
Combined heat and power using high-temperature
proton exchange membrane fuel cells for housing

facilities
Vı́ctor Sanz i López
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Abstract—Recently, new alternatives to conventional energy
sources such as fossil fuels are arising due to global problems re-
lated to climate change effect and energy shortage. In this context,
fuel cells and combined heat and power technologies appear as a
possible solution due to their ability to provide both electrical and
thermal energy more efficiently compared to traditional methods.
Related to this, high-temperature proton exchange membrane
fuel cells offer the possibility of implementing combined heat
and power systems, and they are also considered an efficient
technology that emits less greenhouse gases. In this article a
model predictive control based energy management system for
a specific house is presented. Simulation and control models of
the system are presented, together with dimensions and energy
profiles used. Finally, control objectives and the proposed control
algorithm are detailed, and the results when trying to match
residential heat and power demands are discussed.

Index Terms—energy management, model predictive control,
combined heat and power, fuel cells

I. INTRODUCTION

Hydrogen is a very promising energy vector, and fuel cells
constitute a technology that allows to obtain electrical energy
and heat from it in a very efficient way [1], [2].

In the context of energy efficiency for comfort applications
[3], cogeneration or ”combined heat and power” (CHP) con-
stitutes a reliable way to take profit of both types of energy,
electrical and thermal [4]–[7]. Among different technologies
compatible with CHP systems, fuel cells have been used
in countries like Japan as an easy way to generate energy
locally and close to the consumption point [8], [9]. The fact
that thermal energy is released during the energy production
process undergoing in fuel cells makes them useful if this
energy can be used for thermal purposes like space or water
heating, typical of certain industries or housing facilities in
general [10]. High-temperature proton exchange membrane
fuel cells (HT-PEMFC) operate at temperatures above 100°C
and combine hydrogen gas with oxygen to produce water

steam, electrical power and heat [11]–[13]. Although electrical
applications of low temperature PEMFC (LT-PEMFC) have
been implemented for many years, heat produced by HT-
PEMFC can be used and thus increase global efficiency
(electrical and thermal) to maximum levels. This is the reason
why its use in comfort applications such as housing, where
space and water heating are important, is an option being
explored in recent years [14]. In this research line, energy
management strategies to maximise CHP efficiency are of the
utmost importance.

Energy management plays a very important role in CHP,
determining the required amount of thermal and electrical en-
ergy, and making it compatible with the thermal and electrical
demands is not, in general, an easy affair. In the context of
process control in general, model predictive control (MPC)
is a well known method in many applications like highscale
electrical networks or smaller facilities like the one studied in
this article [3], [15]. In this context MPC has been studied as
a reliable strategy to ensure maximum efficiency at all time
of both electrical and thermal consumption [16]–[18]. This
control strategy, based on solving a constrained optimisation
problem, is able to anticipate the tendency of the system
response based on a provided prediction so that control inputs
can tend to the possible value needed in following iterations
[19], [20]. Therefore, the problem of integrating HT-PEMFC
on CHP residential systems and an energy management strat-
egy is one being studied nowadays [21].

In the present article, characterisation and modelling of
a HT-PEMFC stack is presented, as well as the auxiliary
elements for the CHP system such as heating water de-
posits and electrical batteries. For doing so, both behavioural
characteristics and technical specifications of these systems
have been considered. The proposed system model of the
CHP system prepared for control is presented. A supervisory
control in the shape of a model predictive control in order to



Fig. 1: CHP system elements

manage energy operational constraints is presented after that.
Finally, this model predictive control scheme is applied to a
prototype house considering different scenarios corresponding
to different seasons of the year.

II. SYSTEM MODEL

Fig. 1 shows a scheme of the system architecture under
study. As can be seen, the fuel cell is accompanied by a
converter and a battery to manage the electrical part of the
system, while in the thermal part the presence of a heat
exchanger and a thermal storage system is assumed. This
architecture is common in this type of system [8]. Storage
systems play a decisive role so that the fuel cell can jointly
supply thermal and electrical loads.

The role of he different elements in Fig. 1 is the following:
• HT-PEMFC: able to generate heat and electrical energy.
• DC/DC converter: establishes the desired level of voltage.
• Battery: stores electrical energy to be supplied depending

on the demand.
• Heat exchanger: to connect fuel cell and the water tank

when heating it.
• Water tank: stores heat for space heating and hot water

to be used by humans.
We will use two models to describe the behaviour of this

system. First, a detailed model, presented in Section II-A, will
be used for the simulation of the system. Subsequently, a
simplified linear model will be developed, described in the
section II-B, which will be used for the implementation of the
control system.

A. Simulation model

Fig. 2 shows the structure of the model used for the
simulation. This model has been implemented using MAT-
LAB/Simulink and preserves the structure of the system. This
model is the one used for simulation and it includes non-
linearities in fuel cell and electrical battery submodels. Both
models used for PEM fuel cell and electrical battery are the
ones provided by Matlab/Simulink and they are included with
their electrical converters, responsible of regulating connection
of different elements to the electrical system, inside blocks
seen in Fig. 2. The fuel cell model is described in detail in
[22], but it does not take into account heat generated, which
has been added in this work. Finally, the water accumulator
model has been designed applying a thermal balance between
the heat released by the fuel cell, an oil tank being heated by
this heat and the water accumulator heated by this oil tank
through a heat exchanger. The block tagged as ’Current input’

corresponds to the fuel cell current provided by the energy
management strategy detailed later in this article. The ones
tagged as ’Thermal input’ and ’Electrical input’ correspond
to additional flows, connections to grid and power transferred
between electrical and thermal system. Finally, input blocks
tagged as ’Electrical demand’ and ’Thermal demand’ are
treated as disturbances from the point of view of the system.
In the case of the thermal input it has two components:

• Heat generated by means of a transfer of electrical to
thermal power in case of high thermal demand.

• Heat provided by using water stored in the water accu-
mulator.

Likewise, electrical input has the following three compo-
nents to be added:

• Electricity transformed to heat and transferred to the
thermal part of the CHP system in case of high thermal
demand.

• Electrical power supplied by the grid.
• Electrical power supplied to the grid.
Disturbances have the following two components:
• Electrical demand of the housing facility.
• Thermal demand of the housing facility.
In the case of the fuel cell, the curve relating voltage to

current is called polarisation curve and, in the model used it
is the one seen in Fig. 3. In the case studied, a stack of 72 fuel
cells designed for temperatures above water’s boiling point is
used. The thermal and electrical power provided by the fuel
cell can be seen in Fig. 4.

B. Control model

Although it is possible to propose an MPC controller for
a non-linear and complex model like the one proposed in the
previous section, in order to obtain an easily implementable
controller, a linear model will be created that keeps the main
characteristics of the initial model. This model will be directly
formulated as a discrete-time state-space model.

The state vector is defined as

x =

[
Ebat

elec

Eacc
therm

]
(1)

formed by the following 2 states:
• Stored electrical energy in the battery Ebat

elec.
• Stored thermal energy in the water accumulator Eacc

therm.
Additionally, the system has a total of 5 inputs in input

vector u and 2 variables in disturbance vector d:

u =


Ifc
Wtra

Wgridin

Wgridout

Waccumout

 , d =

[
Wdelec

Wdtherm

]
(2)

These variables stand for:
• Fuel cell current Ifc.
• Electrical to thermal transfer resistance Wtra.



Fig. 2: Nonlinear system model in Simulink
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Fig. 3: Polarisation curve of the studied fuel cell

• 3 security elements to connect to grid and the accumulator
if necessary for demand purposes Wgridin

, Wgridout
and

Waccumout
.

• Electrical and thermal demands Wdelec
and Wdtherm

are
considered as disturbances.

The model can be written as:

xk+1 = Axk +Buk +Gddk

yk = Cxk (3)
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Fig. 4: Thermal and electrical power provided by the whole
fuel cell stack

where

A =

[
1 0
0 1− KenvTs

maccCH2O

]
,

B = Ts



ηconvV
nom
fc ηexch(V

nom
q − V nom

fc )

−1 ηtra
1 0
−1 0
0 −1
−1 0
0 −1



T

,

C = I2x2, Gd = −Ts. (4)



The parameters used in the model are:
• Kenv , environment losses constant.
• Ts, sampling time of the model predictive control.
• macc, mass of water in the accumulator.
• CH2O, water’s specific heat.
• ηconv , converter efficiency.
• ηexch, heat exchanger efficiency.
• ηtra, transfer resistance.
• V nom

fc , electrical voltage due to linearisation.
• V nom

q , thermal voltage due to linearisation.
Using this linearised model a model predictive control is

designed as explained in Section IV and compared with the
non-linear simulation model.

III. CONTROL OBJECTIVES

When designing the CHP system, the main target is being
able to feed both the thermal and the electrical demand in
an efficient manner. In order to apply an MPC controller, it
is necessary to transform this generic objective into a cost
function and restrictions on the system variables. As usual
in the MPC [19], [23], in this work the cost function will
be constructed as the linear combination of different cost
functions, each of which will be directly related to a specific
concept. All norms used represent 1-norm. This will lead to
what is known as a multi-objective optimization problem. This
optimisation problem is solved for every iteration, separated
by a sample time, and the following ones are predicted. For
this, uk,i is defined as the i-component of the input vector
(equation (2)) for a certain iteration k.

The objective functions that will be considered in this work
are

• Consumed hydrogen: Consumed hydrogen is proportional
to the fuel cell current [11]. Consequently, the following
cost function is proposed:

fi,1 =

∥∥uk+i,1

∥∥
1

Ifc,max
(5)

• Fuel cell current variation: fast variation in the fuel cell
current might produce starvation in the fuel cell which is
one of the main degradation sources [11]. To minimize
this, the following cost function is suggested:

fi,2 =

∥∥uk+i,1 − uk+i−1,1

∥∥
1

Ifc,max
(6)

• Minimising energy: ek a variable (equation (8)) to change
power flow between battery and the grid, so that energy
used can adapt to demand. To minimise energy consump-
tion using methods like the external grid, the following
cost function is defined:

fi,3 =‖ek+i‖1 (7)
ek = {0, 1} (8)

• Minimising electrical power transferred to the thermal
system. In case extra thermal demand is needed, thermal

energy can be produced due to Joule’s effect with an
appropriate electrical space heating device:

fi,4 =

∥∥uk+i,2

∥∥
1

Pmax
tra

(9)

• Minimising variation of electrical power transferred to
the thermal system, using values from two consecutive
iterations (k − 1 and k). The reason is that this transfer
should be smooth enough in time and activate just when
needed for long time intervals, not just concrete instants:

fi,5 =

∥∥uk+i,2 − uk−1,2

∥∥
1

Pmax
tra

(10)

• Minimising electrical power supplied by the grid, when
the system is not able to supply enough energy or when
extra energy demand would require the system to violate
constraints or neglect other control objectives:

fi,6 =

∥∥uk+i,4

∥∥
1

Pmax
e,loss

(11)

• Minimising variation of electrical power supplied by the
grid, using values from two consecutive iterations (k −
1 and k) to prevent sudden variations that may damage
systems like the electrical battery [24]:

fi,7 =

∥∥uk+i,4 − uk+i−1,4

∥∥
1

Pmax
e,loss

(12)

• Minimising electrical power supplied to the grid, to
ensure that extra energy is not produced all the time by
the system. Just when extra electrical energy is produced,
when thermal demand is much higher than the electrical
one, electrical energy not needed is supplied to the grid:

fi,8 =

∥∥uk+i,3

∥∥
1

Pmax
e,loss

(13)

• Minimising variation of electrical power supplied to the
grid, using values from two consecutive iterations (k− 1
and k), to ensure extra energy is only discarded when it
is too high during a certain amount of time:

fi,9 =

∥∥uk+i,3 − uk+i−1,3

∥∥
1

Pmax
e,loss

(14)

• Minimising thermal power extracted as waste, as only
extra heat must be discarded for safety reasons related
with environment heating:

fi,10 =

∥∥uk+i,5

∥∥
1

Pmax
t,loss

(15)

• Minimising variation of thermal power extracted as waste,
using values from two consecutive iterations (k − 1 and
k). This is only done in cases when heat is discarded in
long intervals, not just specific instants:

fi,11 =

∥∥uk+i,5 − uk+i−1,5

∥∥
1

Pmax
t,loss

(16)



IV. MODEL PREDICTIVE CONTROL FORMULATION

To match the values of heat and electrical power generated
to the demand in the case of a specific house a model
predictive control problem is formulated. The system state
space obtained from a thermal and electrical balance is used
as a constraint for the optimisation problem in its discretised
form. The objective function is calculated adding up all control
objectives presented in the previous section fi,j , each of them
with its weight function wj , to prioritise some objectives above
others.

System model constraints are the ones from the state-
space model previously presented in equations (3) and (4),
considering demands as disturbance dk and including them
as inputs. This model’s variables are constrained with upper
and lower bounds, using soft constraints, which should be
avoided when possible, and hard constraints, which cannot
be violated. All these constraints are included in constraints
vector g = [g1, . . . , g24], with each inequality with index j
corresponding to a component gj of vector g. These con-
straints are applied to different variables and are organised
and described as follows:

Current constraints g1 to g4 limiting its boundary values and
variation in consecutive instants are:

Ifc,min ≤ uk,1 ≤ Ifc,max

−dIfc,max ≤ uk,1 − uk−1,1 ≤ dIfc,max (17)

Electrical energy constraints g5 and g6 limiting its boundary
values (using binary variable ek limited by g9 and g10 to enable
soft constraints) and thermal energy boundaries g7 and g8 are:

xk+1 ≥ Ee,llim − (Ee,llim − Ee,min)ek

xk+1 ≤ Ee,hlim + (Ee,max − Ee,llim)ek

Et,min ≤ xk+1,2 ≤ Et,max

0 ≤ ek ≤ 1 (18)

Electrical power transferred to heat constraints g11 to g12,
limiting its boundary values and variation in consecutive
instants are:

Ptra,min ≤ uk,2 ≤ Ptra,max (19)

Electrical battery soft constraints g13 and g14 (using binary
variable yk to define them) and battery’s electrical losses
boundaries g15 and g16 are:

yk ≤ (Battll − xk+1,1)Ee,max + 1

uk,3 ≤ Pmax
e,lossyk

Pmin
e,loss ≤ uk,3 ≤ Pmax

e,loss (20)

Battery to grid soft constrains g17 to g18 (using binary
variable yk to define them) and boundaries of the electrical
power exchanged between the battery and the grid g19 and
g20 are:

yk ≤
xk+1,1 −Batthl

Ee,max
+ 1

uk,4 ≤ Pmax
e,lossyk

Pmin
e,loss ≤ uk,4 ≤ Pmax

e,loss (21)

Accumulator emptying constraints g21 and g22 (using binary
variable yk to define them) and thermal power boundaries g23
and g24 are:

yk ≤
xk+1,2 −Accuhl

Et,max
+ 1

uk,5 ≤ Pmax
t,lossyk

Pmin
t,loss ≤ uk,5 ≤ Pmax

t,loss (22)

with variables standing for:
• xk is the state vector defined in equation (1). Its first

component xk,1 corresponds to the electrical energy in
the battery Ebat

elec and the second one, xk,2, corresponds
to the thermal energy in the water accumulator Eacc

therm.
• uk is the input vector defined in equation (2) with

variables defined in the discrete domain. Its first compo-
nent uk,1 corresponds to the HT-PEMFC inlet electrical
current Ik, proportional to hydrogen flow. Elements uk,2
to uk,5 are variables Wtra, Wgridin

, Wgridout
, Waccumout

also defined in equation (2).
• dk = [Delec, D

HW
therm + DSH

therm]T is the disturbance
vector composed by expected electricity demand Delec

and thermal energy for hot water DHW
therm and space

heating DSH
therm. It corresponds to the last 2 values of

uk, i.e. uk,6 and uk,7.
• ek is a binary variable so that when ek = 0, only soft

constraint values remain, forcing the state of charge to
be between both. On the contrary, when ek = 1, the
soft constraints term cancels out and the battery state of
charge is limited between its minimum and maximum
values

• yk is a binary variable that, when set as 0, prevents the
input from activating (equation (20)). The first inequality
in equation (21) is the responsible of forcing the binary
variable to 0 when the state of charge is above a set value.

• Battmin, Battl1, Batth1, Battmax are minimum, low-
est recommended, highest recommended and maximum
battery limits.

• Accumin, Accuh1, Accumax are minimum, highest rec-
ommended and maximum accumulator temperatures.

• Ifc,min, Ifc,max are minimum and maximum electrical
current limits.

• dIfc,min, dIfc,max are minimum and maximum electrical
current variation limits.

• Pmin
tra , Pmax

tra are minimum and maximum transfer resis-
tance limits.

• Pmin
e,loss, Pmax

e,loss are minimum and maximum electrical
valve limits.

• Pmin
t,loss, Pmax

t,loss are minimum and maximum thermal valve
limits.

All these constraints gj are included in a vector g =
[g1, . . . , g24] and the global cost function, formed adding up
all control objectives from equations (5) to (16), is defined as
follows:

J(xk,uk) =

Ntotal∑
i=0

11∑
j=1

wj · fi,j(xk,uk) (23)
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Fig. 5: Results for a day of January

Using this cost function, the optimisation problem is defined
as follows:

min
uk

J(xk,uk)

subject to equations (3) , (4) andg (24)

The steps to be followed during the control process are:
• A prediction horizon for the problem Ntotal and a control

horizon N < Ntotal are defined.
• Expected demand values for horizon N are defined,

d̂k · · · d̂k+N .
• The optimisation problem to obtain the control action
uk is solved so that the following N predicted states
x̂k · · · x̂k+N match the specifications.

• The process is repeated for each instant k.
Using values presented before, an optimisation problem as

shown in equation (24) is implemented. Prediction horizon
is selected based on the problem studied, so a whole day is
predicted in advance, knowing the energy demand from other
years in the same system and day of the month. This means
that demand, considered as disturbance, is known, as it does
not vary that much from one year to another. This simplifies
the problem, as the iterations predicted are close enough
to results obtained when time reaches instants previously
predicted. To compute the problem with constraints, Yalmip
environment is embedded in Matlab. Yalmip is a toolbox
able to implement linear matrix inequalities in optimisation
problems, as the case of MPC constraints.

V. SIMULATION RESULTS

The control algorithm from previous section is tested in
the house model detailed above, in different scenarios. These
correspond to a whole day with electrical and thermal demands
associated to different months of the year. The time between
iterations k used for the prediction is 15 minutes and the
prediction horizon is Ntotal = 97 (a full day). Weight
functions used are selected so that the most important control
objectives are prioritised. Those are the ones aimed at min-
imising hydrogen consumption, extra thermal energy obtained
from the electrical system, electrical energy interchanged with
the grid and thermal energy released to the environment.
Objectives related to smoothness of results are imposed using
low weight functions. To obtain the specific weight function
values, several simulations are done to select them (TABLE
I):

For each scenario, the following variables are monitored:

• Electrical demand.
• Thermal demand.
• Fuel cell current or intensity
• Battery state of charge in percentage.
• Water accumulator temperature.
• Electrical power transferred to add additional heat

through a resistance.
• Electrical battery power input, coming from the grid.
• Electrical battery power output, going to the grid.

To test whether the control strategy works as expected



Weight functions wj

w1 0.078
w2 0.005
w3 0.005
w4 0.156
w5 0.005
w6 0.195
w7 0.005
w8 0.195
w9 0.005
w10 0.195
w11 0.005

TABLE I: Selected weight functions used for simulation

battery state of charge and water accumulator temperature
cannot exceed their minimum and maximum values, imposed
by the previously mentioned constraints. Fuel cell current
should also stay between certain limits. Additionally, some
scenarios may need extra heat, in case of too high thermal
demand, or extra heat may be extracted as waste, when thermal
demand is too low. Both phenomena will be included in extra
plots when they are not zero, and a similar thing is done for
electrical power going in or out of the external electrical grid.

Demand profiles are defined according to those of a house
located by the sea in the Spanish Mediterranean coast, not
considering Summer season, as it is not demanding enough in
terms of thermal demand. Results for a typical day of January
are the ones seen in Fig. 5. Top and bottom hard constraints
are indicated by solid lines and soft constraints by dotted lines.

It can be seen that fuel cell current is low enough and does
not present sudden changes (Fig. 5c), the state of charge of
the electrical battery remains between boundaries (Fig. 5d)
and water in the accumulator keeps a reasonable temperature
(Fig. 5e). Additionally, extra thermal power is obtained from
the electrical system to match the high thermal demand (Fig.
5f). A similar study is done for April and the corresponding
results are displayed in Fig. 6.

The main difference with the case of January is that extra
heat produced is not used as thermal demands are not that
high (Fig. 6f). This lower thermal demand is responsible for
having a higher water temperature in the accumulator (Fig. 6e),
which is close to the upper constraint limit. This is the opposite
behaviour to the January scenario, where this temperature was
close to the lower constraint limit, due to constant use of water
for thermal purposes.

Summarising, the algorithm proposed is able to ensure
efficiency in hydrogen consumption, using electrical energy
from the battery without discharging it below soft constraints
and doing the same with thermal energy stored heating water
in the accumulator. Temperature of the accumulator reaches
high and low constraints, but these events are not permanent
and are corrected in following iterations. Thermal power is
released to the environment when extra heat is produced and,
on the contrary, extra heat is produced using extra electrical
power in cases when cold weather requires higher thermal
demand. This is deeply influenced by the dimensions of
the fuel cell, battery and water accumulator, knowing that

the bigger these elements are, the better the system works.
However, extra cost is avoided using smaller devices.

VI. CONCLUSION

An energy management strategy for residential applications
based on high-temperature PEM fuel cells has been presented.
A mathematical model of the whole combined heat and power
system has been described and a version of it has been
integrated in a model predictive control problem aimed to
maximise efficiency, minimise fuel cell hydrogen consumption
and managing electrical battery, water accumulator and other
intermediate systems to ensure that comfort demands are met.
A multi-objective cost function has been defined, and the
intended effect of the individual terms has been discussed.
Finally, this control strategy has been tested in simulation us-
ing the nonlinear model designed with Matlab/Simulink in two
scenarios, corresponding to winter and beginning of spring, as
examples of situations with different thermal demands.

Results obtained show that the system is able to adapt to
scenarios when thermal demand is high or low, activating
additional connections between the electrical and thermal parts
of the CHP system included for the sake of safety in real life
applications. As future work, a more detailed CHP system
where elements are better characterised is possible, so that
results are closer to reality. More specifically, if the equivalent
linearised model used as constraint of the MPC were closer
to the nonlinear system its ability to predict and react to
highly variable demands would presumably improve. A formal
procedure using Pareto fronts would also improve selection of
weight functions more appropriately in future versions of this
work.
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[20] U. R. Nair and R. Costa-Castelló, “A model predictive control-based
energy management scheme for hybrid storage system in islanded
microgrids,” IEEE Access, vol. 8, pp. 97 809–97 822, 2020.

[21] T. Kneiske, F. Niedermeyer, and C. Boelling, “Testing a model predictive
control algorithm for a pv-chp hybrid system on a laboratory test-bench,”
Applied Energy, vol. 242, pp. 121–137, 2019.

[22] S. N. Motapon, O. Tremblay, and L. A. Dessaint, “Development of a
generic fuel cell model: Application to a fuel cell vehicle simulation,”
International Journal of Power Electronics, vol. 4, no. 6, pp. 505–522,
2012.

[23] U. R. Nair, M. Sandelic, A. Sangwongwanich, T. Dragicevic, R. Costa-
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