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Abstract: Microwave-assisted synthesis of nanoparticles usually leads to a smaller and more uni-
formly distributed particle size compared to conventional heating (e.g., oil bath). Numerical simu-
lation can help to obtain a better insight into the process in terms of temperature distribution or to
evidence existing different temperature profiles and heating rates between the two techniques. In
this paper multi-physics numerical simulation is used to investigate the continuous flow synthesis of
titanium oxide nanoparticles starting from alkoxide precursors. Temperature-dependent permittivity
of reactants has been measured, including the effects of permanence at the maximum synthesis
temperature. A temperature homogeneity index has been defined to compare microwave and con-
ventional heating. Results show that when using microwave heating at 2450 MHz, in the investigated
conditions, a much higher temperature homogeneity of the reactants is reached. Moreover, reactants
experience different heating rates, depending on their position inside the microwave applicator, while
this is almost negligible in the case of conventional heating.

Keywords: multi-physics numerical simulation; microwave heating; nanoparticles; heating rate;
TiO2 synthesis; temperature profile; conventional heating

1. Introduction

Titanium dioxide (TiO2) is a well-known and well-researched material due to its low
cost, non-toxicity, chemical stability, biocompatibility, and physical, optical, and electronic
properties [1]. Thanks to these features, titanium dioxide has a wide scope of applications
in many different areas. As the most widely used white pigment in the world [2], it is
employed in paints and varnishes [3], and glasses and ceramics, but also as a UV-blocker
in sunscreens [4]. The discovery of the activity of TiO2 nanomaterials has expanded its
application range to fuel cells [5–7]; specifically, in PEMFCS applications its unique hygro-
scopic property facilitates water management in membranes and consequently increases
conductivity. In dye-sensitized solar cells [8–10] the photoanode can be fabricated using
doped titania particles with the increased ultraviolet–visible (UV–vis) absorbance and
the reduced band gap of 2.8 from 3.25 eV. The chemi-resistive behavior of nano-anatase
thin films exposed to oxidizing and reducing gases (O2, H2, and ethanol) in the temper-
ature range between 300 and 400 ◦C allowed the development of gas sensors [11–15].
Additional applications has been found in the fields of capacitors [16–20], photocatalytic
corrosion-protective coatings [21–27], and thin films transistors [28–31]. Titanium dioxide
photocatalysis has also proven to be an effective method of purifying contaminated air and
water under UV–visible irradiation [32–37]. The photocatalytic effect of TiO2 nanomate-
rials can be efficiently exploited due to their high surface-volume ratio, which offers an
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increasing light absorption rate. Doping techniques have also been employed to broaden
the effective range of light sensitivity from the UV to the visible light region of the spec-
trum [38]. Among the possible processing routes to fabricate such modified TiO2, sol–gel
synthesis provides nanoparticles already suspended in water, ready for further processing.
TiO2 nanoparticles are usually synthetized via an acid-catalyzed hydrolysis of titanium
(IV) alkoxide followed by condensation [1,4]. Such a synthetic route is at the basis of a
patented commercially available product and will be investigated in this paper [39]. Sol–gel
synthesis has the advantages of a low cost, low operating temperature, and high chemical
homogeneity and purity [40]. However, it produces low crystallinity products [40,41],
which need to be improved by further thermal treatment causing an increase in the particle
size [42]. In addition, sol–gel processing requires long reaction times and it may also be
energy-consuming [43].

The aim of this work is the use of numerical simulation to gain a better insight into the
microwave heating of alkoxide precursors, in an aqueous solution, to synthetize titanium
dioxide nanoparticles. This can lead to a further process intensification of the synthetic
route, using microwave heating to speed up the preliminary phases of the sol–gel process.
Moreover, the proper use of microwave heating is expected to lead to the synthesis of
smaller nanoparticles having a narrower particle size distribution. Numerical simulation is
used also to maximize the energy efficiency of the microwave applicator, by minimizing
the power that is reflected back to the microwave source, hence maximizing the energy
converted into heat inside the load.

As a matter of fact, microwave heating is based upon the ability of materials to absorb
and transform electromagnetic energy into heat [44]. In the case of a polar solvent, such
as water and alcohols, the electromagnetic wave interacts with the material leading to a
rapid and homogeneous volumetric heating, which is a direct consequence of dielectric
losses caused by dipolar polarization [44,45]. Microwave-assisted sol–gel synthesis is a
relatively novel method to produce TiO2 nanoparticles, but it has sparked a remarkable
interest due to its numerous advantages [46], such as a reduction in processing time and
temperature, which provide a decrease in costs and energy consumption [40,45], increase
in the kinetics of crystallization [45], and eco-friendliness [47]. Other reported advantages
are phase purity, better reliability and reproducibility [48], homogeneous heating [43], and
a reduction in the particle growth during the process [40].

In this framework, a recently EU-funded project, SIMPLIFY (Sonication and Mi-
crowave Processing of Material Feedstocks) [49], aims to bring technical innovation in the
processing of many kinds of materials according to the process intensification principles,
especially by the use of ultrasound and microwaves as effective tools for energy supply.
One of the three main research lines was focused on the TiO2 nanoparticle syntheses by mi-
crowaves and ultrasound in a PFR (Plug Flow Reactor). Within this line, a computer model
was built to simulate and investigate the steady state temperature distribution occurring in
the designed microwave applicator. A comparison between conventional (oil bath) and
microwave heating is presented in this study, in order to assess possible temperature distri-
bution differences between the two heating methods and, hence, explain the experimentally
observed higher particle size uniformity occurring when using microwave processing.

2. Materials and Methods

Hydro alcoholic suspensions of TiO2 nanoparticles can be obtained using Ti(OiPr)4
(titanium isopropoxide, technical grade) and a premixed aqueous HCl solution (technical
grade) with a small amount of a surfactant, commercially known as Triton X-100 (Sigma
Aldrich, Merk Life Science S.r.l., Milan, Italy, laboratory grade). The amounts of three such
components present in the mixture are based on a known procedure used to obtain a
commercially available product [39], namely: 32% HCl = 3.1% Bi-distilled water = 96.9%
Triton X-100 = 0.013%, reacting as follows

Ti(OiPr)4 + 2 H2O HCl→ 4 iPrOH + TiO2
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The electric field orientation depends on time with a frequency of 2.45 GHz (the
electric field vector switches its orientation approximately every 10−12 s). In the case of
polar molecules, the electric field induces rotations of such molecules, but introduces a
delay with respect to the exciting field, which is related to the nature of the molecules and
their bonds. This delay between electromagnetic stimulation and molecular response is
the physical origin of the dielectric loss, responsible for fast and volumetric microwave
heating. Because the process is not dependent upon heat transfer, such as heat conduction,
the result is a rapid and localized heating, depending on electric field strength, targeting
dipoles, or existing ionic species. Both phenomena are accounted for in the measurement
of the effective permittivity of dielectrics.

In order to predict the response of the reactants during MW irradiation, we proceeded
with the experimental measurements of the permittivity of the reactants’ mixtures and their
evolution into products. An Agilent 85070E Dielectric Probe Kit (Agilent Technologies,
Santa Clara, CA, USA) operating in the frequency range 1–3 GHz was used under conven-
tional heating (hot plate) and monitoring the temperature by an optical probe (Neoptix
T1 Optic Temperature Probe, Neoptix, Quebec city, Canada) in the range 25–80 ◦C. A first-
degree interpolating function of the measured properties was derived and used to describe
load changes as a function of the reaction temperature

ε′(T) = −0.06·T + 72.589 (1)

ε′′ (T) = 0.15·T − 22.975 (2)

Due to the relevant changes in permittivity occurring as the reaction proceeds, a twin
microwave applicator geometry was devised, having the first applicator dedicated to the
heating stage (with reference to the permittivity values of Figure 1a and Equations (1) and (2))
and the second to the holding stage (Figure 1b).

A coil-like arrangement (“helix”) of PTFE pipes was selected to achieve a controllable
continuous flow of reactants inside the microwave applicator. The diameter of the PTFE
pipes was chosen taking into account the calculated microwave penetration depth, so that
each portion of the load could be directly exposed to microwaves. Considering also the
temperature dependence of the permittivity, a diameter of 15 mm was chosen, being of
the same order of magnitude of the calculated microwave power penetration depth at
2.45 GHz.
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Figure 1. Permittivity of the load at 2.45 GHz: (a) as a function of temperature; (b) as a function of 
the holding time at 353.15 K (80 °C). 

Figure 2 shows the geometry of the proposed microwave applicator, namely a hex-
agonal prismatic reactor powered on one side by a WR340 waveguide and containing the 
coil-like arrangement of PTFE pipes with the reactants. The prismatic geometry of the ap-
plicator was selected because, according to previous studies [50], it allows to loads to be 
processed in the region of predominant magnetic or electric fields. A preliminary optimi-
zation of the applicator’s geometry in terms of inscribed circumference radius and load 
position was conducted using the commercial software QuickWave 3D, focusing on en-
ergy efficiency (minimization of the reflection coefficient). 
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Figure 1. Permittivity of the load at 2.45 GHz: (a) as a function of temperature; (b) as a function of
the holding time at 353.15 K (80 ◦C).

Figure 2 shows the geometry of the proposed microwave applicator, namely a hexag-
onal prismatic reactor powered on one side by a WR340 waveguide and containing the
coil-like arrangement of PTFE pipes with the reactants. The prismatic geometry of the
applicator was selected because, according to previous studies [50], it allows to loads
to be processed in the region of predominant magnetic or electric fields. A preliminary
optimization of the applicator’s geometry in terms of inscribed circumference radius and
load position was conducted using the commercial software QuickWave 3D, focusing on
energy efficiency (minimization of the reflection coefficient).
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In order to assess the 3D temperature distribution inside the load and to take into
account the flowing fluid, multi-physics numerical simulation was conducted using the
commercial FEM-Finite Element Method software COMSOL Multiphysics® version 3.5a.
The model presents a two-way coupling (electromagnetic heating and non-isothermal
flow) among three different physics, namely electromagnetic waves, heat transfer, and
fluid flow. The material properties are temperature dependent and, consequently, affect
the electromagnetic field distribution in the microwave applicator. Microwave heating
simulation is performed at 2.45 GHz with an average fluid speed of 0.5 m/s at the inlet
section. We assumed laminar flow in the helix-shaped pipe conveying the liquid load. The
hypothesis of outward heat flux by natural convection of air within the applicator has
been used as a boundary condition on the inner pipe walls for the microwave heating.
The microwave applicator’s walls have been modeled as PEC (Perfect Electric Conductor)
and the waveguide that feeds the reactor has been excited in the fundamental mode TE10,
introducing an input power of 8 kW into the applicator.

The model simulating conventional heating presents a one-way coupling (non-isothermal
flow) between heat transfer and fluid flow physics. The same properties and conditions
used in the case of microwave heating were applied for the liquid load, except for a thermal
boundary condition set on the pipe inner walls, i.e., a constant temperature of 90 ◦C. This
is used to simulate the helix immersed in an oil bath held at such constant temperature.

Both models were solved in transient and steady state conditions, in order to assess,
respectively, the temperature evolution of the load in time during the early stages of heating,
as well as during the continuous flow processing of the load.

In order to better evaluate possible differences in temperature distribution deriving
from the heating techniques simulated, a temperature homogeneity index has been defined
as the ratio between the average temperature of the fluid and the standard deviation of
the temperature values in the whole volume of the load. Such an index assumes high
values in the case of homogenous temperature distribution in the load and if the average
temperature is high.

3. Results and Discussion
3.1. Preliminary Applicator Optimization

The dimensions of the hexagonal applicator have been optimized in terms of the
applicator equivalent radius (R) for a given helix-shaped load configuration. The |S11|
parameter was used for this purpose. |S11| is the reflection coefficient defined as the ratio
between the electric field leaving the input port (1) and the electric field entering the input
port (1), under the condition that no signal enters the output port [51]. Consequently, the
optimal dimensions of the applicator are those for which the reflection coefficient assumes
the minimum value at the operating frequency of the microwave source, which is 2.45 GHz.
This means that, during the process, the amount of microwave energy reflected back to the
generator is minimum, the remaining quota being absorbed and converted into heat by
the load.

Therefore, |S11| at 2.45 GHz has been calculated as R varies in the range 90–120 mm.
The results are plotted in Figure 3 and show that the minimum value of |S11| at 2.45 GHz
has been obtained for a radius R = 108.8 mm.

All the results presented in the next sections refer to this optimized geometry of the
hexagonal applicator. In the optimized conditions, moreover, the variation in the reflection
coefficient with frequency presents a rather large band minimum, which is favorable
when using microwave sources such as magnetrons, which emit microwaves over a wider
band, and are not necessarily centered at 2.45 GHz (see supplementary material, Figure S1,
where numerical simulation data are accompanied by modeling validation, performed by
measurement on the built applicator using an Agilent HP8753D Vector Network Analyzer).
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3.2. Comparison between Conventional and Microwave Heating

The simulation of both conventional and microwave heating in transient conditions
was used to assess the temperature distribution of the flowing fluid in the early stages of
the heating, and to determine when the process reaches the steady state conditions. In this
framework, numerical simulation is a very powerful tool, as it allows investigating the
temperature distribution inside each portion of the load. This is useful to gather a deeper
understanding of possible different heating profiles existing while processing the fluid.
Such information would not be easily accessible by direct temperature measurements on
the load volume, as the insertion of probes would result in a perturbation of the electric or
temperature field.

Figure 4 shows the simulated temperature distribution in a cross section of the load
(Figure 4a indicates the position of the cross section with respect to the microwave inlet)
along the height of the helix, at a distance from the applicator axis equal to the helix radius.
The reported values on the x-axis indicate the height relative to the bottom of the applicator,
where the fluid inlet is positioned.

The temperature plots of Figure 4 indicate, for each position on the x-axis, how the
temperature increases with time in the cross section of the PTFE pipe where the load is
contained. For a given 15 mm interval on the x-axis, corresponding to one helix turn, and
time, it is possible to visualize the temperature distribution existing in such a section of
the load.

In conventional heating (Figure 4b), the walls of the helix are at a constant temperature
of 363.15 K throughout the process, as a consequence of the boundary thermal conditions
set. This results in all temperature profiles of each helix turn starting and ending at that
temperature. As the fluid flows into the helix, starting from 293.15 K, the temperature of
the fluid in the first helix turns remains approximately at that temperature, except for the
thin layers of fluid near to the walls, where heat exchange with the pipe walls occurs. The
heating on each section of the pipe is highly non-homogeneous, especially in the early
stages of heating, with the inner part significantly colder than the outer part, as shown by
the accentuated curvature of the graph lines at all times. This expected behaviour is due to
the assumption of laminar flow in the pipes, which simulates the real processing conditions.
The temperature then gradually increases as the fluid moves towards the outlet section
(top of the applicator) and the heating becomes more homogeneous in each cross section
of the helix. The steady state is reached after 30 s, and in these conditions, the fluid in the
upper half of the helix (outlet section) reaches the desired target minimum temperature of
353 K (almost 80 ◦C).
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In the case of microwave heating (Figure 4c), the continuous lines show the fluid
warming up from the centre of the pipe. This is typical of the volumetric heating occurring
within the microwave penetration depth and with thermal boundary conditions of “cold
walls”. In fact, the PTFE pipe walls at the beginning are at room temperature and they
are practically not directly heated by microwaves. This, in turn, generates this inversion
of the temperature profiles, with respect to conventional heating (hot walls). The graph
also indicates that the heating rate of a given helix turn is quite different depending on its
distance (along the vertical axis) from the feeding waveguide, and this will be clearer in
steady state conditions, as discussed later.

Steady state conditions are reached after 30 s, and the temperature at the outlet
section slightly overcomes the target temperature value, reaching 358.05 K (almost 85 ◦C).
Compared to conventional heating, in the case of microwave heating, a more homogeneous
heating occurs, as shown by the flatter curvature of the temperature plots of the fluid in
each one of the helix revolutions, at all times.

Figure 5 shows the temperature distribution of the load along the helix in steady
state conditions, in the case of conventional heating (Figure 5a) and microwave heating
(Figure 5b,c), respectively. In Figure 5a, the slice plot shows the temperature profile existing
in different cross sections of the pipes. The slice plots are obtained using five vertical cross
sections, passing through the helix-like arrangement of the PTFE pipes. Hence, each ellipse
in the slice plot gives an indication of the temperature distribution existing in that particular
region, at a given time. Results provide a further confirmation of the existing temperature
gradients from the outer to the inner part of the pipe. This is particularly evident near the
bottom of the load, where the cold reactants enter the heated applicator.
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Figure 5b shows a much more homogenous temperature distribution existing in all
cross sections of the slice plot, as expected from the plots of Figure 4. Moreover, the volume
plot of Figure 5c evidences that most of the temperature rise of the load occurs at the mid
height of the helix, indicating the existence of different heating rates.
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For this reason, a further plot was derived (Figure 6), showing the heating rates
experienced by the load along the applicator height. They are calculated as the difference
in average temperature between two neighboring turns of the helix-shaped load. Despite
being temperature gradients, for a constant speed of the fluid, they can be assumed to be
an indication of how rapidly temperature is increased and, in practice, as heating rates.
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Results in Figure 6 show that in the case of microwave heating, the way the load
reaches the target average temperature at the outlet section is completely different from
what happens in conventional heating, with most of the temperature rise occurring when
the load is near to the microwave input port (waveguide). This is particularly evident
when considering the heating rate, which has an almost constant trend as heating proceeds,
in the case of conventional heating, but it has a pronounced peak in the central regions
of the applicator in the case of microwave heating. This behaviour is experienced also in
the portions of the load positioned on the opposite side with respect to the microwave
waveguide input (see supplementary material, Figure S2), but to a minor extent due to the
higher electric field strength in such regions, which is due to the applicator geometry (see
supplementary material, Figure S3).

In order to better quantify the differences between the two heating modes of the
continuous process of TiO2 synthesis, a temperature homogeneity index has been defined as

Temperature Homogeneity Index (THI) =
Tav

σ
(3)

where σ =

√
(T−Tav)

2

N is the variance, N the number of mesh elements of the helix, and
Tav the average temperature of the fluid in a reference volume or cross section. Both the
variance and the average temperature of the fluid were calculated in steady state conditions,
in each revolution of the helix, for the cross sections indicated in Figure 4a. A high value of
the homogeneity index is desirable, as it indicates that heating occurs rapidly and with a
small variance in temperature distribution in the cross section of the load.

The obtained results are shown in Figure 7, for conventional heating (Figure 7a) and
microwave heating (Figure 7b).
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Comparing the values of the temperature homogeneity indexes of the two graphs of
Figure 7, it is evident that in the simulated conditions, microwave heating involves a much
more uniform heating of the load compared to conventional heating. In fact, the THI of
microwave heating is larger than that of conventional heating by two orders of magnitude.
This reflects what is expected when using oil baths for heating and laminar flow, which
result in a stratification of temperatures from the center to the outer regions of the circular
cross section of the pipe, while heat transfer occurs. Instead, the volumetric generation of
heat offered by microwave heating helps to reduce such phenomena. However, it should
be pointed out that in the case of conventional heating there is practically no effect of the
THI in two neighboring turns of the helix (indicated as “front” and “rear”), while in the
case of microwave heating there is a strong influence of the position of the helix turn with
respect to the microwave inlet waveguide. This can be proficiently exploited to achieve a
better control over heating rates and temperature homogeneity, by positioning multiple
microwave sources on the applicator walls.
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4. Conclusions

Numerical simulation results demonstrate that during microwave heating, a much
higher temperature homogeneity and spatially different heating rates can be achieved, com-
pared to conventional heating by oil bath. These different heating features could explain the
experimentally observed differences in the field of microwave-assisted nanoparticle synthe-
sis, where a better control of particle average size is encountered [52]. As demonstrated by
the authors in a previous paper, addressing a completely different microwave applicator
and load geometry [53], the narrower temperature distribution in microwave heating can
correspond to the fact that a higher portion of the reactant volume is in the conditions of the
maximum nucleation rate and minimum growth rate. On the contrary, a wider temperature
distribution would lead to portions of the load volume outside this condition; hence, to
a possible more pronounced growth or less nucleation. In this framework, the narrower
temperature distribution offered by microwave heating would mean that many small parti-
cles are formed. Conversely, the broader temperature distribution by conventional heating
indicates that larger portions of the load can also undergo substantial growth, i.e., particles
are nucleated, and some of them progressively grow in size, leading to a wider particle size
distribution in comparison with the previous case. This is in agreement with the known
conditions required to prepare highly uniform nanoparticles: it is necessary to induce a
short burst of nucleation temporally separated from the subsequent growth stage [54].
Moreover, it is worth remembering that a narrow energy distribution is one of the main
requirements for process intensification, as reported by Van Gerven and Stankiewicz [55].

However, it should be noticed that the obtained temperature distributions are depen-
dent upon the type of reactor, load position and shape, and the nature (permittivity, thermal
properties) of the reactants, and this could explain the poor reproducibility of results in
studies conducted using different reactors or conditions. For instance, also in this study, the
results slightly change when addressing different positions of the load (“front” and “rear”
position). Moreover, the model itself introduces some simplifications, and in particular, the
condition of laminar flow could not be met throughout the whole duration of the synthesis
process because the precursor is subjected to changes in viscosity and volume.

Last but not least, the temperature homogeneity index-THI trend in the case of mi-
crowave heating varies significantly depending on the measurement position: facing the
waveguide inlet, or on the opposite side. Despite a THI much higher than in the case of
conventional heating, in the position far from the waveguide, the temperature distribution
in the cross section of the load is less homogeneous compared to the front, as illustrated by
the lower THI values in Figure 7b. This is due not only to the higher electric field strength
in the regions of the applicator where the waveguide input is positioned, but also to the
fact that the temperature outside the helix is set at room temperature (microwaves do not
heat the surrounding environment). This results in the cooling down of the outer regions
of the fluid. This cooling effect is rather compensated by the pronounced heat generation
occurring in the regions of higher electric field strength, but it becomes not negligible in
regions of lower electric field strength, such as the bottom and top of the applicator, and
the sides positioned opposite to the waveguide inlet.

Such results suggest that a further improved design to improve microwave heating
homogeneity, should include waveguides positioned on each wall of the applicator, and
not only on one side.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pr10040697/s1, Figure S1: Variation in the simulated reflection coefficient |S11| (dB)
with frequency (Hz) in the optimized conditions (inner diameter of the hexagonal applicator:
radius = 108.8 mm) and measured reflection coefficient; Figure S2: Average temperatures and heating
rates of the load along the applicator height in the rear of the helix with respect to the waveguide, in
the case of conventional and microwave heating, Figure S3: Electric field strength in the applicator,
slice plot, showing the higher electric field strength in the central regions of the applicator, Table S1:
|S11| parameter (dB) values calculated at the operating frequency of 2.45 (GHz) as a function of
the diameter (mm) of the inner circumference of the hexagonal applicator; Table S2: Temperature
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Homogeneity Index (THI) as function of the height of the load inside the helix: conventional heating
and microwave heating, front of the helix with respect to the waveguide; Table S3: Temperature
Homogeneity Index (THI) as function of the height of the load inside the helix: conventional heating
and microwave heating, rear of the helix with respect to the waveguide; Table S4: Values of average
temperatures and heating rates of the load along the applicator height in the front of the helix with
respect to the waveguide, in the case of conventional and microwave heating; Table S5: Values of
average temperatures and heating rates of the load along the applicator height in the rear of the helix
with respect to the waveguide, in the case of conventional and microwave heating.
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