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Discrete Energy-Conservation
Properties in the Numerical
Simulation of the Navier–Stokes
Equations
Nonlinear convective terms pose the most critical issues when a numerical discretization
of the Navier–Stokes equations is performed, especially at high Reynolds numbers. They
are indeed responsible for a nonlinear instability arising from the amplification of alias-
ing errors that come from the evaluation of the products of two or more variables on a
finite grid. The classical remedy to this difficulty has been the construction of difference
schemes able to reproduce at a discrete level some of the fundamental symmetry proper-
ties of the Navier–Stokes equations. The invariant character of quadratic quantities such
as global kinetic energy in inviscid incompressible flows is a particular symmetry, whose
enforcement typically guarantees a sufficient control of aliasing errors that allows the
fulfillment of long-time integration. In this paper, a survey of the most successful
approaches developed in this field is presented. The incompressible and compressible
cases are both covered, and treated separately, and the topics of spatial and temporal
energy conservation are discussed. The theory and the ideas are exposed with full details
in classical simplified numerical settings, and the extensions to more complex situations
are also reviewed. The effectiveness of the illustrated approaches is documented by
numerical simulations of canonical flows and by industrial flow computations taken from
the literature. [DOI: 10.1115/1.4042820]

1 Introduction

Numerical discretizations of the Navier–Stokes (N–S) equa-
tions, especially for turbulent or high-Reynolds number flows, are
frustratingly characterized by nonlinear instabilities arising from
the approximation of the convective terms. This fact has been rec-
ognized since the first applications of numerical techniques for the
solution of fluid flow equations [1]. In a series of seminal papers,
the meteorological community clearly identified the problem and
proposed various approaches for the resolution of this difficulty
[2,3], leading the way to a rich field of research, which is still
active nowadays [4,5].

The source of the instability, which cannot be alleviated by sim-
ply reducing the temporal mesh size, was identified in the accu-
mulation of aliasing errors coming from the spatial discretization
of the product of two or more variables in the nonlinear convec-
tive terms. Aliasing errors mainly occur because the nonlinear
interaction of waves of certain frequencies can produce higher
harmonics that lie outside the resolution range of the grid, and are
thus “aliased” as long waves onto a resolved lower frequency. As
such, the nonlinear instability has its origin mainly in the spatial
discretization error of the convective nonlinear terms. In his land-
mark paper, Phillips [1] constructed a simple example, built upon
a discretization of the vorticity equation for a two-dimensional
(2D) flow in a channel, for which the nonlinear growth of aliased
harmonics was analytically demonstrated. Since then, many evi-
dences of this phenomenon have been documented for various
nonlinear models and noteworthy for the N–S equations in three
dimensions.

As a possible remedy, it was quickly recognized that a proper
design of the spatial discretization procedure, able to preserve the
integral constraints on quadratic quantities of physical impor-
tance, such as kinetic energy, greatly alleviated the instability,
thus allowing the fulfillment of long-time integrations. Arakawa

[6] was the first to show that it is possible to derive suitably dis-
cretized forms of the nonlinear convective term for which some
quadratic invariants of the continuous equations can be preserved
also at a discrete level. This procedure does not completely elimi-
nate aliasing errors, which are still present and that typically man-
ifest as a distortion of the energy spectrum. However, in many
cases, the constraints on quadratic quantities force the solution to
remain bounded, and permit to control aliasing errors in such a
way that they do not affect the total energy of the system, eventu-
ally allowing stable simulations.

Since these first investigations, a remarkable number of studies
have been devoted to the construction of numerical schemes,
which are “physically consistent,” in the sense that they are able
to implicitly preserve some invariants or symmetries of the con-
tinuum equations. Kinetic energy-preserving numerical schemes
based on the skew-symmetric splitting of convective derivatives
are the most useful and the most studied among them, for both
compressible and incompressible flows. In this review, some of
the most successful ideas and approaches emerged over the last
years in this field are presented, with emphasis on finite difference
and finite volume simulations of turbulent flows, in the context of
both direct and large-eddy simulation (LES) techniques.

The paper is organized as follows:1 The conservation properties
coming from spatial discretization, in the framework of the classi-
cal semidiscrete approach, are analyzed in Sec. 2. An introduction
to most of the relevant theoretical concepts is presented in Sec.
2.1. In Secs. 2.2 and 2.3, the cases of incompressible and com-
pressible flows are discussed separately, in view of some
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1An earlier version of this paper was previously presented at the Italian
conference AIMETA 2017, XXIII Conference of the Italian Association of
Theoretical and Applied Mechanics [7]. In the present review, the original content
has been improved and updated in many aspects, and the material has been overall
reorganized. Most importantly, three new sections have been added, replacing and
significantly enlarging the discussions on advanced topics and industrial applications
and the number of cited references has almost doubled. Material that also appeared
in Ref. [7] is reproduced here with permission.
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fundamental differences between the two mathematical models.
Since the focus of the paper lies on fundamental ideas and
approaches, a significant part of the manuscript presents techni-
ques applied to basic settings, under various simplifying assump-
tions. Extensions to more complex cases, as well as recent
developments and further topics, are reviewed in Sec. 2.4. The
topic of temporal conservation errors is then illustrated in Sec. 3,
and the possibility to construct a numerical integration procedure
able to preserve, at least approximately, quadratic invariants in
time (a topic which has received growing interest in recent years)
is discussed. The effectiveness of such approaches is documented
by numerical simulations of canonical flows, which are reported
throughout the text, while Sec. 4 presents some recent applications
to real-world flows. Concluding remarks are finally given in Sec. 5.

2 Spatial Conservation

2.1 Theoretical Framework. In the context of the numerical
discretization of the N–S equations, the topic of spatial conserva-
tion concerns the property of the semidiscretized formulations to
reproduce the conservation symmetries of the continuous equa-
tions. Semidiscretization here stands for the usual numerical treat-
ment in which the governing partial differential equations (PDEs)
are first discretized in space, with the temporal variable left as
continuous, and then integrated in time. The system of PDEs is
hence first converted into a system of ordinary differential equa-
tions (ODEs); the integration in time is accomplished subse-
quently by employing dedicated solvers for the numerical
integration of systems of ODEs. In this framework, it is desirable
that in the spatial discretization step, the conservation symmetries
of the continuous equations translate as suitably defined conserva-
tion symmetries of the system of ODEs. As it will be shown in the
subsequent parts of this section, this target can be achieved only
to a certain extent, and only in particular circumstances, whereas
experience has shown that it is usually an important property for
robustness and stability of the whole numerical integration
process.

In this review, we will mainly focus on the treatment of the
nonlinear convective terms of the N–S equations. The reason for
this choice is that their nonlinearity is responsible for the produc-
tion of aliasing errors, which are regarded as strongly harmful for
stability and reliability of the numerical discretization. To fix the
notations, and to introduce some of the important concepts, which
will be recalled hereinafter, we consider the simple model
equation

@qu
@t
¼ � @quju

@xj
(1)

which expresses the balance of an extensive quantity per unit
mass u (q is the local density of the fluid) subject to convective
fluxes due to a local velocity field with Cartesian components uj.
Both terms in Eq. (1) are present in the Euler and N–S equations
for compressible and incompressible flows. In compressible flows,
u assumes the values unity, ui or E for the balance of mass,
momentum, and total energy, respectively. A similar structure is
present also in the balance equations for entropy and internal
energy, in which u assumes the values s and e, respectively. In
incompressible flows, q is constant in time and the continuity
equation is recovered from Eq. (1) by setting q¼ constant and
u¼ 1. Furthermore, the assumption q¼ constant and u¼ ui leads
to the nonviscous balance equation for momentum, in which the
pressure term is omitted.

Equation (1) has a divergence structure, which means that the
rate of variation in time of the quantity qu is locally driven by the
divergence of a flux vector. Application of the Gauss divergence
theorem shows that this property implies that the integral of the
quantity qu over an arbitrary domain depends only on the flux at
the boundary. This circumstance is expressed by saying that the

right-hand side of Eq. (1) has a locally conservative structure. Of
course, this property implies that the quantity qu is also globally
conserved, which means that the evolution of qu integrated over
the entire domain depends only on the flux on the boundary. In
other words, the total amount of the quantity inside the entire
domain is conserved in the case of homogeneous or periodic
boundary conditions. The variable associated with a globally con-
servative property is referred to as a linear invariant of Eq. (1).

By manipulating temporal and spatial derivatives (and by
employing Eq. (1) in the case u¼ 1), Eq. (1) easily leads to

@qu2=2

@t
¼ � @quju2=2

@xj
(2)

which expresses the induced evolution equation for the general-
ized energy qu2=2. This equation shows that the divergence struc-
ture for the right-hand side of Eq. (1) induces a divergence
structure for the generalized energy evolution equation. This in
turn implies again that the global generalized energy (i.e., the total
amount of generalized energy inside the domain) is conserved for
periodic or homogeneous boundary conditions. In this case, the
associated invariant is referred to as a quadratic invariant of
Eq. (1).

In Euler and N–S equations, the evolution equation for each
balanced quantity has a more complex structure, in which pressure
and viscous terms can affect the conservation of quadratic invari-
ants. However, in these cases, the considerations made above
apply limited to the convective terms, which always have a struc-
ture of the type in Eq. (1). In these cases, we will refer to the
above-mentioned property as the globally energy preserving char-
acter of the convective terms. In N–S equations total mass, total
momentum (in absence of external forces) and total energy are
easily shown to be linear invariants, whereas kinetic energy and
helicity are quadratic invariants of incompressible Euler equa-
tions. Note that, on the other side, all the balanced quantities and
all the associated generalized energies (i.e., all the quantities qu
and qu2=2 with u being unity, ui, E, e or s) are globally preserved
by convective terms.

When a semidiscretization procedure is applied to Eq. (1), the
PDE reduces to a system of ordinary differential (or differential-
algebraic) equations for a finite set of functions of time. The
above-mentioned conservation properties of Eq. (1) are usually
lost if discretization is not properly done, since discrete operators
do not follow in general the standard rules of calculus. As an
example, the so-called product rule for derivative, which is
required to obtain Eq. (2) from Eq. (1), is typically not valid for
discrete operators. There are several reasons to require that some
fundamental conservation properties of the continuous equations
are preserved upon spatial discretization. The divergence structure
of the convective term of Eq. (1), for example, should be repro-
duced at a discrete level in compressible flows for the convergence
to a weak solution in presence of discontinuities, while the global
conservation of kinetic energy assures nonlinear stability in incom-
pressible flows. The design of numerical spatial discretization pro-
cedures, which allow to preserve as much as possible conservation
symmetries of the continuous equations, is the topic of this section.

In what follows, when a spatial discretization reproduces the
divergence structure of Eq. (1), we will term it a locally conserva-
tive discretization. This is achieved when the discretization of the
convective term at right-hand side of Eq. (1) can be cast as differ-
ence of fluxes at adjacent nodes. By application of the telescoping
property, it is easily seen that discrete local conservation implies
also discrete global conservation, i.e., the sum of all the fluxes on
the mesh is zero for homogeneous or periodic boundary condi-
tions, and the total amount of the species inside the domain is con-
stant in time. This property is exactly the discrete reproduction of
the preservation of the linear invariants of Eq. (1). The terminol-
ogy related to quadratic invariants is similar: when a discretization
reproduces the property that nonlinear terms, do not contribute to
the discrete global energy balance; we will term it a globally

010803-2 / Vol. 71, JANUARY 2019 Transactions of the ASME

Downloaded From: https://appliedmechanicsreviews.asmedigitalcollection.asme.org on 03/19/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



energy preserving discretization. Local energy preserving discre-
tization is obtained, on the other side, in the particular case in
which the spatial discretization of Eq. (1) is performed in such a
way that in the induced discrete equation for the generalized
energy convective terms can be cast as difference of fluxes at
adjacent nodes for the variable qu2=2.

2.2 Incompressible Flows. Let us start with the incompressi-
ble N–S equations, which express the balance of mass and
momentum for an homogeneous Newtonian fluid

@ui

@t
þ @ujui

@xj
¼ � @p

@xi
þ 1

Re

@2ui

@xj@xj
(3)

@ui

@xi
¼ 0 (4)

In these equations, which are written in nondimensional form, ui

and p are the (Cartesian) velocity components and the pressure,
respectively, and Re ¼ UrefLref=� is the Reynolds number, �
being the kinematic viscosity. The system of equations Eqs. (3)
and (4) constitutes a closed set of partial differential equations for
the velocity components and the pressure, provided that suitable
initial and boundary conditions are assigned. Note that in Eq. (3),
the convective term has been written in its divergence form, as in
Eq. (1). However, by analytically manipulating this term, and by
employing the continuity equation Eq. (4), other forms are possible.
Here, we mention the advective form, in which the nonlinear term
is the product of transport velocity and the gradient of momentum,
the skew-symmetric form, in which a mean value between advective
and divergence forms is considered, and the rotational form, in
which the cross product of vorticity and velocity appears. In sum-
mary, the following expressions have been considered:

Div:ð Þi �
@ujui

@xj
(5)

Adv:ð Þi � uj
@ui

@xj
(6)

Skew:ð Þi �
1

2

@ujui

@xj
þ 1

2
uj
@ui

@xj
(7)

Rot:ð Þi � �uj
@ui

@xj
� @uj

@xi

� �
� 1

2

@

@xi
ujuj (8)

Actually, the nonlinear term can be written as any convex linear
combination of two or more of these expressions, and still others
are possible. This discussion has little importance in the context
of the continuous equations, since the manipulations needed to
switch from one to another are assumed to be always possible.
This will be not the case for the discretized set of equations, since
discrete operators do not follow in general the standard rules of
calculus. This means that, while being equivalent on a continuous
level, Eqs. (5)–(8) lead to different formulations when discretized.
Hence, the way in which the nonlinear term is written has great
importance once discretization is directly applied. Differences
among the various formulations can have impact on stability, reli-
ability, and quality of the numerical simulation.

The evolution of a number of physical quantities derived from
velocity and pressure is governed by equations, which are
obtained by analytical manipulation of Eqs. (3) and (4). The
kinetic energy per unit mass k ¼ ujuj=2, for example, evolves
according to the following equation, which can be obtained by
multiplying Eq. (3) by ui and by employing Eq. (4):

@k

@t
þ @kuj

@xj
þ @Tj

@xj
¼ � 2

Re
SijSij (9)

where Tj ¼ ujp� ð2=ReÞuiSij and Sij is the symmetric rate of
strain tensor

Sij ¼
1

2

@ui

@xj
þ @uj

@xi

� �
(10)

Equation (9) is a derived equation, in the sense that it is not
independent of mass and momentum balances. The evolution of
kinetic energy can be uniquely determined once velocity and pres-
sure evolutions in space and time are known, and it obeys Eq. (9),
once a sufficient regularity of the solutions, which permits all the
analytical manipulations, has been assumed.

The global kinetic energy, i.e., the total amount of kinetic
energy contained in a given domain, evolves according to an
equation which is simply derived by integrating both sides of Eq.
(9) over the control volume X

dK

dt
¼ �

ð
X

@kuj

@xj
þ @ujp

@xj
� 2

Re

@uiSij

@xj
þ 2

Re
SijSij

� �
dX; (11)

where K is the integral of k over X. The first three terms at the
right-hand side of Eq. (11) have a divergence structure, and by vir-
tue of the Gauss divergence theorem, they are readily seen to contrib-
ute to the rate of change of K as surface integrals, thus accounting
for inflow or outflow of kinetic energy by exchange of mass, or by
pressure or viscous work. The last term is purely dissipative, and acts
as a sink in the equation. For homogeneous or periodic boundary
conditions, there is no way to exchange kinetic energy through the
boundaries and the global kinetic energy equation reduces to

dK

dt
¼ � 2

Re

ð
X

SijSij dX (12)

On the other hand, for general boundary conditions, and in
absence of viscosity, global kinetic energy can neither be pro-
duced nor destroyed inside the volume and its rate of change
depends only on what happens on the boundary. In the special
case of a perfect fluid evolving in a domain with periodic or
homogeneous boundary conditions, the total kinetic energy K
remains constant during the evolution of the flow, i.e., it is a quad-
ratic invariant of the incompressible Euler equations. We explic-
itly note that the divergence structure of the terms inside the
integral has been obtained by manipulating the momentum equa-
tion and by making use of the continuity equation, which allows
to rewrite, for instance, the pressure term ui@ip as @iuip.

2.2.1 Semidiscretization. We consider now the problem of
numerical discretization of the system of N–S Eqs. (3) and (4). In
this section, we will consider the problem of the spatial discretiza-
tion, i.e., the discretization of the spatial domain and of the corre-
sponding coordinates. The conservation properties of the
discretization will be analyzed by considering the semi-
discretized system of ODEs, and the ability of the spatial discreti-
zation to retain the invariant quantities of the continuous system.
In what follows, we will mainly consider finite difference, finite
volumes, or spectral discretizations on a Cartesian mesh, with uni-
form step size and periodic boundary conditions. This assumption
is made here to allow a simpler discussion, but the extension to
the cases of nonuniform meshes, curvilinear grids, and nonperi-
odic boundary conditions is in many cases straightforward, and is
accomplished by considering the relevant scalar product associ-
ated with the metric. This extension is briefly considered in Sec.
2.4. The problem of the discretization on unstructured mesh is
also recalled in Sec. 2.4.

Upon spatial discretization, the incompressible N–S equations
can be expressed as

du

dt
þ C uð Þu ¼ �Gpþ 1

Re
Lu (13)
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Mu ¼ 0 (14)

where u is the discrete velocity vector containing the discretiza-
tion of the components of velocity on the three-dimensional (3D)
mesh, u ¼ ½ux uy uz�T, the matrices G 2 RNu�Np and M 2 RNp�Nu

are the discrete gradient and divergence operators, respectively,
while L 2 RNu�Nu is the block-diagonal Laplacian, diagðL;L;LÞ.
Nu and Np are the number of unknowns on the mesh for velocity
and pressure, respectively. The gradient and divergence operators
are assumed to be discretized consistently, in such a way that the
relation GT ¼ �M holds. Temporal integration of the differential
algebraic equation system (13) and (14) can be accomplished by
formally recasting it as a system of ODE by enforcing the incom-
pressibility constraint through the solution of the pressure
Poisson’s equation [8]. The details of the procedure are illustrated
in Sec. 3.

The convective term can be expressed as the product of a linear
block-diagonal convective operator CðuÞ and u

CðuÞu ¼
CxðuÞ

CyðuÞ
CzðuÞ

24 35 ux

uy

uz

24 35 (15)

The operator CðuÞ is obtained by discretizing the nonlinear term
starting from one of the possible expressions in which this can be
written. As mentioned in Sec. 2.2, while all these expressions are
equivalent in the continuous case, it is not so for the discrete equa-
tions. The generic matrix C�, with� being x, y or z, assumes a
specific form, which depends also on the details of the discretiza-
tion, e.g., the way in which the variables are arranged on the
mesh. It is well known that in problems in which systems of par-
tial differential equations are discretized, it is sometimes advanta-
geous to define discrete variables on different locations on the
mesh. In that case, the discretization of nonlinear terms usually
requires a strategy of interpolation of the different quantities,
whose details influence the form of the discretized operator C�.

The discrete quadratic conservation properties of the system
(13) and (14) can be analyzed by deriving the evolution equation
of the global discrete kinetic energy bK . For uniform meshes, the
scalar product is the discrete analog of integration and hence the
discrete global kinetic energy per unit mass is simply bK ¼ uTu=2.
Its evolution is governed by the equation:

d bK
dt
¼ �uTC uð Þu� uTGpþ 1

Re
uTLu (16)

which is the discrete counterpart of Eq. (11). In Eq. (16), the pres-
sure term contribution vanishes if GT ¼ �M and Mu ¼ 0, in the
same way at it does in the continuous case. Note that this is true
for regular or staggered arrangements of flow variables (using the
terminology given in Ref. [9]), whereas pressure can contribute to
the kinetic energy balance in collocated layouts as an error of
order OðDt2Dx2Þ [10]. The diffusive term is the only physical con-
tribution in Eq. (16) that correctly dissipates energy, being L a
negative-definite matrix.

The convective term appears as a quadratic form with associ-
ated matrix CðuÞ. Hence, this term does not contribute to the
energy budget inside the domain if a skew-symmetric operator
CðuÞ is adopted. This is the fundamental symmetry of the convec-
tive term that is associated with the conservation of global kinetic
energy in the inviscid limit [11]. A discretization of the nonlinear
term that is able to produce a skew-symmetric matrix CðuÞ for all
u (or at least for all u satisfying Mu ¼ 0) is also such that it does
not contribute to the global energy balance.

In subsequent sections, we will first analyze the regular layout
of the variables, and then the staggered one.

2.2.2 Regular Layout. In this section, we will assume a regu-
lar layout of the flow variables, i.e., the case in which they are all

defined on the same mesh location. In this case, the operators C do
not depend on the particular direction, and can assume one of the
following forms:

CðuÞ ¼

D � DxUx þ DyUy þ DzUzð Þ Div; ð17aÞ
A � UxDx þ UyDy þ UzDzð Þ Adv; ð17bÞ

S � 1

2
AþDð Þ Skew: ð17cÞ

8>>><>>>:
Note that the rotational form can instead be written as

CðuÞ ¼ SðRuÞ (18)

where S is a skew-symmetric matrix performing pointwise vector
product, and R is the (symmetric) curl operator, parentheses
denoting functional dependence. In Eq. (17a), the square matrices
D� represent the discrete derivative operators along each direction
and acting on a whole set of scalar variables on the mesh, while
U� are the diagonal matrices of the discretized velocity compo-
nents along the three directions (e.g., Ux ¼ diagðuxÞ). A first fun-
damental requirement for energy-preserving discretizations is that
the derivative matrices derive from central schemes, which are
free of numerical dissipation. In this case, on a uniform mesh, the
matrices are skew-symmetric, i.e., DT ¼ �D.2 The aim here is to
ensure that the convective term does not contribute to the global
energy balance, Eq. (16). In a regular layout, the fulfillment of
this target depends basically on the formulation employed for the
convective term. It is easy to show from Eqs. (17a) to (17b) that
the divergence and advective forms are associated with a convec-
tive operator, which is in general not skew-symmetric. In fact,
they contribute to the total kinetic energy rate of variation with
amounts, which are equal and of opposite signs. On the other side,
from Eqs. (17c) to (18), it can be readily seen that the correspond-
ing operator CðuÞ is skew-symmetric. As a consequence, only the
skew-symmetric and the rotational forms of the convective term
preserve energy spatially in the inviscid limit.

There has been a long debate regarding the use of the rotational
or the skew-symmetric form [13,14]. While the rotational form is
much more cost-effective than the skew-symmetric one (as dis-
cussed in more detail in Sec. 2.4), its aliasing errors are typically
much higher. On the other hand, simulations carried out with the
skew-symmetric form with or without dealiasing are typically
very similar [15]. The skew-symmetric form is nowadays regu-
larly applied in several highly accurate finite difference and spec-
tral numerical codes for DNS and LES of turbulent flows [16,17].

2Note that for central-difference formulas, which lead to skew-symmetric
derivative matrices, it can be readily shown that the integration-by-parts rule on
periodic domains is still valid for discrete operators. This can be easily shown by
employing the matrix notation. The integration-by-parts rule of the product of two
functions u and v on a periodic domain (for which boundary terms cancel) can be
written as ð

u
dv

dx
dx ¼ �

ð
v

du

dx
dx (19)

The discrete formulation of the left-hand side of this equation on uniform periodic
mesh is uTDv, which is a scalar quantity. By transposing and applying the skew-
symmetric property of D, one has

uTDv ¼ vTDTu ¼ �vTDu (20)

which is the discrete analog of Eq. (19). Note that this property extends also to
implicit spatial derivative schemes, for example to compact schemes [12]. In this last
case, the derivative formula has the form: Au0 ¼ Bu, where A is symmetric and B is
skew-symmetric. Both A and B are circulant matrices for the case of periodic
boundary conditions. Equation (20) assumes now the form

uTA�1Bv ¼ vTBTA�1T

u ¼ �vTBA�1u ¼ �vTA�1Bu (21)

where the last equality holds because the matrices A�1 and B commute, being both
circulant.
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The conservation properties of the rotational form are also mas-
sively exploited [18,19].

The above considerations can be summarized by the following
example. We consider the numerical integration of the three-
dimensional Taylor-Green vortex (TGV), which is a canonical
benchmark involving creation of small scales, transition to turbu-
lence, and decay [20]. The initial conditions are prescribed in a tri-
periodic box of side 2pL and read

u x; y; z; 0ð Þ ¼ U0

2ffiffiffi
3
p sin hþ 2

3
p

� �
sin xð Þcos yð Þcos zð Þ (22)

v x; y; z; 0ð Þ ¼ U0

2ffiffiffi
3
p sin h� 2

3
p

� �
cos xð Þsin yð Þcos zð Þ (23)

w x; y; z; 0ð Þ ¼ U0

2ffiffiffi
3
p sin hð Þcos xð Þcos yð Þsin zð Þ (24)

with h¼ 0 being used here. The TGV has been integrated on a
1283 mesh by means of a pseudo-spectral method. Time integra-
tion is achieved by the standard fourth-order Runge–Kutta method
(RK4) and a constant time-step, with CFL ¼ 0:5. The various
forms of the convective term mentioned earlier have been tested

and compared in conjunction with both full spectral accuracy and
second-order accuracy (the latter has been obtained by means of
the modified-wavenumber approach). A reference solution has
been obtained by using a de-aliasing procedure (2/3 rule [21]) and
an equivalent number of effective modes. The selected Reynolds
number is Re ¼ 1600.

Results are shown in Fig. 1. The left figure shows the time evo-
lution of the global energy, while in the right plot, the energy dis-
sipation rate is reported. Due to the lack of discrete energy
conservation, both the divergence and the advective formulations
lead to a blow-up of the computation. On the other hand, the
skew-symmetric and the rotational forms are stable in both the
second-order and the spectral simulations. However, in the spec-
tral case, the skew-symmetric form is much closer to the dealiased
solution than the rotational form. This is due to the above-
mentioned aliasing errors, which are higher for the rotational for-
mulation. On the other hand, the difference is much less pro-
nounced in the case of second-order simulations, due to the
aliasing errors being smoothed by the truncation error of the dif-
ference scheme.

Energy conservation is not always only a matter of nonlinear
stability. In some cases, computations might be stable due to con-
current effects (e.g., viscosity, external forcing), but eventually,

Fig. 1 Energy decay (left) and dissipation rate (right) for the TGV at Re 5 1600 for second-order (dot-
ted) and spectral (solid) accuracy on a 1283 grid. The reference solution is a fully de-aliased computa-
tion with the same number of effective modes. The reference time is tr 5 L/U0.

Fig. 2 Three-dimensional energy spectra for spectral large-eddy simulations of forced homogeneous
isotropic turbulence at Rek 5 100 (left) and Rek 5 170 (right), using different formulations for the convec-
tive term. A reference direct numerical simulations (DNS) computation is also shown for comparison.
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the results could be unreliable. For instance, Fig. 2 shows the
three-dimensional energy spectra for spectral large-eddy simula-
tions of forced homogeneous isotropic turbulence [22] at Rek ¼
100 (left) and Rek ¼ 170 (right), using 643 grid points and the
dynamic Smagorinsky model [23]. The forcing strategy is simply
a freezing of the low wavenumbers (jjkjj � 2). An accompanying
fully resolved DNS simulation is also shown for comparison. In
this case, simulations are stable within the time integration inter-
val (around 350 viscous time scales), but the energy spectra are
significantly distorted for the advective and divergence formula-
tions. Energy pile-up at high wavenumbers is clearly visible,
while the divergence form at the highest Reynolds number has
dissipated a large amount of the energy content.

2.2.3 Staggered Layout. The case of a staggered grid arrange-
ment differs from the cases in which the variables are all defined
at the same locations, essentially because the interpolation proce-
dures needed to evaluate the different quantities at the same points
add new degrees-of-freedom to the method. As a consequence,
new possibilities arise of devising discretizations, which are
energy conserving also for the divergence or advective forms. Of
course, the whole operator CðuÞ still needs to be globally skew-
symmetric, but this is achieved without necessarily employing the
skew-symmetric form Eq. (17c).

In order to explain how this is achieved for a staggered mesh,
the rest of the section focuses on the classical Harlow and Welch
(H-W) scheme [24], with the aim of highlighting the above-
mentioned points. The H-W procedure is very well suited for this
analysis, since it is the simplest (second-order) and most used dis-
cretization procedure on staggered grids. It has a number of inter-
esting properties, such as conservation of global kinetic energy. In
line with Sec. 2.2.1, the discussion will be carried out by employ-
ing matrix notation.

The procedure starts by discretizing the variables on a Cartesian
grid by collocating pressure nodes at the centers of the rectangular
cells, while velocity component nodes at the face centers of each cell.
The position and the indexing of the various variables are reported in
Fig. 3 for the two-dimensional case, the three-dimensional extension
being straightforward. Moreover, in constructing the one-dimensional
arrays u and p, we will assume that the variables on the two-
dimensional mesh are sorted row-wise. Different conventions on the
indexing and sorting of the variables are possible, and they would
generate different multidimensional operators. However, the conclu-
sions of the present analysis would remain unchanged.

For a staggered grid arrangement, in which each component of
the velocity vector is defined on a different location, Eq. (16)
gives the evolution of one possible definition of kinetic energy.

More specifically, the quantity obtained by summing the squares of
velocity components, each calculated on its location. Other defini-
tions can be devised, which attempt to take into account the stag-
gering of variables. As examples, a definition can be given in
which each velocity component is suitably interpolated at cell cen-
ters before being squared and then summed, or the interpolation
can be performed directly on the squares of velocity components.
These definitions differ one from the other and the conservation
properties also can be different. In order to avoid ambiguities, in
what follows, we will first focus separately on the contributions to
kinetic energy due to each single component of the velocity. The
conservation properties of different definitions of total kinetic
energy will be commented on at the end of this section.

For the case of the x component, for example, we will refer tobKx ¼ uT
x ux=2, for which we have the equation

d bKx

dt
¼ �uT

x Cx uð Þux � uT
x Dxp (25)

in which the viscous term has been neglected. In this case,
although the pressure contribution does not vanish (it should sum
up to zero when added to the corresponding terms in the other
directions), the convective term is still energy preserving if a
skew-symmetric operator Cx is adopted.

The H-W procedure is based on a set of second-order derivative
and interpolation schemes for which the differentiated or interpo-
lated values on staggered locations are obtained by simple
second-order formulas of the form

fiþ1=2 ¼
fi þ fiþ1

2
; f 0iþ1=2 ¼

fiþ1 � fi

h
(26)

In order to express the convection matrix Cx, the above operators
have to be defined as matrix operators acting on the vectors of
nodal values. If we consider a set of such nodal values on a uni-
form one-dimensional mesh with periodic boundary conditions:
f ¼ ff1; f2…; fNgT

with fNþ1 ¼ f1, the basic linear operator on
which derivative and interpolation matrices can be constructed is
the shift operator E, which is expressed as a circulant matrix given
by

E ¼

0 1 0 … 0

0 0 1 … 0

� � � � � � �

0 0 0 … 1

1 0 0 … 0

266664
377775 (27)

The classical forward, backward, and central derivative matrices
are defined as

Dþ ¼ E� I

h
; D� ¼ I� E�1

h
; D ¼ E� E�1

2h
(28)

and in a similar manner, the forward and backward mean opera-
tors are defined

Jþ ¼ Eþ I

2
; J� ¼ Iþ E�1

2
(29)

For these operators, the following relations are easily proven:

ðJþÞT ¼ J�; ðDþÞT ¼ �D�; D�Jþ ¼ DþJ� ¼ D (30)

Moreover, hereinafter, we will use the following vectorial iden-
tity, which is valid for arbitrary vectors u and v:

D�VJþu ¼ J�VDþuþ UD�v (31)

where U ¼ diagðuÞ and V ¼ diagðvÞ. Equation (31) can be written
in equivalent forms as a matrix relation as follows:Fig. 3 Variables layout on a staggered mesh

010803-6 / Vol. 71, JANUARY 2019 Transactions of the ASME

Downloaded From: https://appliedmechanicsreviews.asmedigitalcollection.asme.org on 03/19/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



D�UJþ ¼ J�UDþ þ diagðD�uÞ (32)

D�diagðJþuÞ ¼ J�diagðDþuÞ þ UD� (33)

which are valid for all choices of u. Equations (31)–(33) are all
equivalent, and constitute a sort of “product rule” that is valid for
the couple of differentiation-interpolation operators.

In multidimensional cases, the x- and y- direction shift opera-
tors are defined as

Ex ¼

E O O … O

O E O … O

� � � � � � �

O O O … E

2664
3775; Ey ¼

O I O … O

O O I … O

� � � � � � �

O O … O I

I O … O O

266664
377775

(34)

where O is a suitable matrix with all entries equal to zero. Note
that the matrix Ex is a Ny � Ny block matrix with blocks having
dimensions Nx � Nx, while the y-direction shift matrix Ey is a
Nx � Nx block matrix with blocks having dimensions Ny � Ny.
The classical forward and backward derivative and interpolation
matrices along the x directions are defined by

Dþx ¼
Ex � I

h
; D�x ¼

I� E�1
x

h
;

Jþx ¼
Ex þ I

2
; J�x ¼

Iþ E�1
x

2
;

(35)

and similarly for the y direction. It can be easily verified that rela-
tions analogous to Eq. (30) can be derived also for these multidi-
mensional operators, provided that operators along the same
direction are used. Equations (31)–(33) are still valid for multidi-
mensional operators on each direction. Moreover, all the deriva-
tive and interpolation operators commute.

The discretization of the convective term by the H–W proce-
dure can be expressed, by adopting the notation of Morinishi et al.
[9], as

Div:� S2ð Þi ¼
bd1Uj

1xi Ui
1xjbd1xj

(36)

The corresponding discretization of the continuity equation is

Conv:� S2ð Þ ¼
bd1Uibd1xi

¼ 0 (37)

In these last two equations, the operator bdk is introduced, which
is defined as the central difference with halved step size:bdkfj ¼ fjþkh=2 � fj�kh=2. The overbar denotes a similarly defined
interpolation operator.

In our notation, the continuity equation is given by

Mu ¼ Dþx ux þ Dþy uy ¼ 0 (38)

while the x-momentum nonlinear term is

CxðuÞ � ux ¼ ðD�x diagðJþx uxÞJþx þ Dþy diagðJ�x uyÞJ�y Þ � ux (39)

By manipulating this expression and by making use of the com-
mutative property of the Hadamard product diagðuÞv ¼ diagðvÞu
and of the “product rule” (Eq. (33)) along each direction in the
following forms:

D�x diagðJþx uxÞ ¼ J�x diagðDþx uxÞ þ UD�x (40)

Dþy diagðJ�y uxÞ ¼ Jþy diagðD�y uxÞ þ UDþy (41)

one arrives to the expression

CxðuÞ � ux ¼ J�x diagðDþx uxÞJþx uxþ
Jþy diagðD�y uxÞJ�x uyþ
UðD�x Jþx ux þ Dþy J�x uyÞ

(42)

The last term within the parentheses at the right-hand side of Eq.
(42) can be rewritten by applying the commutative property of the
products of derivative and interpolations matrices and by substi-
tuting Jþx D�x ¼ J�x Dþx . It thus assumes the form

UJ�x ðDþx ux þ Dþy uyÞ (43)

which vanishes by virtue of continuity equation Eq. (38). By
applying again the commutative property of the Hadamard prod-
uct to Eq. (39) and to the first two terms at the right-hand side of
Eq. (42) one has the following two equivalent expressions for the
matrix Cx:

CxðuÞ ¼ D�x diagðJþx uxÞJþx þ Dþy diagðJ�x uyÞJ�y (44)

CxðuÞ ¼ J�x diagðJþx uxÞDþx þ Jþy diagðJ�x uyÞD�y (45)

from which it is readily seen that one is the opposite of the trans-
pose of the other, i.e., Cx ¼ �ðCxÞT, which shows that Cx is, in
fact, skew-symmetric.

The skew-symmetry of the matrix Cx shows that the contribu-
tion of the convective term to the global quantity bKx vanishes.
Since the sum of the pressure terms in Eq. (25) along the three
directions vanishes by virtue of the continuity equation, the pres-
ent analysis shows that the global kinetic energy defined as the
sum of all the contributions along each direction, each calculated
on its location, is conserved by the H–W scheme. This quantity
can be expressed as uiui=2, where summation over the repeated
index is assumed. A different global kinetic energy can be defined
by interpolating velocity components at cell centers before squar-
ing and summing. In the notation of Morinishi et al. [9], this quan-
tity can be written as: ui

1xi ui
1xi=2 while in our notation, it reads

ðJþx uxÞTJþx ux=2. For this quantity, our analysis shows that the con-
vective terms in the global kinetic energy balance contribute with
the term uT

x J�JþCxðuÞux, which does not vanish in general for
skew-symmetric matrices CxðuÞ. This shows that the global
kinetic energy calculated on interpolated velocity components is
not conserved in general. A third form of global energy is defined
by the quantity uiui

1xi=2 [25], i.e., the one obtained by summing
the interpolated velocity products. In our notation, this form of
global kinetic energy along the direction x is defined as
1TJþx Uxux, where 1 stands for the column vector of all terms equal
to unity. The contribution of the convective term to the x-
component global energy variation in time is �1TJþx UxCxðuÞux,
which can be shown to be equal to uT

x CxðuÞux by employing the
identity UxJ�1 ¼ ux, and hence vanishes for a skew-symmetric
matrix Cx. This shows that the convective term does not contribute
to the evolution of the global kinetic energy for skew-symmetric
convective operators, and is hence globally energy preserving for
this form of kinetic energy. In the same fashion, the pressure term
can be shown to vanish, provided the continuity equation is satis-
fied. This assures that kinetic energy obtained by interpolating the
velocity products is globally conserved.

The H–W scheme has provided the basis for a number of suc-
cessful discretizations that have been developed over the last dec-
ades. Extensions and refinements of the method are discussed in
Sec. 2.4. Numerical tests employing the H–W method are shown
in Sec. 3.

2.3 Compressible Flows. In the case of compressible flow
models, since density is allowed to vary, the pressure has its full
thermodynamic role, and its variations influence the density and
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the temperature through an equation of state. In this case, the bal-
ance equations for mass and momentum do not constitute a closed
set of equations alone, since the internal energy of the fluid influ-
ences pressure and density variations through the equation of
state. As a consequence, the system of balance equations for a
compressible flow includes an equation for internal or total energy
as well as an equation of state. By choosing the total energy as the
additional balanced quantity, the system of N–S equations for
compressible flows reads

@q
@t
¼ � @quj

@xj
(46)

@qui

@t
¼ � @qujui

@xj
� @p

@xi
þ @sij

@xj
(47)

@qE

@t
¼ � @qujE

@xj
� @puj

@xj
þ @sijui

@xj
þ @

@xj
j
@T

@xj

� �
(48)

where T is the temperature, j is the thermal conductivity, and qE
is the total energy per unit volume, being E ¼ uiui=2þ e where
e ¼ cvT is the internal energy per unit mass and cv is the specific
heat at constant volume. The stress tensor is obtained by the usual
relation

sij ¼ l
@ui

@xj
þ @uj

@xi

� �
� 2

3
l
@uk

@xk
dij (49)

where l is the molecular viscosity and dij is the identity tensor.
Closure is achieved by the ideal equation of state p ¼ qRT, with R
the universal gas constant.

The nonlinear convective terms in Eqs. (46)–(48) share the
common structure of the right hand side of Eq. (1)

C ¼ @quju
@xj

(50)

where u equals one, ui and E for the mass, momentum, and energy
terms, respectively. As for incompressible flows, in a continuous
setting, the convective terms can be expressed in several analyti-
cally equivalent forms. However, the generic nonlinear terms in
momentum and energy equations have a cubic nonlinearity, and
hence the number of basic forms in which they can be expressed
by applying the product rule raises from two (divergence and
advective) to five (one of divergence- and four of advective-type),
which are listed as follows:

CD ¼ @quju
@xj

(51)

Cu ¼ uj
@qu
@xj
þ qu

@uj

@xj
(52)

Cu ¼ u
@quj

@xj
þ quj

@u
@xj

(53)

Cq ¼ q
@uju
@xj
þ uuj

@q
@xj

(54)

CL ¼ qu
@uj

@xj
þ quj

@u
@xj
þ uuj

@q
@xj

(55)

The terms appearing in Eqs. (51)–(55) deserve some discussion.
Equation (51) is the usual divergence form, while Eqs. (52) and
(53) were introduced by Blaisdell et al. [14] and Feiereisen et al.
[26], respectively, who were the first to use these forms, in con-
junction with CD, to obtain stable simulations, as it will be

discussed in the following. As for the remaining forms, discretiza-
tion of Eq. (54) was considered for the first time by Kennedy and
Gruber [27], while the one in Eq. (55) is named linear since only
the gradients of linear quantities appear. Note that for the continu-
ity equation, the forms CD and Cu reduce to the classical diver-
gence form, while Cu; Cq, and CL are equivalent to the unique
advective form, which can be defined for the case of quadratic
nonlinearities.

As already observed for the incompressible flow equations, any
linear convex combination of the above-mentioned forms can be
equally considered as a consistent expression of the nonlinear con-
vective term. This distinction has again little importance in the
continuous formulation, since all these expressions are equivalent
once the analytical manipulations required to derive one from the
others are assumed to be valid. However, the corresponding dis-
cretizations behave usually differently, because the product rule,
which is required to switch from one form to the others, is in gen-
eral not valid.

Note that Eq. (48) can be replaced by the equation for internal
energy qe

@qe

@t
¼ � @quje

@xj
� p

@uj

@xj
þ sij

@ui

@xj
þ @

@xj
j
@T

@xj

� �
(56)

or by the entropy equation

@qs

@t
¼ � @qujs

@xj
þ 1

T
sij
@ui

@xj
þ @

@xj
j
@T

@xj

� �� �
(57)

where s is given by the relation s ¼ cvlnðp=qcÞ and c ¼ cp=cv

with cp specific heat at constant pressure.

2.3.1 Kinetic Energy Equation. The induced evolution equa-
tion for the kinetic energy qk ¼ quiui=2 can be derived by starting
from the following relation, which is obtained by manipulating
only temporal derivatives:

@qk

@t
¼ ui

@qui

@t
� uiui

2

@q
@t

(58)

By substituting the right-hand side of Eqs. (46) and (47) (in the
inviscid limit) into Eq. (58), regardless of the choice made for the
convective terms formulation, in a continuous setting, Eq. (58)
can be easily shown to assume the form

@qk

@t
¼ � @qujk

@xj
� uj

@p

@xj
(59)

from which it is evident that, as expected, the nonlinear convec-
tive term in the kinetic energy equation has a divergence structure.
Hence, it does not contribute to global energy evolution, i.e., to
the evolution of kinetic energy integrated over the whole domain,
provided that periodic or homogeneous boundary conditions are
applied. Note that, in contrast to what happens in the incompressi-
ble limit, the global kinetic energy is not an invariant of the invis-
cid equations since isentropic exchanges of kinetic and internal
energy are allowed through the work done by the pressure term.

The derivation of Eq. (59) from Eq. (58) employs the classical
product rule for derivatives, which is generally violated by dis-
crete operators. As a consequence, the analytically equivalent
forms, Eqs. (51)–(55), behave differently when discretized, and
the divergence structure of the convective term in Eq. (59) is in
general not reproduced at a discrete level by the numerical
approximation. The idea, which has been pursued over the past
years, in analogy with the approaches, which proved to be suc-
cessful in the incompressible case, relies on the possibility to con-
struct a suitable linear combination of two (or more) discretized
forms among Eqs. (51)–(55), in such a way that the nonlinear
term does not spuriously contribute to the global energy balance.
In other words, the integral of the convective term over the
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domain should vanish for periodic or homogeneous flux boundary
conditions, similarly to what happens in Eq. (59). These forms
have been termed as “skew-symmetric” forms, although strictly
speaking, as also observed by Pirozzoli [28], the differential oper-
ator relative to a single variable u is not skew-symmetric. How-
ever, as it will be shown in the following, the application of these
“skew-symmetric” forms in both continuity and momentum equa-
tions can produce an energy-preserving discretization in which the
convective term in the induced discrete kinetic energy equation
does not spuriously contribute to the global energy production.

As already mentioned above, the classical forms, which has
been first proposed and applied in the literature are the Feiereisen
et al. form [26], in which the following splitting is adopted:

@quju
@xj

! 1

2

@quju
@xj

þ 1

2
u
@quj

@xj
þ quj

@u
@xj

� �
(60)

and the Blaisdell et al. form [14]

@quju
@xj

! 1

2

@quju
@xj

þ 1

2
qu

@uj

@xj
þ uj

@qu
@xj

� �
(61)

The first form was derived in strict analogy with the skew-
symmetric form in the incompressible case, and was shown to be
energy preserving when applied to both continuity and momentum
equations. The second one, on the other hand, was proposed as a
result of a study on the minimization of aliasing errors and it can
be shown to be not strictly energy preserving.

To show energy preservation of the Feiereisen form, one can
write down the continuity and momentum equations split with this
form, which are

@q
@t
¼ � @quj

@xj
(62)

@qui

@t
¼ � 1

2

@qujui

@xj
þ ui

@quj

@xj
þ quj

@ui

@xj

� �
� @p

@xi
(63)

and substitute these expressions into Eq. (58)

@qk

@t
¼ � 1

2
ui

@qujui

@xj
þ ui

@quj

@xj
þ quj

@ui

@xj

� �
�ui

@p

@xi
þ uiui

2

@quj

@xj
(64)

Note that, since Eq. (58) has been derived by analytically manipu-
lating only temporal derivatives, and since Eq. (64) is the result of
substitution of Eqs. (62) and (63) into Eq. (58), it is still valid for
the semidiscretized equations. Any further development of Eq.
(64) avoiding manipulations, which are not valid for spatially dis-
cretized operators (i.e., the product rule), leads to equations,
which are still valid at a semidiscrete level.

Upon integration over the domain, one eventually has

dK
dt
¼ � 1

2

ð
X

ui
@qujui

@xj
þ uiui

@quj

@xj
þ quiuj

@ui

@xj
�uiui

@quj

@xj

� �
dX

�
ð

X
ui
@p

@xi
dX (65)

where K is the integral of qk over X. The first integral in the
right-hand side of Eq. (65) is the contribution of the discretization
of the nonlinear term to the global kinetic energy equation. This
integral is readily seen to be zero, since the second and fourth
terms inside the parentheses cancel locally, while the sum of the
first and third terms integrated over the domain vanishes by virtue
of integration by parts.

By following the same procedure for the Blaisdell form Eq.
(61), and applying the splitting to both continuity and momentum

equations, one obtains the following nonlinear convective term in
the semidiscrete evolution equation for global kinetic energy:

� 1

2

ð
X

ui
@qujui

@xj
þ uiuj

@qui

@xj
� uiui

2

@quj

@xj
� q

@uj

@xj
þ uj

@q
@xj

� �� �
dX

(66)

which cannot be further simplified upon application of the
integration-by-parts rule. This shows that the Blaisdell splitting in
not energy preserving.

The Feiereisen skew-symmetric form is not the only splitting
that is able to preserve discrete global kinetic energy. Kennedy
and Gruber [27] studied a family of splitting forms in which a
convex linear combination of all the forms in Eqs. (51)–(55) is
used. Although the focus of their paper was to devise a suitable
set of coefficients, which is able to minimize aliasing error, their
framework is also useful to derive new splittings, which preserve
kinetic energy. As observed by Pirozzoli [28], the splitting
obtained by weighting the forms CD; Cu; Cu, and Cq with a uniform
weight equal to 1/4 is able to preserve kinetic energy, when
applied both to momentum and continuity equations (in this last
case the form reduces to the symmetric weighting of divergence
and advective forms with weight equal to 1/2). This splitting will
be hereinafter denoted by Kennedy–Gruber–Pirozzoli (KGP). As
for the Feiereisen form, the KGP form is exactly energy preserv-
ing provided that central schemes are employed for derivatives,
for which the discrete analog of integration by parts holds. A cru-
cial additional point is that both the continuity and the u-equation
have to be discretized with the same form, in order to reproduce
the correct balance of the volume average of qu2.

More recently, a systematic study of energy preserving forms,
among the general family of splittings studied by Kennedy and
Gruber [27], has been reported in Ref. [29]. This study has
allowed to show that the two above-mentioned forms are actually
members of a general two-parameter family of energy-preserving
formulations. A simple exemplary result of the theory is the fam-
ily of forms given by the convex linear combination of Feiereisen
CF ¼ ðCD þ CuÞ=2 and KGP CKGP ¼ ðCD þ Cu þ Cu þ CqÞ=4
forms

Ca ¼ aCF þ ð1� aÞCKGP (67)

Clearly, this one-parameter family provides a consistent expres-
sion of the convective nonlinear term and is energy preserving for
any value of a. A notable specific case is given by choosing
a ¼ �1, for which the new simple form is obtained

CC ¼ 1

2
qu

@uj

@xj
þ uj

@qu
@xj
þ q

@uju
@xj
þ uuj

@q
@xj

� �
(68)

The new form CC is in some sense a symmetric counterpart of CF,
and reduces to the classical advective form when applied to the
continuity equation. The family of Eq. (67) can be now expressed
in a more symmetric fashion

Cn ¼ nCF þ ð1� nÞCC (69)

with the KGP form corresponding to n ¼ 1=2. Note that although
it is customary to apply the same splitting to continuity and
momentum equations, there is no reason to retain this constraint.
It can be shown [29] that by relaxing this requirement, more
skew-symmetric splittings can be obtained and that the family of
Eq. (69) is a restriction of a more general two-parameter family of
energy-preserving forms, whose properties are studied in detail
therein.

An important topic related to energy-preserving discretizations
is that of conservation of linear invariants. A major achievement
of the paper by Pirozzoli [28] is that when central explicit finite
difference formulas of arbitrary order are used to discretize the
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derivatives, both the Feieresen and the KGP forms can be recast
in a locally conservative formulation, i.e., as the difference of
numerical fluxes at successive intermediate nodes. Beyond the
implications on the convergence to weak solutions, in the pres-
ence of shock waves, and on the non-negligible improvement in
computational efficiency, this result implies that discrete local and
global conservation of linear invariants is guaranteed when the
forms CF or CKGP are employed. This property trivially extends to
the whole family Cn, which hence constitutes a locally conserva-
tive and energy-preserving one-parameter family of forms, when
applied simultaneously to the continuity and the u-equations.

The same considerations made for kinetic energy balance can
be equally applied also to the total or internal energy equations. In
these cases, a properly constructed “energy-preserving” splitting
produces a discretization, which ensures that convective terms do
not contribute to the rate of variation of global quantities as qE2

or qe2, integrated over the domain. Although these quantities have
a less prominent physical significance than kinetic energy, experi-
ence shows that the fulfillment of these additional requirements
typically confers more robustness to the simulations. A variety of
approaches can be found in literature. Blaisdell et al. [14] applied
their splitting to the internal energy equation, while Feiereisen
et al. [26] used the evolution equation for the pressure. Kennedy
and Gruber [27] and Pirozzoli [28] used the total energy, although
the former split the convective and the pressure terms separately,
while Pirozzoli [28] applied the splitting directly to the enthalpy
Eþ p=q. Honein and Moin [30] applied the Feiereisen splitting to
continuity, momentum and entropy equations, and reported great
advantages in terms of robustness, supposedly due to preservation
of two moments of the entropy (qs and qs2).

A study of the conservation properties of the various
approaches is reported in Ref. [29], and the main results are pre-
sented in Table 1. The table shows that, by discretizing directly

the internal or total energy, the global conservation of entropy is
not guaranteed. On the other hand, evolving the entropy equation
ensures that qs is conserved locally and qs2 globally, although the
conservation of internal or total energy is lost, even in a global
sense. Literature results and physical intuition suggest that the ful-
fillment of as many conservation constraints as possible is desira-
ble and provides additional robustness to the simulation.

2.3.2 Numerical Tests. An illustrative example of the behav-
ior of the various splittings of the convective terms for compressi-
ble flow is provided in Fig. 4.

The results show the evolution of total energy for the inviscid
Taylor–Green vortex, at M¼ 0.1 (left) and M¼ 0.5 (right), where
M is the Mach number. Spatial discretization is achieved by
means of a pseudo-spectral method. The domain is a cube of side
2pL, divided into a 323 computational mesh. Time integration is
performed by a standard RK4 method with fixed time-step, so that
the acoustic CFL ¼ 0:5. The splittings of Feiereisen (F), Blaisdell
(B), KGP as well as the standard divergence form have been used.
The total energy equation is advanced and the same splitting is
applied in all equations; in the total energy equation, the splitting
is applied to the enthalpy.

The results at the lower Mach number show that only the diver-
gence form is unstable in the time-integration range investigated,
with the other forms being able to keep kinetic energy roughly
constant (as it should be in light of the quasi-incompressible
regime). On the other hand, at M¼ 0.5 the two forms that do not
preserve kinetic energy lead to divergence of the computation.
The global energy given by the Feiereisen form is also close to
diverge, whereas the KGP splitting turns out to be the most robust
formulation.

2.4 Additional Topics. The derivations presented in Secs.
2.2 and 2.3 have been purposely carried out using a number of
simplifying assumptions, with the aim of illustrating the basic
ideas of energy-preserving discretizations. Building upon the
ingredients reported in Secs. 2.2 and 2.3, many advanced develop-
ments have been accomplished over the years. In the following,
some of the most important ones are reviewed in a nonexhaustive
fashion.

One topic to preliminarily take into consideration is concerned
with the computational cost of energy-preserving methods. In
incompressible flows, it was soon recognized that for a regular
layout, the skew-symmetric form of convection requires the eval-
uation of 18 derivatives, whereas only six derivatives are needed
for the rotational form; the advective and divergence formulations
require nine derivatives [31]. On the other hand, the rotational

Table 1 Conservation properties induced by different energy
balance equation discretized through an energy preserving and
locally conservative split form. �: variable conserved locally
and globally, 	: variable conserved globally but not locally, 3:
variable not conserved.

Conserved variable

q qui qE qe qs qu2
i qE2 qe2 qs2

Discretized energy equation qE � � � 	 � 	 	 � �
qe � � 	 � � 	 � 	 �
qs � � � � � 	 � � 	

Fig. 4 Comparison of energy-conservation properties of different splittings of the convective terms
for the compressible inviscid TGV flow. Left: M 5 0.1. Right: M 5 0.5. The splittings refer to the Feier-
eisen form (F), Eq. (60); the Blaisdell form (B), Eq. (61); the KGP form, obtained by combining Eqs.
(51)–(54) with a weight equal to 1/4; the divergence form (DIV), Eq. (51). The reference time is
tr 5 L/(Mc), where c is the speed of sound.
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form does not provide accurate results unless dealiased [15]. The
increased cost of the skew-symmetric form is particularly critical
for spectral or pseudo-spectral algorithms, in which the pressure
Poisson’s equation is practically costless and much of the compu-
tational time is spent to compute the nonlinear term. Earlier
attempts to reduce the cost of the skew-symmetric splitting were
merely based on using the divergence and advective forms at
alternate time steps [32]. Recently, a more refined approach was
proposed by Capuano et al. [22,33–35], in which the divergence
and advective forms are instead alternated within the stages of
properly designed Runge–Kutta methods. By properly weighting
spatial and temporal errors, the authors were able to achieve
higher order energy-conservation accuracy while halving the cost
for the computation of the convective term. For staggered layouts,
the second-order H–W scheme is often the method of choice for
turbulent flow simulations, although the additional cost of the
interpolation operators is similar to the one occurring for the
skew-symmetric form in a regular arrangement. Furthermore,
compact derivative approximations [12] able to guarantee local
conservation when employed in the divergence form (as in the
case of the H–W scheme) have not yet been developed [36], and
therefore the use of the skew-symmetric splitting is mandatory for
such methods, both on regular and staggered layouts [37,38]. The
problem of increased cost comes with even more importance in
the case of compressible flows, in which no pressure Poisson
equation has to be solved and thus the computation of the nonlin-
ear term constitutes a significant part of the overall solution effort.
Pirozzoli [28] analyzed the computational cost of the various
forms reported in Sec. 2.3 and reported significant time savings
when the splittings were implemented in a locally conservative
formulation.

Starting from the basic methods presented in Sec. 2.2.1, many
extensions have been proposed in literature over the years, con-
cerning both higher order accuracy and nonregular (i.e., nonuni-
form, non-Cartesian) meshes. In a landmark paper, Morinishi
et al. [9] derived proper fully conservative schemes in regular,
staggered, and collocated arrangements. Most notably, they
extended the H–W scheme to arbitrary orders of accuracy,
although they were not able to retain full conservation (i.e., mass,
momentum, kinetic energy) on nonuniform meshes. A further
attempt in this direction was later made by Vasilyev [39], who
managed to obtain conservation of either momentum or energy, in
addition to mass, although not simultaneously if the uniform grid
assumption was removed. The first fully conservative scheme on
nonuniform Cartesian grids (in both space and time) was proposed
by Ham et al. [25], while a fourth-order fully conservative formu-
lation of the H–W method on nonuniform meshes was eventually
achieved by Verstappen and Veldman [11]. Remarkably, these
authors recognized that the key to obtain kinetic energy conserva-
tion at a discrete level on nonuniform grids is to construct the dis-
cretization with the aim of preserving the skew-symmetry of the
convection operator, rather than minimizing the local truncation
error. Using the notation adopted in this work, Eq. (13) is most
conveniently rearranged as

X
du

dt
þ C uð Þu ¼ �XGpþ 1

Re
Lu (70)

and the kinetic energy definition generalizes to bK ¼ uTXu=2,
where X is a diagonal operator containing the grid spacings. It is
readily proven that the condition to preserve kinetic energy in the
inviscid limit is again to have a skew-symmetric convective oper-
ator CðuÞ. This is achieved by constructing the discrete differen-
tial operators in such a way that this property is satisfied. In other
words, the coefficients of the numerical schemes should not be
weighted with the metrics of the mesh. Although the local trunca-
tion error of the resulting symmetry-preserving schemes is not for-
mally as accurate as its counterpart on uniform grids, practical
experience has shown that results are reliable, even on coarse
meshes [11]. Energy-preserving methods have also been

developed for cylindrical coordinates. Starting from the pioneer-
ing work by Verzicco and Orlandi [40], which does not strictly
conserve energy, subsequent refinements were proposed by Fuka-
gata and Kasagi [41] and Morinishi et al. [42] for incompressible
flows. This latter method was then extended to variable-density
flows by Desjardins et al. in a formulation that discretely con-
serves mass, momentum, and kinetic energy in a periodic domain
[43].

Further developments of the basic ideas of skew-symmetry in
the context of compressible flows were extended to finite volume
methods [44] and to curvilinear meshes [45,46]. An alternative
approach to the one presented in Sec. 2.3 that has both mathemati-
cal and practical significance is the so-called square-root variable
formulation. In this case, the state vector of the compressible flow
solution is expressed as

q ¼

ffiffiffi
q
pffiffiffi

q
p

u=
ffiffiffi
2
p

ffiffiffiffiffi
qe
p

2664
3775 (71)

The square-root formulation has several interesting properties.
The global norm of the state vector jjqjj2 is bounded in absence of
external sources, as it turns out to be the sum of mass and total
energy integrated over the domain. Therefore, methods preserving
linear invariants (such as finite volume methods) satisfy this prop-
erty. On the other hand, computations may still break down due to
violation of other conservation properties by the convective terms.
In this regard, it is interesting to observe that all the quantities pre-
served by convection (e.g., mass, momentum, kinetic energy,
internal energy) can be expressed as quadratic forms of the
square-root variables, qiqj. It has been shown that this is a direct
consequence of the skew-symmetry of the convective transport
for the square-root variables, in full analogy with the incompressi-
ble case [47]. Building upon this mathematical framework,
symmetry-preserving methods for compressible flows have been
recently proposed [48,49]. A rigorous treatment of skew-
symmetry in variable-density flows has also been developed by
Morinishi [50].

Discrete conservation principles have also been extended in the
context of unstructured meshes. Perot [51] developed a staggered
mesh method on two-dimensional unstructured grids able to pre-
serve either kinetic energy and momentum (using the divergence
form of convection) or kinetic energy and vorticity (using the
rotational form). The method was then extended to three-
dimensional grids by Zhang et al. [52]. Later, Mahesh et al. [18]
proposed an energy-conserving algorithm, which uses the rota-
tional form in a staggered layout and is fully conservative for tet-
rahedral elements. For elements of more general shape, they
switched to a nonstaggered formulation which is not fully con-
servative due to the spurious contribution of the pressure gradient.
This latter issue has been thoroughly analyzed by Felten and Lund
[10]. Recently, based on the work by Verstappen and Veldman, a
fully conservative method on unstructured meshes has been pre-
sented on a collocated layout, with special emphasis on preventing
the pressure odd-even decoupling [53]. Again, the key ingredients
leading to a skew-symmetric convective operator were identified
in (1) interpolating the transported variable with constant weights
(i.e., independent of the spatial coordinates), and (2) a properly
defined divergence operator ensuring that the sum of the discrete
velocity fluxes at the cell faces sums to zero for each computa-
tional cell. In the context of compressible flow, Modesti and Pir-
ozzoli [54] have proposed an unstructured implementation of the
KGP split form (cf. Sec. 2.3) and also used it as a building block
to solve flows with shocks.

A further topic of remarkable interest is the enforcement of
boundary conditions such that the skew-symmetry of the differ-
ence operators is retained. The basic idea is to ensure that the
global discrete differential operators, after inclusion of the bound-
ary conditions, still possess a discrete summation-by-parts rule.
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For dedicated reviews on summation-by-parts schemes, the reader
is referred to Refs. [55] and [56]. Recently, boundary conditions
that satisfy secondary conservation properties were derived by
Sanderse et al. [57] with particular reference to the fourth-order
extensions of the H–W method mentioned previously.

In addition to kinetic energy, which is the primary focus of this
work, additional quadratic invariants can be in principle consid-
ered. The reader is referred to the paper by Olver [58] for a com-
prehensive and elegant derivation of the inviscid invariants of the
incompressible Navier–Stokes equations based on the Hamilto-
nian formalism. Most notably, the inviscid flow equations also
preserve the total enstrophy

Ð
Xx � x dX and the total helicity

Ð
Xu �

x dX of the flow in two and three dimensions, respectively, with
x ¼ r� u being the vorticity field. These quadratic quantities
have important theoretical and practical significance [59], and
therefore it is appealing to derive numerical methods able to pre-
serve them at a discrete level. For two-dimensional flows, discrete
conservation of enstrophy has received considerable attention
especially in the context of finite- and spectral-element methods
[60,61]. In contrast, invariance of helicity has been rarely consid-
ered, with notable exceptions including the works by Liu and
Wang [62], for axisymmetric flows, and by Rebholz and
coworkers (see, e.g., Refs. [63–65]), in the framework of finite
element methods. Recently, the effects of discrete energy and hel-
icity conservation for helical flows have been discussed by
Capuano and Vallefuoco [66].

Current research trends tend to apply the concepts of energy
conservation in situations of constantly increasing complexity.
The viability of DNS and LES for flows of engineering interest
has increased the demand for robust and efficient numerical dis-
cretizations, and therefore the concepts of discrete conservation
principles are being analyzed in physical models which are pro-
gressively more sophisticated. For instance, recent works deal
with energy-preserving methods for multiphase flows [67], as well
as with moving meshes [68]. Furthermore, the present review has
focused on finite difference and finite volume methods, in which
energy-conserving methods have historically originated. How-
ever, in recent years, the concepts discussed in this work have
started to be transferred also to other discretization techniques,
such as finite element and discontinuous Galerkin (DG) methods,
which are being increasingly used for turbulent flow simulations
especially in the context of complex engineering applications. In
this regard, we mention the recent work by Charnyi et al. [69]
(references therein are also worth consulting), who proposed a
finite element discretization of the incompressible Navier–Stokes
equations that conserves energy, momentum, as well as other
important quantities. This method has been recently applied in
conjunction with pseudo-symplectic Runge–Kutta schemes (that
will be presented in Sec. 3) for the simulation of vortex-induced
vibrations of a circular cylinder [70]. Discontinuous Galerkin
methods are often employed in under-resolved computations of
turbulence for implicit large-eddy simulation purposes [71].
Therefore, an accurate control of aliasing errors and nonlinear sta-
bility is of fundamental importance. Recently, split forms for
compressible flow that preserve kinetic energy have been devel-
oped for DG schemes [72,73], and compared to dealiasing techni-
ques [74].

A number of “industrial” applications of some of the methods
discussed in this section are presented in Sec. 4.

3 Temporal Conservation

In this section, the energy-conservation properties of the time
integrator are analyzed. Temporal conservation errors generally arise
for both incompressible and compressible flow simulations; in the
following, we will focus particularly on the incompressible case, and
briefly mention the compressible one at the end of the section.

Once the incompressible N–S equations have been spatially dis-
cretized, one is left with Eqs. (13) and (14), for which a further
discretization in time is required. Due to the continuity equation,

which is a kinematic constraint on the velocity field ensuring that
the incompressibility condition is satisfied at each time-step, semi-
discretization yields an index-2 differential algebraic system [8].
By introducing a projection operator P, it can be formally recast
as a system of ODE

du

dt
¼ eF uð Þu (72)

where eF ¼ PF and FðuÞ ¼ �CðuÞ þ ð1=ReÞL, with P ¼
I�GL�1M and L ¼MG. Time advancement of Eq. (72) is now
straightforward and can be carried out by means of any ODE
solver. Note that the role of the projection operator is to enforce
incompressibility at each time instant through the solution of a
Poisson’s equation for pressure [75]. In the inviscid limit, the sys-
tem of ODE is left at the right-hand side with the termeCðuÞ ¼ PCðuÞ. When a global energy-conserving spatial discreti-
zation is employed, the matrix C is skew-symmetric, which in
turn implies uTeCu ¼ 0 for all u satisfying Mu¼ 0. Under such
hypotheses, Eq. (72) is an ODE system possessing kinetic energy
as a quadratic invariant. Similarly to the case of spatial discretiza-
tion, general-purpose time-advancement methods do not necessar-
ily ensure preservation of invariants at the (time-) discrete level.
More specifically, while all Runge–Kutta (RK) and linear multi-
step methods preserve linear invariants [76], preservation in time
of quadratic invariants is possible only for some special implicit
RK methods [77,78]. We will thus restrict ourselves to the class of
RK time-advancement methods.

Since the pioneering works from the Stanford group [79], RK
methods have become very popular in the fluid dynamics commu-
nity due to their favorable properties, such as their self-starting
capability and relatively large stability limit. The majority of tur-
bulence simulations are nowadays performed by using three-stage
(particularly the low-storage Wray’s scheme [80]) or four-stage
(the classical RK4 [81]) methods in conjunction with fractional-
step procedures. For wall-bounded flows, the viscous term is some-
times treated implicitly (e.g., using a Crank–Nicolson scheme) to
overcome the stability restriction of explicit schemes [82].

A general s–stage RK method applied to Eq. (72) can be
expressed as

unþ1 ¼ un þ Dt
Xs

i¼1

bi
eFðuiÞui (73)

ui ¼ un þ Dt
Xs

j¼1

aij
eFðujÞuj (74)

where aij and bi are the RK coefficients. The RK coefficients are
often arranged into the so-called Butcher tableau [83], and are usu-
ally constructed to maximize the temporal order of accuracy of the
method, hereinafter referred to as classical order p (or simply order).

The energy-conservation properties of an RK method can be
analyzed by deriving an expression for the kinetic energy variation
introduced by Eqs. (73) and (74). The fully discrete evolution equa-
tion can be obtained in closed form by taking the inner product
between unþ1 and itself. After some basic manipulations, one has

D bK
Dt
¼ 1

Re

X
i

biu
T
i Lui

�Dt

2

Xs

i;j¼1

biaij þ bjaji � bibjð ÞuT
i
eFT

i
eFjuj (75)

where D bK ¼ bKnþ1 � bKn
and eFi ¼ eFiðuiÞ. Note that Eq. (75) in

various different forms has been derived in Refs. [22], [84], and
[85], among others. Equation (75) is the fully discrete counterpart
of the continuous kinetic energy equation, Eq. (12), which can be
rearranged as
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DK

Dt
¼ � 1

Re

1

Dt

ðtþDt

t

/dt (76)

where / ¼
Ð
X2SijSij dV is the scalar dissipation function. Note

that the quantity uT
i Lui is the spatially discretized version of /.

Equation (75) differs from Eq. (76) due to the presence of the sec-
ond term on the right-hand side, which represents the temporal
error. It is worth noting that the appearance of an additional term
in Eq. (75) can be interpreted as a consequence of the lack of the
discrete summation-by-parts rule from the RK discrete time oper-
ator [66].

Energy-conserving RK methods possess the following
property:

Mij ¼ biaij þ bjaji � bibj ¼ 0 8 i; j ¼ 1;…; s : (77)

The fulfillment of the above conditions allows to preserve the
global kinetic energy (for inviscid flows), or to enforce the correct
discrete kinetic energy balance (for viscous flows). In other words,
it ensures that the variation of kinetic energy is solely due to the
physical viscous dissipation. The condition on the coefficients in
Eq. (77) is popular in the ODE community and is commonly
referred to as the M-condition; it can only be satisfied by implicit
methods. The fulfillment of the M-condition can be shown to pro-
vide conservation of all quadratic invariants, thus including
kinetic energy for the inviscid N–S equations. Furthermore, for
irreducible RK methods, Eq. (77) is also a necessary and sufficient
condition for symplecticity [78]. Indeed, RK methods that satisfy
Mij¼ 0 are also known as symplectic, and are the methods of
choice for conservative (Hamiltonian) problems. Some examples
of standard and symplectic RK schemes are reported in Table 2.

Energy-conserving time-integration methods have been applied
only a few times in the context of incompressible flow equations.
Ham et al. [25] developed a fully conservative algorithm based on
the midpoint method, which proved to preserve energy in time
exactly in inviscid computations. Verstappen and Veldman [11]
also applied the implicit midpoint rule to their symmetry-
preserving spatial discretization and recognized that the resulting
scheme is unconditionally stable on any mesh size and for any
time-step. More recently, Sanderse [85] carried out a systematic
study of symplectic methods, including higher order ones, for the
incompressible N–S equations. The relationship between energy
conservation and time reversibility was also discussed, showing
that there exist methods, which are energy conserving but not
time reversible, and vice versa. This should be carefully taken
into consideration, especially when using time reversibility as a
benchmark for energy conservation, as suggested in Ref. [86].
Symplectic methods were generally found to give good results,

although a complex nonlinear system has to be solved to advance
in a single time-step, leading to implementation issues and
remarkable computational effort, especially for the higher order
ones (e.g., the Radau method given in Table 2).

Despite the favorable properties of symplectic methods, explicit
schemes are usually preferred for turbulence simulations, espe-
cially when the time-step size is dictated by accuracy and not by
the stability constraint [87]. Furthermore, explicit schemes are
more suited to massively parallel computing, which is now a man-
datory requirement for DNS and LES of turbulence.

For explicit schemes, the Butcher tableau is lower triangular,
i.e., aij¼ 0 for j 
 i. In this case, the temporal error in Eq. (75)
cannot be nullified. Instead, for Re!1, one has

d bK
dt
¼ O Dtqð Þ (78)

where q is the pseudo-symplectic order. In standard methods, one
usually has p¼ q¼ s. However, special methods can be con-
structed in which the coefficients are derived to satisfy additional
conditions such that the error term in Eq. (75) is of order q> p.
These pseudo-symplectic order conditions have been obtained by
Aubry and Chartier [88] by employing the theory of trees; they
are reported in Table 2.1 of the same work up to sixth-order. The
order conditions can be equivalently obtained by expanding Eq.
(75) as a Taylor series in the time increment Dt. By using the line-
arity of the convective operator CðuiÞ and substituting Eqs. (73)
and (74) into Eq. (75), one obtains

DK

Dt
¼ �Dt C2

X
ij

Mij

� �
� Dt2 C3

X
ijk

Mijajk

� �
�Dt3 C4;1

X
ijkl

Mijaikakl þ C4;2

X
ijkl

Mijaikajl

� �
�Dt4 C5;1

X
ijklm

Mijaikajlajm þ C5;2

X
ijklm

Mijajkaklaim

�
þC5;3

X
ijklm

Mijajkaklajm þ C5;4

X
ijklm

Mijajkaklakm

þC5;5

X
ijklm

Mijajkaklaim

#
þO Dt5ð Þ (79)

The various coefficients C are scalar functions that can be
expressed as combinations of the convective operator. For further
details about the derivation of Eq. (79), the reader is referred to
Refs. [22] and [33]. The pseudo-symplectic order conditions can
be easily obtained by nullifying the single independent terms in
Eq. (79), and can be shown to be equivalent to those presented

Table 2 Examples of standard (Wray’s RK3 and RK4) and symplectic RK schemes. Note that the Wray’s scheme has been recast
in standard (no low-storage) form.
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in Ref. [88]. By properly coupling the classical and
pseudo-symplectic order conditions, pseudo-symplectic RK meth-
ods with prescribed orders of accuracy p and q can be derived
[89,90]. Examples of such methods are reported in Table 3.

A comparison of standard, symplectic, and pseudo-symplectic
methods in terms of energy-conservation properties is illustrated
by two basic examples. Figure 5 (left) shows the time evolution of
the global energy error

rK tð Þ ¼
bK tð Þ � bK0bK0

(80)

for an inviscid double mixing layer flow (see Ref. [22] for further
details). Spatial discretization is accomplished on a 402-cells
mesh by means of the second-order H–W energy-conserving
method mentioned earlier. The final time is t¼ 8, at which the
shear layer roll-up is well defined and the mixing layer instability
has fully entered its nonlinear phase. All cases have been inte-
grated with a fixed time-step corresponding to CFL¼ 1.0. In this
case, global energy is solely changed by the temporal dissipation,
see Eq. (75). The error magnitudes of the pseudo-symplectic
schemes are much lower with respect to the Wray’s and RK4
methods. On equal number of stages, the 3p5q method provides
superior energy-conservation properties with respect to the RK4,

especially during the early evolution; at later times, the two
schemes provide similar results. The best results are achieved
with the 3p6q and 4p7q schemes, which nevertheless require one
and two additional stages, respectively, as compared to the RK4.
The symplectic Gauss’s method provides a null (to machine accu-
racy) energy-conservation error.

A more complex test is the canonical three-dimensional Taylor-
Green vortex described earlier. In this case, the global energy bal-
ance is modified by both the (physical) scalar dissipation rate and
the temporal error, and Eq. (75) can be conveniently rearranged as

D bK
Dt
¼ 1

Re
U þ eRK � e� þ eRK � 1

Reeff

U (81)

where the effective Reynolds number Reeff has been defined. The
time evolution of the ratio between the molecular dissipation to
the temporal error rates is reported in Fig. 5 (right) for two nomi-
nal Reynolds numbers, Re¼ 1600 and Re¼ 3000. Simulations are
carried out in this case by means of a fourth-order Padè scheme
[12] in skew-symmetric form on a 643 mesh. All computations are
again performed with a fixed time-step corresponding to
CFL¼ 1.0. The plot shows that standard RK3 and RK4 methods
commonly used in the turbulence community can lead to a
significant amount of dissipation, which clearly increases as
the flow becomes more under-resolved. Particularly, at the
moment of transition to turbulence, the RK3 scheme provides an
effective Reynolds number that is about 15% less than the nomi-
nal one, thus remarkably violating the physical significance and
reliability of the simulation. On the other hand, the pseudo-
symplectic methods give negligible dissipation values. Again,
the symplectic Gauss method provides a temporal dissipation,
which is null to machine accuracy. For this test, the implicit
scheme was about 2.5 times slower than the RK4, using a fixed-
point iteration method with a tolerance equal to 10�14. The
implicit solver needed on average 8 iterations per time-step to
converge.

Clearly, the numerical dissipation of a time-integration scheme
can be decreased by reducing the time-step size; a recent numeri-
cal study has shown that pseudo-symplectic methods are globally
more efficient than standard ones, being able to provide the same
dissipation levels with a reduced number of time steps [91]; in the
same study, the interaction of the temporal errors with subgrid-
scale models is also discussed. Further work is underway to derive
an adaptive time-stepping strategy relying on an error controller
based on the temporal dissipation [92]. Note that Eq. (81) can be
either interpreted as an instantaneous balance, i.e., the energy var-
iation occurring between two consecutive time steps, or alterna-
tively as a cumulative budget, namely the variation between the
global energy at a certain time with respect to the initial energy.

Fig. 5 Comparison of energy-conservation properties of different temporal schemes. Left: energy-
conservation error for the 2D inviscid double mixing layer. Right: ratio of temporal to physical dissipa-
tion rates for a 3D TGV at Re 5 1600 (solid lines) and Re 5 3000 (dashed lines) for various standard,
symplectic and pseudo-symplectic RK methods.

Table 3 Examples of pseudo-symplectic methods (from Refs.
[88] and [89]). The notation indicates the order on solution p
and on energy conservation q; the number in brackets is the
number of stages s.

3p5q(4) 3p6q(5) 4p7q(6)

a21¼ 3/8 a21¼ 0.13502027922909 a21¼ 0.23593376536652
a31¼ 11/12 a31¼�0.47268213605237 a31¼ 0.34750735658424
a32¼�2/3 a32¼ 1.05980250415419 a32¼�0.13561935398346
a41¼�1/12 a41¼�1.21650460595689 a41¼�0.20592852403227
a42¼ 11/6 a42¼ 2.16217630216753 a42¼ 1.89179076622108
a43¼�3/4 a43¼�0.37234592426536 a43¼�0.89775024478958
b1¼ 1/9 a51¼ 0.33274443036387 a51¼�0.09435493281455
b2¼ 8/9 a52¼�0.20882668296587 a52¼ 1.75617141223762
b3¼�2/9 a53¼ 1.87865617737921 a53¼�0.96707850476948
b4¼ 2/9 a54¼�1.00257392477721 a54¼ 0.06932825997989

b1¼ 0.04113894457092 a61¼ 0.14157883255197
b2¼ 0.26732123194414 a62¼�1.17039696277833
b3¼ 0.86700906289955 a63¼ 1.30579112376331
b4¼�0.30547139552036 a64¼�2.20354136855289
b5¼ 0.13000215610576 a65¼ 2.92656837501595

b1¼ b6¼ 0.07078941627598
b2¼ b5¼ 0.87808570611881
b3¼ b4¼�0.44887512239479
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In this latter case, the physical and numerical viscosities should be
accumulated in time, leading to the plot reported in Fig. 2 of Ref.
[89].

In the context of compressible flows, temporal conservation
errors are more difficult to characterize when using conservative
variables. Indeed, in this usual setting, quadratic quantities that
are preserved by convection cannot be expressed as pure products
of the evolved variables. Compressible flow simulations typically
employ explicit RK methods with strong-stability preserving or
low-dispersion properties for accurate aeroacoustic computations
[93–95]. Apparently, there have been no studies to date to charac-
terize conservation errors due to temporal integration in this
framework. However, it has been recently observed that, when
using the square-root formulation mentioned in Sec. 2.4, all the
relevant conserved quantities are quadratic products of the type
qiqj of the state vector q [48,49]. Therefore, their fully discrete
evolution is characterized by an equation similar to Eq. (75), and
all the properties of symplectic methods mentioned for the incom-
pressible flow also apply for the compressible case. Most likely,
this holds true also for the pseudo-symplectic schemes. This find-
ing generalizes to arbitrary order the second-order conservative
methods previously proposed by Subbareddy and Candler [96]
and Morinishi [50].

4 Applications

Since the early developments, energy-preserving numerical
methods have been typically employed in academic solvers, often
in conjunction with high-order numerical schemes both in space
and time [79,97]. On the other hand, stability and robustness in
complex geometries and configurations of engineering interest
have been traditionally accomplished by low-order central-
differencing schemes with either local upwinding [98,99] or
explicit filtering [100,101], at some expense of solution fidelity.
Indeed, the introduction of artificial dissipation, in any form, to
the numerical algorithm is known to be detrimental to the quality
and reliability of the solution, especially for large-eddy simulation
of turbulence [102,103]. The application of energy-conserving
methods to industrial CFD is relatively recent and can be dated
back to the early 2000s, when discrete conservation principles
started to be extended to curvilinear or unstructured meshes, as
already outlined in Sec. 2.4. Since then, energy-conserving algo-
rithms have been employed for DNS and LES of turbulent flows
in several areas of applied science, e.g., aerodynamics, combus-
tion, high-pressure mixing, as well as many others. Numerous

examples can be found in literature, spanning several fields of
application as well as a broad range of flow regimes and computa-
tional complexity. Far from being exhaustive, this section aims to
review some recent examples, with particular reference to cases in
which enforcement of energy conservation provided significant
advantages over standard methods, in terms of robustness and reli-
ability of the results.

External aerodynamics has largely benefited from the develop-
ment of energy-conserving methods. Some early attempts, partic-
ularly with reference to large-eddy simulation of flow over airfoils
on curvilinear/unstructured meshes, were summarized in the con-
text of the LESFOIL project [105]. Some of the simulations dis-
played severe unphysical wiggles when using straightforward
central-differencing schemes, and the noise could only be
removed by adding numerical dissipation in certain regions of the
flow. Subsequently, these results were re-interpreted in terms of
energy-conservation properties by You et al. [104], who per-
formed incompressible large-eddy simulations of flow over an
airfoil with separation control. The authors compared central-
differencing solvers with and without enforcement of discrete
energy conservation; results are shown in Fig. 6. The energy-
preserving algorithm, based on the scheme developed by Mahesh
et al. [18] (cf. Sec. 2.4), was able to suppress the wiggles without
introducing any artificial dissipation to the flow, thus highly
enhancing the fidelity of the results.

Energy-preserving methods have also been used for transonic
aerodynamics. Recently, Modesti and Pirozzoli [54] performed
inviscid computations of the ONERA M6 wing [106] using an
unstructured compressible flow solver relying on the KGP split
formulation for the convective term (cf. Sec. 2.3), with shock-
capturing capabilities provided by a classical AUSM splitting
scheme [107] with a shock sensor [108]. Their solver, named
rhoEnergyFoam, was implemented into the open-source library
OPENFOAM [109] and compared to the native OPENFOAM compressi-
ble solver rhoCentralFoam, that employs the total-variation
diminishing (TVD) scheme by Kurganov and Tadmor [110].
Sample results are reported in Fig. 7 (courtesy of D. Modesti and
S. Pirozzoli). Important qualitative and quantitative differences
emerge from the comparison of the two numerical solutions:
overall, the dissipative solver rhoCentralFoam provided
smeared shocks (especially at the leading edge) due to its inherent
numerical diffusion. On the other hand, the energy-preserving
solver was able to correctly predict the strength and position of
the shocks and provided very good agreement with experimental
data.

Fig. 6 Contour plots of the instantaneous streamwise velocity component u/U‘ predicted by LES based on a non-
dissipative scheme without discrete kinetic energy conservation (left) and with a solver that preserves kinetic energy
(right). Shown are 30 levels in the ranges of 20.43 to 2.58). Reproduced from Ref. [104] with permission from AIP
Publishing.
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Several additional examples of successful application of
energy-preserving schemes to external aerodynamics can be found
in recent years. The group of Oliva and coworkers has applied the
symmetry-preserving unstructured method developed by Trias
et al. [53] to study complex flows over a car model [111,112], a
NACA0012 in full stall [113], and a circular cylinder [114].
Rozema et al. [115] investigated the flow over a delta wing using
a fourth-order symmetry-preserving scheme for compressible flow
derived in the framework of the square-root formulation [48] (cf.
Sec. 2.4) and extended to curvilinear structured meshes.

Energy-conserving solvers have also been widely used in the
context of turbulent combustion and high-pressure injection appli-
cations. In such problems, capturing of small-scale mixing is
essential and benefits coming from discrete conservation princi-
ples are emphasized [116]. Simulations of realistic combustion
devices were prompted by the development of high-fidelity, fully
unstructured CFD codes such as AVBP of the CERFACS group
[117], and CDP of the Stanford group. This latter solver, later
evolved in Charles, is based on the energy-preserving, unstruc-
tured algorithm proposed by Mahesh et al. [18] and later refined
by Ham and Iaccarino [118]. These capabilities allowed the
famous simulation of the Pratt & Whitney, East Hartford, CT gas
turbine combustor reported in Ref. [119]. An additional example is
the solver SiTCom-B developed at CORIA [120], which imple-
ments the fourth-order, skew-symmetric finite volume method pro-
posed by Ducros et al. [44]. The solver has been massively used to
investigate combustion and high-pressure mixing [121,122].

As a final remark, it is interesting to observe that the over-
whelming majority of multipurpose CFD codes, either open-source
or commercial, are currently not provided with energy-conserving
schemes. Rather, they rely on numerical diffusion to increase
the solver robustness. For instance, to the author’s knowledge
and practical experience, and also upon inspection of the

specialized literature, the native solvers coming with OPENFOAM

do not preserve kinetic energy by convection in the inviscid
limit, in both their incompressible and compressible implemen-
tations. Some researchers have recognized this deficiency and
have recently proposed and implemented low-dissipative algo-
rithms [54,123,124].

5 Conclusions

In numerical simulations of the Navier–Stokes equations,
energy-preserving methods have received much attention in past
years, and are now considered a key element for stable and reli-
able numerical discretizations, both in direct and large eddy simu-
lations of turbulence. In this paper, a survey of the most
successful approaches in this field has been presented. The
emphasis has been mainly put on ideas, with careful exposition of
techniques in simplified settings. Starting from the illustration of
some of the important features of the continuum models, the dis-
cussion on numerical approaches has been conducted by sepa-
rately considering incompressible and compressible flows, and
has covered spatial and temporal discretizations.

The analysis has been carried out by first considering the topic
of spatial conservation for incompressible flows, since the set of
techniques and results in this field constitute the classical corner-
stone for energy preserving methods. The theory has been exposed
by adopting a matrix notation for the discrete operators, which
can be, in our opinion, an efficient tool to justify many properties
of the discretization in simple settings. The regular layout has
shown to be the simplest and more effective environment in which
the main ingredient for energy conservation, i.e., the skew-
symmetry of the discrete convective operator, can be recognized.
It has been shown that energy conservation can be achieved by
means of the so-called skew-symmetric form of the nonlinear

Fig. 7 Results for the flow around ONERA M6 wing. Top: pressure contours on the wing surface for
rhoEnergyFoam (left) and rhoCentralFoam (right); shown are 32 levels in the range 0:4 £ p/p‘ £ 1:2.
Bottom: spatial distribution of the pressure coefficient along the chord at sections z /b 5 0:2 (left) and
z /b 5 0:65 (right) for rhoEnergyFoam (solid lines) and rhoCentralFoam (dot-dashed lines), compared to
experimental data (circles). Figure courtesy of D. Modesti and S. Pirozzoli.
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term, which, by construction, assures the skew-symmetry of the
discrete convective operator. The employment of the matrix nota-
tion in the staggered case, on the other hand, has shown that the
additional degrees-of-freedom associated with the interpolation
procedure lead to the possibility of obtaining globally skew-
symmetric discrete operators also for the divergence form. The
reason for this difference lies in the fact that the staggering of the
variables, and the associated additional interpolation step, actually
permits to enforce a discrete version of the product rule, a crucial
element, which is missing in the regular layout.

The compressible case has been analyzed in detail within the
classical framework of the “split” forms of the nonlinear terms,
which possess a cubic nonlinearity. The exposition of the proper-
ties of the classical Feiereisen and Blaisdell forms has been com-
plemented with the analysis of more recent split forms, together
with a resume of a general framework that has been recently
developed. The topics of conservation of linear invariants and of
the choice of which energy equations is more suitable to discretize
for stability and reliability are also commented on. Extensions and
applications to more complex settings are separately reviewed,
with particular attention to recent developments.

Temporal energy conservation, i.e., the property of temporal
integration to retain the quadratic invariants of the continuous
model, has also been considered. Since the errors arising from RK
integration are typically dissipative, temporal energy conservation
was considered not harmful for stability, and this topic has
received scarce attention in the past. However, as shown in the
paper, standard methods can provide a non-negligible amount of
dissipation, which can violate the physical reliability of the simu-
lations. The recent theory of pseudo-symplectic RK schemes, with
emphasis on the application to N–S equations and to turbulent
regimes, has been exposed with full details. Pseudo-symplectic
schemes have proven to be effective in reducing the numerical
dissipation, and it is expected that the topic of temporal energy
conservation will be further explored in the near future.

All the discussed techniques and all the properties of the vari-
ous approaches have been neatly illustrated by numerical simula-
tions of canonical turbulent flows. In addition, a separate section
of industrial or “real-world” applications has been included. The
implementation of energy-preserving methods in complex config-
urations is recent, and most of the commercial codes employed
for industrial calculations still employ low-order schemes, which
allow the fulfillment of stable simulations by means of some form
of artificial dissipation. Among the various applications of the
open literature, which are here reviewed, we highlighted some
recent studies with the aim of showing the beneficial effects of
energy preserving discretizations in real-world and industrial
applications.

The main challenge of near future research is probably an effi-
cient and accurate extension of some of the many concepts here
illustrated to complex multiphysics configurations and to unstruc-
tured meshes. Some work in this field is already ongoing, and has
been briefly commented on in the review. Stable and energy-
preserving simulations in complex settings would eliminate the
need for artificial dissipation, with a consequent more accurate
representation of the flow physics in real-world applications.
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