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Abstract: Atmospheric emissions from vessels at 38 Pacific and Gulf-Caribbean Mexican ports were
determined for nitrogen oxides, sulfur dioxide, particulates, carbon monoxide, non-methane volatile
organic compounds, and carbon dioxide. The emissions have been estimated using a bottom-up
methodology in the maneuver and hoteling phases, by vessel type, from 2005 to 2020. Maritime traffic
in Mexico’s Pacific zone contributes approximately with 60% of the country’s total ship emissions,
with the remaining 40% in Gulf-Caribbean ports. The highest atmospheric emissions were found at
the Manzanillo and Lázaro Cárdenas ports on the Pacific coast, as well as the Altamira and Veracruz
ports on the Gulf-Caribbean coast. The contribution of the atmospheric emissions by vessel type at
Pacific ports was Container 67%, Bulk Carrier 32%, Tanker 0.8%, and RoRo 0.4%. For Gulf-Caribbean
ports it was Container 76%, Bulk Carrier 19%, Tanker 3%, and RoRo 2%. This study incorporates
the International Maritime Organization implementations on reductions of sulfur content in marine
fuel, from 4.5% mass by mass from 2005 to 2011, to 3.5% from 2012 to 2019, to 0.5% beginning in 2020.
Overall, sulfur dioxide emissions were reduced by 89%.

Keywords: atmospheric emissions; maritime zone; maneuvering phase; hoteling phase; emission
factor; air pollution

1. Introduction

In 1973 the International Maritime Organization (IMO) adopted the Marine Pollution
Convention (MARPOL 73/78). The Convention considers regulations to prevent and
minimize pollution from ships and accidental pollution from routine operations in the
marine environment according to six technical Annexes. The agreement was entered into
force in 1983, with a 1997 amendment (Annex VI) adopted in 2008 and entered into force in
2010. The agreement caused a significant reduction in sulfur oxides (SOx) and nitrogen
oxides (NOx) emissions from marine engines [1]. Likewise, new amendments adopted in
2011 and entered into force in 2013 established mandatory measures to reduce greenhouse
gas emissions from international maritime transport. The reduction of sulfur content in fuel
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oil, from 4.5% mass by mass (m/m) before 2000 to 31 December 2011, 3.5% m/m in 2012 to
31 December 2019, and 0.5% m/m in 2020, will allow a considerable additional reduction
of sulfur oxides from vessels, improve air quality in port cities and coastal areas, and meet
global goals in the fight against climate change [2–5]. Four established emission control
areas (ECAs) already have stricter regulations: Baltic Sea, North Sea, North American, and
United States Caribbean Sea. In effect since 2015, within the control areas, the sulfur oxide
emissions limit is 0.10% m/m. This will not change with IMO 2020 regulations.

International maritime transport accounts for approximately 80% of global freight
between peoples and communities around the world [2–4]. It is a safe, efficient, and
profitable international transport system for most goods, and fosters trade between nations
and peoples, while contributing to their prosperity. The world depends on a safe, secure,
and efficient international shipping industry, which is achieved through the regulatory
framework that is established and kept up to date within the IMO.

International maritime trade is forecast to expand at an average annual rate of 2.6%
in 2019 and 3.4% in the period 2019–2024, driven mainly by an increase in Container,
Bulk Carrier, and Liquid-gas ships [2]. In 2018, ships spent an average of 23.5 h in port
(specifically, 2.05 days for bulk carriers and 0.7 days for container ships) by [2]. The typical
spent time in port for a ship calling was 0.97 days [6] and [7]. The short time in port is a
positive indicator of the efficiency level and commercial competitiveness of a port. The
countries with the longest stay times in port correspond mainly to developing countries
or the least developed countries [2]. In total, 64% of container port traffic occurs in Asia,
followed by Europe (16%), North America (8%), Latin America and the Caribbean (7%),
Africa (4%), and Oceania (2%). These percentages largely reflect the level of participation of
different countries in global movement of merchandise, with containerized cargo increasing
in importance due to its average annual growth rate of 8% between 1980 and 2018 [2].

Given these considerations, that exist at the international level, we have determined
the level of atmospheric emission due to the port system in Mexico for the Pacific and Gulf-
Caribbean, considering the movement of vessels in ports in the maneuvering and hoteling
phases from 2005 to 2020. Considering the provisions of the IMO and MARPOL 73/78,
atmospheric emissions of NOx, sulfur dioxide (SO2), particulates (PM), carbon monoxide
(CO), non-methane volatile organic compounds (NMVOC), and carbon dioxide (CO2)
were determined using the “bottom-up” method [8]. This method requires information on
technical operating characteristics, time spent in maneuvering and hoteling phases, power,
and load factor of the main (ME) and auxiliary (AE) engines, specific fuel consumption (sfc),
and emission factors for each phase of navigation. All such information, as well as details
of ship and cargo type, is reported by the “Secretaría de Comunicaciones y Transportes”
(SCT) [9], the controlling body of the port system in Mexico.

Currently, the issue of atmospheric emissions from the port sector in Mexico is not
considered a priority activity, although Mexico is a member of the IMO and MARPOL 73/78.
Therefore, the contribution of this study is fundamental at the international level because
it is a starting point for the development of other studies that are necessary in Mexico.
The main objective of our study was to identify the temporal variability of atmospheric
emissions due to the movement of ships since 2005 considering the implementations and
regulations of the IMO respect to the change of the sulfur content in marine fuel, that is, in
accordance with the IMO in its MARPOL Agreement, Annex VI, SO2 emissions by vessel
corresponding to a progression of sulfur contents of 4.5%, 3.5%, and 0.5% m/m, from 2005
to 2020. This allowed us to identify the level of reduction in atmospheric emissions from
SO2 assuming that fossil fuels will continue to be used in the coming years within the
maritime sector. The results of this study will provide a motivation to monitor and model
air quality in coastal zones, and activities that are not carried out in Mexico and are not
of priority.

Considering the progress of the methods for estimating atmospheric emissions due
to the movement of ships in port, the Automatic Identification System is used to identify
the level of atmospheric emission considering algorithms for it. However, the Automatic
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Identification System is confidential in Mexico and there are restrictions on its use, therefore,
this is a limitation of our study. Given this consideration, we use the current official
information from the literature that exists at the international level regarding emission
factors, time spent in maneuvering and hoteling phases of vessels to determine atmospheric
emissions. Due to the current implementation of IMO, it was a great opportunity to evaluate
the trend of atmospheric emissions by SO2 in Mexico because there were three scenarios
to identify the level of reduction of this specific pollutant. This study clearly reflects the
situation currently in Mexico respect to the level of atmospheric emissions from ships for
15 years, and according to Fuentes et al. [10] it is necessary to consider other system ports
in Mexico to identify the level of atmospheric emission for main pollutants emitted from
ship activities on Pacific and Gulf of Mexico because there is no information about it, and
the issue of atmospheric emissions from ships should be a priority in Mexico due to fossil
fuels being in use in the future for maritime sectors.

2. Background
2.1. Port System in Mexico

In Mexico, maritime activity is very important because exports have increased in
recent years, and a third of the merchandise that moves from Mexico is by sea. The need
to understand the level of atmospheric pollution from port activity in Mexico is thus a
relevant issue, especially since some national ports are undergoing maritime development
and expansion. To date, few studies have addressed the issue of atmospheric pollution
emissions from port activities in Mexico. Fuentes et al. [10] determined the level of at-
mospheric emissions for main pollutants due to the movement of ships in maneuver and
hoteling positions using the bottom-up method, this is the first study carried out in Mexico
to characterize one of the most important ports located in the Gulf of México, port of
Veracruz. Emissions from maritime vessels in Mexico have an important influence on air
quality in coastal areas and, in some cases, inland air quality [11]. The most important
pollutants emitted by ships are CO2, NOx, SOx, CO, hydrocarbons (HC), and PM. These are
harmful air pollutants that impact air quality, human health, and climate on local, regional,
and global scales. Mexico is currently updating its National Inventory of Greenhouse Gas
and Compound Emissions, as part of its commitment to the United Nations Framework
Convention on Climate Change [12]. Mexico is responsible for preparing, periodically
updating, publishing, and facilitating the national inventories of anthropogenic emissions
due to different emission sources [13]. The “Instituto Nacional de Ecología y Cambio
Climático” (INECC) prepares and updates the inventory of anthropogenic emissions, in-
cluding emission estimates from the burning of fossil fuels. The methods for estimating
anthropogenic emissions are based on the scientific and technical criteria established by
the Intergovernmental Panel on Climate Change [14]. Mobile, non-highway transport
sources contribute 26.2% of the total emissions nationwide [15,16]. However, there is no de-
tailed information on shipping emissions. Our study thus contributes detailed, nationwide
information on anthropogenic emissions for the port sector.

The National Port System handled 267 million tons of cargo in 2020, 12% less than in
2019. Liquids and derivates represented 39.7% of the national total cargo, Bulk Mineral
22.5%, Container 17.8%, General Cargo 9.1%, Bulk Agricultural 6.3%, and Fluids 4.6%.
Container traffic handled 6.5 millions of Twenty-foot Equivalent Unit (TEU), 9.1% less than
in January to December 2019 [17].

The ports considered in this study are shown in Figure 1. We considered the ports
included in the Monthly Statistical Report issued by SCT [9]: 22 ports in the Pacific and
16 in the Gulf-Caribbean. The ports have a Federal-SCT classification that corresponds to
“Administración Portuaria Integral” (API), the most important in Mexico.
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Figure 1. Location of the Mexican ports. Own elaboration considering to data available from [9].

In 2020 a total of 7245 vessels were served in the Pacific, and 13,999 in the Gulf-
Caribbean, with a total of 21,244 vessels served. With this level of vessel activity, it is
necessary to understand the atmospheric emission levels generated by port activity on the
Pacific and Gulf-Caribbean coasts.

A summary of vessels and cargo type arriving at Pacific and Gulf-Caribbean ports
for 2020 is shown in Table 1. The main commercial ports of Mexico, based on the influx of
vessels, are Mazatlán, Manzanillo, and Lázaro Cárdenas (Pacific) and Altamira, Veracruz,
Coatzacoalcos, Dos Bocas, and Carmen (Gulf-Caribbean). Most of the vessels served
in Pacific ports were Container and Bulk Carrier, while RoRo and Tanker vessels were
the most frequent in Gulf-Caribbean ports. The port of Manzanillo registered a total of
1256 container vessels served, while the port of Altamira and Veracruz together served
1177 vessels, indicating that the port of Manzanillo is the main port for the movement of
Container cargo on the Pacific. On the Gulf-Caribbean, the ports of Dos Bocas and Carmen
are principal in the movement of loose general cargo.

2.2. Methods for Estimating Atmospheric Emissions

Currently, there are two methods for estimating atmospheric emissions due to the
combustion process carried out in the ME and AE of the ship in the navigation phases of
cruising, maneuvering and hoteling. The first is based on fuel consumption [18] and is
called top-down. The parameters required for its use correspond to the Gross Tonnage (GT)
as a function of ship type and marine fuel consumption. Trozzi and Vaccaro [18] developed
an expression to determine the ship fuel consumption based on GT and ship type. The
emission factors for this method are based on engine type: steam turbine (ST), high speed
diesel (HSD), medium speed diesel (MSD), slow speed diesel (SSD), and gas turbine (GTu),
and are available for the atmospheric pollutants NOx, CO, CO2, volatile organic compounds
(VOC), PM, and SO2. Trozzi and Vaccaro [19] presented an adjustment to their top-down
methodology and considered future scenarios for estimating atmospheric emissions.
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Table 1. Arrival of vessels in each port on the Pacific and Gulf-Caribbean during 2020.

Port Name State RoRo Container Bulk Carrier Tanker Total

Pacific

Rosarito BC - - - 133 133
El Sauzal BC - - - - -
Ensenada BC 93 243 153 4 493

Isla de Cedros BC - 0 750 - 750
Guerrero Negro BCS - 0 688 - 688

San Carlos BCS - 0 0 11 11
Pichilingue BCS 24 0 102 40 166

La Paz BCS 10 0 0 150 160
San Juan de la Costa BCS - - 6 - 6

Isla San Marcos BCS - - 47 - 47
Punta Santa María BCS - - 30 - 30

Santa Rosalia BCS - - 0 - -
Puerto Libertad SON - - 0 - -

Guaymas SON 19 41 203 137 400
Topolobampo SIN 10 - 148 154 312

Mazatlán SIN 247 116 0 151 514
Manzanillo COL 203 1256 220 150 1829
Cuyutlán COL - - - 36 36

Lázaro Cárdenas MICH 270 633 157 201 1261
Acapulco GRO 28 - - 74 102

Salina Cruz OAX 1 13 3 203 220
Puerto Chiapas CHIS 24 54 9 - 87

TOTAL 929 2356 2516 1444 7245

Gulf-
Caribbean

Altamira TMPS 372 535 221 418 1546
Tampico TMPS 178 72 167 307 724
Tuxpan VER 84 59 70 439 652

Veracruz VER 474 642 371 374 1861
Coatzacoalcos VER 87 53 107 934 1181

Frontera TAB - - - - -
Chiltepec TAB - - - - -
Dos Bocas TAB 3469 - 60 490 4019
Carmen CAMP 2677 - 101 41 2819

Seybaplaya CAMP 210 - - - 210
Lerma CAMP - - - 37 37

Cayo Arcas CAMP - - - 167 167
Progreso YUC 16 277 96 158 547

Las Coloradas YUC - - - - -
Puerto Morelos Q.ROO - 52 - - 52
Punta Venado Q.ROO - - 184 - 184

TOTAL 7567 1690 1377 3365 13,999

BC: Baja California, BCS: Baja California Sur, SON: Sonora, SIN: Sinaloa, COL: Colima, MICH: Michoacán, GRO: Guerrero, OAX: Oaxaca,
CHIS: Chiapas, TMPS: Tamaulipas, VER: Veracruz, TAB: Tabasco, CAMP: Campeche, YUC; Yucatán y Q.ROO: Quintana-Roo.

The second method is called bottom-up and is the most widely used method for
estimating atmospheric emissions from ships because detailed information about the fuel
consumption by vessel type is often lacking. The bottom-up method considers the technical
aspects of the vessel: (1) type of vessel, (2) GT, (3) power of the ME and AE, (4) load factor
of the ME and AE, (5) time spent by the vessel in cruise, maneuver, and hoteling phases,
and (6) emission factor [6,8,20], Cooper and Gustafsson [21–24]. The power of the ME and
AE depend on the GT for each type of ship. Atmospheric emissions are determined for
the three ship navigation phases for both the ME and AE. Consideration of engine type
makes the method more specific, with emission factors corresponding to many pollutants
including criteria pollutants, organic and inorganic toxics, and greenhouse gases [6,8],
according to Cooper and Gustafsson [21]. Currently, there are studies related to identifying
the problems in the time spent in the maneuver and hoteling position by ships. Specifically,
in the speed reduce zone in ports. Those considerations are very important due to the level
of atmospheric emissions depends on these factors. Venturini et al. [25] used the Berth
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Allocation Problem (BAP) to optimize problem in hoteling times and position to ships in
container terminals because the problem consisted for determining arrival times, berthing
times, and berthing positions for each vessel for each port in the string where the handling
time for each vessel is known for each port-berth combination. They found a reduction of
atmospheric emission up to 42% applying the BAP method. Zhang et al. [26] identified
the cold chain mode choice selection with five additional considerations, namely, optimal
shipment scheduling, two different bulk ship deployment methods, reefer bulk ship speed
optimization, time dependent cargo depreciation, and atmospheric emissions (greenhouse
gases only) considering the container and bulk cargo. Findings from a numerical example
show that optimal ship speed decreases with a reducing rate when the bunker price
increases and with a higher decline rate when goods are less perishable. They considered
two models to select between chartered reefer fleet deployment methods and to decide the
optimal operation of the reefer bulk fleet.

The Ship Traffic Emissions Assessment Model (STEAM) is a method used by various
port systems to estimate atmospheric emissions arising from the combustion process of
engines (ME and AE) within different ships and navigation phases. The model relies
on information generated by in real time by the Automatic Identification System (AIS)
(ship-port). The AIS is useful for the evaluation of ship emissions, as it provides continuous
automatic information on the vessel positions and instantaneous speeds of ships. If the
required vessel characteristics are also known, the exhaust emissions can be modelled
at very high temporal and spatial resolution. Both the geographical coverage achieved
via AIS satellite receivers, and the amount of usable AIS-based shipping activity data
have substantially increased while the financial costs for acquiring the relevant AIS data
have significantly decreased. The availability of the new data has made it possible to use
refined methods that can significantly improve the quality of bottom-up ship emission
inventories, Johansson et al. [27]. The AIS messages provide data which increase the
precision of atmospheric emissions estimates, with minimal uncertainty, as shown by
Jalkanen et al. [28,29]. Separate emission factors for NOx, PM, SOx, CO2, and CO are used
in the STEAM model [28–30]. For example, the NOx emission factor is estimated by the
rotation data of the motor shaft [28]. The emission factors change according to the engine
load and can be higher for engines that operate at low loads. This is particularly true during
maneuvers in port [29]. A recent model validation study showed the best performance
when ship speed is 70–75% of service speed. With decreased or increased speed, the model
tends to diverge from real-world observations. The model also provides a proxy for the
calculation of fuel consumption [31]. Due to the increase in the ships data availability
and particularly following the introduction of the AIS, bottom-up studies are nowadays
generally more popular than top-down, as shown by Toscano and Murena [32]. In Zhang
et al. [33] the use of AIS for Singapore port consisted in a tangible analytical approach
to analyze ship traffic demand and the spatial–temporal dynamics of ship traffic in port
considering 182 million records in this port were used to assess the developed approach.
The proposed approach includes the two modules: traffic demand analysis module, and
traffic state spatial –temporal analysis module. Additionally, Zhang et al. [33] investigated
the spatial distribution of ship speed and ship accidents using the field data. It was found
that hotspot areas of speed were also hotspot areas of ship accidents. Nevertheless, ship
density showed no significant relationship with ship accidents. However, the situation of
Mexico regarding the use of AIS to characterize the port system in the Pacific and Gulf-
Caribbean is not currently viable because this type of information is confidential and there
are many restrictions on its use.

These details are relevant to the inclusion of ship emissions while in port in national
emission inventories. Browning and Bailey [34] indicate that to develop an atmospheric
emissions inventory, a three-tiered approach should be utilized: (1) a quantification of
each ship’s trip into and out of a port, along with estimates of harbor craft and land-
side emissions; (2) a mid-tier approach where ship trips are averaged by vessel type and
dead weight tonnage, allowing the calculation of average trip characteristics; and (3) a
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streamlined approach in which marine, harbor craft, and land-side emissions are estimated
from other detailed inventories. However, we believe that there are other considerations
relevant to the development of an atmospheric emissions inventory: fuel consumption
by vessel type, sulfur content in the fuel, port location, power changes in the ME and AE,
time spent in the maneuvering and hoteling positions, method selected to estimate the
emissions, and detailed vessel information. Browning and Bailey [34] further recommend
that the bottom-up method is the most suitable for calculating atmospheric emissions
when detailed information on ships is known. Dalsoren et al. [35] indicate that a reliable,
up-to-date ship emission inventory is essential for atmospheric scientists quantifying the
impact of shipping and for policy makers implementing regulations and incentives for
emission reduction and can show where emission reductions can be applied to minimize
impacts most effectively. Gutiérrez et al. [36] compared nine inventory methodologies
to calculate energy consumption and associated emissions of ships passing through the
Strait of Gibraltar. They found acceptable differences of approximately 20% among the
methods considered [6], as shown by Jalkanen et al. [28], Hulskotte and Van der Gon [37,38],
Corbett and Koehler [39], Eyring et al. [40]. Such emissions can be confidently estimated
by available methodologies.

Ship emissions estimates using the bottom-up method have been reported for several
locations. De Melo Rodríguez et al. [41] determined the atmospheric emissions of CO2,
NOx, SOx, and PM for the port of Barcelona using the bottom-up method, relying on the
AIS. They reported that the total emissions derived from 30 cruise vessels amounted to
41,750 tons of CO2, 955 tons of NOx, 900 tons of SOx, and 94 tons of PM. The average
emissions estimate per vessel call was 80 tons of CO2, 1.85 tons of NOx, 1.75 tons of SOx,
and 0.20 tons of PM. Zhang et al. [42] also determined the atmospheric emissions of SOx,
NOx, particulates smaller than 10 micrometers (10µm) (PM10), particulates smaller than
2.5 µm (PM2.5), CO and HC through the bottom-up method and the AIS System in China,
and reported that near urban zones, ship emissions of SOx were highest with respect to
other pollutants.

Carletti et al. [43] estimated PM10 emissions in the maneuvering and hoteling phase
using the bottom-up method and the information available from the EMEP/EEA, assuming
a fuel sulfur content of 0.1%. Gutiérrez et al. [44] determined the atmospheric emissions of
SO2, NOx, CO2 and PM10 using two bottom-up methods differing by emission factor used
and found differences of 16% for NOx and 23% for CO2 among the two methods.

Atmospheric emissions estimated for the navigation phases of each vessel type are
determined separately for criteria pollutants (SO2, PM and CO), non-criteria pollutants
(NOx), toxic organic compounds (VOC and NMVOC), toxic inorganic compounds as lead
(Pb), cadmium (Cd), mercury (Hg), arsenic (As), chromium (Cr), cupper (Cu), nickel
(Ni), selenium (Se) and zinc (Zn), and greenhouse gases as CO2, methane (CH4), and
nitrous oxide (N2O). All such estimates have an uncertainty associated with the mode
of navigation. Cooper and Gustafsson [21] indicate that the atmospheric emissions in
the hoteling phase contain uncertainties of 10 to 30% for criteria pollutants and organic
toxics, 50% for inorganic toxics, and 20 to 50% for greenhouse gases. In another study,
uncertainties of 20 to 40% in the hoteling phase, and 30 to 50% and 10 to 25% in the cruise
and maneuvering phases, respectively, were reported [6].

Around 15% of the global anthropogenic NOx and 58% of global SOx emissions are
attributable to oceangoing ships, as shown by Eyring et al. [40] and Corbett et al. [45].
The shipping sector is projected to grow by 50–250% by 2050 [46]. Global use of heavy
oil and diesel for ships makes a small contribution to climate change of 2.2% of global
emissions of CO2 on the order of 795–938 Mt CO2 in 2012 [46]. A more recent model
suggests emissions of 831 Mt CO2 in 2015, as shown by Johansson et al. [27]. Given
these considerations, Styhre et al. [47] determined the level of greenhouse gas emissions
for four ports: port of Gothenburg (150,000-ton CO2), port of Long Beach (240,000-ton
CO2), port of Osaka (97,000-ton CO2) and port of Sidney (95,000-ton CO2) considering five
navigation phases. The method utilized by Styhre et al. [47] corresponded with bottom-up
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and AIS, and some parameters of ships from [6] and [21]. According to Styhre et al. [47]
this is the first study to compare the greenhouse gas emissions considering different
continents. Considering to the provisions by Intergovernmental Panel on Climate Change
to reduce the CO2 atmospheric emissions by 2050, Iris and Lam [48] indicate that emission
reduction is a direct consequence of the energy efficiency, electrification of equipment, the
use of alternative fuels and renewable energy sources, and technological advances also
contribute to the fuel consumption efficiency. Recently, energy-aware studies gain attention
in automated container terminals. Iris and Lam [48] suggested various techniques to reduce
the greenhouse gas emissions: cold-ironing, electrification and technologies for equipment,
energy supply, and clean fuels, mainly. However, these technologies are widely used in
ports located in developed countries, that is, their political, economic, and environmental
level has allowed them to use these methods to reduce the level of atmospheric emissions
as well as to develop methods to reduce the greenhouse gas emissions.

2.3. Determining Atmospheric Emissions in Port

Currently, the approach to determining atmospheric emissions using the bottom-up
method is based on ship movement in port, specifically during the maneuvering and
hoteling phases [49], as discussed by Knezevic et al. [50] and Cullinane et al. [51]. Toscano
and Murena [32] indicate that methodologies for the assessment of ship emissions goes
from: full top-down approach to full bottom-up approach. In the full top-down approach
total emissions are calculated at a large scale, generally national, and then geographically
reduced at a smaller scale (regional or urban) using proxy variables. In the full bottom-up
approach, air pollutants emitted by each ship in its specific position and during a specific
activity is estimated. Then data are aggregated over the time and the space. Bottom-up
methods estimate the emission rates during each specific activity (hoteling, maneuvering
and navigation) as the product of an emission factor (EF) multiplied by the energy output
of the engine or the fuel consumption. Energy output is generally estimated using the
maximum continuous rating engine power multiplied by a load factor. Hulskotte and
Van der Gon [37] indicate that over the past decade, expanding international trade has
resulted in corresponding rapid growth in the tonnage of goods shipped by sea. Ships
are clearly recognized as a major source of air pollution and associated climate change,
global warming, acidification, and eutrophication, all of which can have significant adverse
effects on human health, as indicated by Yang et al. [52], Deniz and Durmusoglu [53,54],
Gibbs et al. [55] and McArthur and Osland [56]. Atmospheric emissions of pollutants such
as CO, PM10, PM2.5, VOC, NOx, and SO2 exert deleterious local effects in coastal cities,
in the form of environmental and health problems [57]. Emissions from ships in hoteling
phase are the fundamental determinants of the concentration of exhaust emissions in ports:
NOx 90.1%, PM2.5 78.0%, and SOx 88.5%, shown by [54], Deniz and Civkaroglu [58], and
Papaefthimiou et al. [59]. Given the serious health effects of local concentrations of certain
ship emissions, there is clearly a case for a focused analysis of ship emissions in the hoteling
phase. Of particular importance to human health in urbanized ports, around 95% of the
ship-generated total PM emissions are PM2.5 [60].

Some countries monitor the air quality of their port systems, focusing on criteria
pollutants [61–64]. Studies indicate an adverse health effect to the population near a port,
including severe impacts on health and the environment, especially in territorial waters,
inland seas, canals, straits, bays, and port regions, as discussed by Saracoglu et al. [65].
Based on fuel consumption, the annual CO2, NOx, and SOx emissions from ships constitutes
about 2%, 11%, and 4% of global anthropogenic emissions, respectively [66]. On average
across Europe, shipping emissions expose 8% of the population to primary PM2.5, 16.5% to
NOx, and 11% to SOx. Less than 1% of the population was exposed to shipping emissions
of CO, NMVOC and ammonia (NH3) [67].

The need to identify atmospheric emissions from the maneuvering and hoteling phase
of vessels in port has thus become, as established by the MARPOL Annex VI agreement,
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MARPOL 73/78, an essential task that each port must fulfill as a priority activity to protect
the health of the general population.

According to the IMO, reducing the sulfur content in fuels from the 2012 level of 2.5%
m/m to 0.5% by 2020 will substantially reduce atmospheric emissions of SO2 [3–5]. This
measure was adopted on 1 January 2020, therefore, the type of ships that currently move
around the world will have to use cleaner fuels [7,68]. Speciation analyses of these cleaner
fuels will be necessary to determine their impact on ship emissions.

3. Methodology

The procedure for estimating atmospheric emissions of NOx, SO2, PM, CO, NMVOC,
and CO2 on an annual basis is shown in Figure 2. The bottom-up method was used,
thus incorporating information on typology and vessel details for the different navigation
positions as well as differential emission factors for the ME and AE by vessel type for each
navigation position. Information about maritime traffic in the port sector in Mexico from
2005 to 2020 was considered [9].
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The expression to determine the total emission (maneuvering and hoteling phases) is
shown in Equation (1). This method corresponds to [7,8], and Cooper and Gustafsson [21,22,24].

ET = Emaneuvering + Ehotelling (1)

ET = tmaneuvering ∗ [(PME ∗ LFME ∗ EFME) + (PAE ∗ LFAE ∗ EFAE)] + thotelling ∗ (PAE ∗ LFAE ∗ EFAE)

where: ET : total Emissions (g), Emaneuvering: maneuvering emission (g), Ehotelling: hoteling
emission (g), tmaneuvering: time spent in maneuvering phase (h), thotelling: time spent in
hoteling phase (h), PME: power of the ME (kW), PAE: power of the AE (kW), LFME: load
factor of the ME for each navigation phase, LFAE: load factor of the AE for each navigation
phase, EFME: emission factor of the ME for each navigation phase (g/kW), EFAE: emission
factor of the AE for each navigation phase (g/kW).

To determine the atmospheric emission by vessel type it is necessary to calculate the
power installed for the ME and AE. The power installed for the ME depends on the GT
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value for each vessel type. These expressions are shown in Table 2, along with the GT
average and the number of samples by ship type [7,69]. The power of AE by vessel type is
determined by multiplying the power of ME by the ratio AE/ME.

Table 2. Technical data for each type of vessel considered in this study. Data available for Sample of Ships, Total GT, and
Power Installed of ME were adapted from [7,69].

Ship Type Sample of
Ships, [7,69]

Total GT
[7,69] Average GT

Power
Installed of
the ME, [69]

Power of the
ME, kW

Ratio
AE/ME

Power of the
AE, kW

RoRo 10,670 182,580,944 17,112 164.578 ∗
GT0.4350 11,425 0.39 4456

Container 13,318 324,977,361 24,401 2.9165 ∗
GT0.8719 19,509 0.25 4877

Bulk Carrier 7111 98,055,089 13,789 35.912 ∗
GT0.5276 5486 0.38 2085

Tanker 11,489 213,358,950 18,571 14.755 ∗
GT0.6082 5824 0.29 1689

The load factor used for the emission calculation was 20% for all vessels except for the
Tanker vessel. For Tanker vessels a load factor of 40% was used in the hoteling phase for
the AE according to [6], Cooper and Gustafsson [21]. Nicewicz and Tarnapowicz [70] also
provide load factor data in the hoteling phase by type of vessel as well as the power of the
ME and AE. For the maneuvering phase, 20% was considered as the load factor for the ME
and 50% for the AE for all vessels in accordance with [6].

The emission factors considered in this study are shown in Table 3 and correspond
to reported values [8] for all pollutants except CO2. As the CO2 emission factor is not
reported by [8] the one reported by [7,22] was used. SO2 emission factors are based on the
IMO regulation periods and Sulphur content in marine fuel.

Table 3. Emission factors (gpollutant/kW-h) for estimating atmospheric emissions in Mexico. Data available for Emission
Factors were adapted from [7,8,22].

Position Engine

Emission Factors [7,8,22]

NOx
SO2

CO PM NMVOC CO2
4.5% a 3.5% b 0.5% c

Maneuver
gpollutant/kW-h

ME 9.9 20.07 15.61 2.23 1.7 0.9 1.5 710
AE 13 19.53 15.19 2.17 1.6 0.3 0.4 690

Hoteling
gpollutant/kW-h AE 13 19.53 15.19 2.17 1.6 0.3 0.4 690

a Sulphur content in Marine Fuel Oil. IMO Regulation Period: Before 2000 to 31 December 2011. b Sulphur content in Marine Fuel Oil. IMO
Regulation Period: 1 January 2012 to 31 December 2019. c Sulphur content in Marine Fuel Oil. IMO Regulation Period: 1 January 2020 to
currently.

The spent time in the maneuvering and hoteling phase by type of vessel is an important
factor that must be considered in the estimation of atmospheric emissions from vessels.
Most of the time, the AE is operating in the hoteling position, while both the ME and AE
work in the maneuvering position. Table 4 shows the time spent in the maneuvering and
hoteling stage for each vessel in operation [6,71].



J. Mar. Sci. Eng. 2021, 9, 1186 11 of 19

Table 4. Maneuvering and hoteling time (h) for each ship type. Data adapted from [6,71].

Type of Vessel Spent Time
Maneuver., h

Spent Time
Hoteling, h References

RoRo 1.0 25

[6,71]
Container 1.0 26

Bulk Carrier 1.0 64
Tanker 1.0 42

4. Results and Discussion
4.1. Arrival of the Vessels

Arrivals by type of vessel at Pacific and Gulf-Caribbean ports from 2005 to 2020
are shown in Figure 3a, with total arrivals shown in Figure 3b. RoRo and Tankers have
had a greater boom in the Gulf-Caribbean (Figure 3a), and since 2016 there has been
a gradual increase in the RoRo with 7782 ± 566 vessels for 2019, and an average of
3657 ± 58 Tanker vessels annually. The movement of Container and Bulk Carrier is greater
in the Pacific, where on average 2269 ± 64 vessels and 2912 ± 44 vessels are registered
per year, respectively. The average number of vessels served from 2005 to 2015 was
approximately 16,000 ± 506 (Figure 3b). However, from 2016 to 2019 there was a marked
increase in the registration of vessels from 19,068 to 22,875 with ± 708. This increase was
mainly due to increases in RoRo ship arrivals in the Gulf-Caribbean at the ports of Dos
Bocas and Carmen. The global COVID-19 pandemic had a gradual effect on the movement
of vessels in Mexico, with a clear decrease in the arrival of vessels in 2020. However,
the RoRo ship type remained the principal mode for movement of merchandise from the
Gulf-Caribbean.
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4.2. Atmospheric Emissions from 2005 to 2020 at Pacific and Gulf-Caribbean

Atmospheric emissions by type of vessel in the maneuvering and hoteling phases in
Pacific and Gulf-Caribbean ports from 2005 to 2020 are shown in Figure 4 for NOx, SO2,
PM, CO, NMVOC and CO2. Atmospheric emission levels in hoteling phase for all vessels
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at Pacific ports was 77,390 ± 1867 Mg/year for NOx, 150,518 ± 11,727 Mg/year for SO2,
123 ± 3 Mg/year for PM, 1504 ± 37 Mg/year for CO, 247 ± 6 Mg/year for NMVOC and
254,802 ± 6162 Gg/year for CO2. At Gulf-Caribbean ports, the atmospheric emissions were
52,239 ± 920 Mg/year for NOx, 98,748 ± 8004 Mg/year for SO2, 117 ± 5 Mg/year for PM,
1177 ± 33 Mg/year for CO, 211 ± 7 Mg/year for NMVOC and 167,660 ± 2564 Gg/year for
CO2 in the hoteling phase. The contribution by type of vessel in hoteling phase atmospheric
emissions were 67% Container, 32% Bulk Carrier, 0.8 Tanker, and 0.4% RoRo at Pacific
ports, and 76% Container, 20% Bulk Carrier, 2.5% Tanker, and 1.6% RoRo at Gulf-Caribbean
ports. The contribution by type of vessel in maneuvering phase atmospheric emissions at
Pacific ports were 50% Container, 22% Bulk Carrier, 16% RoRo, and 12% Tanker, and at
Gulf-Caribbean ports were 39% RoRo, 32% Container, 21% Tanker, and 8% Bulk Carrier.
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4.3. Distribution of Atmospheric Emissions at Pacific and Gulf-Caribbean Ports

The total emission estimates (Mg/year) by type of vessel from 2005 to 2020, for the
maneuvering and hoteling phases, are shown in Figure 5. The atmospheric emission due
to the movement of Container and Bulk Carrier was higher at Pacific ports, while RoRo
and Tanker emissions were higher at Gulf-Caribbean ports. The atmospheric emissions
gradually increased from 2005 to 2011 in the Pacific, with the highest emission occurring
in 2011 due to the movement of Container ships. In the Gulf-Caribbean the atmospheric
emissions remain approximately constant from 2005 to 2020 due to the movement of
Container ships. Emissions from Bulk Carrier and Tanker vessels from 2005 to 2020
have likewise remained approximately constant at both Pacific and Gulf-Caribbean ports.
Emissions from RoRo vessels remained steady from 2005 to 2015 for both zones. Starting
2016 the RoRo emissions gradually increased at Gulf-Caribbean ports due to an increasing
number of vessels served in that zone, going from 1592 to 7782 with ±483 vessels by 2019
due to the expansion in this zone.
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Atmospheric SO2 emissions are reduced when fuel sulfur content decreases. Reduc-
tions in sulfur content of 4.5% to 3.5%, 3.5% to 0.5%, and 4.5% to 0.5% were 22%, 86%, and
89%, respectively. In the Pacific, Container and Bulk Carrier constituted the maximum
SO2 emissions in the study period, accounting for 67.7% and 31.2%, respectively. Tanker,
and RoRo ships contributed 0.7%, and 0.4%, respectively. In the Caribbean Gulf the contri-
butions of Container, Bulk Carrier, Tanker, and RoRo were 76.8%, 18.8%, 2.3%, and 2.2%,
respectively. SO2 emissions were significantly reduced in 2020 due to cleaner fuel. For
Pacific ports, emissions during 2005–2011, 2012–2019, and 2020 represented 56.6%, 43.3%,
and 0.1% of the total during the study period. At Gulf-Caribbean ports the corresponding
percentages were 57.9%, 52%, and 0.1%.

We utilized the 2020 database to analyze the atmospheric emission level of each port
located in the Pacific and Gulf-Caribbean, as it represents the most current information
in Mexico. The number of ships served at each Mexican port are shown in Figure 6. Isla
de Cedros, Guerrero Negro, and Punta Venado are characterized by the handling of Bulk
Carrier goods, whereas Rosarito, La Paz, Coatzacoalcos, Cayo Arcas, and Progreso are
specific to the movement of Fluids or Liquids. Manzanillo, Lázaro Cárdenas, Altamira, and
Veracruz. Manzanillo and Lázaro Cárdenas are the principal ports for the movement of



J. Mar. Sci. Eng. 2021, 9, 1186 14 of 19

Container vessels on the Pacific, and Altamira and Veracruz are the corresponding ports
on the Gulf-Caribbean. It should be noted that the number of Container vessel that have
been registered in Manzanillo (1256) represents approximately twice those registered at
Altamira (535) and Veracruz (642). The movement of general and loose cargo by RoRo
vessels has been strengthened in the ports of Dos Bocas and Carmen with 3469 and 2677
vessels, respectively.
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Figure 6. Arrivals by type of vessel at each Mexican port during 2020.

The total emissions of (a) NOx, (b) SO2, (c) PM, (d) CO, (e) NMVOC, and (f) CO2 is
shown in Figure 7 for each port. The highest emission of atmospheric pollutants comes
from Container vessels. The port of Manzanillo has registered the highest atmospheric
emission levels, followed by Lázaro Cárdenas, Altamira, and Veracruz. For emissions from
Bulk Carrier vessels, the ports of Isla de Cedros and Guerreo Negro represent the highest
emissions, followed by the ports of Guaymas, Tampico, and Punta Venado. At the ports of
Coatzacoalcos and Dos Bocas the atmospheric emission was dominated by Tanker type
vessels, while the RoRo vessels dominated emissions in the ports of Dos Bocas and Carmen.
Considering the IMO implementations in 2020 (0.5% sulfur content in marine fuel), the
atmospheric emissions of SO2 represented a reduction of 86% to 89% in this year.
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5. Conclusions

Maritime traffic in Mexican ports on the Pacific consisted of 2912 ± 44 vessels for
Bulk Carrier, 2269 ± 64 for Container, 1724 ± 40 for Tanker and 971 ± 31 RoRo. For
Gulf-Caribbean ports the corresponding values were 3657 ± 58 for Tanker, 2890 ± 566 for
RoRo, 1739 ± 27 for Container, and 1218 ± 33 for Bulk Carrier. The frequency of vessel
types in the Pacific was 37% Bulk Carrier, 29% Container, 22% Tanker, and 12% RoRo. For
the Gulf-Caribbean the frequency was 41% Tanker, 25% RoRo, 20% Container, and 13%
Bulk Carrier.

The hoteling phase contributions to the total (hoteling + maneuver phases) atmo-
spheric vessels emissions in the Pacific was 60% NOx, 60% CO2, 59% SO2, 56% CO, 54%
NMVOC, 51% PM. A difference in atmospheric emission of 18% was found for the Pacific
and Gulf-Caribbean in the maneuvering phase, and 39% for the hoteling phase.

Maritime traffic at Pacific ports contributes 60% of total atmospheric emissions and
the Gulf-Caribbean 40% during the period of study. The atmospheric emission in the
Pacific was 67% Container, 32% Bulk Carrier, 0.8% Tanker, and 0.4% RoRo, while in the
Gulf-Caribbean was 76% Container, 19% Bulk Carrier, 3% Tanker, and 2% RoRo.

The highest ship emissions from Pacific and Gulf-Caribbean ports were associated
with the movement of Container vessels, representing 67% and 76% of total emissions,
respectively. The Mexican Port System is thus principally characterized by atmospheric
emissions due to the movement of Container vessels.

6. Recommendations

Include the Automatic Identification System of ships arriving in the Pacific and Gulf
of Mexico in the estimation of atmospheric emissions considering the three phases of
navigation, following the procedures of this study based on the maneuvering and hoteling
positions of ships.

Mexico is in the process of maritime and trade development, particularly in the Gulf of
Mexico. To protect air quality and ecosystems, it is thus necessary to implement regulations
to prevent and minimize the atmospheric emission due to the movement of ships in port.

It is also necessary to include, in Mexican national inventories, other sources of
atmospheric emissions due to maritime activities.

7. Future Work

Evaluate air quality through a photochemical model, integrating atmospheric emis-
sions from ships in port with meteorological data to identify the concentration burden to
which the population is exposed due to the movement of ships.

Establish a network or networks of ambient air monitoring stations to monitor com-
pliance with air quality according to the Official Mexican Standards due to port systems.
This implementation will include a strict Quality Assurance and Quality Control.
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