
����������
�������

Citation: Coma, M.; Tousi, N.M.;

Pons-Prats, J.; Bugeda, G.; Bergada

J.M. A New Hybrid Optimization

Method, Application to a Single

Objective Active Flow Control Test

Case. Appl. Sci. 2022, 12, 3894.

https://doi.org/10.3390/

app12083894

Academic Editor: Vincent A. Cicirello

Received: 15 March 2022

Accepted: 9 April 2022

Published: 12 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A New Hybrid Optimization Method, Application to a Single
Objective Active Flow Control Test Case
Martí Coma 1,2,* , Navid Monshi Tousi 3 , Jordi Pons-Prats 1,4 , Gabriel Bugeda 1,5 and Josep M. Bergada 3

1 Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE), Edifici C1, Gran Capitan,
08034 Barcelona, Spain; jordi.pons-prats@upc.edu (J.P.-P.); bugeda@cimne.upc.edu (G.B.)

2 Department of Physics, Aeronautics Division, Universitat Politècnica de Catalunya, Barcelona Tech (UPC),
Edifici GAIA, Rambla de Sant Nebridi, 22, 08222 Terrassa, Spain

3 Department of Fluids Mechanics, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Edifici TR4,
C/Colom, 9, 08222 Terrassa, Spain; navid.monshi.tousi@upc.edu (N.M.T.); josep.m.bergada@upc.edu (J.M.B.)

4 Department of Physics, Aeronautics Division, Universitat Politècnica de Catalunya, Barcelona Tech (UPC),
Edifici C3, Esteve Terrades, 5, 08860 Castelldefels, Spain

5 Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya,
Barcelona Tech (UPC), Edifici C1, Gran Capitan, 08034 Barcelona, Spain

* Correspondence: mcoma@cimne.upc.edu; Tel.: +34-932057016; Fax: +34-934016517

Abstract: Genetic Algorithms (GA) are useful optimization methods for exploration of the search
space, but they usually have slowness problems to exploit and converge to the minimum. On the
other hand, gradient based methods converge faster to local minimums, although are not so robust
(e.g., flat areas and discontinuities can cause problems) and they lack exploration capabilities. This
article presents a hybrid optimization method trying to combine the virtues of genetic and gradient
based algorithms, and to overcome their corresponding drawbacks. The performance of the Hybrid
Method is compared against a gradient based method and a Genetic Algorithm, both used alone.
The rate of convergence of the methods is used to compare their performance. To take into account
the robustness of the methods, each one has been executed more than once, with different starting
points for the gradient based method and different random seeds for the Genetic Algorithm and the
Hybrid Method. The performance of the different methods is tested against an optimization Active
Flow Control (AFC) problem over a 2D Selig–Donovan 7003 (SD7003) airfoil at Reynolds number
6 × 104 and a 14 degree angle of attack. Five design variables are considered: jet position, jet width,
momentum coefficient, forcing frequency and jet inclination angle. The objective function is defined
as minus the lift coefficient (−Cl), so it is defined as a minimization problem. The proposed Hybrid
Method enables working with N optimization algorithms, multiple objective functions and design
variables per optimization algorithm.

Keywords: Hybrid Methods; Genetic Algorithms; gradient-based methods; optimization; Active
Flow Control; Synthetic Jets

1. Introduction

Optimization methods usually excel in exploration or exploitation, they have to make
a trade-off between those characteristics. The balance between exploration and exploitation
capabilities will affect the usability of the optimization method. A method that excels
in exploitation may lack the capacity to find the candidate regions and get stuck in local
minima. On the other hand, a method that excels in exploration may lack the capacity
to quickly converge to a refined solution, but it can find the candidate regions efficiently.
Evolutionary bio-inspired methods usually excel in exploration capabilities and gradient
based methods usually excel in exploitation capabilities.

Traditionally, bio-inspired optimization methods provide good exploration capabilities
with robustness in providing global minimum. Nevertheless, this requires a large number
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of evaluations of the objective functions, this being its main drawback, especially when
dealing with applications to industry and engineering. We can see examples of this type
of solution using particle swarm optimization algorithms in microwave engineering at
A. Lalbakhsh and Smith [1], or resonator antennas at A. Lalbakhsh and Esselle [2]. Genetic
Algorithms have also been used on environmental sensing problems at Lalbakhsh et al. [3],
or improving satellite darkness at Lalbakhsh et al. [4]. Gray Wolf Optimization has been
used for the solution of flow measurement and instrumentation problems at [5].

In practice, one could think in a sequential combination of different optimization meth-
ods in order to combine their main advantages and to overcome the different limitations of
each one. For instance, first use an evolutionary algorithm (e.g., a Genetic Algorithm) to
perform an exploration and, next, use its results to start a gradient based method (e.g., a
conjugate gradient) to exploit the interesting regions found by the evolutionary algorithm.
If we do that with all the individuals provided by the evolutionary method, the total
computational cost would be even more prohibitive. However, one could also think of
applying a deterministic improvement with only a reduced set of promising individuals.
This is considered a form of hybridization. An example of this kind of hybridization can
be found at Kelly Jr and Davis [6], which proposes a combination of a Genetic Algorithm
and a k-nearest neighbors classification algorithm. Another example of hybridization with
multiple algorithms is proposed at Jih and Hsu [7]. In this case, a Genetic Algorithm and
dynamic programming is used to address vehicle routing optimization problems. Other
examples can be found at El-Mihoub et al. [8], Kulcke and Lorenz [9].

Other forms of hybridization are the definition of new operators, including multi-
population methods. A multi-population Hybrid Method was proposed in Lee et al. [10]
where games strategies were combined with bio-inspired optimization methods. In this
approach there are different players, all of them using Genetic Algorithms applied to the
solution of different complementary optimization problems.

This approach was used for the optimization of aeronautic shape configurations in
Lee et al. [10] , Lee et al. [11] and D. S. Lee and Srinivas [12]. This was applied in the
optimization of composite structure design at Lee et al. [13].

In this paper, an extended implementation of this approach combining a player using
a Genetic Algorithm with another player using a conjugate gradient is presented and tested
against a single objective problem on an Active Flow Control device optimization. The
performance of this approach is compared with the use of the Genetic Algorithm and the
conjugate gradient methods used alone.

There are two players:

• One population-based for exploration, which could be an evolutionary algorithm or
swarm intelligence.

• One which tries to improve a selection of the most promising individuals coming
from the population of the bio-inspired algorithm which uses a deterministic gradient
based method.

2. Hybrid Method Description

In this section, the proposed Hybrid Method is described. Hybrid Methods have
been researched by Lee et al. [10] among others. In the work of Lee et al. [10], there are
different optimization algorithms inside the Hybrid Method that are also called players, as
it uses the Nash games concepts and hybridizes a Nash game with a global Pareto player.
In Lee et al. [10], the authors use Genetic Algorithms for all optimization algorithms (i.e.,
players) which compound the Hybrid Method. When working with two objective functions,
it uses three players. The first one is the Pareto player or global player and it deals with the
whole problem, two objective functions and all design variables. The other two players are
the Nash players, and each one only deals with one objective function. The design variables
are also split between the two Nash players, resulting in each Nash player working with a
subset of the search space.
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The proposed Hybrid Method, which has been derived from the one proposed by
Lee et al. [10], enables working with N players, multiple objective functions and design
variables per player, and a different optimization algorithm for each player. The structure
of the method is divided into three main components:

• General Algorithm: It contains the initialization of the player, the main optimization
loop and the post-process of the optimization. It is not intended to be changed for
different variants of the Hybrid Method.

• Migration epoch algorithm: It is the function that defines the exchange of information
between the different players. It defines which individuals are migrated between
players, under which circumstances, etc.

• Immigrate methods: The immigrate method is a function that has to be defined for each
type of player. The way each optimization algorithm used as a player can incorporate
and use an individual highly depends on the internal algorithm of each type of
player. This function defines how each type of player incorporates the individuals
that emigrate into them.

The Hybrid Method interlaces the execution of its internal optimization algorithms.
Each player runs one iteration of its optimization algorithm, then a migration epoch
occurs before the other method runs one iteration of its own algorithm. The migration
epoch is the mechanism that allows the exchange of information between players. The
information exchanged by the players are the design variables of a selection of individuals.
The migration epoch implementation is what defines the main functionality of the Hybrid
Method. The general algorithm of the Hybrid Method is described in Algorithm 1.

Algorithm 1: General algorithm of the Hybrid Method

foreach player do
player-Initialize;

while not stop criteria is met do
foreach player do

player-Generate;
player-Compute;
MigrationEpoch(players[i]);

foreach player do
player-PostProcess;

PostProcess;

In this article, the optimization method selected to perform the exploration is a Genetic
Algorithm based on the NSGAII [14]. Other population based optimization algorithms,
such as differential evolution, particle swarm optimization, etc., could also been used here.
The Genetic Algorithm is known for its robustness and exploration capabilities and it is
one of the most widely used optimization algorithms for complex problems. It should
perform the task well in exploring the full search space. On the other hand, the method
selected for the exploitation is a conjugate gradient [15]. As shown in Algorithm 1, first of
all, the Initialize process for each player is called. These methods are called once and are
used to initialize each optimization algorithm. After the initialization of each optimization
algorithm, the optimization loop is started. Inside the loop, as mentioned above, each
optimization player runs one iteration before the migration epoch. One iteration consists of
generating a set of new individuals (i.e., a set of design variables) and computing them. For
the Genetic Algorithm player, the genetic operators of selection, crossover and mutation
are performed inside the Generate process, which yields a new population, known as the
offspring. After the population is computed, the MigrationEpoch process is called, and after
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that the conjugate gradient runs an iteration of its algorithm starting with the migrated
individual, and the process repeats until the stop criteria is met.

The MigrationEpoch process is responsible for managing the exchange of information
between the different players. The definition of this process is what defines most of
the hybrid algorithm. For example, it defines the criteria of which individuals migrate
between players, how often they migrate, etc. The internal algorithm of the MigrationEpoch
process that describes the Hybrid Method presented and tested in this article is detailed in
Algorithm 2.

Algorithm 2: Hybrid Method With Gradient Game

After computing a full iteration of a player the MigrationEpoch(this-player) function does:

if iter = 0 then
foreach player do

player-Immigrate(this-player-Bestfits);

else
if this-player-Bestfits < players[0]-Bestfits then

foreach player do
player-Immigrate(this-player-Bestfits);

else
GetMinBestfits;
this-player-Immigrate(Bestfit);

The tested Hybrid Method combines two players (i.e., optimization algorithms). One
player is intended to perform the exploration of the full search space. The second player is
responsible for the exploitation of the promising regions found by the first one. The Hybrid
Method shares information between the two players, in a bidirectional way, to overcome
the main drawbacks of the optimization algorithms that is formed of. It tries to achieve a
fast rate of convergence and to avoid getting stuck at local minimums.

The Hybrid Method initially runs the Genetic Algorithm player. After the first iteration,
the best individual found by the Genetic Algorithm is transferred to the conjugate gradient
player (first if of the Algorithm 2). The player-Bestfits is the individual with the best objective
function found so far, and it is stored for each player. It is updated every time a better
individual is found. The conjugate gradient player will use this individual as the starting
point of its internal algorithm for its own iteration. The iteration of the conjugate gradient
consists of computing the gradient at the location of the starting point and performing a
line search in the direction of the gradient. After the iteration of the conjugate gradient,
another migration epoch occurs. If the best individual found by the conjugate gradient
outperforms the best individual found by the Genetic Algorithm, then the best individual
of the conjugate gradient is sent to the Genetic Algorithm.

If the first conditional is not met, a second if condition is evaluated, taking into account
the values of the objectives functions achieved so far. The inner if condition compares the
objective function of the last evaluated player (this-player) against the objective function of
the first player, which in this case is a Genetic Algorithm. The condition this-player-Bestfits <
players[0]-Bestfits is clear in a single-objective optimization case, as it is a direct comparison
between values of the objective function. If the objective function of this-player is better
(lower) than the first player, this individual is migrated to the other player.

If the objective function of this-individual is not better, the inner else part of the algorithm
is conducted. In the function GetMinBestfits, a search for the best individual (Bestfit) among
all players is performed, and the individual is migrated to this-player, the last player that
was executed.
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For the full comprehension of the hybrid algorithm, it is important to specify the
Immigrate process. This process is defined for each player, and its implementation depends
on the type of optimization algorithm, and it affects the general hybrid algorithm. It has
one input parameter, the individual that has been selected to migrate into this player.
The Immigrate process is responsible for incorporating the individual into the player. The
Immigrate process of the Genetic Algorithm substitutes the design variables of the last
individual of its internal population with the one that comes from the conjugate gradient.
This introduces the genetic information of this individual into the population. In the next
iteration, the design variables of this individual will be used in the genetic operators.

In order not to repeat computations, the conjugate gradient player only performs a
new iteration when the Genetic Algorithm one provides a best individual different than in
the previous global iteration.

On the other hand, the Genetic Algorithm player always incorporates to the population
the best individual coming from the conjugate gradient, even if it is the same as in any
previous global iteration. The stochastic nature of the Genetic Algorithm can benefit from
maintaining the best individual in the population at each iteration. There is a probability
that the best individual is not selected in the genetic operators, and to keep the best
individual in the population, keeping its genetic information can help to converge in that
region. One could think about problems with elitism, but the method only forces one
individual to remain in the population, the absolute best so far. If this happens for too
long, most probably the optimization has converged, and in case it is not converged, the
algorithm should still be capable to explore other regions with the mutation operator and
the stochastic nature of the Genetic Algorithm.

For more clarity, the general algorithm with two players, the Genetic Algorithm as the
first player and the conjugate gradient as the second one, is schematized at Figure 1. As
mentioned previously, a migration epoch occurs after each iteration of each player. This
executes the process detailed in the Algorithm 2, enabling the possibility of exchanging
information between the two players.

The configuration of the Genetic Algorithm is specified in Table 1 and the configu-
ration of the conjugate gradient is specified in Table 2. The configuration of both opti-
mization algorithms is the same when running alone and when running as a player of the
Hybrid Method.

Table 1. Parameters of the Genetic Algorithm.

Parameter Value

Crossover operator Simulated Binary Crossover [16]
Mutation operator Polynomial Mutation [17]
Selection operator µ + λ & Crowded-Comparison Operator [14]

Probability of crossover 0.9
Probability of mutation 0.1

Population size 20

Table 2. Parameters of the conjugate gradient algorithm.

Parameter Value

Search Direction Method Fletcher-Reeves [18]
Optimal Step Size Method Golden Section [19]

Epsilon for numerical diferentiation 1.0 × 10−6

First step size 1.0 × 10−3

Optimal step size tolerance 1.0 × 10−3
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Figure 1. General algorithm of the tested Hybrid Method.

One of the main drawbacks of the proposed Hybrid Method, using both population
and gradient-based optimization methods, is that it requires the independent configuration
of each optimization method for each player. In this case, the configuration of the Hybrid
Method requires the configuration of the Genetic Algorithm and the conjugate gradient
players. On the other hand, it also enables the possibility to fine tune the players to
perform better, but in cases with high computational costs, it is difficult to perform tests
with different configuration values. Another drawback of the Hybrid Method is that the
parallelization of the evaluations of the individuals can become more ineffective because
each method may have its optimum number of CPUs which may be different for each
method. For example, in this case, the evaluation of the Genetic Algorithm population can
benefit from using 20 CPUs, one for each individual of the population because they can be
computed at the same time. On the other hand, to evaluate the individuals of the conjugate
gradient, the parallelization is not that clear. The individuals to compute the gradient can
be evaluated at the same time, in this case there are eleven individuals, the central point
plus two for each design variable. The line search could also be parallelized, but it is not
in the implementation used in this study. The difference in the parallelization capabilities
between players could result in an under utilization of the computational resources at some
stages of the process.

3. Numerical Results

In order to evaluate the performance of the proposed Hybrid Method, it has been
compared against two classical optimization methods, a plain conjugate gradient and a



Appl. Sci. 2022, 12, 3894 7 of 13

plain Genetic Algorithm. The conjugate gradient method is the same as that which forms
part of the Hybrid Method, but running on its own. The Genetic Algorithm used to compare
the hybrid algorithm is also the same that forms part of the Hybrid Method, but also running
alone. To take into account the random component of the Genetic Algorithm and the strong
dependence on the starting point of the conjugate gradient, multiple optimizations with
each algorithm have been conducted.

Two optimizations have been conducted with the Genetic Algorithm, starting with
different random populations. The Hybrid Method was also run twice, starting with the
same random populations as the Genetic Algorithm, so both methods started with the same
populations. Finally, the conjugate gradient was run six times, starting with six individuals
of the first random population generated by one of the Genetic Algorithms.

All the optimization methods have been tested against the same test case. The test
case consists of a single objective optimization of an Active Flow Control optimization
problem based on the work of Tousi et al. [20]. The objective of that work is to determine
the optimum parameters of the Synthetic Jet actuator design at different angles of attack
in a multiple objective optimization problem. The test case details for the comparison of
optimization algorithms are presented in Section 3.1.

3.1. Test Case Description

The test case focuses on the optimization of an Active Flow Control device, more
precisely, a Synthetic Jet actuator. The device is tested on a SD7003 airfoil at an angle of
attack of 14 degrees. For the comparison between the optimization algorithms, which is
the main objective of this work, a single optimization problem with five design variables
has been used. The objective function is to maximize the lift coefficient, and to do so the
objective function is set to:

f = −Cl

At high angles of attack, the Synthetic Jet can greatly affect the flow structure, improv-
ing the lift coefficient. The Synthetic Jet actuator, if set properly, can help to reattach the
flow to the airfoil or to almost avoid the detachment of the flow.

The design variables are the same as the previous work by Tousi et al. [20]. For a full
explanation and detail of the Synthetic Jet actuator design variables meaning refer to [20].
The five design variables are:

F+ Non-dimensional frequency.
Cµ Momentum coefficient.
θ Jet inclination angle.
x/C Non-dimensional jet position.
h/C Non-dimensional jet width.

The evaluation range of each design variable is shown in Table 3. The same ranges are
used with all optimization algorithms.

Table 3. Active Flow Control design variables and their evaluation ranges.

Design Variable Minimum Value Maximum Value

F+ 0.1 10
Cµ 0.0001 0.02
θo 5 175

x/C 0.001 0.3
h/C 0.005 0.015

The flow has been solved with an unsteady Reynolds averaged Navier–Stokes model
(URANS), using the OpenFOAM software. Other models, like direct numerical simulation
(DNS) or large eddy simulation (LES) could be used to solve the Synthetic Jet simulation,
but their computational cost is too high to perform so many optimizations with the avail-
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able resources. In addition, there is no need to use such precise solvers to evaluate the
performance of the Hybrid Method. More details on the solver used can be consulted
at [20], as this study uses the same model.

The mesh used, see Figure 2a, is one of the meshes previously evaluated in [20],
although having a smaller number of cells (34,448) than the final one employed in that
paper, the maximum y+ after the simulation was y+ = 1. The mesh nearby the Synthetic
Jet actuator is presented in Figure 2b. The run time of the simulation has been adjusted to
30 time units, which as shown in [20] is sufficient to reach convergence. It is important to
note that this study is not about the Synthetic Jet actuator optimization, but to compare the
optimization algorithms in a real world application with a significant computational cost
and complexity. The study of the physical problem is not the main purpose of this study,
which justifies reducing the precision of each CFD simulation in order to reduce the overall
computational cost.

(a) (b)

Figure 2. Full mesh of the domain (a) and Mesh nearby the Synthetic Jet actuator (b).

In Figure 3, the temporal averaged streamlines and pressure field for the non-actuated
case is presented. This configuration is called the baseline. From the streamlines, it can be
seen that the flow is fully separated and the airfoil is under stall conditions.

Figure 3. Averaged streamlines and pressure field of baseline case (Cl = 0.80).

3.2. Results from the Optimizations Methods

This section introduces the results obtained for the proposed comparison. The conver-
gence of the different optimization algorithms are shown in Figure 4. The results shown
in the graph of Figure 4 reflect the problems encountered by the gradient based method.
Most runs of the conjugate gradient initially improve faster than the Genetic Algorithm
but then get stuck between Cl ≈ 1.35 and Cl ≈ 1.45 (except for two runs that get stuck at
Cl ≈ 0.8 and Cl ≈ 1.25, respectively). Those lift coefficient values are achieved with almost
100 evaluations of the objective function for each optimization of the conjugate gradient.
The strong dependence of the conjugate gradient on the starting point is also reflected on
these results, as it presents very different solutions between runs than the other methods.
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In all cases, the conjugate gradient method was stopped because the algorithm found a
local minimum and could not compute the gradient to further improve the results.

On the other hand, the Genetic Algorithm provides optimal solutions similar to the
conjugate gradient, but with a higher computational cost, approximately four times higher.
Both runs of the Genetic Algorithm achieve values of the objective function in the range of
the conjugate gradient results. One of the runs achieves a better objective function than all
of the conjugate gradient runs, with a value of Cl = 1.49. It is important to note that the
Genetic Algorithm optimizations could run additional iterations and achieve better results,
but with a high computational cost.

Figure 4. Comparative of the convergence of the different optimization methods.

The Hybrid Method is the method that achieved better results, outperforming all
runs of the other algorithms in both of its runs. During the first iterations, it achieved
a convergence rate similar to the conjugate gradient. However, the improvement of the
solution has continued, avoiding being trapped in any local minimum. It is also the most
robust, as both runs are very similar in their performance. Both Hybrid Method runs
outperformed all the other optimization methods with a Cl = 1.52 and Cl = 1.54. One
run of the Genetic Algorithm achieved a comparable solution (Cl = 1.49), but it took more
than twice the computational cost of the Hybrid Method. Case 3, with a lift coefficient
of Cl = 1.49, obtained by the Genetic Algorithm with around 375 objective function
evaluations, improves the baseline lift coefficient by 86%. Cases 4 and 5, obtained by the
Hybrid Method runs, achieved a lift coefficient of Cl = 1.52 and Cl = 1.54, respectively.
Both runs needed around 125 objective function evaluations, which is 67% the number of
evaluations of case 3, with an increase in the lift coefficient of 90% and 93%, respectively,
from the baseline. The best lift coefficient achieved by each optimization is presented in
Table 4. The mean (Cl) and standard deviation (σ) of the lift coefficient achieved by each
optimization method is also presented. The Hybrid Method presents the best lift coefficient
mean (Cl = 1.53) followed by the Genetic Algorithm (Cl = 1.44) and the conjugate gradient
(Cl = 1.29). The conjugate gradient is the least robust, with a standard deviation of
σ = 0.2458, but four of the six optimizations achieved similar results than the Genetic
Algorithm with less computational effort.

Looking at these results, one can conclude that the proposed Hybrid Method per-
forms much more robustly than the conjugate gradient method and much faster than the
Genetic Algorithm.
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Table 4. Best lift coefficient of each optimization case, means and standard deviation.

Genetic Algorithm Hybrid Method Conjugate Gradient

Cl

1.39 1.52
0.81
1.26
1.38

1.49 1.54
1.42
1.42
1.46

Cl 1.44 1.53 1.29

σ 0.07071 0.01414 0.2458

3.3. Results Based on the Fluid Flow Performance

This subsection provides a comparison between the characteristics of the flow field
corresponding to each of the optimal solutions labeled in Figure 4. The lift coefficient
and design variables of each of the optimal solutions are presented in Table 5. For a full
explanation of the flow structure and details on the Synthetic Jet actuator performance, the
reader is directed to [20].

Table 5. Values of the lift coefficient and design variables of the five labeled cases.

Case Cl F+ Cµ θo x/C h/C

1 0.81 8.6 1 × 10−4 136 3 × 10−1 5 × 10−3

2 1.39 0.3 1.47 × 10−2 24 1 × 10−3 1.4 × 10−2

3 1.49 3.2 1.92 × 10−2 8 2 × 10−2 5 × 10−3

4 1.52 6.7 2 × 10−2 7 2.6 × 10−2 5 × 10−3

5 1.54 9.9 2 × 10−2 5 1.97 × 10−2 5 × 10−3

As explained in the Section 3.1, the flow without the Synthetic Jet actuator is fully
detached, see Figure 3. The objective of the Synthetic Jet actuator is to prevent or minimize
flow separation. The averaged streamlines and pressure field of the optimized cases are
presented and discussed in this section. The flow field corresponding to Case 1 is presented
in Figure 5. Despite the fact that the flow separation is slightly delayed versus the baseline
case, a large vortical structure is still observed over the airfoil.

Figure 5. Averaged streamlines and pressure field of the Case 1 (Cl = 0.81).

In Figure 6, the averaged streamlines and pressure field obtained from case 2 is
presented. It shows a late reattachment of the flow, which improves the lift coefficient of
the baseline by 74%. This solution has been obtained by one of the Genetic Algorithm’s
runs, with around 400 evaluations of the objective function. The resulting lift coefficient is
Cl = 1.39.
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Figure 6. Averaged streamlines and pressure field of case 2 (Cl = 1.39).

The averaged streamlines and pressure fields of cases 3, 4 and 5 are presented in
Figures 7–9, respectively. All of them show a complete flow reattachment, with very minor
differences in the size of the laminar bubble appearing close to the airfoil leading edge. The
bubbles are in fact located near the Synthetic Jet position, just downstream of it, as can
be seen in the above mentioned figures. The optimization of the flow control actuation
parameters has managed to successfully reattached the flow along the entire airfoil chord.

Figure 7. Averaged streamlines and pressure field of case 3 (Cl = 1.49).

Figure 8. Averaged streamlines and pressure field of case 4 (Cl = 1.52).

Figure 9. Averaged streamlines and pressure field of case 5 (Cl = 1.54).
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4. Discussion

This article presents a new Hybrid Method which combines two optimization methods
(a Genetic Algorithm and a conjugate gradient) of a very different nature. The test case used
to evaluate the performance of the new Hybrid Method is a single objective optimization
with five design variables associated with a Synthetic Jet actuator. The CFD simulations are
solved using a URANS model, which has proven precise enough to capture the active flow
actuator effect and to compare between different designs. For the test case of the Synthetic
Jet actuator, the Hybrid Method has outperformed both of the traditional optimization
algorithms. The new Hybrid Method successfully combines the best characteristics of both
optimization algorithms. It shows a great convergence rate, like a gradient based method,
but without the lack of robustness that usually comes with gradient based methods and
complex applications. The increase in robustness is provided by the Genetic Algorithm
player which avoids local minimums. The strategy to exchange information between
the two optimization algorithms proposed in this Hybrid Method has proven efficient to
overcome the main drawbacks of both classical optimization methods, and the result is an
optimization method capable of exploring and exploiting the full search space.

The future work aims to further test the new Hybrid Method in a multi-objective opti-
mization problem such as the one introduced in Tousi et al. [20]. In high CPU demanding
applications, such a Synthetic Jet actuator optimization is important when working with
optimization algorithms that require a low number of evaluations of the physical model,
and the new Hybrid Method has proven a good option.
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