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ABSTRACT 

Consistent sea ice monitoring requires accurate estimates of 
sea ice concentration. Current retrieval algorithms are based 
on low-resolution microwave radiometry data with limited 
penetration depth and are unable to resolve surface charac- 
teristics of sea ice in sufficient detail which is necessary to 
discriminate intact sea ice from closed water. Important in- 
formation about surface roughness conditions are contained 
in the distribution of radar backscattering images which can 
be - in principle - used to detect melt ponds and different sea 
ice types. In this work, a two-step probabilistic approach 
based on Expectation-Maximization and Bayesian inference 
considers the spatial and statistical characteristics of medium- 
resolution daily-available Sentinel-1 SAR images. The pre- 
sented method segments sea ice into a number of separable 
classes and enables to discriminate surface water from the re- 
maining sea ice types. 

Index Terms— Bayesian Inference, Sentinel-1 Synthetic 
Aperture Radar (SAR), sea ice, melt ponds 

 

1. INTRODUCTION 
 

Sea ice concentration (SIC) is defined as the fraction of an ob- 
served area covered by sea ice. Satellite-based maps of SIC 
have been generated since 1979 starting with the launch of the 
Scanning Multichannel Microwave Radiometer (SMMR) and 
follow-on missions [1]. The penetration depth of microwave 
radiometers into ice at frequencies above 5 GHz is in the or- 
der of mm and water on top of the ice cannot be distinguished 
from sea water. Thus, current SIC estimates exclusively re- 
flect the two-dimensional surface and leave out necessary in- 
formation about sea ice conditions, which are in turn directly 
related to the surface. Especially in Arctic summer, sea ice 
is considered a heterogeneous medium consisting of various 
surface structures such as melt ponds and slushes composed 
of wet snow and sea ice. Melt ponds occur among multiple 
scales, are difficult to detect from low-resolution images, and 
a melt pond cycle from its origin to re-freeze up can be di- 
vided into discrete stages [2]. A more specified distinction 
between fractions of intact sea ice, melt ponds, and closed 

sea water is required to eliminate ambiguities in models and 
retrieval algorithms which are build upon these estimates. 

Several methods have been developed to detect melt 
ponds based on air- and spaceborne observations among dif- 
ferent scales using microwave radiometry, radar and optical 
data [3, 4, 5]. This study presents a probabilistic approach to 
discriminate sea ice from surface water using Sentinel-1A/B 
Synthetic Aperture Radar (SAR) images, which are available 
on a daily basis at medium resolution ( 40 m) covering the 
entire polar area. The intensity of radar backscattering is sen- 
sitive to the surface roughness. Surface roughness for closed 
water and sea ice is significantly smaller as compared to the 
mainly wind-forced open ocean, which enables to classify 
surface types based on its intrinsic surface conditions. The 
goal is to segment SAR images into a number of separable 
classes using a two-step method, combining an Expectation- 
Maximization (EM) step with Bayesian inference modeling 
based on Gaussian Mixture Models (GMM). The approach 
considers the angular variations and the spatial correlations 
of the SAR images. This work focuses on the methodology 
and presents preliminary estimates of surface water fraction 
based on annual images at a selected area in the Northern 
Barents Sea from September 1, 2019 to August 31, 2020. 

 
2. DATA AND STUDY AREA 

The Sentinel-1 mission - developed by the European Space 
Agency (ESA) for the European Commission - was launched 
in April 2014 and is composed of two polar-orbiting satel- 
lites, Sentinel-1A and Sentinel-1B, providing dual polarisa- 
tion capability, very short revisit times and rapid product de- 
livery [6]. The SAR operates at C-band (5.405 GHz) and 
data are collected in ascending and descending orbit direc- 
tion independent of daylight under all weather conditions, 
with an incidence angle ranging from 18.3 ◦ to 46.8 ◦. Data 
over sea and polar areas are acquired in a 12 or 6 day repeat 
cycle using one or both satellites, respectively, with a total 
coverage frequency of less than 1 day in the Arctic. This 
work is based on Level-1 Ground Range Detected (GRD) 
HH-polarized observations in Extra Wide swath mode (EW) 
consisting of a 400 km swath at 20x40 m spatial resolution. 
It uses images of both the orthorectified backscattering coef- 
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ficient γ0 and the corresponding incidence angles. Data can 
be downloaded from any Copernicus service, e.g. at Sentinel 
Hub, https://www.sentinel-hub.com/, Sinergise Ltd. 

The study area is given in Figure 1 and encompasses a 
small area (10x20 km2) located in the northern Barents Sea, 
which is considered a warming hotspots in the Arctic [7]. The 
region passes an entire annual cycle of freeze up, melting, 
and ice-free ocean and consists exclusively of first-year ice 
during the Arctic winter months. Figure 2 shows an example 
of γ0 image in decibels (top) including its distribution and 
cumulative sum (bottom), acquired on April 24, 2020 at an 
incidence angle of 43.1 ◦. The image indicates small low- 
valued patches which can be attributed to melt ponds. 

 

 
 

Fig. 1. Study area consisting of 10x20 km2 located in the 
northern Barents Sea between Svalbard and Franz Josef Land. 

 
 

 
Fig. 2. Sentinel-1 backscatter coefficient γ0 acquired on April 
24, 2020, at an incidence angle of 43.1 ◦. (a) spatial distribu- 
tion of γ0; (b) distribution and cumulative sum of intensities. 

3. METHODOLOGY 

The methodology consists of three main steps, a preceding 
angular normalization of the SAR images, an estimation of 
the number of significant classes from information criteria ob- 
tained through Expectation-Maximization, and the segmenta- 
tion of the SAR images to extract the surface water fraction. 

 
3.1. Incidence angle normalization 

SAR surface signatures of Arctic sea ice depend on the inci- 
dence angle [8, 9]. The intensity of γ0 is smaller for obser- 
vations at higher angles and for smooth surfaces such as calm 
waters. The angular normalization of medium resolution SAR 
images has been considered in different approaches to detect 
sea ice types [10, 11, 12], but remains challenging because of 
high sea ice drift velocities reaching up to several kilometers 
per day. In this work, angular variation was determined by 
comparing multiple images at the days when consecutive ob- 
servations collected with high angular difference were avail- 
able, and values were normalized according to those obtained 
at a mean angle of 33 ◦. 

 
3.2. Estimation of the number of significant classes using 
Expectation-Maximization (EM) 

EM is an unsupervised clustering method initially proposed 
by [13] based on an iterative process which alternates between 
an expectation (E) step and a maximization (M) step. It has 
been already applied to segment sea ice into areas of differ- 
ent sea ice types using multi-angular Sentinel-1 SAR images 
[14]. The likelihood of a Gaussian Mixture Model (GMM) 
under variation of the number of classes and their expected 
weights is maximized for the respective distributions of γ0. 
The best GMM with the optimal number of classes and their 
corresponding weights resulting in the largest likelihood is 
determined using Akaike and Bayesian information criterion 
(AIC and BIC) [15, 16]. 

 
3.3. Bayesian segmentation of SAR images 

The weight and the mean value of the class belonging to the 
sub-distribution of the GMM with the lowest intensities of 
γ0 are extracted and compared to an approximated intensity 
threshold. The threshold is used to assess whether the cor- 
responding class contains a sufficient amount of low-intense 
values which can be attributed to surface water and is signifi- 
cantly large to form a separate class in the segmentation step. 
A Bayesian unsupervised learning algorithm was used to seg- 
ment the SAR images, which are expected to contain signif- 
icant amount of surface water, according to the predefined 
number of classes. The framework was developed by [17] 
and has been applied to segment Arctic sea ice from satellite 
data [18]. Spatial correlations between data points are con- 
sidered using Hidden Markov random fields (HMRF), and a 
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latent field result is obtained in an iterative process based on 
Markov Chain Monte Carlo (MCMC) sampling. The accu- 
racy can be determined from the misclassification rate of the 
final segmentation step. 

 
 

4. RESULTS 
 

Figure 3 demonstrates the EM step applied to the angular- 
normalized SAR image acquired on April 24, 2020. BIC and 
AIC scores are determined after 100 iterations while fitting 
the GMM to the data using 1 to 5 classes, respectively. 3 
classes result in the best fit with a minimum score for both 
criteria. The class-specific distributions of γ0 are separable 
and the weight which corresponds to the lowest mean value 
(21.9 %) can be considered significant to be discriminable in 
the segmentation. Figure 4 shows the latent field result after 
segmentation with 3 classes, where every pixel indicates the 
class with the highest class membership probability. Patches 
in dark blue color belong to closed water with a total weight 
of 10.4 %, resulting in a concentration of intact sea ice of 
89.6 %. The estimated SIC is compared to a reference SIC 
product OSI SAF OSI-401-b in Figure 5 in the period from 
September 1, 2019 to August 31, 2020. The reference prod- 
uct is known to underestimate SIC for thin ice and due the 
presence of melt-pond water [1]. This is in agreement with 
the estimated SIC showing higher values in the beginning of 
the freeze-up period and during melting. 

 
 

 
Fig. 3. EM result after 100 iterations. (a) Distribution of γ0 
including the weights of the best fit; (b) AIC and BIC scores 
with its minimum value obtained for an optimal number of 3 
classes; (c) class-specific probabilities as a function of γ0. 

 

 
 

Fig. 4. Segmentation result using 3 classes to discriminate 
surface water fraction from sea ice types based on a SAR im- 
age acquired on April 24, 2020. 

 
 
 
 

 
Fig. 5. Estimated concentration of intact sea ice in compari- 
son to OSI-SAF SIC from September 1, 2019 to August 31, 
2020. 

 
 
 

5. CONCLUSION 
 
 

This work proposes a probabilistic approach to segment sea 
ice based on Sentinel-1 SAR image to estimate the fraction of 
closed water including melt ponds, and the associated SIC. 
Aim is to combine an EM step with a Bayesian inference 
framework using GMM and HMRF to consider the statistical 
and spatial backscattering characteristics. The method was 
applied to an area in the northern Barents Sea and allowed to 
estimate SIC during an entire yearly cycle from Arctic freeze 
starting in September to ice-free ocean in August. The dy- 
namics of melt ponds is governed by continuous processes 
and smooth transitions. Thus, unambiguous categorization 
through the observed SAR surface signatures is only possible 
when sufficient contrast is given, which limits the accuracy of 
any segmentation method. In future work, the probabilistic 
information of the model result at each pixel can be used to 
evaluate the uncertainty of detected surface water. 
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