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Abstract
Biosemiosis is a process of choice-making between simultaneously alternative
options. It is well-known that, when sufficiently young children encounter a new
word, they tend to interpret it as pointing to a meaning that does not have a word
yet in their lexicon rather than to a meaning that already has a word attached. In
previous research, the strategy was shown to be optimal from an information theo-
retic standpoint. In that framework, interpretation is hypothesized to be driven by the
minimization of a cost function: the option of least communication cost is chosen.
However, the information theoretic model employed in that research neither explains
the weakening of that vocabulary learning bias in older children or polylinguals
nor reproduces Zipf’s meaning-frequency law, namely the non-linear relationship
between the number of meanings of a word and its frequency. Here we consider a
generalization of the model that is channeled to reproduce that law. The analysis of
the new model reveals regions of the phase space where the bias disappears consis-
tently with the weakening or loss of the bias in older children or polylinguals. The
model is abstract enough to support future research on other levels of life that are
relevant to biosemiotics. In the deep learning era, the model is a transparent low-
dimensional tool for future experimental research and illustrates the predictive power
of a theoretical framework originally designed to shed light on the origins of Zipf’s
rank-frequency law.
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Ciències de la Computació, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega,
Jordi Girona Salgado 1-3, 08034 Barcelona, Catalonia, Spain

Published online: 26 November 2021

Biosemiotics (2021) 14:345–375

http://crossmark.crossref.org/dialog/?doi=10.1007/s12304-021-09452-w&domain=pdf
https://orcid.org/0000-0002-1488-2046
https://orcid.org/0000-0002-7820-923X
mailto: david.carrera@estudiantat.upc.edu
mailto: rferrericancho@cs.upc.edu


Introduction

Biosemiotics can be defined as a science of signs in living systems (Kull, 1999, p.
386). Here we join the effort of developing such a science. Focusing on the problem
of “learning” new signs, we hope to contribute (i) to place choice at the core of
semiotic theory of learning (Kull, 2018) and (ii) to make biosemiotics compatible
with the information theoretic perspective that is regarded as currently dominant in
physics, chemistry, and molecular biology (Deacon, 2015).

Languages use words to convey information. From a semantic perspective, words
stand for meanings (Fromkin et al., 2014). Correlates of word meaning have been
investigated in other species (e.g. Hobaiter & Byrne, 2014; Genty & Zuberbühler,
2014; Moore, 2014). From a neurobiological perspective, words can be seen as
the counterparts of cell assemblies with distinct cortical topographies Pulvermüller
(2001, 2013).

From a formal standpoint, the essence of that research is some binding between
a sign or a form, e.g., a word or an ape gesture, and a counterpart, e.g. a ’meaning’
or an assembly of cortical cells. Mathematically, that binding can be formalized as a
bipartite graph where vertices are forms and their counterparts (Fig. 1). Such abstract
setting allows for a powerful exploration of natural systems across levels of life, from
the mapping of animal vocal or gestural behaviors (Fig. 2a) into their “meanings”
down to the mapping from codons into amino acids (Fig. 2b) while allowing for a
comparison against “artificial” coding systems such as the Morse code (Fig. 2c) or
those emerging in artificial naming games (Hurford, 1989; Steels, 1996). In that set-
ting, almost connectedness has been hypothesized to be the mathematical condition
required for the emergence of a rudimentary form of syntax and symbolic reference
(Ferrer-Cancho et al., 2005, 2006). By symbolic reference, we mean here Deacon’s
revision of Pierce’s view (Deacon, 1997). The almost connectedness condition is met
when it is possible to reach practically any other vertex of the network by starting a
walk from any possible vertex (as in Fig. 1a and b but not in Fig. 1c and d).

Since the pioneering research of G. K. Zipf (1949), statistical laws of language
have been interpreted as manifestations of the minimization of cognitive costs (Zipf,
1949; Ellis and Hitchcock, 1986; Gustison et al., 2016; Ferrer-i-Cancho & Dı́az-
Guilera, 2007, 2019). Zipf argued that the law of abbreviation, the tendency of more
frequent words to be shorter, resulted from a minimization of a cost function involv-
ing, for every word, its frequency, its “mass” and its “distance”, which in turn implies
the minimization of the size of words (Zipf, 1949, p.59). Recently, it as been shown
mathematically that the minimization of the average of the length of words (the mean
code length in the language of information theory) predicts a correlation between
frequency and duration that cannot be positive, extending and generalizing previ-
ous results from information theory (Ferrer-i-Cancho et al., 2019). The framework
addresses the general problem of assigning codes as short as possible to counterparts
represented by distinct numbers while warranting certain constraints, e.g., that every
number will receive a distinct code (e.g. non-singular coding in the language of infor-
mation theory). If the counterparts are word types from a vocabulary, it predicts the
law of abbreviation as it occurs in the vast majority of languages (Bentz & Ferrer-
i-Cancho, 2016). If these counterparts are meanings, it predicts that more frequent
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Fig. 1 A bipartite graph linking forms (white circles) with their counterparts (black circles). a a connected
graph b an almost connected graph c a one-to-one mapping between forms and counterparts d a mapping
where only one form is linked with counterparts

meanings should tend to be assigned smaller codes (e.g., shorter words) as found in
real experiments (Kanwal et al., 2017; Brochhagen, 2021). Table 1 summarizes these
and other predictions of compression.

A family of probabilistic models

The bipartite graph of form-counterpart associations is the skeleton (Figs. 1 and 2)
on which a family of models of communication has been built (Ferrer-i-Cancho &
Dı́az-Guilera 2007, 2018). The target of the first of these models (Ferrer-i-Cancho &
Sole, 2003) was Zipf’s rank-frequency law, that defines the relationship between the
frequency of a word f and its rank i, approximately as

f ≈ i−α .
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(a) (b)

(c)

Fig. 2 Real bipartite graphs linking forms (white circles) with their counterparts (black circles). a Chim-
panzee gestures and their meaning (Hobaiter & Byrne, 2014, Table S3). This table was chosen for its broad
coverage of gesture types (see other tables satisfying other constraints, e.g. only gesture-meaning asso-
ciations employed by a sufficiently large number of individuals). b Codon translation into amino acids,
where forms are 64 codons and counterparts are 20 amino acids c The international Morse code, where
forms are strings of dots and dashed and the counterparts are letters of the English alphabet (A,B, ..., Z)
and digits (0,1,...,9)

These early models were aimed at shedding light on mainly three questions:

1. The origins of this law (Ferrer-i-Cancho & Sole, 2003, 2005b).
2. The range of variation of α in human language (Ferrer & Cancho, 2005a, 2006).
3. The relationship between α and the syntactic and referential complexity of a

communication system (Ferrer-i-Cancho et al., 2005, 2006).

The main assumption of these models is that word frequency is an epiphenomenon
of the structure of the skeleton or the probability of the meanings. Following the
metaphor of the skeleton, the models are bodies whose flesh are probabilities that are
calculated from the skeleton. The first models defined p(si |rj ), the probability that
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Table 1 The application of the scientific method in quantitative linguistics (italics) with various concrete
examples (roman)

linguistic laws −→ principles −→ predictions

Köhler (1987) and Altmann (1993)

Zipf’s law of abbreviation −→ compression −→ Menzerath’s law

(Gustison et al., 2016; Ferrer-i-
Cancho et al., 2019)

−→ Zipf’s rank-frequency law

Ferrer-i-Cancho (2016a)

−→ “shorter words” for more fre-
quent “meanings”

(Ferrer-i-Cancho et al., 2019; Kan-
wal et al., 2017; Brochhagen, 2021)

Zipf’s rank-frequency law −→ mutual information maximiza-
tion + surprisal minimization

−→ a vocabulary learning bias

Ferrer-i-Cancho (2017a)

−→ the principle of contrast

Ferrer-i-Cancho (2017a)

−→ range or variation of α

Ferrer-Cancho (2005a, 2006)

α is the exponent of Zipf’s rank-frequency law (Zipf, 1949). The prediction that is the target of the current
article is shown in boldface

a speaker produces si given a counterpart rj , as the same for all words connected to
rj . In the language of mathematics,

p(si |rj ) = aij

ωj

, (1)

where aij is a boolean (0 or 1) that indicates if si and rj are connected and ωj is the
degree of rj , namely the number of connections of rj with forms, i.e.

ωj =
∑

i

aij .

These models are often portrayed as models of the assignment of meanings to forms
(Futrell, 2020; Piantadosi, 2014) but this description falls short because
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– They are indeed models of production as they define the probability of producing
a form given some counterparts (as in Eq. 1) or simply the marginal probability
of a form. The claim that theories of language production or discourse do not
explain the law (Piantadosi, 2014) has no basis and raises the questions of which
theories of language production are deemed acceptable.

– They are also models of understanding, as they define symmetric conditional
probabilities such as p(rj |si), the probability that a listener interprets rj when
receiving si .

– The models are flexible. In addition to “meaning”, other counterparts were
deemed possible from their birth. See for instance the use of the term “stimuli”
(Ferrer-i-Cancho & Dı́az-Guilera, 2007, e.g.), as a replacement for meaning that
was borrowed from neurolinguistics (Pulvermüller, 2001).

– The models fit in the distributional semantics framework (Lund & Burgess,
1996) for two reasons: their flexibility, as counterparts can be dimensions in
some hidden space, and also because of representing a form as a vector of their
joint or conditional probabilities with “counterparts” that is inferred from the
network structure, as we have already explained (Ferrer-i-Cancho & Vitevitch,
2018).

Contrary to the conclusions of Piantadosi (2014), there are derivations of Zipf’s
law that do account for psychological processes of word production, especially the
intentionality of choosing words in order to convey a desired meaning.

The family of models assume that the skeleton that determines all the probabilities,
the bipartite graph, is shaped by a combination of minimization of the entropy (or sur-
prisal) of words (H ) and the maximization of the mutual information between words
and meanings (I ), two principles that are cognitively motivated and that capture
speaker and listener’s requirements (Ferrer-i-Cancho, 2018). When only the entropy
of words is minimized, configurations where only one form is linked as in Fig. 1d are
predicted. When only the mutual information between forms and counterparts is max-
imized, one-to-one mappings between forms and counterparts are predicted (when
the number of forms and counterparts is the same) as in Figs. 1c or 2d. Real lan-
guage is argued to be in-between these two extreme configurations (Ferrer-i-Cancho
& Dı́az-Guilera, 2007). Such a trade-off between simplicity (Zipf’s unification) and
effective communication (Zipf’s diversification) is also found in information theo-
retic models of communication based on the information bottleneck approach (see
Zaslavsky et al. (2021) and references there in).

In quantitative linguistics, scientific theory is not possible without taking into
consideration language laws (Köhler, 1987; Debowski, 2020). Laws are seen as man-
ifestations of principles (also referred as “requirements” by Köhler 1987), which are
key components of explanations of linguistic phenomena. As part of the scientific
method cycle, novel predictions are key aim (Altmann, 1993) and key to validation
and refinement of theory (Bunge, 2001). Table 1 synthesizes this general view as
chains of the form: laws, principles that are inferred from them, and predictions that
are made from those principles, giving concrete examples from previous research.

Although one of the initial goals of the family of models was to shed light on
the origins of Zipf’s law for word frequencies, a member of the family of models
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turned out to generate a novel prediction on vocabulary learning in children and the
tendency of words to contrast in meaning (Ferrer-i-Cancho, 2017a): when encoun-
tering a new word, children tend to infer that it refers to a concept that does not
have a word attached to it (Markman & Wachtel, 1988; Merriman & Bowman, 1989;
Clark, 1993). The finding is cross-linguistically robust: it has been found in children
speaking English (Markman & Wachtel, 1988), Canadian French (Nicoladis & Lau-
rent, 2020), Japanese (Haryu, 1991), Mandarin Chinese (Byers-Heinlein & Werker,
2013; Hung et al., 2015), Korean (Eun-Nam, 2017). These languages correspond to
four distinct linguistic families (Indo-European, Japonic, Sino-Tibetan, Koreanic).
Furthermore, the finding has also been replicated in adults (Hendrickson & Perfors,
2019; Yurovsky & Yu, 2008) and other species (Kaminski et al., 2004). This phe-
nomenon is a example of biosemiosis, namely a process of choice-making between
simultaneously alternative options (Kull, 2018, p. 454).

As an explanation for vocabulary learning, the information theoretic model suf-
fers from some limitations that motivate the present article. The first one is that the
vocabulary learning bias weakens in older children (Kalashnikova et al., 2016; Yildiz,
2020) or in polylinguals (Houston-Price et al., 2010; Kalashnikova et al., 2015), while
the current version of the model predicts the vocabulary learning bias only provided
that mutual information maximization is not neglected (Ferrer-i-Cancho, 2017a).

The second limitation is inherited from the family of models, where the definition
of the probabilities over the bipartite graph skeleton leads to a linear relationship
between the frequency of a form and its number of counterparts (Ferrer-i-Cancho &
Vitevitch, 2018). However, this is inconsistent with Zipf’s prediction, namely that the
number of meanings μ a word of frequency f should follow (Zipf, 1945)

μ ≈ f δ, (2)

with δ = 0.5. Equation 2 is known as Zipf’s meaning-frequency law (Zipf, 1949). To
overcome such a limitation, Ferrer-i-Cancho and Vitevitch (2018) proposed different
ways of modifying the definition of the probabilities from the skeleton. Here we
borrow a proposal of defining the joint probability of a form and its counterpart as

p(si, rj ) ∝ aij (μiωj )
φ, (3)

where φ is a parameter of the model and μi and ωj are, respectively, the degree
(number of connections) of the form si and the counterpart rj . Previous research on
vocabulary learning in children with these models (Ferrer-i-Cancho, 2017a) assumed
φ = 0, which leads to δ = 1 (Ferrer-i-Cancho, 2016b). When φ = 1, the system is
channeled to reproduce Zipf’s meaning-frequency law, i.e. Equation 2 with δ = 0.5
(Ferrer-i-Cancho & Vitevitch, 2018).

Overview of the present article

It has been argued that there cannot be meaning without interpretation (Eco, 1986).
As Kull (2020) puts it, “Interpretation (which is the same as primitive decision-
making) assumes that there exists a choice between two or more options. The options
can be described as different codes applicable simultaneously in the same situation.”
The main aim to of this article is to shed light on the choice between strategy a, i.e.
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attaching the new form to a counterpart that is unlinked, and strategy b, i.e. attaching
the new form to a counterpart that is already linked (Fig. 3).

The remainder of the article is organized as follows. Section “The Mathematical
Model” considers a model of a communication system that has three components:

1. A skeleton that is defined by a binary matrix A that indicates the form-
counterpart connections.

2. A flesh that is defined over the skeleton with Eq. 3,
3. A cost function, that defines the cost of communication as

� = −λI + (1 − λ)H, (4)

where λ is a parameter that regulates the weight of mutual information (I ) max-
imization and word entropy (H ) minimization such that 0 ≤ λ ≤ 1. I and H are
inferred from matrix A and Eq. 3 (further details are given in “The Mathematical
Model”).

This section introduces �, i.e. the difference in the cost of communication between
strategy a and strategy b according to � (Fig. 3). � < 0 indicates that the cost of
communication of strategy a is lower than that of b. Our main hypothesis is that inter-
pretation is driven by the � cost function and that a receiver will choose the option
that minimizes the resulting �. By doing this, we are challenging the longstanding
and limiting belief that information theory is dissociated from semiotics and not con-
cerned about meaning (Deacon, 2015, e.g.). This article is a just one counterexample
(see also Zaslavsky et al. (2018)). Information theory, as any abstract powerful math-
ematical tool, can serve applications that do not assume meaning (or meaning-making
processes) as in the original setting of telecommunication where it was developed by
Shannon, as well as others that do, although they were not his primary concern for
historical and sociological reasons.

Fig. 3 Strategies for linking a new word to a meaning. Strategy a consists of linking a word to a free
meaning, namely an unlinked meaning. Strategy b consists of linking a word to a meaning that is already
linked. We assume that the meaning that is already linked is connected to a single word of degree μk . Two
simplifying assumptions are considered. a Counterpart degrees do not exceed one, implying μk ≥ 1. b
Vertex degrees do not exceed one, implying μk = 1
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In general, the formula of � is complex and the analysis of the conditions where
a is advantageous (namely � < 0) requires making some simplifying assumptions.
If φ = 0, then one obtains that Ferrer-i-Cancho (2017a)

� = −λ
(ωj + 1) log(ωj + 1) − ωj log(ωj )

M + 1
, (5)

where M is the number of edges in the skeleton and ωj is the degree of the already
linked counterpart that is selected in strategy b (Fig. 3). Equation 5 indicates that
strategy a will be advantageous provided that mutual information maximization mat-
ters (i.e. λ > 0) and its advantage will increase as mutual information maximization
becomes more important (i.e. for larger λ), the linked counterpart has more connec-
tions (i.e. larger ωj ) or when the skeleton has less connections (i.e. smaller M). To
be able to analyze the case φ > 0, we will examine two classes of skeleta that are
presented next.

Counterpart degrees do not exceed one In this class, the degrees of counterparts
are restricted to not exceed one, namely a counterpart can only be disconnected or
connected to just one form. If meanings are taken as counterparts, this class matches
the view that “no two words ever have exactly the same meaning” (Fromkin et al.,
2014, p. 256), based on the notion of absolute synonymy (Dangli & Abazaj, 2009).

This class also mirrors the linguistic principle that any two words should con-
trast in meaning (Clark, 1987). Alternatively, if synonyms are deemed real to some
extent, this class may capture early stages of language development in children or
early stages in the evolution of languages where synonyms have not been learned or
developed. From a theoretical standpoint, this class is required by the maximization
of the mutual information between forms and counterparts when the number of forms
does not exceed that of counterparts (Ferrer-i-Cancho & Vitevitch, 2018).

We use μk to refer to degree of the word that will be connected to meaning selected
in strategy b (Fig. 3). We will show that, in this class, � is determined by λ, φ,
μk and the degree distribution of forms, namely the vector of form degrees �μ =
(μ1, ..., μi, ...μn).

Vertex degrees do not exceed one In this class, the degrees of any vertex are
restricted to not exceed one, namely a form (or a meaning) can only be disconnected
or connected to just one counterpart (just one form). This class is narrower than the
previous one because it imposes that degrees do not exceed one both for forms and
counterparts. Words lack homonymy (or polysemy). We believe that this class would
correspond to even earlier stages of language development in children (where chil-
dren have learned at most one meaning of a word) or earlier stages in the evolution
of languages (where the communication system has not developed any homonymy).
From a theoretical stand point, that class is a requirement of maximizing mutual
information between forms and counterparts when n = m (Ferrer-i-Cancho & Vite-
vitch, 2018). We will show that � is determined just by λ, φ and M , the number of
links of the bipartite skeleton.

Notice that meanings with synonyms have been found in chimpanzee gestures
(Hobaiter & Byrne, 2014), which suggests that the two classes above do not capture
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the current state of the development of form-counterpart mappings in adults of other
species. Section “The Mathematical Model” presents the formulae of � for each
classes. Section “Results” uses this formulae to explore the conditions that determine
when strategy a is more advantageous, namely � < 0, for each of the two classes of
skeleta above, that correspond to different stages of the development of language in
children. While the condition φ = 0 implies that strategy a is always advantageous
when λ > 0, we find regions of the space of parameters where this is not the case
when φ > 0 and λ > 0. In the more restrictive class, where vertex degrees do not
exceed one, we find a region where a is not advantageous when λ is sufficiently small
and M is sufficiently large. The size of that region increases as φ increases. From a
complementary perspective, we find a region where a is not advantageous (� ≥ 0)
when λ is sufficiency small and φ is sufficiently large; the size of the region increases
as M increases. As M is expected to be larger in older children or in polylinguals
(if the forms of each language are mixed in the same skeleton), the model predicts
the weakening of the bias in older children and polylinguals (Liittschwager & Mark-
man, 1994; Yildiz, 2020; Houston-Price et al., 2010; Kalashnikova et al., 2015, 2016,
2019). To ease the exploration of the phase space for the class where the degrees of
counterparts do not exceed one, we will assume that word frequencies follow Zipf’s
rank-frequency law. Again, regions where a is not advantageous (� ≥ 0) also appear
but the conditions for the emergence of this regions are more complex. Our prelim-
inary analyses suggest that the bias should weaken in older children even for this
class. Section “Discussion” reviews the findings, suggests future research directions
and reviews the research program in light of the scientific method.

TheMathematical Model

Below we give more details about the model that we use to investigate the learning of
new words and outlines the arguments that take from Eq. 3 to concrete formulae of �.
Section “� in two Classes of Skeleta” just presents the concrete formulae � for each
of the two classes of skeleta. Full details are given in the Supplementary Information,
Section “S1 The mathematical model in detail”. The model has four components that
we review next.

Skeleton (A = aij ) A bipartite graph that defines the associations between n forms
and m counterparts that are defined by an adjacency matrix A = {aij }.
Flesh (p(si , rj )) The flesh consist of a definition of p(si, rj ), the joint probability of a
form (or word) and a counterpart (or meaning) and a series of probability definitions
stemming from it. Probabilities depart from previous work (Ferrer-i-Cancho & Sole,
2003, 2005b) by the addition of the parameter φ. Equation 3 defines p(si, rj ) as
proportional to the product of the degrees of the form and the counterpart to the power
of φ, which is a parameter of the model. By normalization, namely

n∑

i=1

m∑

j=1

p(si, rj ) = 1,
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Equation 3 leads to

p(si, rj ) = 1

Mφ

aij (μiωj )
φ, (6)

where

Mφ =
n∑

i=1

m∑

j=1

aij (μiωj )
φ . (7)

From these expressions, the marginal probabilities of a form p(si) and a counterpart
p(rj ) are obtained easily thanks to

p(si) =
m∑

j=1

p(si, rj )

p(rj ) =
n∑

i=1

p(si, rj ).

The cost of communication (�). The cost function is initially defined in Eq. 4 as in
previous research (e.g. Ferrer-i-Cancho & Dı́az-Guilera, 2007). In more detail,

� = −λI (S, R) + (1 − λ)H(S), (8)

where I (S, R) is the mutual information between forms from a repertoire S and
counterparts from a repertoire R, and H(S) is the entropy (or surprisal) of forms
from a repertoire S. Knowing that I (S, R) = H(S) + H(R) − H(S, R) (Cover &
Thomas, 2006), the final expression for the cost function in this article is

�(λ) = (1 − 2λ)H(S) − λH(R) + λH(S, R). (9)

The entropies H(S), H(R) and H(S, R) are easy to calculate applying the definitions
of p(si), p(rj ) and p(si, rj ), respectively.

The difference in the cost of learning a newword (�). There are two possible strate-
gies to determine the counterpart with which a new form (a previously unlinked form)
should connect (Fig. 3):

a. Connect the new form to a counterpart that is not already connected to any other
forms.

b. Connect the new form to a counterpart that is connected to at least one other
form.

The question we intend to answer is “when does strategy a result in a smaller cost
than strategy b?” Or, in the terminology of child language research, “for which strat-
egy is the assumption of mutual exclusivity more advantageous?” To answer these
questions, we define �, as a the difference between the cost of each strategy. More
precisely,

�(λ) = �′
a(λ) − �′

b(λ), (10)

where �′
a(λ) and �′

b(λ) are the new value of � when a new link is created using
strategy a or b respectively. Then, our research question becomes “When is � < 0?”.
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Formulae for �′
a(λ) and �′

b(λ) are derived in two steps. First, analyzing a general
problem, i.e. �′, the new value of � after producing a single mutation in A (“S1.2
Change in entropies after a single mutation in the adjacency matrix”, Supplementary
Information). Second, deriving expressions for the case where that mutation results
from linking a new form (an unlinked form) to a counterpart, that can be linked or
unlinked (“S1.3 Derivation of �”, Supplementary Information).

� in two Classes of Skeleta

In previous work, the value of � was already calculated for φ = 0, obtaining expres-
sions equivalent to Eq. 5 (see “S1.3.1 The case ϕ = 0”, Supplementary Information
for a derivation). The next sections just summarize the more complex formulae that
are obtained for each class of skeleta for φ ≥ 0 (“S1 The mathematical model in
detail”, Supplementary Information contains details on the derivation).

Vertex degrees do not exceed one

Here forms and counterparts both either have a single connection or are disconnected.
Mathematically, this can be expressed as

μi ∈ {0, 1} for each i such that 1 ≤ i ≤ n

ωj ∈ {0, 1} for each j such that 1 ≤ j ≤ m.

Figure 3b offers a visual representation of a bipartite graph of this class. In case b, the
counterpart we connect the new form to is connected to only one form (ωj = 1) and
that form is connected to only one counterpart (μk = 1). Under this class, � becomes

�(λ) = (1 − 2λ)

[
log

(
1+ 2(2φ − 1)

M + 1

)
+ 2φ+1 log(2)φ

M + 2φ+1 − 1

]
− λ

2φ+1 log(2)

M + 2φ+1 − 1
, (11)

which can be rewritten as linear function of λ, i.e.

�(λ) = aλ + b,

with

a = 2 log

(
1 + 2(2φ − 1)

M + 1

)
− (2φ + 1)

2φ+1 log(2)

M + 2φ+1 − 1

b = − log

(
1 + 2(2φ − 1)

M + 1

)
+ φ

2φ+1 log(2)

M + 2φ+1 − 1
.
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Importantly, notice that this expression of � is determined only by λ, φ and M (the
total number of links in the model). Thorough derivations can be found in “S1.3.3
Vertex degrees do not exceed one”, Supplementary Information.

Counterpart degrees do not exceed one

This class of skeleta is a relaxation of the previous class. Counterparts are either
connected to a single form or disconnected. Mathematically,

ωj ∈ {0, 1} for each j such that 1 ≤ j ≤ m.

Figure 3a offers a visual representation of a bipartite graph of this class. The number
of forms the counterpart in case b is connected to is still 1 (ωj = 1) but this form
may be connected to any number of counterparts; μk has to satisfy 1 ≤ μk ≤ m.

Under this class, � becomes

�(λ) = (1 − 2λ)

{
log
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Mφ + 1

Mφ + (
2φ − 1

)
μ

φ
k + 2φ

)

+ 1
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[
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X(S, R)(2φ − 1)(μ
φ
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−φ2φ log(2) + μ
φ
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−(μk − 1 + 2φ) log(μk − 1 + 2φ)
]]}

(12)

− 1

Mφ + (
2φ − 1

)
μ

φ
k + 2φ

[
λ
(
μ

φ
k + 1

)
2φ log

(
μ

φ
k + 1

)

−(1 − λ)φ2φμ
φ
k log(μk)
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where

X(S, R) =
n∑

i=1

μ
φ+1
i log μi (13)

Mφ =
n∑

i=1

μ
φ+1
i . (14)

Equation 12 can also be expressed as a linear function of λ as

�(λ) = aλ + b,
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with

a = 2 log
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b = − log

(
Mφ + (2φ − 1)μ

φ
k + 2φ

Mφ + 1

)

+ 1

Mφ + (2φ − 1)μ
φ
k + 2φ

{
φ2φμ

φ
k log(μk) − (φ + 1)

X(S, R)(2φ − 1)μ
φ
k + 1

Mφ + 1

+φ2φ log(2) − μ
φ
k

[
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] }
.

Being a relaxation of the previous class, the resulting expressions of � are more
complex than those of the previous class, which are an in turn more complex than
those of the case φ = 0 Eq. 5. For further details on the derivation of �, see “S1.3.2
Counterpart degrees do not exceed one” in the Supplementary Information.

Notice that X(S, R) Eq. 13 and Mφ Eq. 14 are determined by the degrees of the
forms (μi’s). To explore the phase space with a realistic distribution of μi’s, we
assume, without any loss of generality, that the μi’s are sorted decreasingly, i.e. μ1 ≥
μ2 ≥ ...μi ≥ μi+1 ≥ ...μn. In addition, we assume

1. μn = 0, because we are investigating the problem of linking and unlinked form
with counterparts.

2. μn−1 = 1.
3. Form degrees are continuous.
4. The relationship between μi and its frequency rank is a right-truncated power-

law, i.e.
μi = ci−τ (15)

for 1 ≤ i ≤ n − 1.

Section “S2 Form degrees and number of links” (Supplementary Information) shows
that forms then follow Zipf’s rank-frequency law, i.e.

p(si) = c′i−α

with

α = τ(φ + 1)

c′ = (n − 1)α

Mφ

.

The value of � is determined by λ, φ, μk and the sequence of degrees of the forms,
which we have parameterized with α and n. When τ = α

φ+1 = 0, namely when
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α = 0 or when φ → ∞, we recover the class where vertex degrees do not exceed
one but with just one form that is unlinked.

A continuous approximation to the number of edges gives (“S2 Form degrees and
number of links”, Supplementary Information)

M = (n − 1)
α

φ+1

n−1∑

i=1

i
− α

φ+1 . (16)

We aim to shed some light on the possible trajectory that children will describe
on Fig. S1 as they become older. One expects that M tends to increase as children
become older, due to word learning. It is easy to see that Eq. 16 predicts that, if φ

and α remain constant, M is expected to increase as n increases (Fig. S1). Besides,
when n remains constant, a reduction of α implies a reduction of M when φ = 0
but that effect vanishes for φ > 0 (Fig. S1). Obviously, n tends to increase as a
child becomes older (Saxton, 2010) and thus children’s trajectory will be from left
to right in Fig. S1. As for the temporal evolution of α, there are two possibilities.
Zipf’s pioneering investigations suggest that α remains close to 1 over time in English
children (Zipf, 1949, Chapter IV). In contrast, a wider study reported a tendency of
α to decrease over time in sufficiently old children of different languages (Baixeries
et al., 2013) but the study did not determine the actual number of children where that
trend was statistically significant after controlling for multiple comparisons. Then
children, as they become older, are likely to move either from left to right, keeping
α constant, or from the left-upper corner (high α, low n) to the bottom-right corner
(low α, high n) within each panel of Fig. S1. When φ is sufficiently large, the actual
evolution of some children (decrease of α jointly with an increase of n) is dominated
by the increase of M that the growth of n implies in the long run (Fig. S1).

When exploring the space of parameters, we must warrant that μk does not exceed
the maximum degree that n, φ and α yield, namely μk ≤ μ1, where μ1 is defined
according to Eq. 15 with i = 1, i.e.

μk ≤ μ1

= c

= (n − 1)τ

= (n − 1)
α

φ+1 . (17)

Results

Here we will analyze �, that takes a negative value when strategy a (linking a new
form to a new counterpart) is more advantageous than strategy b linking a new form
to an already connected counterpart), and a positive value otherwise. |�| indicates
the strength of the bias towards strategy a if � < 0; towards strategy b if � > 0.
Therefore, when � < 0, the smaller the value of �, the higher the bias for strategy
a whereas when � > 0, the greater the value of �, the higher the bias for strategy b.
Each class of skeleta is analyzed separately, beginning by the most restrictive class.
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Fig. 4 �, the difference between the cost of strategy a and strategy b, as a function of M , the number
of links and λ, the parameter that controls the balance between mutual information maximization and
entropy minimization, when vertex degrees do not exceed one Eq. 11. Red indicates that strategy a is more
advantageous while blue indicates that b is more advantageous. The lighter the red, the stronger the bias
for strategy a. The lighter the blue, the stronger the bias for strategy b. a φ = 0, b φ = 0.5, c φ = 1, d
φ = 1.5, e φ = 2 and f φ = 2.5
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Vertex Degrees do not Exceed One

In this class of skeleta, corresponding to younger children, � depends only on φ, M

and λ. We will explore the phase space with the help of two-dimensional heatmaps
of � where the x-axis is always λ and the y-axis is M or φ.

Figure 4 reveals regions where strategy a is more advantageous (red) and regions
where b is more advantageous (blue) according to �. The extreme situation is found
when φ = 0 where a single red region covers practically all space except for λ = 0
(Fig. 4, top-left) as expected from previous work (Ferrer-i-Cancho, 2017a) and Eq. 5.

Figure 5a summarizes these finding of regions, displaying the curve that defines
the boundary between strategies a and b (� = 0).

Figure 5b displays equivalent boundary curves summarizing Fig. S2, where φ

replaces M on the y-axis of the heatmap. In Fig. 5b, each curve corresponds to a
value of M and φ is placed on the y-axis.

Figure 5a and b show that strategy b is the optimal only if λ is sufficiently low,
namely when the weight of entropy minimization is sufficiently high compared to
that of mutual information maximization. Figure 5a shows that the larger the value
of λ the larger the number of links (M) that is required for strategy b to be optimal.
Figure 5a also indicates that the larger the value of φ, the broader the blue region
where b is optimal. From a symmetric perspective, Fig. 5b shows that the larger the
value of λ the larger the value of φ that is required for strategy b to be optimal and
also that the larger the number of links (M), the broader the blue region where b is
optimal.

Counterpart Degrees do not Exceed One

For this class of skeleta, corresponding to older children, we have assumed that word
frequencies follow Zipf’s rank-frequency law, namely the relationship between the
probability of a form (the number of counterparts connected to each form) and its
frequency rank follows a right-truncated power-law with exponent α (“The Math-
ematical Model”). Then � depends only on α (the exponent of the right-truncated
power law), n (the number of forms), μk (the degree of the form linked to the coun-
terpart in strategy b as shown in Fig. 3), φ and λ. We will explore the phase space
with the help of two-dimensional heatmaps of � where the x-axis is always λ and
the y-axis is μk , α or n. While in the class where vertex degrees do not exceed one
we have found only one blue region (a region where � > 0 meaning that b is more
advantageous), this class yields up to two distinct blue regions located in opposite
corners of the heatmap while keeping always a red region as shown in Fig. 6 for
φ = 1 from different perspectives. For the sake of brevity, this section only presents
one set of heatmaps of � where φ = 1 and μk varies on the y-axis (see “S3 Comple-
mentary figures” in the Supplementary Information for the remainder). A summary
of the exploration of the parameter space follows.

Heatmaps of � as a function of λ and μk . The heatmaps of � for different combi-
nations of parameters in Figs. 6, S3, S4, S5, S6 and S7 are summarized in Fig. 7,
showing the frontiers between regions where � = 0. Notice how, for φ = 0, strategy
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Fig. 5 Summary of the boundaries between positive and negative values of � when vertex degrees do not
exceed one (Fig. 4 for a, Fig. S2 for b). Each curve shows the points where � = 0 Eq. 12 as a function of
λ for distinct values of φ. a has M on the y-axis and each curve belongs to a distinct value of φ, while b
has φ on the y-axis and each curve belongs to a distinct value of M
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Fig. 6 �, the difference between the cost of strategy a and strategy b, as a function of μk , the degree
of the form linked to the counterpart in strategy b as shown in Fig. 3, the number of links and λ, the
parameter that controls the balance between mutual information maximization and entropy minimization,
when the degrees of counterparts do not exceed one Eq. 11 and φ = 1. Red indicates that strategy a is
more advantageous while blue indicates that b is more advantageous. The lighter the red, the stronger the
bias for strategy a. The lighter the blue, the stronger the bias for strategy b. Each heatmap corresponds to
a distinct combination of n and α. The heatmaps are arranged, from left to right, with α = 0.5, 1, 1.5 and,
from top to bottom, with n = 10, 100, 1000. a α = 0.5 and n = 10, b α = 1 and n = 10, c α = 1.5 and
n = 10, d α = 0.5 and n = 100, e α = 1 and n = 100, f α = 1.5 and n = 100, g α = 0.5 and n = 1000,
h α = 1 and n = 1000, i α = 1.5 and n = 1000

a is optimal for all values of λ > 0, as one would expect from Eq. 5. The remainder of
the figures show how the shape of the two areas changes with each of the parameters.
For small n and α, a single blue region indicates that strategy b is more advantageous
than a when λ is closer to 0 and μk is higher. For higher n or α an additional blue
region appears indicating that strategy b is also optimal for high values of λ and low
values of μk .

Heatmaps of � as a function of λ and α. The heatmaps of � for different combina-
tions of parameters in Figs. S8, S9, S10, S11 and S12 are summarized in Fig. S13,
showing the frontiers between regions. There is a single region where strategy b is
optimal for small values of μk and φ, but for larger values a second blue region
appears.
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Heatmaps of � as a function of λ and n. The heatmaps of � for different combina-
tions of parameters in Figs. S14, S15, S16, S17 and S18 are summarized in Fig. S19.
Again, one or two blue regions appear depending on the combination of parameters.

See “S4 Complementary figures with discrete degrees” in the Supplementary
Information for the impact of using discrete form degrees on the results presented in
this section.

Discussion

Vocabulary Learning

In previous research with φ = 0, we predicted that the vocabulary learning bias
(strategy a) would be present provided that mutual information minimization is not
disabled (λ > 0) (Ferrer-i-Cancho, 2017a) as show in Eq. 5. However, the “decision”
on whether assigning a new label to a linked or to an unlinked object is influenced by
the age of a child and his/her degree of polylingualism. As for the effect of the latter,
polylingual children tend to pick familiar objects more often than monolingual chil-
dren, violating mutual exclusivity. This has been found for younger children below
two years of age (17-22 months old in one study, 17-18 in another) (Houston-Price
et al., 2010; Byers-Heinlein & Werker, 2013).

From three years onward, the difference between polylinguals and monolinguals
either vanishes, namely both violate mutual exclusivity similarly (Nicoladis & Lau-
rent, 2020; Frank & Poulin-Dubois, 2002), or polylingual children are still more
willing to accept lexical overlap (Kalashnikova et al., 2015). One possible expla-
nation for this phenomenon is the lexicon structure hypothesis (Byers-Heinlein &
Werker, 2013), which suggests that children that already have many multiple-word-
to-single-object mappings may be more willing to suspend mutual exclusivity.

As for the effect of age on monolingual children, the so-called mutual exclusivity
bias has been shown to appear at an early age and, as time goes on, it is more easily
suspended. Starting at 17 months old, children tend to look at a novel object rather
than a familiar one when presented with a new word while 16-month-olds do not
show a preference (Halberda, 2003). Interestingly, in the same study, 14-month-olds
systematically look at a familiar object instead of a newer one. Reliance on mutual
exclusivity is shown to improve between 18 and 30 months (Bion et al., 2013). Start-
ing at least at 24 months of age, children may suspend mutual exclusivity to learn a
second label for an object (Liittschwager & Markman, 1994). In a more recent study,
it has been shown that three year old children will suspend mutual exclusivity if there
are enough social cues present (Yildiz, 2020). Four to five year old children continue
to apply mutual exclusivity to learn new words but are able to apply it flexibly, sus-
pending it when given appropriate contextual information (Kalashnikova et al., 2016)
in order to associate multiple labels to the same familiar object. As seen before, at
3 years of age both monolingual and polylingual children have similar willingness
to suspend mutual exclusivity (Nicoladis & Laurent, 2020; Frank & Poulin-Dubois,
2002), although polylinguals may still have a greater tendency to accept multiple
labels for the same object (Kalashnikova et al., 2015).
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Here we have made an important contribution with respect to the precursor of the
current model (Ferrer-i-Cancho, 2017a): we have shown that the bias is not theoret-
ically inevitable (even when λ > 0) according a more realistic model. In a more
complex setting, research on deep neural networks has shed light on the architectures,
learning biases and pragmatic strategies that are required for the vocabulary learning
bias to emerge (e.g. Gandhi & Lake, 2020; Gulordava et al., 2020). In “Results”, we
have discovered regions of the space of parameters where strategy a is not advan-
tageous for two classes of skeleta. In the restrictive class, where one where vertex
degrees do no exceed one, as expected in the earliest stages of vocabulary learning in
children, we have unveiled the existence of a region of the phase space where strat-
egy a is not advantageous (Figs. 5a and S2). In the broader class of skeleta where the
degree of counterparts does not exceed one we have found up to two distinct regions
where a is not advantageous (Figs. 7 and S13).

Crucially, our model predicts that the bias should be lost in older children. The
argument is as follows. Suppose a child that has not learned a word yet. Then his
skeleton belongs to the class where vertex degrees do not exceed one. Then suppose
that the child learns a new word. It could be that he/she learns it following strategy a

or b. If he applies b then the bias is gone at least for this word. Let us suppose that the
child learns words adhering to strategy a for as long as possible. By doing this, he/she
will increasing the number of links (M) of the skeleton keeping as invariant a one-
to-one mapping between words and meanings (Figs. 1c and 2d), which satisfies that
vertex degrees do not exceed one. Then Fig. 5a and b predict that the longer the time
strategy a is kept (when φ > 0) the larger the region of the phase space where a is not
advantageous. Namely, as times goes on, it will become increasingly more difficult
to keep a as the best option. Then it is not surprising that the bias weakens either in
older children (e.g., Yildiz, 2020; Kalashnikova et al., 2016), as they are expected to
have more links (larger M) because of their continued accretion of new words (Sax-
ton, 2010), or in polylinguals (e.g., Nicoladis & Secco, 2000; Greene et al., 2013),
where the mapping of words into meanings combining all their languages, is expected
to yield more links than in monolinguals. Polylinguals make use of code-mixing to
compensate for lexical gaps, as reported for from one-year-olds onward (Nicoladis
& Secco, 2000) as well as in older children (five year olds) (Greene et al., 2013). As
a result, the bipartite skeleton of a polylingual integrates the words and association
in all the languages spoken and thus polylinguals are expected to have a larger value
of M . Children who know more translation equivalents (words from different lan-
guages but with same meaning), adhere to mutual exclusivity less than other children
(Byers-Heinlein & Werker, 2013). Therefore, our theoretical framework provides an
explanation for the lexicon structure hypothesis (Byers-Heinlein & Werker, 2013),
but shedding light on the possible origin of the mechanism, that is not the fact that
there are already synonyms but rather the large number of links (Fig. 5b) as well as
the capacity of words of higher degree to attract more meanings, a consequence of
Eq. 3 with φ > 0 in the vocabulary learning process (Fig. 3). Recall the stark con-
trast between Fig. 6 for φ = 1 and Fig. S3 with φ = 0, where such attraction effect
is missing. Our models offer a transparent theoretical tool to understand the failure
of deep neural networks to reproduce the vocabulary learning bias (Gandhi & Lake,
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Fig. 7 Summary of the boundaries between positive and negative values of � when the degrees of coun-
terparts do not exceed one (Figs. 6, S3, S4, S5, S6 and S7). Each curve shows the points where � = 0
Eq. 13 as a function of λ and μk for distinct values of φ. a α = 0.5 and n = 10, b α = 1 and n = 10, c
α = 1.5 and n = 10, d α = 0.5 and n = 100, e α = 1 and n = 100, f α = 1.5 and n = 100, g α = 0.5
and n = 1000, h α = 1 and n = 1000, i α = 1.5 and n = 1000

2020): in its simpler form (vertex degrees do not exceed one), whether it is due to an
excessive φ (Fig. 5a) or an excessive M (Fig. 5b).

We have focused on the loss of the bias in older children. However, there is evi-
dence that the bias is missing initially in children, by the age of 14 months (Halberda,
2003). We speculate that this could be related to very young children having lower
values of λ or larger values of φ as suggested by Figs. 5a and S2. This issue should
be the subject of future research. Methods to estimate φ and λ in real speakers should
be investigated.

Now we turn our attention to skeleta where only the degree of the counterparts
does not exceed one, that we believe to be more appropriate for older children.
Whereas φ, λ and M sufficed for the exploration of the phase space when vertex
degrees do not exceed one, the exploration of that kind of skeleta involved many
parameters: φ, λ, n, μk and α. The more general class exhibits behaviors that we
have already seen in the more restrictive class. While an increase in M implies a
widening of the region where a is not advantageous in the more restrictive class, the
more general class experiences an increase of M when n is increased but α and φ
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remain constant (“Counterpart degrees do not exceed one”). Consistently with the
more restrictive class, such increase of M leads to a growth of the regions where a

is not advantageous as it can be seen in Figs. 6, S4, S5, S6 and S7 when selecting a
column (thus fixing α and φ) and moving from the top to the bottom increasing n.
The challenge is that α may not remain constant in real children as they become older
and how to involve the remainder of the parameters in the argument. In fact, some of
these parameters are known to be correlated with child’s age:

– n tends to increase over time in children, as children are learning new words
over time (Saxton, 2010). We assume that the loss of words can be neglected in
children.

– M tends to increase over time in children. In this class of skeleta, the growth of
M has two sources: the learning of new words as well as the learning of new
meanings for existing words. We assume that the loss of connections can be
neglected in children.

– The ambiguity of the words that children learn over time tends to increase over
time (Casas et al., 2018). This does not imply that children are learning all
the meanings of the word according to some online dictionary but rather than
as times go on, children are able to handle words that have more meanings
according to adult standards.

– α remains stable over time or tends to decrease over time in children depending
on the individual (Baixeries et al., 2013; Zipf, 1949, Chapter IV).

For other parameters, we can just speculate on their evolution with child’s age. The
growth of M and the increase in the learning of ambiguous words over time leads to
expect that the maximum value of μk will be larger in older children. It is hard to tell
if older children will have a chance to encounter larger values of μk . We do not know
the value of λ in real language but the higher diversity of vocabulary in older children
and adults (Baixeries et al., 2013) suggests that λ may tend to increase over time,
because the lower the value of λ, the higher the pressure to minimize the entropy of
words Eq. 4, namely the higher the force towards unification in Zipf’s view (Zipf,
1949). We do not know the real value of φ but a reasonable choice for adult language
is φ = 1 (Ferrer-i-Cancho & Vitevitch, 2018).

Given the complexity of the space of parameters in the more general class of
skeleta where only the degrees of counterparts cannot exceed one, we cannot make
predictions that are as strong as those stemming from the class where vertex degrees
cannot exceed one. However, we wish to make some remarks suggesting that a weak-
ening of the vocabulary learning bias is also expected in older children for this class
(provided that φ > 0). The combination of increasing n and a value of α that is stable
over time suggests a weakening of the strategy a over time from different perspectives

– Children evolve on a column of panels (constant α) of the matrix of panels in
Figs. 6, S4, S5, S6 and S7, moving from top (low n) to the bottom (large n). That
trajectory implies an increase of the size of the blue region, where strategy a is
not advantageous.

– We do not know the temporal evolution of μk but once μk is fixed, namely a row
of panels is selected in Figs. S8, S9, S10, S11 and S12, children evolve from left
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(lower n) to right (higher n), which implies an increase of the size of the blue
region where strategy a is not advantageous as children become older.

– Within each panel in Figs. S14, S15, S16, S17 and S18, an increase of n, as a
results of vocabulary learning over time, implies a widening of the blue region.

In the preceding analysis we have assumed that α remains stable over time. We
wish to speculate on the combination of increasing n and decreasing α as time goes
on in certain children. In that case, children would evolve close to the diagonal of
the matrix of panels, starting from the right-upper corner (low n, high α, panel (c))
towards the lower-left corner (high n, low α, panel (g)) in Figs. 6, S4, S5, S6 and
S7, which implies an increase of the size of the blue region where strategy a is not
advantageous. Recall that we have argued that a combined increase of n and decrease
of α is likely to lead in the long run to an increase of M (Fig. S1). We suggest that
the behavior ”along the diagonal” of the matrix is an extension of the weakening of
the bias when M is increased in the more restrictive class (Fig. 5b).

In our exploration of the phase space for the class of the skeleta where the degrees
of counterparts do not exceed one, we assumed a right-truncated power-law with two
parameters, α and n as a model for Zipf’s rank-frequency law. However, distributions
giving a better fit have been considered (Li et al., 2010) and function (distribu-
tion) capturing the shape of the law of what Piotrowski called saturated samples
(Piotrowski & Spivak, 2007) should be considered in future research. Our exploration
of the phase space was limited by a brute force approach neglecting the negative cor-
relation between n and α that is expected in children where α and time are negatively
correlated: as children become older, n increases as a result of word learning (Sax-
ton, 2010) but α decreases (Baixeries et al., 2013). A more powerful exploration of
the phase space could be performed with a realistic mathematical relationship of the
expected correlation between n and α, which invites to empirical research. Finally,
there might be deeper and better ways of parameterizing the class of skeleta.

Biosemiotics

Biosemiotics is concerned about building bridges between biology, philosophy, lin-
guistics, and the communication sciences as announced in the front page of this
journal. As far as we know, there is little research on the vocabulary learning bias in
other species. Its confirmation in a domestic dog suggests that “the perceptual and
cognitive mechanisms that may mediate the comprehension of speech were already
in place before early humans began to talk” (Kaminski et al., 2004). We hypothe-
size that the cost function � captures the essence of these mechanisms. A promising
target for future research are ape gestures, where there has been significant progress
recently on their meaning (Hobaiter & Byrne, 2014). As far as we know, there is
no research on that bias in other domains that also fall into the scope of biosemi-
otics, e.g., in unicellular organisms such as bacteria. Our research has established
some mathematical foundations for research on the accretion and interpretation of
signs across the living world, not only among great apes, a key problem in research
program of biosemiotics (Kull, 2018).
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The remainder of the discussion section is devoted to examine general challenges
that are shared by biosemiotics and quantitative linguistics, a field that, as biosemi-
otics, aspires to contribute to develop a science beyond human communication.

Science and its Method

It has been argued that a problem of research on the rank-frequency is law is the
The absence of novel predictions... which has led to a very peculiar situation in the
cognitive sciences, where we have a profusion of theories to explain an empirical phe-
nomenon, yet very little attempt to distinguish those theories using scientific methods.
(Piantadosi, 2014). As we have already shown the predictive power of a model whose
original target was the rank-frequency laws here and in previous research (Ferrer-i-
Cancho, 2017a), we take this criticism as an invitation to reflect on science and its
method (Altmann, 1993; Bunge, 2001).

The generality of the patterns for theory construction

While in psycholinguisics and the cognitive sciences a major source of evidence
are often experiments involving restricted tasks or sophisticated statistical analyses
covering a handful of languages (typically English and a few other Indo-European
languages), quantitative linguistics aims to build theory departing from statistical
laws holding in a typologically wide range of languages (Köhler, 1987; Debowski,
2020) as reflected in Fig. 1. In addition, here we have investigated a specific vocab-
ulary learning phenomenon that is, however, supported cross-linguistically (recall
“Introduction”). A recent review on the efficiency of languages, only pays attention
to the law of abbreviation (Gibson et al., 2019) in contrast with the body of work
that has been developed in the last decades linking laws with optimization princi-
ples (Fig. 1), suggesting that this law is the only general pattern of languages that is
shaped by efficiency or that linguistic laws are secondary for deep theorizing on effi-
ciency. In other domains of the cognitive sciences, the importance of scaling laws has
been recognized (Chater & Brown, 1999; Kello et al., 2010; Baronchelli et al., 2013).

Novel predictions

In “Vocabulary Learning”, we have checked predictions of our information theo-
retic framework that matches knowledge on the vocabulary learning bias from past
research. Our theoretical framework allows the researcher to play the game of sci-
ence in another direction: use the relevant parameters to guide the design of new
experiments with children or adults where more detailed predictions of the theoret-
ical framework can be tested. For children who have about the same n and α, and
φ = 1, our model predicts that strategy a will be discarded if (Fig. 6)

(1) λ is low and μk (Fig.3) is large enough.
(2) λ is high and μk is sufficiently low.
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Interestingly, there is a red horizontal band in Fig. 6, and even for other values of φ

such that φ �= 1 but keeping φ > 0 (Figs. S4, S5, S6, S7), indicating the existence of
some value of μk or a range of μk where strategy a is always advantageous (notice
however, that when φ > 1, the band may become too narrow for an integer μk to fit
as suggested by Figs. S23, S24, S25 in the Supplementary Information, Section “S4
Complementary figures with discrete degrees”). Therefore the 1st concrete prediction
is that, for a given child, there is likely to be some range or value of μk where the
bias (strategy a) will be observed. The 2nd concrete prediction that can be made is
on the conditions where the bias will not be observed. Although the true value of
λ is not known yet, previous theoretical research with φ = 0 suggests that λ ≤
1/2 in real language (Ferrer-i-Cancho & Sole, 2003; Ferrer-i-Cancho, 2005b; 2006;
2005a), which would imply that real speakers should satisfy only (1). Child or adult
language researchers may design experiments where μk is varied. If successful, that
would confirm the lexicon structure hypothesis (Byers-Heinlein & Werker, 2013) but
providing a deeper understanding. These are just examples of experiments that could
be carried out.

Towards a mathematical theory of language efficiency

Our past and current research on the efficiency are supported by a cost function and
a (analytical or numerical) mathematical procedure that links the minimization of the
cost function with the target phenomena, e.g., vocabulary learning, as in research on
how pressure for efficiency gives rise to Zipf’s rank-frequency law, the law of abbre-
viation or Menzerath’s law (Gustison et al., 2016; Ferrer-i-Cancho, 2005b, 2019). In
the cognitive sciences, such a cost function and the mathematical linking argument
are sometimes missing (e.g., Piantadosi et al., 2011) and neglected when reviewing
how languages are shaped by efficiency (Gibson et al., 2019). A truly quantitative
approach in the context of language efficiency is two-fold: it has to comprise either a
quantitative description of the data and a quantitative theorizing, i.e. it has to employ
both statistical methods of analysis and mathematical methods to define the cost
and the how cost minimization leads to the expected phenomena. Our framework
relies on standard information theory (Cover & Thomas, 2006) and its extensions
(Ferrer-i-Cancho et al., 2019; Debowski, 2020). The psychological foundations of
the information theoretic principles postulated in that framework and the relation-
ships between them have already been reviewed (Ferrer-i-Cancho, 2018). How the
so-called noisy-channel “theory” or noisy-channel hypothesis explains the results in
(Piantadosi et al., 2011), others reviewed recently (Gibson et al., 2019) or language
laws in a broad sense has not yet shown, to our knowledge, with detailed enough
information theory arguments. Furthermore, the major conclusions of the statistical
analysis of Piantadosi et al. (2011) have recently been shown to change substantially
after improving the methods: effects attributable to plain compression are stronger
than previously reported (Meylan & Griffiths, 2021). Theory is crucial to reduce
false positives and replication failures (Stewart & Plotkin, 2021). In addition, higher
order compression can explain more parsimoniously phenomena that are central in
noisy-channel “theorizing” (Ferrer-i-Cancho, 2017b).
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The trade-off between parsimony and perfect fit

Our emphasis is on generality and parsimony over perfect fit. Piantadosi (2014)
makes emphasis on what models of Zipf’s rank-frequency law apparently do not
explain while our emphasis is on what the models do explain and the many predic-
tions they make (Table 1), in spite of their simple design. It is worth reminding a big
lesson from machine learning, i.e. a perfect fit can be obtained simply by overfitting
the data and another big lesson from the philosophy of science to machine learning
and AI: sophisticated models (specially deep learning ones) are in most cases black
boxes that imitate complex behavior but neither explain nor yield understanding.
In our theoretical framework, the principle of contrast (Clark, 1987) or the mutual
exclusivity bias (Markman & Wachtel, 1988; Merriman & Bowman, 1989) are not
principles per se (or core principles) but predictions of the principle of mutual infor-
mation maximization involved in explaining the emergence of Zipf’s rank-frequency
law (Ferrer-Cancho 2003, 2005b) and word order patterns (Ferrer-i-Cancho, 2017b).
Although there are computational models that are able to account for that vocabulary
learning bias and other phenomena (Frank et al., 2009; Gulordava et al., 2020), ours
is much simpler, transparent (in opposition to black box modeling) and to the best
our knowledge, the first to predict that the bias will weaken over time providing a
preliminary understanding of why this could happen.
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