𝜂𝑑. If a unique solution is found in the first

minimization step, there is no need to execute the Else

statement and perform the second Sort. If multiple solutions

exist after the two steps, one is randomly chosen according to a

uniform distribution, as shown in Algorithm 3.

P3. MinV+MinReq

This policy is similar to P2, but with a reversed sequence.

Particularly, the minimization of 𝜂𝑑 is first executed, to find the

option with the minimum number of VIMs involved, and then

that of 𝐷𝑐𝑜𝑠𝑡𝑑 (to find the solution with the minimum 𝐷𝑐𝑜𝑠𝑡 in

the subset, if the first solution is not unique). If a unique solution

is found in the first minimization step, there is no need to

execute the second one. If multiple solutions exist after the two

steps, one is randomly chosen according to a uniform

distribution (see Algorithm 4).

As previously anticipated, various RSO instances may adopt

different algorithms/policies, which are not limited to the ones

evaluated in this study, nor to the decision rules considered.

V. PERFORMANCE EVALUATION

The performance of the RSO is mainly evaluated in terms of

the execution times of its submodules – Graph Reduction,

Utilization Forecasting and Placement Optimization – while

varying their respective input parameters. For the latter, the

deployment costs corresponding to the three selection policies

are also compared. Since the submodules are executed

sequentially, the analysis is done in a similar fashion. A

breakdown of the impact of the RSO within the procedure

described in Section IV can be found in [26].

A. Graph Reduction

Random vApp graph topologies are considered in this

evaluation – particularly, graphs with 𝑁 = {2, 5, 10, 15, 20}
nodes and links 𝐿 ranging from 𝐿𝑚𝑖𝑛 = 𝑁 − 1 through 𝐿𝑚𝑎𝑥 =
𝑁(𝑁 − 1)/2 have been generated. As previously anticipated,

different subsets of constraint metrics {𝑐𝑚𝑒𝑡𝑟𝑖𝑐𝑐} (e.g., delay,

jitter, packet loss and throughput) can be specified in the slice

intent, hence defining different combinations with 1 to 4

constraint metrics. All constraint values are drawn from discrete

uniform distributions. Delay constraint values from 𝐷𝑑𝑖𝑠𝑡 =
𝑈{25, 50, 75, 100, 125, 150} ms; jitter constraint values from

𝐽𝑑𝑖𝑠𝑡 = 𝑈{5, 10, 15, 25, 30} ms; packet loss constraint values

from 𝑃𝑑𝑖𝑠𝑡 = 𝑈{0.0025,0.005,0.0075, 0.01, 0.0125, 0.015},
and; throughput constraint values from 𝑇𝑑𝑖𝑠𝑡 =
𝑈{0.5, 1, 1.5, 2, 2.5} Gbps. The tests are repeated for 10 runs

with varying seeds, generating a different topology and/or

constraint values for each (𝑁, 𝐿) combination.

Based on the constraint values’ distributions above, four

different threshold levels are defined and considered in the

evaluations.

T1. In=Out

𝐷𝑒𝑙𝑎𝑦_𝑡ℎ < 𝐷𝑑𝑖𝑠𝑡, 𝐽𝑖𝑡𝑡𝑒𝑟_𝑡ℎ < 𝐽𝑑𝑖𝑠𝑡 , 𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠_𝑡ℎ <
𝑃𝑑𝑖𝑠𝑡 and 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑡ℎ > 𝑇𝑑𝑖𝑠𝑡 , such that no logical link

constraint values meet the thresholds – hence the input and

output vApp graphs are the same.

T2. Min

𝐷𝑒𝑙𝑎𝑦_𝑡ℎ = min (𝐷𝑑𝑖𝑠𝑡), 𝐽𝑖𝑡𝑡𝑒𝑟_𝑡ℎ = min (𝐽𝑑𝑖𝑠𝑡),
𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠_𝑡ℎ = min (𝑃𝑑𝑖𝑠𝑡) and 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑡ℎ =
max (𝑇𝑑𝑖𝑠𝑡), such that the number of logical link constraint

values that meet the thresholds per metric is minimized.

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

T3. Med

𝐷𝑒𝑙𝑎𝑦_𝑡ℎ = median (𝐷𝑑𝑖𝑠𝑡), 𝐽𝑖𝑡𝑡𝑒𝑟_𝑡ℎ = median (𝐽𝑑𝑖𝑠𝑡),
𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠_𝑡ℎ = median (𝑃𝑑𝑖𝑠𝑡) and 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑡ℎ =
median (𝑇𝑑𝑖𝑠𝑡), such that logical link constraint values have

more/less 50% probability to meet the thresholds.

T4. Max

𝐷𝑒𝑙𝑎𝑦_𝑡ℎ = 𝑚𝑎𝑥 (𝐷𝑑𝑖𝑠𝑡), 𝐽𝑖𝑡𝑡𝑒𝑟_𝑡ℎ = 𝑚𝑎𝑥 (𝐽𝑑𝑖𝑠𝑡),
𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠_𝑡ℎ = 𝑚𝑎𝑥 (𝑃𝑑𝑖𝑠𝑡) and 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑡ℎ =
𝑚𝑖𝑛 (𝑇𝑑𝑖𝑠𝑡), such that all the logical link constraint values
meet the thresholds.

Fig. 5 shows how the average execution times of the Graph

Reduction submodule vary with 𝑁 for each threshold level.

Two different trends can be observed that correspond to the

cases 𝑁 = 2 and 𝑁 > 2. The first case is simply a linear trend

– which is expected, since there is only 1 logical link and the

probability that its constraint value(s) meet the threshold(s)

increases with the threshold level – and results in a binary

decision (i.e., all or none) on executing the code for merging the

nodes. On the other hand, the second case is trickier, since

merging nodes can result in a chain effect that highly depends

on the vApp graph topology. Starting from the In=Out

threshold level that does not merge any nodes, the Min level

result in more involved chained effects that, on average,

increase with 𝑁 (considering all possible values of 𝐿 ∈
[𝐿𝑚𝑖𝑛 , 𝐿𝑚𝑎𝑥]); more involved in the sense that the size (𝑀 and

𝐿’) of the reduced vApp graph is not greatly decreased, and the

logical link specifications need to be updated. Then, as the

threshold level is further increased to Med and to Max, 𝑀 and

𝐿’ decrease accordingly and, hence, the execution time of the

code for updating logical link specifications is also reduced.

Note that each point of the curves Fig. 5 is averaged not only

over all possible values of 𝐿 ∈ [𝐿𝑚𝑖𝑛 , 𝐿𝑚𝑎𝑥], but also over

different numbers of constraint metrics.

B. Utilization Forecasting

The execution times of both the modeling and forecasting

functions of the Utilization Forecasting submodule are

evaluated individually and jointly at the resource and VIM

levels, for varying number of VIMs involved in the deployment

options. As shown in Fig. 6, the forecasting function runs for

over an order of magnitude longer than the modeling function

– on average, building/updating a resource model takes around

0.09 s, while generating a forecast takes around 4.42 s. This

provides an indication for deciding how often they should be

run. Since updating the model does not take so long, it may be

reasonable to also run them sequentially to generate updated

forecasts. Moreover, with thread-based parallelism, the values

at the VIM level can correspond to those at the resource level if

the modeling and/or forecasting for VIMs’ vCPU, RAM and

disk resources are run in parallel; otherwise, the average time

required for their sequential execution linearly increases with

the number of resource types per VIM (i.e., approximately 3×,

given the three resource types considered).

Fig. 7 illustrates how the runtime execution times vary with

the number of VIMs involved in the deployment options. The

tag ‘SS’ means that the modeling and/or forecasting

functions are executed sequentially per resource type and per

VIM, ‘PS’ means that they are executed in parallel per resource

type and sequentially per VIM, and ‘PP’ means that they are

executed in parallel per resource type and per VIM. Finally,

simple accessing of the forecasted values is executed

sequentially per VIM, which is tagged as ‘S:get’, where each

execution takes around 42 μs on average, which has a negligible

impact on the overall execution times: it can be observed how

sequential execution results in a linear increase in the time

measurements, growing from 12 to 119 s, while the execution

in parallel remains constantly around 5 s regardless of the

number of VIMs involved.

C. Placement Optimization

Reduced vApp graphs with 𝑀 = {1, 2, … ,10} macro nodes

are considered in this evaluation. Particularly, all outputs from

the Reduce Graph submodule for 𝑁 = 10 (with varying

number of links 𝐿, number of constraint metrics and threshold

levels) have been sorted according to the resulting macro nodes.

For simplicity, but without loss of generality, we suppose that

all of the original ten nodes have the same flavor (i.e., 1 vCPU,

Fig. 5. Average execution times of the Graph Reduction

submodule for varying input vApp graph sizes and threshold
levels.

(a). per resource

(b). per VIM (sequential)

Fig. 6. Average execution times for building/updating the models

and generating forecasts at the resource and VIM levels.

In=Out Min Med Max

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

2048 MB of RAM, 20 GB of disk), such that the slice

requirements (𝑆𝑙𝑖𝑐𝑒_𝑟𝑒𝑞𝑠) can be easily derived based on the

size of the macro nodes. Similarly, all the VIMs involved are

supposed to have the same default resource information given

as triples corresponding to (vCPU, RAM, disk): (a) free

resources (50 vCPUs, 102400 MB, 100 GB), (b) usage (50%,

50%, 50%), and (c) overcommit ratios (16, 1.5, 1). These values

are chosen such that each VIM has the capability to host even

the entire slice. Since the WIM performance is out of the scope

of this work, the network topology is irrelevant.

With the above considerations, the evaluation space for the

deployment options is greatly reduced while still granting a

meaningful analysis. In particular, Fig. 8 shows trends in the

average execution times of the Placement Optimization

submodule according to the number of macro nodes (𝑀), VIMs

involved (Υ′) and deployment options (𝐷). For a given 𝑀, it can

be understood that 𝐷 has a stronger influence than Υ′ on the

execution times. Moreover, while the results presented are

obtained with the selection policy P1, it is interesting to note

that similar trends are observed using P2 and P3.

The placement optimization is then evaluated in terms of the

deployment costs and execution times. Reduced vApp graphs

with 𝑀 = {1,… ,5} macro nodes are considered; particularly, all

outputs from the Reduce Graph submodule for 𝑁 = 5 (with

varying number of logical links 𝐿, number of constraint metrics

and threshold levels) have been sorted according to the resulting

macro nodes. Further, the number of candidate VIMs is limited

to Υ = 3 to better understand the impact of other deployment

parameters, such as the agreement costs (𝐴𝑐𝑜𝑠𝑡𝜐, 𝜐 = 1, 2, 3),

the resources’ usage and overcommit ratios, the deployment

options, and whether the parameter Υ′ is considered as a fixed

value (e.g., if Υ′ = 3, each deployment option should have three

different VIMs involved), or as a maximum value (e.g., if Υ′ =
3, deployment options can either have one / two / three VIM(s)

involved) in generating the options. In more detail, the VIMs

can assume the agreement costs [𝐴𝑐𝑜𝑠𝑡1, 𝐴𝑐𝑜𝑠𝑡2, 𝐴𝑐𝑜𝑠𝑡3] ∈
{[1,1,1], [5,5,1], [10,5,1]}; then the resource usage and

overcommit ratios are chosen according to the two settings

below:

S1. Default

All VIMs adopt the default values for (vCPU, RAM, disk)

usage (50%, 50%, 50%) and overcommit ratios (16, 1.5, 1).

S2. Distinct

Each of the three VIMs adopts distinct values for the (vCPU,

RAM, disk) usage – (30%, 30%, 30%), (50%, 50%, 50%),

(80%, 80%, 80%), and overcommit ratios – (16, 1.5, 1), (8, 1.3,

1), (1, 1, 1), respectively.

1) Deployment Costs

When the number of VIMs involved in each deployment

option is strictly equal to 𝛶′, Fig. 9 illustrates how the cost of

the deployment (normalized to the maximum value) varies with

the default / distinct resource settings and agreement costs. As

for Fig. 8, the selection policies are not reported as their impact

is not significant with both Default and Distinct resource

settings as the agreement costs are varied. In the former, the cost

difference between having 1 through 3 VIMs in the deployment

increases with the agreement costs. This may be attributed to

the interaction between the two weighting coefficients (𝛼𝑣 and

𝐴𝑐𝑜𝑠𝑡𝑣) included in the policies. Note that default resource

settings will give the same values for 𝛼𝑣; in that case the VIMs

are only differentiated according to the 𝐴𝑐𝑜𝑠𝑡𝑣 . Apparently, the

Distinct setting gives slightly higher costs, but this behavior is

Fig. 7. Average execution times for runtime modeling and/or forecasting,

for varying number of VIMs involved.

Fig. 8. Average execution times of the Placement Optimization

submodule for varying number of macro nodes, VIMs involved and

deployment options.

(a). [𝑨𝒄𝒐𝒔𝒕𝟏, 𝑨𝒄𝒐𝒔𝒕𝟐, 𝑨𝒄𝒐𝒔𝒕𝟑] = [𝟏, 𝟏, 𝟏]

(b). [𝑨𝒄𝒐𝒔𝒕𝟏, 𝑨𝒄𝒐𝒔𝒕𝟐, 𝑨𝒄𝒐𝒔𝒕𝟑] = [𝟓, 𝟓, 𝟏]

(c). [𝑨𝒄𝒐𝒔𝒕𝟏, 𝑨𝒄𝒐𝒔𝒕𝟐, 𝑨𝒄𝒐𝒔𝒕𝟑] = [𝟏𝟎, 𝟓, 𝟏]

Fig. 9. Comparing the deployment costs for varying number of VIMs

involved, deployment options (D=3, 6, 9, 15), agreement costs and

resource settings with fixed 𝛶′.

1

9

𝑀 = 10
𝑀 =
𝑀 =
𝑀 = 7
𝑀 =
𝑀 = 5
𝑀 =
𝑀 = 3
𝑀 = 2
𝑀 = 1

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

N
o

rm
al

iz
e

d
 C

o
st

of VIMs

Default

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

N
o

rm
al

iz
e

d
 C

o
st

of VIMs

Distinct

D=3 D=6 D=9 D=15

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

N
o

rm
al

iz
e

d
 C

o
st

of VIMs

Default

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

N
o

rm
al

iz
e

d
 C

o
st

of VIMs

Distinct

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

N
o

rm
al

iz
e

d
 C

o
st

of VIMs

Default

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

N
o

rm
al

iz
e

d
 C

o
st

of VIMS

Distinct

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

inversely proportional to the number of VIMs, and in fact costs

are the same for 3 VIMs. For both settings, costs grow with the

number of VIMs but this growth is quicker when 𝐴𝑐𝑜𝑠𝑡 is

lower. Regarding the deployment options, they have a stronger

impact as 𝐴𝑐𝑜𝑠𝑡 grows. The cost has a spike for D=15, which,

in addition to the following considerations on the execution

time, must be taken into account when interacting with the

WIMs.

Figure 10 reports the same results as in Fig. 9, Distinct

setting, [𝐴𝑐𝑜𝑠𝑡1, 𝐴𝑐𝑜𝑠𝑡2, 𝐴𝑐𝑜𝑠𝑡3] = [10,5,1], but it also reports

the error in the deployment cost caused by using the forecasted

amount of free resources and usages instead of the measured

ones. For all values of involved VIMs and deployment options,

the error stays below 5%.

2) Execution Times

As regards the execution times of the three selection policies,

the data further support the initial analysis of the results shown

in Fig. 8– that is, the execution time is mostly influenced by the

number of deployment options (𝐷). Particularly, the variations

in the resource settings and agreement costs did not affect much

the execution times.

Fig. 11 shows the average execution times of the selection

policies with 𝛶′ fixed and as a maximum, also indicating the

number of deployment options for both cases plotted as a black

line in the figure. When 𝛶′ is fixed, the policies run for similar

durations; whereas when 𝛶′ is considered as a maximum, the

MinV+MinReq policy results in shorter durations by around

40~50% as 𝛶′ (and 𝐷) increases. Note that the deployment

option included for 𝛶′ in the second case is simply the union of

all deployment options for ≤ 𝛶′ in the first case (i.e., Fig. 11b

indicates 9 (=3+6, from Fig. 11a) for 𝛶′ = 2, and 15 (=3+6+6,

from Fig. 11a) for 𝛶′ = 3). It can be noticed that, even when 𝛶′

is considered as a maximum and the execution time grows with

the number of deployment options, such growth is far from

being linear with D and the effect on the execution time is

limited.

Based on the results obtained in both the deployment cost and

execution time evaluations, it can be deduced that the

MinV+MinReq policy presents a promising compromise.

Among the works reported in Section II, [20] presents a

deployment algorithm that can help draw some considerations

on the effectiveness of our work. Although the referred study

proposes an evaluation of the execution time for multiple slices,

it is apparent that the order of magnitude is in the range of the

seconds. As shown in this section and corroborated by the

overall evaluation performed in [26], the contribution of the

three RSO submodules stays in the ms range making it a

valuable asset for a realistic deployment.

VI. CONCLUSIONS

Emerging network softwarization solutions such as the MEC,

NFV and SDN paradigms are key enablers of 5G technologies,

as well as towards telecommunications infrastructure

convergence and a distributed, multi-service ecosystem. In this

scenario, multi-tenancy and the as-a-Service concept will also

advance in the end-to-end network slicing direction, enabling

vertical industries and network service providers to

access/manage their assets via slice abstractions. The challenge

remains in the instantiation and management of application-

aware network slices necessary to support the multi-site

deployment of vApps.

This paper presented the design and operation details of the

RSO – a software-service in the MATILDA OSS, whose main

goal is to select the best deployment among a list of options

provided by the WIM. It consists of the Graph Reduction,

Utilization Forecasting and Placement Optimization

submodules, which respectively handle the aggregation of

vApp components based on affinities, the forecasting of μDC

resources utilization, and the optimization of the QoS-aware,

multi-site deployment of the (aggregated) vApp components.

The RSO’s performance is mainly evaluated in terms of the

execution times of its submodules, while varying their input

parameters, such as the vApp graph topology, constraint

metrics, execution method, slice requirements, VIM resources,

deployment options, etc. For the Placement Optimization

submodule, three selection policies are also compared in terms

of both execution times and deployment costs. Experimental

results allowed to assess the suitability of the RSO to be a

relevant asset for the upcoming 5G ecosystems. Moreover,

results identified a number of different behaviors and trade-offs

that can be exploited in engineering its inputs to improve the

interactions with other OSS submodules and network platform

components, not only for multi-site vApp deployment but also

for other network/services management operations, while

applying the most appropriate setup to the current environment

and requirements.

Furthermore, it is worth noting that the highly flexible,

microservice-based design of the RSO allows for seamless

integration of other next-generation forecasting and

optimization algorithms.

Fig. 10. Error bars representing the distance between deployment costs for

the Distinct setting c) obtained by using forecasted data and measured
ones.

(a). Fixed Υ′ (b). Υ′ as maximum

Fig. 11. Comparing the average execution times of the three selection

policies with 𝜰′ fixed and as maximum.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3

N
or

m
al

iz
ed

 C
o

st

of VIMS

D=3 D=6 D=9 D=15

Max # of VIMs involved

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

REFERENCES

[1] C. Tao et al., “Vision on Software Networks and 5G,” 5GPPP SN WG

White Paper. Jan. 2017. [Online]. Available: https://5gppp.eu/wp-
content/uploads/2014/02/5GPPP_SoftNets_WG_whitepaper_v20.pdf.

[2] “Mobile Edge Computing (MEC); Framework and Reference

Architecture,” ETSI GS MEC 003 v1.1.1, Mar. 2016. [Online]. Available:
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.

01.01_60/gs_MEC003v010101p.pdf.

[3] “Setting the Scene for 5G: Opportunities & Challenges,” ITU Rep., 2018.
[Online]. Available: https: //www.itu.int/en/ITU-D/Documents/ITU_

5G_REPORT-2018.pdf.

[4] M. Chiosi et al., “Network Functions Virtualization: An Introduction,
Benefits, Enablers, Challenges and Call For Action,” ETSI White Paper.

Oct. 2012. [Online]. Available:

https://portal.etsi.org/nfv/nfv_white_paper.pdf.
[5] D. Kreutz, et al., “Software-Defined Networking: A Comprehensive

Survey,” Proc. IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[6] X. Foukas, G. Patounas, A. Elmokashfi and M. K. Marina, “Network
Slicing in 5G: Survey and Challenges,” IEEE Commun. Mag., vol. 55, no.

5, pp. 94-100, May 2017.

[7] “5G for Business: a 2030 Market Compass,” Ericsson Rep., Oct. 2019.
[Online]. Available: https://www.ericsson.com/4a8e35/assets/local/5g/

the-5g-for-business-a-2030-compass-report-2019.pdf.

[8] A. Zafeiropoulos et al., “Enabling Vertical Industries Adoption of 5G
Technologies: A Cartography of Evolving Solutions,” in Proc. 2018

European Conf. Netw. Commun. (EuCNC), Ljubljana, Slovenia, June

2018, pp. 1-9.
[9] Q. Duan, S. Wang and N. Ansari, “Convergence of Networking and

Cloud/Edge Computing: Status, Challenges, and Opportunities,” IEEE

Netw., doi: 10.1109/MNET.011.2000089.
[10] “MATILDA – A Holistic, Innovative Framework for Design,

Development and Orchestration of 5G-ready Applications and Network

Services over Sliced Programmable Infrastructure.” [Online]. Available:
http://www.matilda-5g.eu/.

[11] “5G-INDUCE – Open cooperative 5G experimentation platforms for the

industrial sector NetApps.” [Online]. Available: https://www.5g-
induce.eu.

[12] L. Ma, X. Wen, L. Wang, Z. Lu and R. Knopp, “An SDN/NFV Based

Framework for Management and Deployment of Service Based 5G Core
Network,” China Commun., vol. 15, no. 10, pp. 86-98, Oct. 2018.

[13] H. Chien, Y. Lin, C. Lai and C. Wang, “End-to-End Slicing as a Service

with Computing and Communication Resource Allocation for Multi-
Tenant 5G Systems,” in IEEE Wireless Commun., vol. 26, no. 5, pp. 104-

112, Oct. 2019.

[14] A. Kammoun, N. Tabbane, G. Diaz, A. Dandoush and N. Achir, “End-to-
End Efficient Heuristic Algorithm for 5G Network Slicing,” in Proc.

IEEE 32nd Int. Conf. Adv. Inform. Netw. Appl. (AINA), Krakow, Poland,

May 2018, pp. 386-392.
[15] W. Guan, X. Wen, L. Wang, Z. Lu and Y. Shen, “A Service-Oriented

Deployment Policy of End-to-End Network Slicing Based on Complex

Network Theory,” IEEE Access, vol. 6, pp. 19691-19701, 2018.
[16] H. Halabian, “Distributed Resource Allocation Optimization in 5G

Virtualized Networks,” IEEE J. Select. Areas Commun., vol. 37, no. 3,
pp. 627-642, Mar. 2019.

[17] R. A. Addad, M. Bagaa, T. Taleb, D. L. C. Dutra and H. Flinck,

“Optimization Model for Cross-Domain Network Slices in 5G
Networks,” IEEE Trans. Mobile Comput., vol. 19, no. 5, pp. 1156-1169,

May 2020.

[18] P. Zhang, H. Yao and Y. Liu, “Virtual Network Embedding Based on
Computing, Network, and Storage Resource Constraints,” IEEE Internet

of Things J., vol. 5, no. 5, pp. 3298-3304, Oct. 2018.

[19] X. Feng, Z. Lu, L. Wang and W. Guan, “A Delay-Aware Deployment
Policy for End-to-End 5G Network Slicing,” in Proc. 2019 IEEE Int.

Conf. Commun. (ICC), Shanghai, China, May 2019, pp. 1-6.

[20] K. Ludwig, A. Fendt and B. Bauer, “An Efficient Online Heuristic for
Mobile Network Slice Embedding,” in Proc. 23rd Conf. Innov. Clouds,

Internet and Netw. and Workshops (ICIN), Paris, France, Feb. 2020, pp.

139-143.
[21] Z. Yan, J. Ge, Y. Wu, L. Li and T. Li, “Automatic Virtual Network

Embedding: A Deep Reinforcement Learning Approach With Graph

Convolutional Networks,” IEEE J. Select. Areas Commun., vol. 38, no. 6,
pp. 1040-1057, June 2020.

[22] K. Guo, Y. Wang, X. Qiu, W. Li and A. Xiao, “Particle Swarm

Optimization based Multi-domain Virtual Network Embedding,” in Proc.
2015 IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), Ottawa, ON,

Canada, May 2015, pp. 798-801.

[23] X. Wang, Q. Chen and H. Qiu, “A Effective Two-step Strategy of Multi-
domain Virtual Network Embedding in 5G Network Slicing,” in Proc. 3rd

IEEE Int. Conf. Comput. Commun. (ICCC), Chengdu, China, Dec. 2017,

pp. 1174-1179.
[24] D. Bhamare, et al., “Optimal Virtual Network Function Placement in

Multi-cloud Service Function Chaining Architecture,” Comput.

Commun., vol. 102, 2017, pp. 1-16.
[25] R. Bruschi, F. Davoli, P. Lago and J. F. Pajo, “Move with Me: Scalably

Keeping Virtual Objects Close to Users on the Move,” in Proc. 2018 IEEE

Int. Conf. Commun. (ICC), Kansas City, MO, 2018, pp. 1-6.
[26] R. Bruschi, F. Davoli, F. Diaz Bravo, C. Lombardo, S. Mangialardi, J. F.

Pajo, “Validation of IaaS-based technologies for 5G-ready applications

deployment”, Proc. European Conf. on Networks and Commun. 2020
(EuCNC 2020), Dubrovnik, Croatia, June 2020.

[27] R. Bruschi, F. Davoli, C. Lombardo, J. F. Pajo, “Managing 5G Network

Slicing and Edge Computing with the MATILDA Telecom Layer
Platform”, Computer Networks, vol. 194, pp. 1-14, April 2021.

[28] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis and S. Tilkov,
“Microservices: The Journey So Far and Challenges Ahead,” IEEE

Softw., vol. 35, no. 3, 2018, pp. 24–35.

[29] “5G; System Architecture for the 5G System,” ETSI TS 123 501 v15.5.0,
Apr. 2019. [Online]. Available:

https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.05.00_6

0/ts_123501v150500p.pdf
[30] S. Thalanany and P. Hedman. “Description of Network Slicing Concept.”

NGMN Alliance Deliverable. 2016. [Online]. Available:

https://www.ngmn.org/fileadmin/user_upload/161010_NGMN_Network
_Slicing_framework_v1.0.8.pdf.

[31] “Study on Management and Orchestration of Network Slicing for Next

Generation Network.” TR 28.801, 3GPP TSG Tech. Rep. 2018. [Online].
Available: https://www.ngmn.org/fileadmin/user_

upload/161010_NGMN_Network_Slicing_framework_v1.0.8.pdf.

[32] “Network Functions Virtualisation (NFV), Management and
Orchestration,” ETSI GS NFV-MAN 001 v1.1.1, Dec. 2014. [Online].

Available: http://www.etsi.org/deliver/etsi_gs/NFVMAN/001_099/001/

01.01.01_60/gs_nfv-man001v010101p.pdf
[33] “Mobile Edge Computing (MEC); End to End Mobility Aspects,” ETSI

GR MEC 018 v1.1.1, Oct. 2017. [Online]. Available:

https://www.etsi.org/deliver/etsi_gr/MEC/001_099/018/01.01.01_60/gr_
mec018v010101p.pdf.

[34] R. Bolla, R. Bruschi, F. Davoli, P. Gouvas, and A. Zafeiropoulos, "Mobile

Edge Vertical Computing over 5G Network Sliced Infrastructures: an
Insight into Integration Approaches", IEEE Commun. Mag., vol. 57, no.

7, pp. 78-84, July 2019.

[35] The Ericsson Network Manager,
https://www.ericsson.com/en/portfolio/digital-services/automated-

network-operations/network-management/network-manager.

[36] MongoDB, [Online]. Available: www.mongodb.com/
[37] Prometheus, [Online]. Available: https://prometheus.io/

[38] SageMath, [Online]. Available: http://www.sagemath.org/

[39] O. Trull, J. C. García-Díaz, A. Troncoso, “Initialization Methods for
Multiple Seasonal Holt–Winters Forecasting Models,” Mathematics,

8(2), 268, Feb. 2020, https://doi.org/10.3390/math8020268”.

[40] OpenStack, “Compute Schedulers.” [Online]. Available: https://docs.
openstack.org/nova/latest/admin/configuration/schedulers.html

 Raffaele Bolla is currently Full Professor

of Telecommunication Networks at

DITEN- University of Genoa. He received

the PhD degree in Telecommunications

Engineering in 1994 from the University of

Genoa, Italy. He has been Principal

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

http://www.matilda-5g.eu/
https://www.etsi.org/deliver/etsi_gr/MEC/001_099/018/01.01.01_60/gr_mec018v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/MEC/001_099/018/01.01.01_60/gr_mec018v010101p.pdf
http://www.sagemath.org/

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3151468, IEEE
Transactions on Network and Service Management

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

Investigator in a number of national and international research

projects, as well as CNIT/University reference person for many

industrial projects. Among others, he has been the Principal

Investigator of the FP7 Integrated Project ECONET (low

Energy Consumption NETworks) and has been involved as

leader of the CNIT/University research group in several FP7

and H2020 projects (e.g., ASTRID, MATILDA, INPUT,

ARCADIA, ECONET, TREND, Intermedia). He is currently

the reference person for international relationships and

students’/teachers’ mobility management of the Polytechnic

School of Engineering and Architecture of the University of

Genoa. He has co-authored over 200 scientific publications and

has been a member of technical committees of major

international conferences. He is also strongly involved in

standardization activities in the area of telecommunication

networks sustainability in ETSI and ITU-T SG 5.

Roberto Bruschi is Associate

Professor of Telecommunication

Networks at the University of

Genoa, Department of Electrical,

Electronic and Telecommunications

Engineering, and Naval Architecture

(DITEN). Roberto has been the

Project Coordinator of the RIA

INPUT project, funded by the H2020

Programme. He took part in the activities of many national and

European projects (e.g., MIUR GreenNet as Principal

Investigator (3% access rate), H2020 MATILDA, H2020

SPIDER, FP7 IP ECONET, etc.). In the ECONET project, he

served as Coordination Project Manager, and in 5G-PPP

MATILDA was leading the R&D activities on the 5G Network

Platform. Roberto has co-authored over 130 papers in

international journals, book chapters and international

conference proceedings, and he was the recipient of two Best

Paper Awards (at IEEE ICC 2009 and at the 3rd IEEE Internat.

Workshop on Green Communications), one Runner-Up Best

Paper (at IoT World Forum 2015), and one Best Demo (at

IFIP/IEEE IM 2017) Awards. He has been invited to a number

of scientific international conferences and seminars for talks,

tutorials and panels (e.g., IEEE INFOCOM 2012, IEEE HPSR

2011, FUNEMS 2012, NoF 2019, etc.). He also chaired some

scientific workshops (ITC EPIF 2014, TIWDC 2013, etc.). He

is a Senior Member of the IEEE.

Franco Davoli is Professor Emeritus

at the University of Genoa, Department

of Electrical, Electronic and

Telecommunications Engineering, and

Naval Architecture (DITEN). His

current research interests are in

dynamic resource allocation in

multiservice networks and in the Future

Internet, wireless mobile 5G/6G and satellite networks,

multimedia communications and services, and in flexible,

programmable and energy-efficient networking. He has co-

authored over 380 scientific publications in international

journals, book chapters and conference proceedings. In 2004

and 2011 he was Visiting Erskine Fellow at the University of

Canterbury, Christchurch, New Zealand. He has been Principal

Investigator in a large number of projects and has served in

several positions in the Italian National Consortium for

Telecommunications (CNIT), an independent organization

joining 37 universities all over Italy. He was co-founder and

Head, for the term 2003–2004, of the CNIT National

Laboratory for Multimedia Communications, Naples, Italy, and

Vice-President of the CNIT Management Board for the term

2005–2007. He is currently the Head of the CNIT National

Laboratory of Smart and Secure Networks (S2N), based in

Genoa, Italy, and coordinator of the H2020 5G PPP 5G-

INDUCE project. He is a Life Senior Member of the IEEE.

Chiara Lombardo received her Ph.D. in

Electronics, Informatics, Robotics and

Telecommunications Engineering at the

University of Genoa (funded by NetLogic

Microsystems, now owned by Broadcom) in

2014. Chiara has worked as a postdoc

research fellow at the University of Genoa,

Department of Electrical, Electronic and

Telecommunications Engineering, and Naval

Architecture (DITEN) for six years and currently works with

the CNIT S2N National Laboratory, where she is involved in

most of the research and technical activities. She is currently

involved in the H2020 5G-INDUCE and SPIDER Projects and

has previously worked in the H2020 Projects INPUT and

TRIANGLE and in the FP7 Project ECONET. She has co-

authored over 20 papers in international journals, book chapters

and international conference proceedings. Her current research

interests cover NFV, edge computing and 5G networks.

Jane Frances Pajo received the B.Sc.

degree (cum laude) in electronics and

communications engineering from the

Mindanao State University-IIT, Philippines,

in 2010, while the M.Sc. (cum laude) and

Ph.D. (Europaeus) degrees in

Telecommunications Engineering were

obtained from the University of Genoa,

Italy, in 2015 and 2019, respectively. She held a post-doctoral

research fellowship with the TNT Laboratory at the DITEN

Department of the latter institution. She also worked with the

CNIT S2N National Laboratory, Genoa. She is currently with

Telenor Research, Fornebu, Norway. Her research interests

include applications of network softwarization technologies

and artificial intelligence for network/service management and

orchestration.

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on March 04,2022 at 09:50:24 UTC from IEEE Xplore. Restrictions apply.

