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Abstract

This paper presents a comprehensive geological and geotechnical study of the whole area
affected by liquefaction following the 2012 Emilia earthquakes, including all the available
information from the field reconnaissance surveys, in situ tests, and laboratory analyses.
The compilation was performed at 120 liquefied sites to verify and validate the reliability
of liquefaction charts in alluvial sediments, and to assess liquefaction induced by the 2012
seismic sequence in the Emilia plain. The results reveal a wide range of grain sizes (from
clean sands to sandy silts) and compositional characteristics (quartz-rich to litharenitic) in
the 2012 ejecta, and show a strong relationship between the liquefaction and stratigraphic
architecture of the subsurface. The availability of in situ tests at the liquefied sites makes
it possible to verify and validate the reliability of the liquefaction charts in alluvial sedi-
ments with respect to the real observations. For the analyzed Emilia case studies, the use
of non-liquefiable crust provides better estimations of the liquefaction manifestations when
coupled with the thickness of the liquefiable layer rather than with the liquefaction poten-
tial index. Altogether, this work makes available to the international scientific community a
consistent liquefaction database for in-depth earthquake studies.
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1 Introduction

During the last decades liquefaction case studies have been reported worldwide as a result
of earthquakes with estimated magnitude M > 5.4 (Maurer et al. 2015), providing detailed
information on liquefaction features and geotechnical properties (e.g. Suzuki et al. 2003;
Cao et al. 2011; Green et al. 2014; Facciorusso et al. 2015; Wood et al. 2017). Data from
recent earthquakes flowed into an open-source global database, the Next Generation Liq-
uefaction project (Zimmaro et al. 2019). This project aims to improve the accessibility of
coseismic effect archives and support the development of updated deterministic and proba-
bilistic liquefaction triggering curves using the “simplified procedure”, as originally intro-
duced by Seed and Idriss (1971). These “simplified methods” for liquefaction susceptibil-
ity assessment include procedures proposed by Seed et al. (1985), Robertson and Wride
(1998), Andrus and Stokoe (2000), Juang et al. (2002, 2006), Cetin et al. (2004), Moss
(2003), Moss et al. (2006), Idriss and Boulanger (2008), Kayen et al. (2013), Boulanger
and Idriss (2014), and Stewart et al. (2016). In this context, the 2012 Emilia (Italy) seismic
sequence is of great interest because of the widespread liquefaction phenomena in Holo-
cene alluvial sediments that have been well documented through detailed geological and
geotechnical surveys (Emergeo Working Group 2013, Caputo and Papathanasiou 2012,
Regione Emilia-Romagna 2012). Numerous studies have documented the liquefaction
characteristics at various key sites (e.g. Amoroso et al. 2017, 2020; Lai et al. 2020; Tonni
et al. 2015; Fontana et al. 2019; Meisina et al. 2019; Facciorusso et al. 2015; Civico et al.
2015; Rollins et al. 2021), but a comprehensive study of liquefaction over the whole area
affected by the 2012 Emilia earthquakes, that includes both geological and geotechnical
aspects, is still lacking.

The aim of the present study is to provide an unprecedented compilation of the entire
set of available information, including post-earthquake surveys, in situ tests, and labora-
tory analyses for 120 liquefied sites. The implications of this research are twofold: (1) at a
general scale, the study makes it possible to verify and validate the reliability of liquefac-
tion triggering charts for alluvial sediments, using a significant dataset that includes a wide
grain size (from clean sands to sandy silts) and compositional (quartz-rich to litharenitic)
spectrum of sediments; and (2) at a regional scale, the work represents a pivotal contribu-
tion to the liquefaction assessment in the Emilia plain.

2 Geological and seismological setting

In 2012, northern Italy was hit by two mainshocks and several large aftershocks (Fig. 1;
Pondrelli et al. 2012), generated by various thrust structures. The strongest shock occurred
on May 20" (moment magnitude, M,,=6.1), with the epicenter near the town of Finale
Emilia in the Emilia-Romagna Region. Many aftershocks followed in the same area, up to
the local magnitude M; =5.1. The second largest earthquake (M,, =5.9) took place on May
29" to the west of the first mainshock and close to the town of Mirandola. The 2012 seis-
mic events caused many human casualties as well as widespread damage to buildings and
infrastructure (Cultrera et al. 2014).

The epicentral area of the seismic sequence, located south of the Po River (Modena,
Ferrara, Bologna and Mantova provinces), was affected by the liquefaction phenom-
ena (Fig. 1). The Emilia alluvial plain is crossed by several rivers (Fig. 1), flowing from
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Fig. 1 Elevation model based on RADAR remote sensing image showing the geomorphological features of
the study area together with the 2012 sand boils, the collected samples, the available geotechnical surveys
and the fault geometries. The fault geometries are taken from the available literature and are limited to the
area with source slip greater than 0 m: Pezzo et al. (2018) for the My, = 6.1 on May 20™ and Paolucci et al.
(2015) for the My, = 5.9 on May 29t

the Apennines into the Po River (Secchia, Panaro), or directly reaching the Adriatic Sea
(Reno). The alluvial plain is the surface expression of the foredeep basin of the Apennine
chain, where the combination of fast subsidence and strong sediment input generated very
thick Plio-Pleistocene successions (Ghielmi et al. 2010). The study area corresponds to
the buried frontal portion of the compressive ramp and flat structures of the Apennines
(Toscani et al. 2009; Martelli et al. 2017). The active faults are associated with moder-
ate seismic activity (Michetti et al. 2012), characterized by shallow epicenters, well docu-
mented through the last centuries (Locati et al. 2011; Guidoboni et al. 2018). However, tak-
ing into account the social and economic regional context, the related expected seismic risk
is rather high. The most significant historic earthquake, that impacted the Ferrara area in
November 1570 (VIII MCS, estimated moment magnitude M,,=5.5), induced sand lique-
faction and ground fracturing, both within the town of Ferrara (Guidoboni et al. 2018) and
in the Reno River sediments at San Carlo, that also exhibited liquefaction in 2012 (Caputo
et al. 2016).

Both the 2012 mainshocks triggered widespread liquefaction of granular sediments,
sand boils, ground fractures, and gravitational lateral spreading. The liquefaction phenom-
ena in the eastern sector of San Felice sul Panaro were mainly associated with the main-
shock of the 2012 May 20", whereas those in the western sector were coupled with the
May 29" earthquake. It is worthy of note that at some sites liquefaction phenomena (e.g.
San Felice sul Panaro) have been observed following both the May 20" and 29™ shocks
(Pizzi and Scisciani 2012; Emergeo Working Group 2013). Moreover, the May 20™ after-
shocks, occurred within a close time interval (less than 4 minutes with M; between 4.8 and
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5.0), may have had some effects on pore water pressure build-up within the saturated cohe-
sionless layers, especially in the municipality of Terre del Reno (villages of Sant’Agostino,
San Carlo, Mirabello) where the most and largest liquefaction effects were observed
(Sinatra and Foti 2015; Facciorusso et al. 2016).

Liquefaction mainly took place within fluvial channel deposits. A strong relationship
exists between the siting of the liquefaction and the stratigraphic architecture of the sub-
surface. The liquefaction sites are typically confined to elongated strips, corresponding to
fluvial buried sandy bodies of Holocene age (Civico et al. 2015). The sites analyzed in
the present research consider the geotechnical investigations available approximately in the
upper 30 m of depth, where the stratigraphic interval consists of late Pleistocene and Holo-
cene deposits. The interval is divided into two superposed subsynthems: the upper Pleisto-
cene AES7 and the Holocene AES8 (Stefani et al. 2018). The ejected liquefied sands sam-
pled at the surface derive entirely from the Holocene units, in particular from sediments
younger than roughly 4000 years.

The analyzed deposits record two main sediment inputs, fed by the Po River to the
north, and by several streams flowing from the Apennine chain to the south (Secchia, Pan-
aro and Reno rivers; Fig. 1). The Po River largely differs from the Apennines counterparts
in its fluvial dynamics, grain size distribution, and petrographic composition. The two flu-
vial systems therefore generated sharply different sediments, in the northern and southern
portions of the research areas, respectively.

During synglacial times (AES7 unit), the Po deposited large coarse sand bodies into
braided river environments, whereas during the Holocene (AESS), it sedimented finer
grained sands into meandering channels. The Holocene meander channels often reworked
the upper Pleistocene deposits, generating thick continuous bodies of sands. The deposi-
tional geometry and geomorphic expression of some of the younger meander bodies are
visible at the surface (Figs. 2b and c). During the last millennia, the Po started to gener-
ate hanging channels, less curved in plan, interspaced with interfluvial depressions, where
finer grained sediments accumulated.

The Apennine rivers also provided large volumes of sediments, but finer grained com-
pared to the Po deposits. During the last glaciation, great volumes of silt and argillaceous
silt accumulated, framing thin bodies of fluvial sands (AES7). During the Holocene,
the rivers flowing from the Apennine valleys produced large volumes of clayey or silty
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Fig.2 LIDAR and satellite images: (a) fluvial ridges of the inner delta of the medieval Reno River (Cento),
(b) pre-Roman meanders of the Po River (San Martino in Spino) and (c) a satellite image of the same area
illustrated in (b). Green dots depict coseismic liquefaction sand boils
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sediments, often rich in peat and formed flood plains and freshwater marshes, framing iso-
lated fluvial channel bodies, mainly consisting of silty sands. Throughout the last millen-
nia, the boundary between the deposits of the Apennine rivers and of the Po River progres-
sively migrated northward. In medieval times, the Apennine rivers were unable to flow into
the Po and formed large inland delta systems (Fig. 2a). The inland distributary channels
of the Secchia, Panaro and Reno rivers prograded into large freshwater marshes and shal-
low lakes. A significant portion of the liquefied sands analyzed in the southern part of the
study region accumulated in these inland delta distributary channels, which often maintain
a strong topographic expression, as elongated ridges (Fig. 2a).

3 Methods
3.1 Field survey and sampling

The detailed 2012 field reconnaissance survey identified different coseismic geological
features associated with liquefaction or fracture/liquefaction. These features include single
sand volcanoes, scattered vents, coalescent flat cones, sand infilled water wells, fountains
and manholes, elongated and aligned multiple sand volcanoes and sand flows from open
fractures. Examples of these liquefaction features are reported in the photos in Fig. 3.

A total of 120 sites were analyzed and sampled in the alluvial plain area located between
the Po, Reno and Secchia rivers in the Ferrara, Modena, Bologna and Mantova provinces

Fig. 3 Field survey photos of liquefaction evidences: (a) aerial image of extended sand ejecta (Pieve di
Cento), (b) multiple craters (San Carlo), (c) sand ejected along a fracture (San Carlo), and (d) aligned vol-
canoes (San Felice sul Panaro). More images (Emergeo Working Group 2012) are available at https://istit
uto.ingv.it/images/collane-editoriali/miscellanea/miscellanea-2012/miscellaneal 6.pdf
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(Fig. 1). For the liquefaction sites we report, when available, structural and morphologi-
cal data including: (1) morphology, diameter and thickness of the sand boils; (2) spac-
ing, including length and strike of the sand boil alignments and associated fractures. The
thickness of the extruded sand was up to about 40 cm, the maximum observed diameter
of individual sand volcanoes was 10 m, and the coalescent sand volcanoes along fractures
extended for a maximum length of 50 m (Emergeo Working Group 2013). Samples of the
liquefied extruded sand were collected for sedimentological analysis. The samples were
preserved in plastic bags and their weight was commonly between 200 and 500 grams.
Moreover, qualitative surveys of liquefaction-induced land damage related to 2012 Emilia
earthquakes were performed by means of a reappraisal of field and aerial identification and
characterization of liquefaction phenomena. The land damage estimation was carried out
following the qualitative scale proposed by van Ballegooy et al. (2014):

Category 1 - No observed ground cracking or ejected liquefied material;

Category 2 - Minor ground cracking but not observed ejected liquefied material;
Category 3 - No lateral spreading but minor to moderate quantities of ejected material;
Category 4 - No lateral spreading but large quantities of ejected material;

Category 5 - Moderate to major lateral spreading; ejected material often observed;
Category 6 - Severe lateral spreading; ejected material often observed.

This estimation is clearly relative to the 2012 damage and Categories 1 and 2 were
not considered since the 120 analyzed sites are all liquefied sites with ejected material.
For each site a detailed report sheet has been compiled (see electronic supplement of this

paper).

3.2 Grain size and compositional analyses

A total of 120 sand boil samples were analyzed using standard techniques. To reduce sam-
pling bias due to possible segregation of particle sizes during the sand boil formation, for
each site we sampled the complete vertical sequence next to the ejection point; the deposit
normally did not exceed 10 cm in thickness. For comparison, two additional samples (San
Martino 2b and San Martino 6bis; see the electronic supplement of this paper) were also
collected from the fine-grained distal portion of the ejected deposits. These samples are not
plotted in the graph of the Figs. 4 and 5, presented in the next sections of the work, as they
are not representative of the complete ejected deposit.

Mechanical sieving was performed for the sandy fraction along with hydrometer analy-
sis or laser diffractometry analysis for the fine-grained sediments. Sand samples consisting
of a few hundred grams were washed with dilute H,0, to remove organic matter and were
air dried and mechanically sieved for grain size and compositional analyses.

Compositional analyses were carried out on sand samples by point counting (300 grains
for each thin section) under transmitted-light microscopy. Analyses were performed on the
0.125-0.250 mm fraction, according to the Gazzi-Dickinson method designed to minimize
the dependence of the analysis on the grain size (Zuffa 1985) and to support a compari-
son with previous compositional studies performed in the area (Lugli et al. 2004, 2007).
The aim of the compositional study was to attribute the ejected sand to the specific buried
fluvial channels of the alluvial system (Po, Secchia, Panaro and Reno rivers). Sorting was
calculated according to Folk and Ward (1957) using the GRADISTAT software.
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3.3 Geotechnical investigation

The presented work benefitted greatly from the large dataset of previous geological-geo-
technical subsurface investigations, developed by the Emilia-Romagna Regional Admin-
istration (https://ambiente.regione.emilia-romagna.it/it/geologia/cartografia/webgis-banch
edati/banca-dati-geognostica). The available dataset, compiled since the early 1990s, pro-
vides more than 65,000 logs, throughout the alluvial plain, including more than 5,000 pie-
zocone penetration tests (about 1,000 are located within the epicentral region of the 2012
earthquake), deriving from microzonation studies and reconstruction projects developed
after the seismic crisis (Regione Emilia-Romagna 2013; Martelli et al. 2013). The dataset
of the 120 sites includes the available piezocone tests (CPTU), electrical cone penetration
tests (CPTE), dilatometer tests (DMT), seismic dilatometer tests (SDMT) and boreholes
with standard penetration tests (SPT) performed at the liquefied sites or in their proximity.

4 Data analysis

Relevant data for all 120 liquefaction sites has been assembled and analyzed. For each
site, a comprehensive dataset has been developed including geographical and morpho-
logical data, liquefaction features, liquefaction-induced land damage and related seismic
parameters. In addition, grain size and compositional analyses, paleoriver assignment, and
geotechnical tests were assembled. Finally, liquefaction assessments have been performed
using in situ tests. These data are organized as a single report sheet presented in the elec-
tronic supplement of this paper and are summarized in Table 1.

4.1 Sand boil characterization: grain-size, texture and composition
4.1.1 Grain size analysis

Sand blows show variable grain size distributions as illustrated in the cumulative curves
of Fig. 4 and in Table 1. The index properties for each sand blow were estimated using the
grain size distribution, and include (Table 1):
the fines content (FC) which represents the percentage of particles finer than 0.075 mm;
the coefficient of uniformity (U), given by the equation:
D
U=2 (1)
Dy

where D, is the diameter of the generic xth percentile of the grain size curve;
e the coefficient of curvature (C), given by the equation:

oo D

=575 2
D)o - Dgg

e the sorting (o), given by the equation:
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where ¢, = Log,D, and D, is the diameter of the generic xth percentile of the grain
size curve in millimeters.

The grain size curves and the calculated index properties were then used to determine
the Unified Soil Classification System symbols (USCS classification, ASTM D2487-11
2011) reported in Table 1. Sand boils were most frequently classified as silty sand (SM)
and sometimes as poorly graded sand with silt (SP-SM) or sandy silt (ML), consider-
ing that FC varies on average between 10 and 40%, U is typically below 30 and C varies
between 1 and 4.

The coarser samples (from medium sand to fine sand) are from sand blows in the north-
ern area, between Bondeno and Quistello (see Fig. 1 for the their location), that is domi-
nated by the Po River paleochannels. The sand blows from the eastern sector, dominated
by the Reno paleochannel between Sant’Agostino and Mirabello (see Fig. 1 for the their
location), are generally finer grained compared to those of the northern sector, and show
a larger spectrum from fine-grained sands to silty sands. The samples from the western
area (San Felice sul Panaro, Concordia sulla Secchia and Cavezzo) are characterized by
the largest percentage of fines (up to 50%) and consist of fine-grained silty sands and sandy
silts. These sands were ejected in the area dominated by the Secchia and Panaro rivers.

The grain size ranges for the four main fluvial systems (Po, Reno, Secchia and Pan-
aro) are outlined in Fig. 4, showing that the Secchia and Panaro river sands are gener-
ally finer compared to the Po sediments, while the Reno deposits cover a wider grain-size
range. Figure 4 indicates also that the liquefied sediments are within the grain size range
of deposits typically susceptible to liquefaction according to observations of Tsuchida and
Hayashi (1971). As shown in Fig. 5a, sorting of ejected sand is moderate to poor for all of
the source rivers and the lowest degree of sorting generally characterizes the samples with
higher fines content (Fig. 5b).

4.1.2 Petrographic composition analyses

Sand blows and dikes have a variable composition ranging from (1) lithoarenite to (2)
quartz-rich lithoarenite and (3) quartzarenite (Fig. 6). The lithoarenitic sands contain an
abundant lithic association including sedimentary fine-grained siliciclastic grains (silt-
stones and shales) and carbonate lithics (largely micritic limestones and calcite spars).
Shales are well lithified, well rounded, with an evident iso-orientation of the clay minerals,
and for these characters, they appear to have a detrital origin, derived from the erosion of
the pelitic successions of various age cropping out in the northern Apennines. Serpentinite
and volcanite grains are minor components. These petrofacies characterize the western
area, dominated by the Secchia River paleochannels, near Mirandola, Cavezzo and Con-
cordia sulla Secchia, but indicate an input of the Panaro River in the San Felice sul Panaro
area. The quartz-rich lithoarenites show a higher quartz-feldspar content and a lower con-
tent of siltstones, shales and carbonate lithics. This petrofacies typifies the samples from
the eastern sector attributable to the Reno River paleochannels in the area between San
Carlo and Mirabello. The quartzarenite sands are characterized by a significantly higher
content of quartz and feldspar grains associated with metamorphic rock fragments, abun-
dant micas and heavy minerals. These latter samples are attributable to the Po River paleo-
channels in the northern sector of the plain.

@ Springer



Bulletin of Earthquake Engineering

Sand blows
and dikes

Secchia /m-"""%

y 1 Secchia
- ;
!'“f::fi' \Panaro
--w ) :

pz;\eo—Panaro

L 90 80 70 60 50 40 30 20 10

Fig.6 Q+F, L, C diagram showing the composition of sands from sand blows and dikes (black squares).
The compositional fields of modern and paleoriver of the Emilia plain are also reported (Lugli et al. 2007).
Q: quartz; F: feldspars; L: siliciclastic rock fragments; C: carbonate rock fragments

4.2 Geotechnical characterization of liquefied sites
4.2.1 Insitu tests

The great majority of the in situ tests presented in this work consist of CPTUs and
CPTEs that are plotted in each sheet of the 56 analyzed sites, where in situ tests are
available (supplement of this paper), in terms of: corrected cone resistance (q,), sleeve
friction (fy), pore pressure (u,, only for CPTU) and soil behavior type index (I.), accord-
ing to Robertson (2004). This allowed a preliminary subsoil interpretation identify-
ing the depth of the in situ ground water table, defined as “Depth of in situ GWT” in
Table 1, and the “sand-like” layers associated with I, <2.6 (Idriss and Boulanger 2008).
As an example, Fig. 7 provides the CPTU results collected at the WP63 test site, located
in San Carlo (municipality of Terre del Reno). The upper 6 m depth are composed by
silty sands and sandy silts (approximately I, <2.6), while a thick silty-clayey layer is
encountered up to 22 m depth (I,>2.6). A sandy body is then detected between 23 and
27 m, and finally clayey deposits can be found up to 30 m. This information, coupled
with the u, profile, makes it possible to interpret the depth of the in situ GWT, which is
approximately one meter below the ground surface.

Moreover, when available the sheets for each area (see supplement of this paper)
include the DMTs and SDMTSs geotechnical parameters according to Marchetti et al.
(2001), including: the material index (Ij), the constrained modulus (M), the undrained
shear strength (s,), the horizontal stress index (Kp) and the shear wave velocity (V)
from seismic dilatometer (SDMT) testing. Finally, when boreholes and standard pen-
etration tests (SPT) are available, each sheet also plots an interpreted borehole log and
the SPT blow count (Ngpr). Altogether, this information supports the geotechnical char-
acterization of the liquefied sites.
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Fig.7 Example of CPTU test results at WP63 San Carlo—Terre del Reno site

4.2.2 Liquefaction assessment

At each liquefied test site, where in situ tests were available and lateral spreading was not
observed (45 sites, see Table 1), liquefaction susceptibility analyses were carried out using
CPT- or DMT-based methods derived from the Seed and Idriss (1971) simplified proce-
dure with the final goal of detecting the liquefied layer(s) for the 2012 earthquakes. The test
sites located approximately east of San Felice sul Panaro were associated with the main-
shock that occurred on the 20" May 2012, while the liquefied sites west of San Felice sul
Panaro were coupled with the 29" May 2012 earthquake (Pizzi and Scisciani 2012).

For the definition of the peak ground acceleration (a,,,) we used the most updated
ground motion model for shallow crustal earthquakes in Italy (ITA18, Lanzano et al. 2019).
This ground-motion prediction equation accounts for the more recent earthquakes that have
occurred in Italy, including the 2012 Emilia earthquakes, and it is calibrated by regression
of empirical ground-motion amplitudes against a set of predictor variables such as earth-
quake magnitude, focal mechanism, source-to-site distances, and local soil conditions (i.e.
the time-averaged shear wave velocity to 30 m depth). Figure 8 compares the a,, from
ITA18 with both the recorded data, acquired during the May 20" and the May 29" main-
shocks, and the computed ShakeMaps (http://shakemap.rm.ingv.it/shake4, last access Oct.
22th, 2021; Michelini et al. 2020). The lack of seismic stations in the 2012 epicentral area
during the 20" May 2012 mainshock (only one permanent station was located in the area,
in the municipality of Mirandola; Cultrera et al. 2014) resulted in unreliable ShakeMap
estimates in the near source region (Fig. 8a), as already noted by Cultera et al. (2014). The
29" May ShakeMap values are better constrained because of the large number of tempo-
rary seismic stations installed in the epicentral area (Fig. 8b), and they range within one
standard deviation of the ground motion model prediction. We are then confident about
using the ITA18 prediction for both earthquakes, with a careful choice of the input param-
eters, such as the M,, and the distance metrics.

Moment magnitude (M,,) of 6.1 and 5.9 are computed by Pondrelli et al. (2012) by
means of the Regional Centroid-Moment Tensors (RCMT, http://rcmt2.bo.ingv.it/, last
access: October 2021; Pondrelli 2002). The M,, estimates from RCMT are equivalent to
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Fig.8 Peak ground acceleration (a,,,,) recorded and modeled for the 2012 Emilia earthquakes, as a function
of the Joyner-Boore distance (Rjb): (a) M,, 6.1 on May 20", (b) M, 5.9 on May 29™. a_, of ITA1S is the
median of orientation independent amplitudes (Lanzano et al. 2019)

max

the global scale solutions of the Global Centroid Moment Tensors project (GCMT, http://
www.globalcmt.org, Ekstrom et al. 2012), which is considered the most authoritative
agency for M,, of earthquakes worldwide and whose magnitudes are used as a reference
in many seismological studies (Di Giacomo et al. 2021). Moreover, both estimates almost
overlap for M, > 5.4 (Gasperini et al. 2012).

Regarding the distance metrics, we used the Joyner-Boore distance (Rjb) to account for
the effect of the extended source in ITA1S8, as the sites analyzed in this study are very
close to the seismic sources of the mainshocks. The fault geometries, reported in Fig. 1, are
taken from the available literature and limited to the area with source slip greater than 0 m:
Pezzo et al. (2018) for the M,, 6.1 on May 20" and Paolucci et al. (2015) for the M,, 5.9 on
May 29",

As a consequence, the cyclic stress ratio for a M, 7.5 earthquake (CSR; 5) was evalu-
ated using the previously noted mainshock values of M,, and a, . The present research is
limited to reproducing the liquefaction evidence induced by the mainshoks of May 20™
and May 29" using the simplified procedure. Reproduction of the possible additional lig-
uefaction effects that occurred in conjunction with the aftershocks within the first four
minutes after the mainshock of May 20" would have necessitated numerical modelling to
reproduce the entire pore pressure build up (i.e. from the starting time of the mainshock
to at least few minutes after the last strong aftershock here considered). The performance
of numerical modelling for the numerous sites analyzed in the manuscript would have
required: (1) a large number of seismic recording stations in the epicentral area of the 20"
May 2012 mainshock; and (2) substantially more geotechnical information extending down
to the bedrock. Unfortunately, these data are not available in the literature due to the lack of
seismic stations (only the Mirandola station recorded the seismic event, see Cultrera et al.
2014) and due to the presence of deep bedrock (> 100 m in the anticlinal area of Mirandola
and Casaglia, and >>300 m in the synclinal areas that cover most of the epicentral area,
see Martelli 2021, Minarelli et al. 2016).

Additionally, the magnitude scaling factor (MSF) and the shear stress reduction coeffi-
cient (ry) were evaluated according to the equations recommended by Idriss and Boulanger
(2008) for CPT, DMT and CPT-DMT methods, while the depth of the earthquake ground
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water table, defined as “Depth of earthquake GWT” in Table 1, was assumed equal to 3 m
depth in the case of a fluvial ridge and to 1 m in the case of a flat interfluvial depression,
considering that the geomorphological features of the study area based on LIDAR data
(Table 1).

Finally, the cyclic resistance ratio (CRR) for a M, 7.5 earthquake (CRR; ;) was evalu-
ated using (1) the normalized overburden corrected cone tip resistance q.y calculated from
the Idriss and Boulanger (2008) CPT-based method; (2) the horizontal stress index K, esti-
mated from Marchetti (2016) with DMT methods; and (3) the combination of q .,y and Ky
parameters in the Marchetti (2016) CPT-DMT correlation. The ratio between CRR; s and
CSR; 5 defines the safety factor against liquefaction (FS;;). To screen out “clay-like” soils,
a threshold was set at I, <2.6 for CPT data and at I;;> 1.0 for DMT measurements. Lique-
faction severity indexes were also calculated for CPT profiles in terms of:

e the liquefaction potential index (LPI) proposed by Iwasaki et al. (1982), given by the
equation:

20

LPI = / F(2) - w(z) - dz 4

0

where w(z) = 10-0.5-z, F(z) =1-FS;;, if FS;, < or F(z) =0if FS;,>1, and z
is the depth below the ground surface;

e the liquefaction induced vertical settlements (S) according to Zhang et al. (2002), given
by the equation:

J
§= Z £, - Az (&)
i=1

where ¢, is the post liquefaction volumetric strain, calculated as a function of the lique-
faction safety factor (FS;,y) and of the equivalent clean sand normalized CPT penetra-
tion resistance (q.n)es» AZ; is the thickness of the sublayer i, and j is the number of soil
sublayers;

e the liquefaction severity number (LSN) proposed by van Ballegooy et al. (2014), given
by the equation:

LSN:lOOO-/i-dz 6)
Z

where ¢, is the post liquefaction volumetric strain calculated according to Zhang et al.
(2002).

The predictive indexes were computed to verify how well they fit the experimental evi-
dence of the 2012 Emilia seismic sequence. As an example, Fig. 9 reports the results of the
CPTU liquefaction analysis performed at the WP63 San Carlo site for the seismic event of
the 20™ May 2012 (M,,=6.1). A surface non-liquefiable layer with a thickness H;=1.0 m
and a liquefiable layer of a thickness H,=5.3 m (depth range: 1.0-6.3 m) are detected
with associated LPI=23.56, LSN=42.39 and S=0.27 m. By looking at the observed lig-
uefaction evidences through the identified liquefaction-induced land damage categories
(see Table 1), the liquefaction severity indexes (LPI, LSN and S) results in reasonable
agreement with the 2012 effects on ground surface, classified in Category 4 (i.e. no lat-
eral spreading but large quantities of ejected material). Reasonable agreement is noted for
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SOIL BEHAVIOR NORMALIZED CONE CYCLIC STRESS RATIO & LIQUEFACTION
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I Ao (MPa) CSRys, CRR; FSiq
o 1 2 3 4 0 5 100 150 0 02 04 06 08
0 —— 0 . . 0
E = E E E
£20 £’ £ F
8 4t & 4 a 4 a
6 6 6
8t 8 8
10} 10 10
12} 12 12
u}l 14 14
g .
% 2 8 & 16 16
g 24 3
B 25=Eg 2 18 18
% T E>ed
B 5 §=x856
5. B 6 e>T.8
20 20 2

Fig.9 Example of CPTU liquefaction analysis at WP63 San Carlo—Terre del Reno site for the seismic event
of the 20" May 2012 (M,,=6.1)

approximately the 75% of the analyzed cases, in terms of LPI and S, while for the remain-
ing percentage the liquefaction prediction results underestimated or overestimated. The
LSN provides reasonable agreement with the observed performance for less than the 40%
of the analyzed liquefied sites, while for the majority of cases this index underpredicted the
field observations. This is likely because the LSN threshold values corresponding to dif-
ferent severities of liquefaction are based on the New Zealand data. Further details can be
detected in Table 1 where the text formatting is used to describe the accuracy of the LPI,
LSN and S approaches relative to the observed damage, namely: bold-italics is underpre-
dicted, italics is overpredicted, bold is reasonable.

5 Liquefaction features versus depositional facies and sediment
provenance

The composition of ejected sand is a fundamental tool for the source layer identification in
a sedimentary sequence, and this is pivotal for the recognition of potential areas prone to
hazardous sand liquefaction phenomena. On the other hand, the petrographic composition
does not necessarily appear to be a significant factor influencing the liquefaction suscepti-
bility, as demonstrated by the wide compositional spectrum of the Po plain alluvial systems
illustrated in this study.

As noted previously, the stratigraphic architecture of the study area is strongly influ-
enced by the interaction between the Po River and the network of transversal tributaries
draining the Apennine chain (Fig. 10). The post-glacial Po River deposits consist of elon-
gated channel sand bodies, with quartzarenitic composition representing detritus from wide
sectors of the Alpine and Apennine chains, transported over a long distance. The Apen-
nine sands are confined in narrow channel body, and are finer grained, containing a larger
amount of silt. They show lower quartz-feldspar contents and abundant sedimentary lith-
ics derived from relatively smaller catchments confined to the external belts of the chain;
detritus is derived only from the sedimentary cover.
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Fig. 10 Main fluvial domains of the study area and paleochannel sand bodies in the shallow subsurface (
modified from Stefani et al. 2018). Liquefaction sites are aligned along paleochannels as also reported by
Civico et al.(2015)

A distinctive sand composition characterizes each river mainly based on the pre-
vailing lithic grains. Sediments eroded from shale terrains with carbonate blocks (the
chaotic Ligurian units) dominate the Secchia and Panaro catchments (litharenitic
petrofacies). These lithic components are less abundant in the Reno River (quartz-rich
lithoarenite petrofacies). Sand petrography data demonstrate that fluvial sand composi-
tions have slightly varied during the Holocene with respect to the present-day sands, as
shown by the compositional fields of Fig. 6. This is particularly evident for the modern
Reno River sands, which are more litharenitic compared to its paleochannel. The Po
River sands are richer in quartz, feldspar, and metamorphic grains.

The petrography of the sand blows therefore makes it possible to discriminate the
sedimentary provenance of the sand ejected during the 2012 seismic crisis and to
ascribe them to their respective Po, Secchia and Reno Holocene paleochannels (Fig. 10).
The petrography of sands has also supported the identification of the source level of
liquefaction, in all sites located at depth between 5 and 8 m in the alluvial sediment
sequence.

This comprehensive dataset shows that earthquake-induced liquefaction phenomena
affected sand layers with significant contents of non-plastic silt and was not limited to
clean sands and well-sorted deposits, as suggested by previous results from Fontana
et al. (2015, 2019) and Amoroso et al. (2020). Within the considered alluvial plain,
liquefaction primarily affects silty sand with litharenitic composition from laterally con-
fined depositional bodies, such as levee, crevasse splay, to minor channel ribbons. Sub-
ordinately liquefaction was related to thick channel-fill sands deposited by the Po river.
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Fig. 12 Summary liquefaction charts involving the surface non-liquefiable layer for the analyzed test sites:
(a) Ishihara (1985) chart and (b) Towhata et al. (2016) chart. Dashed lines represent a possible extension of
the two charts to fit the experimental data

6 Liquefaction charts

The liquefied layers identified at the trial sites (Table 1) were subsequently used to develop
summary liquefaction charts, as reported in Figs. 11 and 12. In particular, Fig. 11a com-
pares the average CSR; 5 (CSR;; ,,,) and average iy (qcin avp) Within each identified
liquefied layer, with the CPT-based liquefaction triggering curves by Idriss and Bou-
langer (2008). The average parameters (i.e. CSR; 5 ., and gy ,) Were calculated using
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the CSR; 5 and q_;y values for the entire liquefied layer thickness. The liquefaction data
points for the entire dataset are consistent with the Idriss and Boulanger (2008) triggering
curves which indicate liquefaction in all cases, even though the plot provides CSR; 5 ,,
and gy 4 pairs for the entire liquefied layer at each site, rather than the “critical layer”
computed with the lowest average q.;n./CSR; 5 ratio (where gy 1S the normalized cone
tip resistance for clean sand) over a depth range of about a meter. The identification of
the critical layer at each site would have produced gy 4, values somewhat smaller (less
than 38%) with little effect on the CSR; 5 ,,,, (less than 9%), but the results would still plot
above the liquefaction triggering curves for all the data points indicating agreement with
the observed behavior.

Figure 11b plots the FC from the sand boil samples versus the average L (I, ,,) esti-
mated from the 2012 liquefied layer in comparison with correlations by Suzuki et al.
(1998) and by Boulanger and Idriss (2014). The FC and [, data pairs exhibit consider-
able scatter for a significant number of case studies relative to the average curves provided
by Suzuki et al. (1998) and Boulanger and Idriss (2014) (Fig. 11b), although less than the
35-40% of the cases plot outside the upper and lower boundary curves. This scatter may
be related to a site-specific dependency of these kind of I -FC correlations (Idriss and Bou-
langer 2008; Boulanger and Idriss 2014) and to the fact that I, can be seen as a param-
eter related to the mechanical soil response, including soil plasticity, and not strictly to the
grain size of the soil deposits alone (Robertson and Cabal 2015).

Finally, Fig. 12 evaluates liquefaction manifestation at the ground surface relative to the
presence of a non-liquefiable surface crust if thickness H; overlying a liquefiable deposit
of thickness H, according to charts developed by Ishihara (1985) and by Towhata et al.
(2016) using H; and LPI. Almost the 90% of the experimental liquefaction observations
correctly fit with Ishihara chart (Fig. 12a), considering the range of peak ground accel-
erations used in the liquefaction assessment (a,,,, =0.40-0.46g, see also Table 1). In only
four cases, related to the municipalities of Bondeno, Cavezzo and Terre del Reno, does
the chart incorrectly predict that liquefaction would not be observed at the ground surface
probably due to the presence of a thick non-liquefiable crust (H; = 4-10 m). The predic-
tion provided by the Towhata chart (Fig. 12b) is far less accurate and contemplates highly
probable surface manifestations of liquefaction for less than 25% of the analyzed cases. In
this respect, for the analyzed Emilia dataset the chart proposed by Ishihara (1985) looks to
provide more reliable results using the H,-H, pairs than the one proposed by Towhata et al.
(2016) where the non-liquefiable crust is coupled with the LPI in place of H,.

7 Conclusions

We have compiled a large and comprehensive dataset consisting of 120 liquefied sites
induced by the 2012 Emilia Romagna earthquakes in the alluvial plain created by the late
Quaternary sedimentation of Apennine fluvial systems and of the Po River. This compila-
tion includes the entire available structural, grain size, compositional and geotechnical data
for each liquefaction site consisting of a wide spectrum of sediment types.

A strong relationship exists between the occurrence of liquefaction and the strati-
graphic architecture of the subsurface. The granular sediments ejected to the surface
are entirely derived from Holocene units, associated with river channel, levee, and cre-
vasse deposits. The geometry of the fluvial paleochannels contributed to confine the lig-
uefaction sites along narrow ribbons crossing the plain. In addition, coseismic surface
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fractures were largely localized across fluvial ridge morphologies. The source level for
liquefaction in all sites was identified at shallow depth, in sand layers, mainly between
3 and 6 m, covered by fine-grained cohesive deposits. The granular sediments involved
in the liquefaction phenomena often show a significant amount of non-plastic silt. The
texture and composition of sand blows has allowed us to identify the provenance of the
sand ejected and to ascribe them to their respective fluvial channel. The sands deposited
by the Po River are organized in large, vertically stacked channel bodies with quartzare-
nitic composition, whereas the Apennine drainage systems generated narrower channel
bodies rich in finer grained litharenitic sands and silty sands.

The availability of in situ tests at the liquefied sites allows us to verify and validate
the reliability of the liquefaction charts in alluvial sediments. In this respect, the com-
parisons of the liquefaction severity indexes with the coseismic observations revealed
that the LPI and S generally is consistent with the 2012 evidences while the LSN seems
to underestimate the surface manifestation of liquefaction probably due to the depend-
ency of LSN on the New Zealand dataset for which it has been developed.

The CPT data points at the liquefied sites fit well with the triggering chart devel-
oped by Idriss and Boulanger (2008), highlighting the consistency of this simplified
method for evaluating liquefaction. In contrast, the I.-FC correlations by both Suzuki
et al. (1998) and Boulanger and Idriss (2014) only provide a broad estimate of the true
fines contents of the 2012 sand ejecta (as measured by the grain size analyses), although
60-65% of measured fines content from sand boils at liquefaction sites fall within the
upper and lower boundary curves. The dispersion of these data points around the aver-
age curves denotes the site-specific nature of I .-FC correlations and the effect of plastic-
ity and mechanical behavior associated with I rather than simply the grain size.

For the vast majority of the data points (almost the 90% of the analyzed cases) for
the Emilia earthquakes, the presence of a medium-thick non-liquefiable crust (=% 3-6 m
thick) related to the range of the 2012 peak ground accelerations (a,, =0.40-0.46g)
did not prevent surface manifestations of liquefaction in agreement with the liquefac-
tion charts proposed by Ishihara (1985). In contrast, the Towhata et al. (2016) chart only
predicted surface liquefaction features for a small percentage of the dataset (less than
25% of the analyzed cases) where liquefaction actually occurred. Therefore, for the ana-
lyzed Emilia case studies the use of non-liquefiable crust provides better estimations of
the liquefaction manifestations when coupled with the thickness of the liquefiable layer
(H,) rather than with the liquefaction potential index (LPI). These coseismic liquefac-
tion observations emphasize the importance of an in-depth study of geological and geo-
technical properties of these crusts.
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