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Abstract. The role of microstructure in affecting propagation of an-
tiplane Stoneley waves, that are waves localized at the discontinuity sur-
face between two perfectly-bonded half-spaces, is considered. Microstruc-
ture is described within the linear theory of isotropic couple stress elastic
materials with micro-inertia. The dispersion relation is a symmetric tri-
term combination of the Rayleigh functions in the relevant half-space
with a coupling term. In contrast to classical elasticity, where antiplane
Stoneley waves are never supported and in-plane waves exist only inas-
much as shear velocities for the half-spaces are close enough, it is found
that propagation is largely possible, although it occurs beyond a cu-
ton frequency. For the latter, an explicit expression is given alongside
dispersion curves. These results may adopted in next-generation non-
destructive testing (NDT) appliances to account for the material mi-
crostructure.
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1 Introduction

Stoneley waves are localised waves propagating at the interface between two
perfectly bonded half-spaces. They owe their name to Robert Stoneley, who first
investigated them in the context of seismic waves and the layered structure of
the Earth [18,19,19]. The special feature about Stoneley waves is that, in classi-
cal elasticity, they occur under restrictive conditions, which make them appear
rather exceptional. Explicit statement of those conditions has been given much
later by Schölte [17]. Stoneley waves have been extensively investigated [2], es-
pecially in the context of anisotropic material [11,16,4], ocean acoustics [5] and
borehole dynamics [20]. This interest, which carries over to the recent contribu-
tions [1,9,3,8], is especially driven by the desire to circumvent such limitations
and explore new settings which support Stoneley wave propagation under gen-
eral conditions, whereby they may serve as novel probing tools for the inspection
of the discontinuity surfaces inside materials. In this pursue, researchers are in-
spired by the great success of Rayleigh waves, which, by virtue of their capacity
to propagate in a large array of situations, have been put to advantage in many
technical and scientific applications: ranging from non-destructive testing (NDT)
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to seismology, from ocean acoustics to ground-moving high-speed vehicles. In-
deed, recent studies show that, in contrast to classical materials, microstructured
media allow propagation of antiplane Rayleigh waves [15,13,12]. In this work, we
discuss the role that material microstructure may have in supporting existence
of antiplane Stoneley waves. By considering microstructure through the linear
theory of couple stress isotropic materials with micro-inertia, it is shown that
antiplane Stoneley waves propagate under general conditions, beyond a cuton
frequency. This stands in contrast to classical media, where antiplane Stone-
ley waves are not supported. In fact, it appears that antiplane Stoneley waves,
just like antiplane Rayleigh waves, are perturbations of bulk shear waves and
emerge from mode conversion of these with an evanescent mode (that is absent
in classicla media) [12,14].

2 Mechanical framework for antiplane Stoneley waves

In a couple-stress (CS) material, the stress state depends on the classical force
stress tensor s, as well as on the couple stress tensor µ. Just like the first de-
termines the traction vector, the latter determines the internal reduced couple
vector q, acting across the surface of normal n

q = µTn,

where the superscript T denotes transposition, i.e. row-column inversion. The
force stress tensor s is decomposed into its symmetric and skew-symmetric parts,
respectively σ and τ ,

s = σ + τ .

Conversely, µ is decomposed into its deviatoric and spherical parts

µ = µD + µS,

where, for the latter, it is µS = 1
3 (µ · 1)1, assuming that a dot denotes the

scalar product and 1 is the rank-2 identity tensor.
For the body B, the internal virtual work may be expressed as follows (see,

e.g., [10,15]): ∫
B

(
σ · gradu+ µ · gradTϕ

)
dV, (1)

where grad denotes the gradient operator and a superscript T indicates trans-
position. Here, u and ϕ are the (virtual) displacement and the micro-rotation
vector fields. For CS materials, the displacement field u determines the micro-
rotation field ϕ through

ϕ =
1

2
curlu, ⇔ ϕi =

1

2
Eijsus,j , (2)

where it is understood that a subscript comma denotes partial differentiation,
i.e. ui,j = (gradu)ij = ∂ui/∂xj , and E is the rank-3 permutation tensor.
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The displacement field is related to the linear strain tensor ε through

ε = Sym gradu. (3)

Similarly, the torsion-flexure (or wryness, or curvature) tensor is introduced

χ = gradϕ. (4)

From Eqs.(1,2) and (4), it is deduced that the torsion-flexure tensor is purely de-
viatoric, χ = χD, and so is the couple stress tensor. To light notation, hereinafter
µ is written with the understanding that µD is meant.

2.1 Constitutive equations

For isotropic materials, two extra material parameters are introduced alongside
the classical Lamé moduli, Λ and G > 0, namely ` > 0 and −1 < η < 1, that
characterise the microstructure. With these and following [10], a free-energy
density U(ε,χ) is constructed such that

σ =
∂U

∂ε
, ⇒ σ = 2Gε+ Λ(tr ε)1, (5a)

µ =
∂U

∂χ
, ⇒ µ = 2G`2

(
χT + ηχ

)
. (5b)

2.2 Equations of motion

The equations of motion, in the absence of body forces, read

div s = ρü, (6a)

2 axial τ + divµ = Jϕ̈, (6b)

having indicated time differentiation with a superposed dot. Here, ρ and J ≥ 0
are the mass density and the rotational inertia per unit volume, respectively.
Besides, (axial τ )i = 1

2Eijkτjk denotes the axial vector attached to the skew--
symmetric tensor τ . Eq.(6b) may be solved for τ to yield

τ = − 1
2E (divµ− Jϕ̈) . (7)

2.3 Antiplane shear deformations

Two half-spaces, named A and B, are considered, in perfect contact along a plane
surface, see Fig.1. A right-handed Cartesian coordinate system (O, x1, x2, x3) is
introduced whose axes are directed along the relevant unit vectors (e1, e2, e3).
The co-ordinate system is located in such a way that the plane x2 = 0 cor-
responds to the contact surface between A and B. Both half-spaces possess a
microstructure, which is described within the theory of linear couple stress (CS)
elasticity.
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Fig. 1. Two half-spaces, named A and B, in perfect contact along the joining surface
x2 = 0

Antiplane shear deformations are considered, such that, in each half-space,
the displacement field u reduces to the out-of-plane component only

u3(x1, x2, t),

and there is no dependence on the x3 co-ordinate. As a result, the only non-
vanishing components of the strain and of the curvature tensors are

ε13 = 1
2u3,1, ε23 = 1

2u3,2, (8a)

ϕ1 = 1
2u3,2, ϕ2 = − 1

2u3,1, (8b)

χ11 = −χ22 = 1
2u3,12, χ21 = − 1

2u3,11, χ12 = 1
2u3,22. (8c)

Also, accounting for the constitutive relations (5) and in light of (8), it is

σ13 = Gu3,1, σ23 = Gu3,2, (9a)

µ11 = −µ22 = G(`)2(1 + η)u3,12, µ21 = G(`)2(u3,22 − ηu3,11), (9b)

µ12 = −G(`)2(u3,11 − ηu3,22), (9c)

regardless of Λ.
The equilibrium equations (6) lend

σ13,1 + σ23,2 + τ13,1 + τ23,2 = ρü3, (10a)

µ11,1 + µ21,2 + 2τ23 = Jϕ̈1, (10b)

µ12,1 + µ22,2 − 2τ13 = Jϕ̈2. (10c)

Substituting Eqs.(8b) and (9) into (7), the skew-symmetric part of the stress
tensor is obtained

τ13 = − 1
2G`

24̂u3,1 + J
4 ü3,1, τ23 = − 1

2G`
24̂u3,2 + J

4 ü3,2, (11)
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wherein 4̂ indicates the two-dimensional Laplace operator in the dimensional
co-ordinates x1 and x2. For homogeneous media, Eqs.(9a,10a) and (11) provide
a single governing equation in terms of displacement

G
(

1
2`

24̂4̂u3 − 4̂u3
)
− J

4
4̂ü3 + ρü3 = 0. (12)

2.4 Reduced force and couple stress traction vectors

The reduced force and couple stress traction vectors, respectively p and q̄, acting
across a surface with unit normal n, are given by

p = sTn+ 1
2 gradµnn × n, q̄ = µTn− µnnn, (13)

where µnn = n · µn = q · n and × denotes the cross product between vectors.
For the boundary surface x2 = 0 separating the two half-spaces, it is

nA = e2 = −nB,

and consequently

pA

3 = sA23 + 1
2µ

A

22,1, q̄A

1 = µA

21, with q̄A

2 = 0, (14a)

for A, and

pB

3 = −
(
sB23 + 1

2µ
B

22,1

)
, q̄B

1 = −µB

21, with q̄B

2 = 0, (14b)

for B.

2.5 Nondimensional form of the governing equations

For the sake of definiteness, quantities are normalized against the half-space A.
Accordingly, the dimensionless coordinate

ξ =
x

Θ`A
, x = [x1, x2],

is let together with the reference time TA = `A/cAs , whereby the dimensionless
time is introduced as

τ =
t

TA
.

cAs =
√
GA/ρA is the shear wave speed of classical elasticity (CE) for material A

and cBs =
√
GB/ρB the corresponding wave speed for material B. Further, let

β =
`B

`A
, υ =

TA

TB
, (15)
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whereby υβ = cs
B/cs

A is the bulk shear wave ratio in CE. Substituting these
nondimensional variables in Eq.(12), provides the governing equations, holding
in A and B, in nondimensional form

44uA

3 − 2Θ24uA

3 − 2Θ4

[
(`A0 )2

Θ2
4uA

3,ττ − uA

3,ττ

]
= 0, (16a)

44uB

3 − 2
Θ2

β2
4uB

3 − 2Θ4

[
(`B0 )2

Θ2υ2β2
4uB

3,ττ −
1

υ2β4
uB

3,ττ

]
= 0, (16b)

where 4 indicates the two-dimensional Laplace operator in the dimensionless
coordinates ξ1 and ξ2 and

`A,B0 =
`A,Bd

`A,B
with `A,Bd =

1

2

√
JA,B

ρA,B
.

3 Analysis in the frequency domain

For time-harmonic straight-crested antiplane wave solutions moving in the sagit-
tal plane (ξ1, ξ2), it is

uA,B3 (ξ1, ξ2, τ) = WA,B(ξ1, ξ2) exp(−ıΩτ), (17)

being ı =
√
−1 is the imaginary unit and Ω = ωTA > 0 the nondimensional

frequency. Substituting the solution form (17) into Eqs.(16), a pair of meta-
biharmonic partial differential equations (PDEs) is arrived at[

44− 2
(
1− (`A0 )2Ω2

)
Θ24− 2Ω2Θ4

]
WA = 0, (18a)[

44− 2

(
1− (`B0 )2

υ2
Ω2

)
Θ2

β2
4− 2Ω2 Θ4

υ2β4

]
WB = 0. (18b)

Eq.(18a) is easily factored out [13](
4+ δ2

)
(4− 1)WA = 0, (19)

having let

Θ2 =

√
(1− (`A0 )2Ω2)

2
+ 2Ω2 − 1 + (`A0 )2Ω2

2Ω2
. (20)

By Vieta’s theorem for polynomials, it is δ = 2δcrΘ
2, it being

`A0 cr =
1√
2
, and δcr = `A0 crΩ =

Ω√
2
.

Similarly, Eq.(18b) factors as(
4+ δ21

) (
4− δ22

)
WB = 0, (21)
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where the dimensionless wavenumbers for bulk travelling and bulk evanescent
waves in medium B have been let

δ21 =
δψ

β2υ2
, δ22 =

δ

β2ψ
.

Turning to the boundary conditions, Eqs.(14a) are rewritten in the new sym-
bols

pA

3 = − GA

2Θ3

[(
δ2 − 1

)
WA

,2 + (ηA + 2)WA

,112 +WA

,222

]
, (22a)

q̄A

1 =
GA`A0
Θ2

(
WA

,22 − ηWA

,11

)
, (22b)

and the same goes with Eqs.(14b)

pB

3 = − GB

2Θ3

{
β2
[
(ηB + 2)WB

,112 +WB

,222

]
+
κ22
υ2

(
ψ2

υ2
− 1

)
WB

,2

}
, (23a)

q̄B

1 =
GB`B0
Θ2

β2
(
WB

,22 − ηBWB

,11

)
. (23b)

3.1 Waves localized at the half-spaces’ interface

Waves propagating at the interface ξ2 = 0 have the form

WA,B(ξ1, ξ2) = `A,BwA,B(ξ2) exp (ıκξ1) ,

with K = k`A denoting the dimensionless (spatial) wavenumber in the propaga-
tion direction ξ1 and κ = ΘK. The dimensional phase speed in the propagation
direction easily follows

c =
ω

k
=
Ω

κ
ΘcAs . (24)

Providing for decay, waves become localized at the interface

wA(ξ2) = a1 exp (A1ξ2) + a2 exp (A2ξ2) ,

wB(ξ2) = b1 exp (−B1ξ2) + b2 exp (−B2ξ2) ,

with

A1 =
√
κ2 − δ2, A2 =

√
κ2 + 1,

B1 =
√
κ2 − δ21 , B2 =

√
κ2 + δ22 .

Branch cuts for the square roots are taken parallel to the imaginary axis in anti-
symmetric fashion and the square root is made definite by taking the branch
which warrants √

s→
√
x, as s→ x ∈ R+.



8 A. Nobili

Hereinafter, a superscript asterisk denotes complex conjugation, i.e. given s =
<(s)+ ı=(s), it is s∗ = <(s)− ı=(s). Let’s define the antiplane Rayleigh function
[?]

R0(κ, λ1, λ2, η) = (ηκ2 − λ1λ2)2 − λ1λ2 (λ1 + λ2)
2
, (25)

that is valid for either half-space. Indeed, for the half-space A, it is λ1,2 = A1,2,
η = ηA, and one may define RA

0 (κ) = R0(κ,A1, A2, η
A), to be compared with

the corresponding expression in [13,12]. In similar fashion, for the half-space B,
it is RB

0 (κ) = R0(κ,B1, B2, η
B).

3.2 Dispersion relation for Stoneley waves

It is now possible to deduce the dispersion relation for antiplane Stoneley waves
in couple-stress elasticity. To this aim, perfect contact conditions are imposed
and a linear system in the amplitudes a1, a2, b1, b2 is arrived at

wA(0) = wB(0),

dwA

dξ2
(0) =

dwB

dξ2
(0),

q̄A

1 (0) = q̄B

1 (0),

pA

3 (0) = pB

3 (0).

This homogeneous system system admits non-trivial solutions when the deter-
minant of the linear system vanishes

∆(κ) = 0. (26)

Eq.(26) is the secular (or frequency) equation for Stoneley waves and, letting
Γ = GB/GA, it reads

∆(κ) = Γβ2 (A1 −A2) (B1 −B2)D0(κ),

having let

D0(κ) =
1

Γβ2
RA

0 (κ)− 2D1(κ) + Γβ2RB

0 (κ). (27)

Here, RA
0 (κ) and RB

0 (κ) are the Rayleigh functions derived from (25), while D1(κ)
is a coupling term

D1(κ) =
(
ηAκ2 −A1A2

) (
ηBκ2 −B1B2

)
+ 1

2 (A1A2 +B1B2) (A1 +A2) (B1 +B2) . (28)

Eq.(27) is the “Rayleigh function” for the antiplane Stoneley problem in CS
media, whence it is named the Stoneley function. Its counterpart, within CE
elasticity, is given in [6]. When A = B, whence

(Γ, β, υ, ψ, ηk) = (1, 1, 1, δ, ηA = ηB),

one simply gets
D0,A=B(κ) = −4A1A2(A1 +A2)2,

which only allows antiplane bulk waves.
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3.3 Cuton frequency for antiplane Stoneley waves

The frequency equation (26) admits a cuton frequency, beyond which Stoneley
waves may propagate. To see this, it is enough to show that a real root is possible
only inasmuch as

D0(δM ) ≥ 0, (29)

with δM = max(δ, δ1). Indeed, for large wavenumbers κ, one deduces the asymp-
totics

D0(κ) = −
(

3− ηB +
ηA + 1

β2Γ

)[
3− ηA + β2Γ (ηB + 1)

]
κ4 + · · · < 0,

as κ→∞. (30)

Besides, it is observed that, for a given triple δ, δ1 and δ2, D0(κ) is monotonic
decreasing (for a proof of this see [14] and the argument principle therein). It is
concluded that a single real zero for D0 is possible if condition (29) holds. This
condition has a double purpose:

1. on the one hand, it may be employed as a propagation condition, which
provide the minimum frequency Ω beyond which propagation is possible,
namely the cuton frequency Ωcuton;

2. on the other hand, given an admissible propagation frequency Ω ≥ Ωcuton,
it provides the range of stiffness ratios Γ for which propagation is possible.

Fig.2 shows the cuton frequency as a function of Γ , in the assumption δM =
δ > δ1. Vertical or horizontal asymptotes appear, beyond which the opposite
inequality holds, see Fig.3. For a deeper investigation of the possible propagation
scenarios, also concerning existence and uniqueness, see [14].

4 Dispersion curves

Real zeros of Eq.(27) provide travelling wave solutions. Since these sit in the
open interval κ > δM , Stoneley waves are slower than the slowest bulk wave. For
instance, assuming δ > δ1, then bulk waves in the half-space B are fastest (with
wavenumber δ1) and, as described in [12], they originate the fastest Rayleigh
waves (wavenumber κ1R). Moving down speed-wise, Stoneley waves are met,
that are faster than the the slowest Rayleigh wave, whose wavenumber is located
in close proximity of δ, that is the wavenumber of the slowest bulk waves, the
latter taking place in the half-space A. This result has been pointed out in [7]
and in [11], without providing a formal proof.

Fig.4 plots the frequency spectrum of antiplane Stoneley waves having taken
υ = β = 1.1, `A0 = 0.3 < `B0 = 0.5 and ηB = 0.5, and Γ = 0.1 and Γ = 0.3.
It appears that curves almost overlap, although they start from widely different
cuton frequencies. Since curves are clearly non-linear, dispersion occurs. Indeed,
the corresponding dispersion curves are plotted in Fig.5.
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Fig. 2. Cuton frequency as a function of the ratio Γ between the shear moduli of media
A and B, with the parameter set υ = β = 1.1, `B0 = 0.5, ηB = 0.5 and `A0 = 0.3 (solid,
black), `A0 = 0.4 (dotted, blue), `A0 = 0.5 (dashed, red). Transition from an horizontal
to a vertical asymptote occurs. The missing part of each curve, as well as the region
beyond either asymptote, is due to the breakdown of the condition δ > δ1, which is
assumed in this plot, see [14] for further details.

Fig. 3. Cuton frequency as a function of the ratio Γ for υ = β = 1.1, `B0 = 0.5,
ηB = 0.5 and `A0 = 0.3. The solid curve is obtained from (29), assuming δ > δ1, while
the converse gives the dashed curve
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Fig. 4. Frequency spectrum for antiplane Stoneley waves for υ = β = 1.1, `A0 = 0.3 <
`B0 = 0.5, ηB = 0.5, Γ = 0.1 (solid, black) and Γ = 0.3 (red, dashed). Curves almost
overlap but start at widely different cuton frequencies, namely Ωcuton = 0.89 and
Ωcuton = 2.1, respectively for Γ = 0.1 and Γ = 0.3
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Fig. 5. Dispersion curves for antiplane Stoneley waves for υ = β = 1.1, `A0 = 0.3 <
`B0 = 0.5, ηB = 0.5, Γ = 0.1 (solid, black) and Γ = 0.3 (red, dashed)
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5 Conclusions

In this paper, Stoneley waves are investigated within the context of couple stress
theory with micro-inertia, in an attempt to incorporate the role of material mi-
crostructure into the wave pattern. This consideration brings substantial mod-
ification in the propagation pathways, for antiplane Stoneley waves appear to
be sustained under broad conditions. This stands in sheer contrast with the
state of the matter in classical elasticity, according to which antiplane Stoneley
waves are not supported altogether, while in-plane Stoneley waves may propa-
gate under rather restrictive conditions on the material constants of the media
in contact, cf.[17]. Indeed, lack of propagation for antiplane waves, that is found
in classical elasticity, is relaxed, by consideration of the material microstructure,
into propagation beyond a cuton frequency. An explicit expression for the lat-
ter is given which may serve either as a propagation condition, that provides
the cuton frequency for a given setup, or as an admissibility condition, which
restricts the permitted range of material parameters. The dispersion relations is
also discussed and reveals a complex wave pattern. The appearance of antiplane
Stoneley waves propagating under general conditions possesses important down-
falls in many areas. In seismology, it suggests that seismic energy may escape
at the boundary between the Earth’s layers. In micro-device design, it provides
new pathways for long-range interaction. Finally, in non-destructive testing of
materials, it paves the way for novel approaches which rely on non-surface waves
that, as such, are capable of capturing defects inside the material.
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