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Abstract: The purpose of this paper is to study the properties of the irrational-slope

Thompson’s group Fτ introduced by Cleary in [11]. We construct presentations, both
finite and infinite, and we describe its combinatorial structure using binary trees. We

show that its commutator group is simple. Finally, inspired by the case of Thompson’s

group F , we define a unique normal form for the elements of the group and study
the metric properties for the elements based on this normal form. As a corollary, we

see that several embeddings of F in Fτ are undistorted.
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Introduction

Thompson’s groups were introduced in the 1960s and soon captured
the interest of group theorists for their interesting properties. They have
spawned a family of groups that have properties similar to the original
Thompson’s groups F , T , and V , but each of which is interesting in
its own right. The purpose of this paper is to study one of these groups,
namely, the group Fτ of piecewise linear homeomorphisms of [0, 1] having
breakpoints in Z[τ ] and slopes that are powers of τ , where τ is the golden

ratio (
√

5−1)/2. The group Fτ , although having irrational breakpoints,
does share many of the properties of the original Thompson’s group F .

The group Fτ was introduced by S. Cleary in [11], where it is first de-
scribed and proved to be of type F∞. The group Fτ =G([0, 1];Z[τ ], 〈τ〉)
is also mentioned in the Bieri–Strebel notes [1], although finite presen-
tations there are only given for groups with rational slopes [1, D.15.10].

After defining the group we devote a section to the combinatorial
structure of the group which stems from the representation of elements
by pairs of finite rooted trees.

In Section 4 a presentation is obtained:

Theorem 4.4.

Fτ =〈xi, yi | ajbi = biaj+1, y
2
i = xixi+1 for a, b ∈ {x, y} and 0 ≤ i < j〉.
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This infinite presentation can easily be reduced to a finite presentation
which is also given.

The subsequent two sections describe the abelianisation of Fτ , the
commutator subgroup, and the main simplicity result.

Theorem 6.4. The group F ′τ is simple.

In Section 7 we present an explicit normal form for the elements of
the group:

Theorem 7.3. Each element of Fτ has a unique normal form represen-
tative.

As with F , the unique normal form is closely related to a unique
reduced tree diagram for the element, but here we need a new condition
on the normal form to account for possible cancellations which can occur
after performing a basic move (as introduced in Section 2).

The final two sections deal with metric considerations. As happens
with F , the metric on the group can be approximated by the number of
carets in the unique reduced tree pair diagram. This gives us quasi-iso-
metric embeddings, into Fτ , of some natural copies of F .

The reader is assumed to have some familiarity with Thompson’s
group F . Many of the arguments for Fτ will be similar to those for F .
In order to avoid repetitions and making this paper unnecessarily long,
we will refer to the corresponding constructions and results for F when
necessary. A good introduction for F , which contains many results which
apply here, can be found in [10].

1. Definition and first properties

Let τ be the small golden ratio
√

5−1
2 = 0.6180339887 . . . , which is

a zero of the polynomial X2 + X − 1. We will consider the ring Z[τ ]
of elements of the type a + bτ , where a and b are integers. Observe
that τ = (1 + τ)−1 is a unit of this ring, hence we can consider the
group G([0, 1];Z[τ ], 〈τ〉) of piecewise linear orientation preserving home-
omorphisms of [0, 1] having breakpoints in the ring Z[τ ] and slopes in the
subgroup 〈τ〉 of units of this ring. Groups like these were introduced by
Bieri and Strebel [1]. Following Cleary [11], we denote this group by Fτ .
Cleary proved that the group is of type F∞, so in particular, it is finitely
presented, however no explicit finite presentation was given. Cleary also
describes a combinatorial structure for Fτ , which we are going to develop
here, since it will be used extensively throughout this paper.

Observe that, since 1 = τ + τ2, the unit interval can be subdivided
into two subintervals of lengths τ and τ2 respectively and this can be
done in two ways: [0, 1] = [0, τ ]∪ [τ, 1] and [0, 1] = [0, τ2]∪ [τ2, 1]. Since
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we also have that τk = τk+1 + τk+2 (for all k ≥ 0), each subinterval
can be further subdivided into intervals whose lengths are powers of τ .
Elements of Fτ are now given by a pair of such subdivisions into n
intervals each, together with an order preserving bijection; see [11].

This opens the door to a combinatorial approach to Fτ using binary
rooted trees, with a caret representing a subdivision, in a very similar
fashion to Thompson’s group F . The difficulty here is that we will need
two types of carets, since intervals can be subdivided in two ways. Hence
subdivisions will be represented by a caret with two edges of different
lengths. In Figure 1 we have the two subdivisions of the unit interval
given above, represented by their respective carets. An example of an
iterated subdivision with its corresponding tree is given in Figure 2.

0 τ 1 0 τ2 1

Figure 1. The two subdivisions of the unit interval and their carets.
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3

4

5

6

τ5 τ6 τ3 τ4 τ5 τ4 τ3

Figure 2. A tree with its corresponding subdivision and the nodes
located in their corresponding levels.
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The reason for representing the shorter subinterval by the longer edge
in the caret is that then the nodes in the tree are organised by levels
according to the lengths of the corresponding subintervals. A node at
level k corresponds to an interval of length τk. In this way the tree
carries more information than just the combinatorial structure of the
intervals. See Figure 2 for an example.

Definition 1.1. A caret with a long left edge and a short right edge is
called an x-caret or a caret of x-type, whereas the other type is called a
y-caret.

The reason for this nomenclature will be apparent later, when we give
a presentation of Fτ .

2. Combinatorics of the tree diagrams

An interesting feature of this group is that there are subdivisions
which correspond to more than one tree. The simplest example of this
phenomenon is the subdivision of the unit interval into three subintervals
of lengths τ2, τ3, τ2 given by [0, τ2] ∪ [τ2, τ ] ∪ [τ, 1]. This can be repre-
sented by two trees, one with two x-carets and one with two y-carets, as
shown in Figure 3. In Section 6 we produce a special unique tree pair
diagram for each element of Fτ .

Figure 3. A subdivision of the unit interval giving rise to a basic

move, and the two trees representing it.

The two trees in Figure 3 are crucial in what is to come. They are
completely interchangeable when appearing, even as subtrees, as they
represent the same subdivision of an interval. We call the process of
interchanging these two configurations inside a tree a basic move. In
Figure 4 we illustrate a basic move, represented by the thick lines, on
the tree of Figure 2.
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Figure 4. Performing a basic move on the tree from Figure 2.

Clearly, an element can be represented by more than one tree pair
diagram. Besides the usual phenomenon, familiar from F , where one can
add or remove so-called redundant carets to obtain different tree pairs
that represent the same element, here we can have two reduced diagrams
representing the same element. Recall that a reduced tree pair diagram
is one without redundant carets. An example is given in Figure 5, where
a basic move on the right-hand side diagram will produce redundant
carets that can be removed to give the tree pair on the left.

Figure 5. Two reduced tree pair diagrams representing the same element.

Basic moves are crucial for working with the trees arising for this
group. In particular, to be able to understand multiplication of elements
via tree pair diagrams. We begin by proving some important properties.

Proposition 2.1. By adding at most one caret to a tree T , any caret
in T can be switched from x-type to y-type or vice-versa.
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Proof: If the caret to be switched can have a basic move performed on
it, then that switches the type. Suppose now that the short edge of
this caret ends in a leaf (i.e., it has no child). Then add a caret of the
same type to enable a basic move; see picture (2) of Figure 8. Finally,
if the child caret on the short side is of the opposite type, then keep
going down short edges until a basic move can be performed. Should
this process not result in a basic move, add a caret to the bottom short
edge. Then one can perform multiple basic moves going back up to the
caret to be switched. See pictures (3), (4), and (5) in Figure 8.

The usefulness of basic moves is further illustrated by the following
result, which will be used when deriving a presentation in Section 4.

Proposition 2.2. Given two trees representing the same subdivision
of the unit interval, one can always transform one into the other by a
sequence of basic moves without adding additional carets.

Proof: Let T1 and T2 be two trees which represent the same subdivision,
and assume that their root carets are different. Assume that T1 has an
x-type root caret and T2 has a y-type root caret. Since T2 has a y-caret
at its root, the common subdivision has a break at the point τ in the
interval. This means that at T1, the right edge (which is short) needs to
be subdivided further, because we need the break at τ on T1 too. We are
going to show that in order for the break at τ to show up in T1, there
have to be two consecutive carets of the same type somewhere on T1. It
follows that a basic move can be performed and the root caret of T1 can
be switched.

If the right child of the root caret in T1 is of x-type, then we have two
consecutive carets of the same type and a basic move could be performed
at the root. Assume then that the short edge of the x-type root has a
y-caret as child. Then the breaks are at the points τ2 and 2τ2 = 1− τ3.
Since τ2 < τ < 1−τ3, the desired breakpoint still has not been produced;
see Figure 7.

The tree T1 is therefore further subdivided. The point of the proof
is that it is necessary to have two consecutive subdivisions of the same
type (x- or y- depending on the parity) to obtain a break at τ . This is
because of the following equalities (for even n, the odd case is similar):

τ = τ2 + τ3 = τ2 + τ4 + τ5 = τ2 + τ4 + τ6 + τ7 = · · · =
n∑
k=1

τ2k + τ2n+1.

The odd power can only be produced with two consecutive carets of the
same type; see Figure 6.
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τ2 τ4 τ5

Figure 6. To have the break in T1 we need two consecutive carets
of the same type. Here two carets of x-type give the break at level 5

according to the equality τ = τ2 + τ4 + τ5.

same type caret
break appears
basic move
can be done

opposite caret
break does
not appear

break can never appear
with alternating-type carets

no matter how deep the tree is

Figure 7. The subsequent subdivisions needed in tree T1 to cre-

ate the break at τ . If the corresponding interval keeps being sub-
divided with the type different to the one immediately above, the

break is never created. To create it, one needs to have two consecu-

tive carets of the same type (as it happens in the second diagram
in the figure). The circle represents the break we need to have

because of T2.
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If below the short edge of the root caret the subsequent carets on their
short edges are of alternating type, we never reach the value τ because
of the strict inequalities:

n∑
k=1

τ2k < τ < 1−
n∑
k=1

τ2k+1.

We would need infinitely many children to obtain a break at τ corre-
sponding to the equalities

∞∑
k=1

τ2k = τ = 1−
∞∑
k=1

τ2k+1.

Figure 7 illustrated this fact.
Since the trees are finite, in one of the trees there must be two con-

secutive carets of the same type, and the root caret can be switched by
a sequence of basic moves without adding an extra caret. Therefore we
can keep going down the tree switching types of all the carets of different
type, adding nothing, until the two trees are exactly the same.

3. Multiplication

As in F , multiplication in Fτ is given by composition of maps. To
be able to multiply two elements given by tree pairs, we find a common
expansion for the target tree of the first element and the source tree of
the second element. Consider two elements given by tree pairs (T1, T2)
and (S1, S2). If it happens that T2 = S1, then the product will be repre-
sented by (T1, S2). If T1 6= T2, we apply the following proposition:

Proposition 3.1. Given two trees T and T ′, there exists a common
expansion tree T ′′, which represents a common subdivision of the subdi-
visions of [0, 1] given by T and T ′ respectively.

Proof: If the carets are all of the same type, this can be done by just
adding carets to construct the least common expansion in the same way
as is done with F . If both caret types are present, we first need to switch
the carets in T to agree with those in T ′. This is done by applying
Proposition 2.1; see Figure 8 for an illustration. Once this process is
finished we might need to add some more carets to obtain the tree T ′′,
which is an expansion of T and has T ′ as subtree.
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(1)

(3)

(5)

(2)

(4)

(6)

T
T ′

T ′′

Figure 8. How to find a common subdivision for two trees T
and T ′. Observe that the two carets in thick lines in T are different
from the corresponding ones in T ′, so they will be switched using

basic moves. We add a caret (in dashed lines, picture (2)) so we
can perform a basic move. For the second caret to be switched, a
caret (also in dashed lines) needs to be added further below the

caret we want to switch (picture (3)), and two basic moves are
required (pictures (4) and (5)). Finally, once the first tree is a
subdivision of the second one, we only need to add carets to the

latter (tree T ′′, picture (6)).

This procedure finishes the construction of the algorithm to per-
form the multiplication of two elements given by two tree pairs (T1, T2)
and (S1, S2). Find the tree T3 which is the common subdivision for T2

and S1, and find two tree pairs which represent the same elements which
look like (T ′1, T3) and (T3, S

′
2). This is done by adding to T1 the carets

corresponding to those we have added to T2, and similarly for the other
pair. Finally, the product is given by (T ′1, S

′
2). See Figure 9 for a simple

example.
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Figure 9. An example of how to multiply two elements when the

corresponding carets do not coincide. In dashed lines the carets
which are being added to be able to perform the multiplication.

4. Presentation

To find generators for Fτ we follow the ideas used for F . The infi-
nite generating set for F has generators, which are given by binary tree
pairs (T, S), where S is a tree where each caret has only right children,
also called a spine, and where T is a spine with one additional caret
at the bottom left hand leaf. Since for Fτ we have two different kinds
of carets, there is ambiguity in this construction. However, by Proposi-
tion 2.1, the type of a caret can always be switched. Hence we chose one
caret type for the trees we will call spines.

Definition 4.1. A tree which has only right-side carets of x-type is
called a spine.
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Figure 10. A spine.

Generators for Fτ will have a spine to which an extra caret is added
at the end, as a left child on the source tree, and as a right child on the
target one.

Definition 4.2. We define the xn in Fτ , for n ≥ 0, by a tree pair
diagram (T1, T2), where T2 is a spine with n+ 2 carets, and where T1 is
a spine with n + 1-carets together with in extra x-caret on the last left
edge. Note that all carets in xn are x-carets; see Figure 11. Similarly, we
define elements yn by having the same spine, but with the caret added
to the source tree being of y-type.

.

.

.

.

.

.

.

.

.

.

.

.

n carets n carets

n caretsn carets

Figure 11. The generators xn and yn as tree diagrams.
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Observe from Figure 11 that the key caret is of type x for the genera-
tors xn and of type y for yn, and this is the reason the carets are named
in this way. However, in both cases, the spines have only x-carets.

Our goal is to prove that the set of xn and yn, for n ≥ 0, is a generating
set for Fτ . In a similar fashion to that for F , if the target tree of an
element is a spine, this element is the product of generators (without
taking inverses). In Figure 12 we can see an example of an element which
is the product of three generators, obtaining a pair made of a tree and
a spine.

Figure 12. The element y0x1y1 constructed as the product of
the three generators.

In Figure 13 we see why any element given by a tree and a spine can
be written as a product of the generators xn and yn. If we multiply an
element with a spine as a target tree by the generator xi or yi, then the
result is to attach a caret of the corresponding type to the i-th leaf. In
this way we can construct a tree paired with a spine. Observe though
that the tree constructed this way will always have on the right-hand
side all carets of x-type.

Using this construction we can prove:

Proposition 4.3. The set of elements xn and yn, for n ≥ 0, is a set of
generators for Fτ .
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i-th leaf

i-th leaf

Figure 13. The multiplication of an element with a generator xi or yi.

Proof: Take any element of Fτ given as a pair (T1, T2) of trees. Using
Proposition 2.1 we can assume that we have a spine down the right-hand
side of each tree. If the trees have a y-caret on the right-hand side, use
the lemma to change the type of these carets, at the price of adding
carets to the trees. The result will be a pair of trees whose right-hand
sides have only x-carets.

Now, put a spine S in between the two trees. The first tree pair (T1, S)
gives an element which, by the construction specified above, is the prod-
uct of generators xn or yn. The second pair (S, T2) is the inverse of an
element also of this type. Hence, any element is a product of the gener-
ators xn or yn and their inverses.

It is not hard to see that there are some relations which are satisfied
by these generators. The combinatorics of the carets, similar to those
of F , give the following four sets of relators:

(1) xjxi = xixj+1,
(2) xjyi = yixj+1,
(3) yjxi = xiyj+1,
(4) yjyi = yiyj+1,

where in all cases we have i < j. Another set of relators is given by
the subdivision which admits two expressions as carets. These relations
are y2

n = xnxn+1. The goal of the next theorem is to show that these are
all relations needed to obtain a presentation for Fτ .
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Theorem 4.4. A presentation for Fτ is given by the generators xi, yi,
with the relations

(1) xjxi = xixj+1,
(2) xjyi = yixj+1,
(3) yjxi = xiyj+1,
(4) yjyi = yiyj+1,
(5) y2

i = xixi+1,

for 0 ≤ i < j.

Proof: Given a word in the generators xi, yi which gives the identity,
when we construct its corresponding tree pair diagram, the two trees nec-
essarily give rise to the same subdivision. Also, the two trees will have
a spine (all x-carets) on their right-hand sides. According to Proposi-
tion 2.2, we can go from one to the other by applying basic moves to
one of them and, in this case, the basic moves are never performed on
a vertex on the right-hand side of the tree. Observe that each basic
move corresponds exactly to multiplying our word by a conjugate of re-
lation (5), noting that all instances of relation (5) have spines and hence
are precisely those that we need. Hence, using relation (5) we can obtain
a word which yields a diagram where the two trees are the same. In the
same way as is done for Thompson’s group F , this diagram can be seen
to be a consequence of relations of type (1) to (4). Hence, the original
word is a consequence of the relations (1) to (5).

This presentation allows us to establish a correspondence between
tree pair diagrams and a particular type of words. This correspondence
is completely analogous to that in Thompson’s group F , based on leaf
exponents. See [10, Theorem 2.5] or [8, Section 3.1]. Observe that the
relations (1)–(4) allow for the ordering of the generators in a word by
index, increasing for positive powers and decreasing for negative powers.
We have the following result.

Proposition 4.5. Any element of Fτ admits an expression of the type

ai1ai2 · · · ainb−1
jm
· · · b−1

j2
b−1
j1
,

where

(1) the letters a and b represent either x or y,
(2) i1 ≤ i2 ≤ · · · ≤ in and j1 ≤ j2 ≤ · · · ≤ jm.

This is analogous to the normal form for Thompson’s group F . This
expression for an element corresponds to its tree pair diagram using
leaf exponents. The only difference between Fτ and F is that we can
alternate generators xi and yi within the same index, as in the example
from Figure 12, where we consider the element y0x1y1.
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It is not difficult to deduce a finite presentation from the infinite
one. From the relations (1)–(4) it is easily seen that the generators with
index 2 or higher are conjugates of those with index 1. Hence, the only
generators needed are x0, x1, y0, y1. Similarly, for each family of rela-
tors (1) to (4), only two are needed as it happens in Thompson’s group F ;
see, for instance, [10]. For the family (5), observe that if i ≥ 2, the
relation y2

i = xixi+1 is a conjugate (by the appropriate power of x0)
of y2

1 = x1x2. Hence, the following relations are sufficient:

x2x1 = x1x3, x3x1 = x1x4,

x2y1 = y1x3, x3y1 = y1x4,

y2x1 = x1y3, y3x1 = x1y4,

y2y1 = y1y3, y3y1 = y1y4,

y2
0 = x0x1, y2

1 = x1x2.

We do not claim that this presentation is optimal, and it is possible that
there is a presentation with fewer generators or with fewer relations.

5. Abelianisation and the commutator subgroup

Once we have a presentation, it is easy to abelianise the group. The
abelianised group has four generators x̄0, x̄1, ȳ0, ȳ1, and observe that the
relations (1)–(4) abelianise trivially. Hence the quotient abelian group
has two relations, namely

2ȳ0 = x̄0 + x̄1, 2ȳ1 = 2x̄1,

where we have changed to additive notation for the abelian group. Using
the first relation we can eliminate the generator x̄0. Defining z̄ = x̄1−ȳ1,
the abelianisation can be generated by x̄1, ȳ0, z̄ subject to the rela-
tion 2z̄ = 0. The abelianisation is therefore isomorphic to Z2 ⊕ Z2.

The commutator subgroup, that is, the kernel of the abelianisation
map, can also be completely understood. Looking at the generators x̄1

and ȳ0, we see that they represent the slopes at 0 and at 1, in the same
way as it holds for Thompson’s group F . The map from Fτ to Z2 given
by the two components of the abelianisation map generated by x̄1 and ȳ0

coincides (up to a change of basis in Z2) with the map that sends every
element to the slopes at 0 and 1.

Definition 5.1. We say that an element f ∈ Fτ has support bounded
away from 0 and 1, or simply bounded support, if there exists ε > 0 such
that f is the identity on the intervals [0, ε] and [1− ε, 1]. We will denote
the subgroup of elements with bounded support by F cτ .
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Observe then that the commutator subgroup is contained in F cτ . How-
ever, from the Z2 component we see that it is not equal to it. To describe
it clearly, let z = x1y

−1
1 , and observe that z maps to z̄ under the abelian-

isation map.

Proposition 5.2. The commutator subgroup of Fτ is formed exactly by
those elements in F cτ such that the total exponents in x1 and y1 are both
even. Equivalently, they are the elements in F cτ which have even exponent
for z, that is, which abelianise to zero on the Z2 component.

The proof is elementary by looking at the interpretations of the
abelianisation given above.

According to Proposition 4.5 and the corresponding word-diagram,
the extra condition for an element to be in F ′τ (the total exponents in x̄1

and ȳ1 in the abelianisation are both even) can be read off the diagram.
Recall that a binary tree has left, right, and interior carets according to
their location in the tree. Left carets are on the left side of the tree, each
of them connected to the root by a chain of left children. Right carets
are connected to the root by right children, and interior carets are those
carets that are neither left or right; see, for instance, [12] or [4].

Let a diagram have the trees T1 and T2. We can identify the total
exponent for x̄1 and ȳ1 according to the number of carets in the diagram.
Define the following numbers, for i = 1, 2:

• Let ni be the number of interior x-carets in Ti.
• Let mi be the number of interior y-carets in Ti.
• Let ri be the number of left x-carets in Ti.
• Let si be the number of left y-carets in Ti.

Proposition 5.3. When the element given by a diagram (T1, T2) is
abelianised, the component for x̄1 is n1 − r1 − n2 + r2. Also, the total
number of ȳ1 is m1 −m2.

Furthermore, although we shall have no need for it, the number s1−s2

gives the component for ȳ0.
Observe that to obtain the total exponent for x̄1 one has to take

the ni, which correspond to the generators xi, i ≥ 1, but also the ri,
which correspond to the generators x0 in the word. This is because in
the abelianisation, each x̄0 is replaced by −x̄1 + 2ȳ0. Hence, each x̄0

contributes with a unit to the exponent for x̄1. Observe that we will
only be interested in parity, so we can discard all negative signs.

Hence, just for looking at the tree pair diagram we can know if an
element is in the commutator subgroup or not.
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Theorem 5.4. An element given by a diagram (T1, T2) is in F ′τ if and
only if the following conditions are all satisfied:

(1) The level of the leftmost leaf is the same for T1 and T2, that is,
2r1 + s1 = 2r2 + s2. This corresponds to the fact that the element
must be the identity in a neighbourhood of 0.

(2) The level of the rightmost leaf is the same for T1 and T2. This
corresponds to the fact that the element must be the identity in a
neighbourhood of 1.

(3) The total exponents for x̄1 and ȳ1 are both even, i.e. n1+r1+n2+r2

and m1 +m2 are both even.

This interpretation will be useful in the next section.

6. Simplicity

The goal of this section is to prove that the commutator subgroup F ′τ
is a simple group. The proof will follow several steps.

Definition 6.1. Let a, b ∈ Z[τ ], with 0 < a < b < 1. Then we denote
by Fτ [a, b] the subgroup of Fτ of those elements whose support is in-
cluded in [a, b]. Within Fτ [a, b], we denote by F ′τ [a, b] its commutator
subgroup and also F cτ [a, b] its subgroup of elements with bounded sup-
port (i.e. they are the identity in a neighbourhood of a and in one of b).
For clarity, observe that the support of an element in F cτ [a, b] is included
in [a+ ε, b− ε] for some ε > 0.

We have that for any a, b the subgroup Fτ [a, b] is isomorphic to Fτ .

Proposition 6.2. Fτ [a, b] ∼= Fτ .

Proof: According to [11, Corollary 1], there exists an element f ∈ Fτ
such that f(τ2) = a and f(τ) = b. Conjugating by f , we see that
Fτ [a, b] ∼= Fτ [τ2, τ ]. To see that Fτ [τ2, τ ] is isomorphic to Fτ , we only
need to scale the maps by a factor of τ3, which is the length of [τ2, τ ],
and observe that τ is a unit of the ring Z[τ ].

Since the support of the elements of Fτ [τ2, τ ] is contained in [τ2, τ ],
we can represent these by a tree pair diagram given by the 2-caret spine
which appears at the root, and with the rest of the diagram hanging
only from the middle leaf of this 2-caret spine; see Figure 14.

Now we will look at the commutator subgroup of Fτ [a, b].

Lemma 6.3. Let f ∈ F ′τ , and let a, b ∈ Z[τ ] be that f is in F cτ [a, b].
Then, f ∈ F ′τ [a, b].
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Observe that from the fact that f ∈ F ′τ we cannot immediately con-
clude that f is in F ′τ [a, b]. The extra condition of Theorem 5.4 for x̄1

and ȳ1 refers to the generators of Fτ and not to those of Fτ [a, b]. We
need to relate the generators of both groups to be able to establish the
result.

Proof: As in the proof of Proposition 6.2, we can assume that a = τ2

and b = τ . The element f has bounded support in Fτ [τ2, τ ], but in order
for it to be in F ′τ [τ2, τ ] it must satisfy the conditions of Theorem 5.4
with respect to the generators of Fτ [τ2, τ ]. Let φ : Fτ → Fτ [τ2, τ ] be
the isomorphism described above, that is, the map obtained by hanging
trees from the middle leaf of a 2-caret spine. Then, Fτ [τ2, τ ] is generated
by φ(x0), φ(x1), φ(y0), φ(y1). See Figure 14 to clarify this situation.

T1 T2

φ(x0) φ(y0)
φ(x1) φ(y1)

Figure 14. The interpretation of the subgroup Fτ [τ2, τ ] in terms
of diagrams. The top diagram represents an element of Fτ [τ2, τ ],
because the two carets located at the root indicate that the whole
support is included in the interval [τ2, τ ]. The bottom row repre-

sents the generators of Fτ [τ2, τ ], and the top diagram is the image
under φ of the second diagram.
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Consider the two trees (T1, T2) such that the diagram for f is obtained
by attaching T1 and T2 to the middle leaf of a 2-caret spine, as we did
above. Let ni, mi, ri, si be the numbers of right and interior x-type and
y-type carets as defined in the previous section. We know that f is in F ′τ
and we want to show that f ∈ F ′τ [τ2, τ ]. But the diagram for f when
considered in Fτ [τ2, τ ] would be (T1, T2), whereas the diagram for f
when considered in Fτ has the trees T1 and T2 attached to a 2-caret
spine.

Hence, the number of x̄1 and ȳ1 for f in Fτ has to consider all the
carets in T1 and T2 as interior carets, since they hang from the middle
leaf in a 2-caret spine. This means that by being in F ′τ we know that the
numbers n1+r1+n2+r2 and m1+s1+m2+s2 are even (observe that the
right carets in T1 and T2, which are now interior, are the same number in
both trees so their number is always even). And to see that f ∈ F ′τ [τ2, τ ]
we need that the numbers which have to be even are now n1+r1+n2+r2

and m1 + m2. The first of these numbers is the same in both cases,
and for m1 + m2 we only need to see that since f is the identity in a
neighbourhood of τ2, we have that 2r1 + s1 = 2r2 + s2 and then s1− s2,
and hence s1 +s2, is even. So from this and from m1 +s1 +m2 +s2 being
even, we conclude that m1 +m2 is even and hence f ∈ F ′τ [τ2, τ ].

We can now state and prove the main theorem.

Theorem 6.4. The group F ′τ is simple.

The proof will occupy the remainder of this section. It will be based
on the following theorem due to Higman. Let Γ be a group of bijections of
some set E. For g ∈ Γ define its moved set D(g) as the set of points x ∈ E
such that g(x) 6= x. This is analogous to the support, but since a priori
there is no topology on E, we do not take the closure.

Theorem 6.5 (Higman). Suppose that for all α, β, γ ∈ Γ \ {1Γ}, there
is a ρ ∈ Γ such that γ(ρ(S)) ∩ ρ(S) = ∅ where S = D(α) ∪D(β). Then
the commutator subgroup Γ′ is simple.

The proof can be found in [13].
The idea of using this theorem is to take advantage of the high

transitivity of Thompson-like groups to see that they easily fulfill the
conditions of Higman’s theorem. As we have already used before, [11,
Corollary 1] implies that given two closed intervals A and B, such that
0, 1 /∈ A, there exists an element of Fτ such that f(A) ⊂ B. Hence,
the conditions of Higman’s theorem are easily seen to be satisfied. Since
γ 6= 1 it is easy to find an interval C such that γ(C)∩C = ∅. Also, use
transitivity to find ρ to send S inside C.
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The only thing is that the condition 0, 1 /∈ A means that Higman’s
theorem cannot be applied to Fτ , because there are many elements whose
support is the whole unit interval. We can apply Higman’s theorem to
the commutator F ′τ , because all its elements have bounded support. The
conclusion of the application of Higman’s theorem is then that the second
commutator F ′′τ is simple. The proof of Theorem 6.4 will be finished when
we prove the following lemma.

Lemma 6.6. We have that F ′τ = F ′′τ .

Proof: Clearly we have that F ′′τ ⊂ F ′τ . For the reverse inclusion, take
f ∈ F ′τ . Since f ∈ F cτ , choose a, b ∈ Z[τ ] such that f ∈ F cτ [a, b], namely,
if the support of f is included in the interval [c, d], choose a, b satisfying
0 < a < c < d < b < 1. According to Lemma 6.3, we have that f ∈
F ′τ [a, b]. Hence, we have that f = [p1, q1][p2, q2] · · · [pk, qk], where pi, qi ∈
Fτ [a, b] ⊂ F cτ . To finish the proof and see that f ∈ F ′′τ , it would be
enough to prove that pi, qi are in F ′τ , but this need not be true. We will
modify these elements to get the desired result.

Observe that pi, qi have support in [a, b], but we have no information
on whether they have an even or odd number of generators z̄ when
abelianised. For pi, qi to be in F ′τ we need each of them to have an even
number of generators z̄.

Observe that the element z = x1y
−1
1 has bounded support, that is, it

is in F cτ . Choose now a tiny interval [u, v] such that [a, b] ∩ [u, v] = ∅.
This means that either 0 < u < v < a or b < u < v < 1, either
one works. As we have done before, and according to [11, Corollary 1],
choose an element g ∈ Fτ which maps the support of z inside [u, v]. Let
z′ be the conjugate of z by g in such a way that the support of z′ is
now inside [u, v]. Finally, since [u, v] is disjoint with [a, b], we have that
z′ commutes with each of the pi, qi, for all i = 1, . . . , k. Therefore, we
have that for each i = 1, . . . , k,

[pi, qi] = [piz
′, qi] = [pi, qiz

′] = [piz
′, qiz

′].

Since z′ is a conjugate of z, it contributes exactly one generator z̄ to the
abelianisation. Hence, for each i, exactly one of these four commutators
has both terms with an even number of z̄. For instance, if p1 has an odd
number of generators z̄ and q1 has an even number, the commutator we
choose to have two elements with even z̄ will be [p1z

′, q1].
By choosing the appropriate commutator for each i, we can get all

k commutators to have two terms with an even number of z̄, and hence
we conclude that all terms involved in all commutators are in F ′τ , and
from this, finally, that f ∈ F ′′τ .
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This lemma, together with Higman’s theorem applied to F ′τ , implies
that F ′τ is simple.

7. Normal form

In this section we describe a normal form (with uniqueness) for Fτ
that is very similar to that for F . A word over the xi and yi will be said
to be in seminormal form if it has the following form:

xa00 yε00 x
a1
1 yε11 · · ·xann yεnn x

−bm
m x

−bm−1

m−1 · · ·x−b11 x−b00 ,

where ai, bi ≥ 0 and εi ∈ {0, 1}. Observe that y generators only appear
in the positive part of the word, and that they are only allowed to have
exponents zero or one. From the correspondence between diagrams and
words on the generators via leaf exponents described in Section 3, the
existence of a seminormal form for each element of Fτ follows from the
following result.

Lemma 7.1. Let (S1, S2) be a tree pair with Si having only x-carets
down its right spine. There exists a tree pair (T1, T2) representing the
same element of Fτ that satisfies the following:

(1) T2 has no y-carets,
(2) y-carets in T1 have no left children.

Moreover, the number of carets in Ti is bounded above by three times the
number of carets in Si.

Proof: As noted previously, all elements of Fτ have tree pairs in which
T1 and T2 have only x-carets on their right side. Starting with such a
pair, we first modify T2 so that all y-carets in T2 have no left children.
This is done by working from right to left as follows. Suppose a y-caret
is such that it has left children, but that all y-carets of higher leaf index
do not have left children. We want to swap the type of the caret. If
the immediate left child is also a y-caret, then we perform a basic move.
Suppose then that we have a y-caret whose left child is an x-caret. There
are three possibilities determined by the right child of the x-caret. These
are illustrated in Figure 15. Note that in the third case in the picture,
the bottom y-caret has a higher leaf index than the top one, so it must
have no left child. In each case, after adding at most one caret, the
original y-caret can be moved down closer to the leaf. The new tree T2

now has the property that each y-caret has no left child. Now for each
y-caret in T2 add another y-caret as the left child and perform a basic
move. The resulting tree T2 now has no y-carets.
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∅

∅

Figure 15. Changing the type of a y-caret. The y-carets are bold.
In the first case, the indicated leaf is subdivided by the addition of

an x-caret and then two basic moves are carried out. In the second

case no subdivision is needed. In the third situation a y-caret is
added and then a sequence of three basic moves applied. Note

that in each case the original (topmost) y-caret has been moved

down the tree.

Following the same process as above, we can move y-carets in T1 down
the tree to ensure that T1 satisfies (2). We need to be careful not to add
any y-carets to T2. To that end we modify the third case to be that
shown in Figure 16, adding two x-carets instead of a y-caret.

∅

Figure 16. Rather than adding a single y-caret, two x-carets are

added and then a sequence of four basic moves results in the final
tree. Notice that the topmost y-caret has been moved down the

tree while preserving the fact that the lower y-caret has no left

child.
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Notice that given a tree pair (S1, S2), the above proof produces a tree
pair (T1, T2) satisfying the conclusion of the lemma and such that the
number of carets added is at most twice the original number of carets.

Two different words, each in seminormal form, can represent the same
element of Fτ . This can happen in two ways. First, we can have a re-
duction similar to that seen in F , where Thompson relators can be ap-
plied to reduce the subscripts of many generators in the word. This
corresponds to a diagram being nonreduced and the removal of exposed
matching carets. The second way this can happen is more subtle and cor-
responds to an example such as x0y0x2x

−1
1 x−1

0 = y0. Both these words
are in seminormal form and both are reduced, but after performing a
couple of basic moves, two carets become exposed and they can be can-
celled. See Figure 17. This will be called a hidden cancellation. For-
tunately, the only possible hidden cancellations will be exactly of this
type. A hidden cancellation shows up every time we have a subword of
the form xiyixi+2ux

−1
i+1x

−1
i where u is a word involving generators of

index at least i+ 3. If that happens, we have the following sequence of
equalities using relators:

xiyixi+2ux
−1
i+1x

−1
i = xixi+1yiux

−1
i+1x

−1
i

= y3
i ux

−1
i+1x

−1
i = yixixi+1ux

−1
i+1x

−1
i = yiu

′,

where u′ is the same word as u but with all subscripts lowered by 2.
These two types of reductions are the only possible obstructions for

the uniqueness of the seminormal form, as we will show next. We define a
normal form as a word which is not allowed to have any of these possible
reductions.

Definition 7.2. A word w is said to be in normal form if it is in semi-
normal form and, in addition, for all i we have:

(1) If ai and bi are both nonzero, then at least one of ai+1, bi+1, εi,
εi+1 is nonzero.

(2) If w contains a subword of the form xiyixi+2ux
−1
i+1x

−1
i , then u con-

tains a generator with index either i+ 1 or i+ 2.

As previously noted, these conditions are best understood in terms of
tree pair diagrams. The first condition, as for F , corresponds to matching
exposed carets that can be eliminated. The second condition corresponds
to a situation in which two basic moves result in matching exposed carets.
This is illustrated in Figure 17.
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=

Figure 17. A hidden cancellation. The tree pair on the left is

reduced and corresponds to x0y0x2x
−1
1 x−1

0 . After performing two

basic moves, the two carets in bold can be cancelled. The diagram

we obtain is y0.

Theorem 7.3. Each element of Fτ has a unique normal form represen-
tative.

Proof: Familiarity with the proof of uniqueness of the normal form for F
(as shown, for instance, in [2]) will be of great help understanding this
proof.

That each element of Fτ has a representative word in normal form
is straightforward. The first four relations as listed in Theorem 4.4 can
be used, as with F , to have the indices in increasing order in the pos-
itive part and decreasing in the negative one. Then use Lemma 7.1 to
transform this word into seminormal form. If this word then fails any
of the conditions in the definition of the normal form, then there is a
strictly shorter representative in seminormal form. Keep reducing the
word until both conditions are satisfied. Equivalently, keep reducing the
diagram both for exposed matching carets and for hidden cancellations.

For uniqueness, consider two normal form words u and v that repre-
sent the same element of Fτ , and have minimum total length among all
such pairs in the whole group. Let the words be given by

u ≡ xa00 yε00 u1x
−b0
0 , v ≡ xc00 y

ζ0
0 v1x

−d0
0 ,

where a0, b0, c0, d0 ≥ 0, ε0, ζ0 ∈ {0, 1}, and u1 and v1 are normal form
words in which all subscripts are at least 1. The symbol ≡ is being used
to denote equality as words. We will assume that not all a0, b0, c0, d0,
ε0, ζ0 are zero. If this were not the case, then the following argument
can be readily modified by moving to the least subscript for which this
is true, but we keep the case of zero for simplicity and clarity.

Equating the slopes at 0 for the piecewise linear maps determined
by u and v we obtain 2a0 + ε0 − 2b0 = 2c0 + ζ0 − 2d0, from which it
follows that

(∗) a0 − b0 = c0 − d0 and ε0 = ζ0.
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Since u and v were chosen to minimise the total length we have that one
of a0 and c0 must be zero, or else an x0 could be cancelled to obtain
shorter words. Similarly, one of b0 and d0 must be zero. We can assume
that c0 = 0. It then follows from (∗) that d0 = 0 and a0 = b0 6= 0. We
deal separately with the two possible cases: ε0 = 0 and ε0 = 1, which will
correspond to conditions (1) and (2) of the normal form, respectively.

In the case in which ε0 = 0 we move the generators x0 from u to v
so we have u1 = x−a00 v1x

a0
0 = v2 where v2 is the word obtained from v1

after increasing all subscripts by a0. The word v2 is in normal form
and all subscripts appearing in it are 2 or more. Since u1 = v2, both
words are in normal form and the total length is strictly less than that
for the original pair, we conclude that u1 ≡ v2. But then the original
word u ≡ xa00 v2x

−a0
0 would have violated condition (1) in Definition 7.2.

Suppose now that ε0 = 1. Our words are now u ≡ xa00 y0u1x
−a0
0

and v ≡ y0v1. We move one generator x0 from each side of u to v,
so we have

xa0−1
0 y0u1x

−(a0−1)
0 = x−1

0 y0v1x0 = x−1
0 y0x0v2 = x−1

0 y0x0x1x
−1
1 v2

= x−1
0 y3

0x
−1
1 v2 = x1y0v3x

−1
1 = y0x2v3x

−1
1 ,

where v2 is the word obtained by increasing all subscripts in v1 by 1
(by moving the x0 across it), and then subsequently v3 also obtained
from v2 increasing the subscripts while moving x−1

1 across. Notice that
all indices for v3 are at least 3 and hence the final word is still in normal
form. Observe too that the total length for these two words is exactly
the same as the original pair, because we have added two generators and
later eliminated two. Now repeating the above for all pairs of x0 until
they are exhausted, we obtain

y0u1 = y0x2v
′x−1

1 ,

where v′ is a normal form word in which all subscripts are at least 3, and
the length is still the same as the original one. After cancelling y0, and
since u1 and x2v

′x−1
1 are in normal form, we conclude, by the minimality

of the original pair, that u1 ≡ x2v
′x−1

1 . But then the original word
u ≡ xa00 y0x2v

′x−1
1 x−a00 would not have satisfied part (2) of the definition

of the normal form, having a forbidden subword with all subscripts for v′

being at least 3.

8. Metric properties

Once we have a unique normal form for the elements of Fτ , we can
compute some estimates for the word metric of elements, based on the
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normal form and the unique reduced diagram that relates to it. The idea
and the procedures are very similar to those for F ; see [3] and [7].

Given an element g ∈ Fτ , take its normal form

g = xa00 yε00 x
a1
1 yε11 · · ·xann yεnn x

−bm
m x

−bm−1

m−1 · · ·x−b11 x−b00 ,

where both an+εn and bm are nonzero (i.e. we have a positive generator
of index n and a negative one of index m), and there are no cancellations
between xn and x−1

m (i.e. either εn = 1 or else n 6= m).

Definition 8.1. We define the number

D(g) = a0 +a1 + · · ·+am+ ε0 + ε1 + · · ·+ εn+ b0 + b1 + · · ·+ bm+n+m

and we denote by N(g) the number of carets of either tree of the unique
diagram which corresponds to the normal form, that is, a reduced dia-
gram with no hidden cancellations.

These two quantities are good estimates for the word metric.

Theorem 8.2. There exists a constant C > 0 such that we have

D(g)

C
≤ ‖g‖ ≤ C D(g) and

N(g)

C
≤ ‖g‖ ≤ C N(g),

where ‖g‖ represents the word metric with respect to the generating
set x0, x1, y0, y1.

Proof: Since each x or y generator is represented by a caret, we have the
obvious inequalities:

N(g) ≥ a0 + a1 + · · ·+ an + ε0 + ε1 + · · ·+ εn,

N(g) ≥ b0 + b1 + · · ·+ bm,

N(g) ≥ n,
N(g) ≥ m,

which yield the inequality D(g) ≤ 4N(g).
For the upper bounds, take each generator xi and yi with i ≥ 2 and

rewrite it in terms of x0, x1, y0, y1 to obtain the desired bound. The
positive part of the word can be written as

xa00 yε00 x
a1
1 yε11 x

−1
0 xa21 yε21 x

−1
0 . . . x−1

0 xan1 yεn1 xn−1
0

because observe that a sequence . . . xaii y
εi
i x

ai+1

i+1 . . . will have a large num-
ber of generators x0 cancelled in between:

. . . xaii y
εi
i x

ai+1

i+1 . . . = . . . (x−i+1
0 xai1 x

i−1
0 )(x−i+1

0 yεi1 x
i−1
0 )(x−i0 x

ai+1

1 xai0 ) . . .

= . . . x−1
0 xai1 y

εi
1 x
−1
0 x

ai+1

1 . . .
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and hence for the word we only have one generator x−1
0 every time the

index grows by 1. Similarly, we do the same for the negative part. Clearly
then, we have that the length of this word in x0, x1, y0, y1 is, for instance,
at most 2D(g).

For the lower bound, we use the number of carets. Start with a shortest
word for an element g, with length L = ‖g‖. When multiplying by a
generator, observe that since a generator has at most three carets, the
number of carets of the diagram can increase by at most three carets,
plus possibly added carets needed to perform the multiplication. But a
generator has only one caret which is not on the spine, and since the spine
has only x-carets all the time, only one caret may need to be changed
to multiply and then only one caret may have to be added. Hence, when
we multiply by a generator the number of carets can grow by at most
four. From the shortest word we can then obtain a diagram which has
at most 4L carets.

This diagram will have x and y generators mixed in each index (see
Proposition 4.5), so it has to be modified so that only one y-caret appears
for each index and with no left children, according to Lemma 7.1. We
observe carefully the process described in that proof, and as is indicated
there, the number of carets can at most triple, because we may need to
add two carets for each original one. Hence, the total number of carets
of the diagram corresponding to the seminormal form is at most 12L.
Reducing and eliminating hidden cancellations can only decrease the
number of carets. From here we have that ‖g‖ ≥ N(g)/12. Summarizing
all inequalities, we have

D(g)

48
≤ N(g)

12
≤ ‖g‖ ≤ 2D(g) ≤ 8N(g)

and this finishes the proof.

9. Distortion

The similarities between the metric properties of Fτ and F allow us
to state some distortion results for subgroups in Fτ which are isomorphic
to F .

Diagrams in Fτ may have two types of carets. We can consider the
subgroup of Fτ of those elements which can be written with only one
type. But if only one type (say x) of carets is used, then the combina-
torics are exactly those of F , and the subgroup is obviously isomorphic
to F . We will call Fx the copy of F inside Fτ given by elements with a
diagram containing only x-carets. Observe that this subgroup is gener-
ated by the xi generators or, if we prefer, generated by x0 and x1, clearly
yielding a copy of F inside Fτ . We have the following result:
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Proposition 9.1. The inclusion of Fx inside Fτ is undistorted.

Proof: If an element of F has a diagram (with regular equally-sided
carets), then the same diagram but now with x-carets will give a reduced
diagram for Fτ . Observe also that the normal form in F is also a normal
form in Fτ . Hence the number of carets is the same for both groups. Since
in both cases the number of carets is equivalent to the word metric, we
obtain the desired result.

The y-sided counterpart of this result is a bit more complicated. We
can clearly consider the subgroup of Fτ generated by y0 and y1. This
subgroup is also clearly isomorphic to F , for instance observe that the
combinatorics of the diagrams are exactly the same, but diagrams here
have x-carets on the spine and y-carets everywhere else. Hence, due to
the bias we have chosen for the generators (and hence the normal forms)
having x-careted spines, this subgroup is not the same as the subgroup
of Fτ with all carets of y-type. This latter subgroup will be called Fz
and it is generated by the following two elements:

z0 = y0y2 and z1 = y2y4;

see Figure 18. This is a proper subgroup of Fy, and is also isomorphic
to F . But both these subgroups behave well.

z0

z1

=

= =

=

y0y2

y2y4

Figure 18. The generators of Fz transformed into elements with

x-careted spines. Actually these are their normal forms. Originally

they only have y-carets, but their expressions in the y generators
(and hence their normal forms) need to have x-carets on the spine.
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Proposition 9.2. The inclusions of Fy and Fz inside Fτ are both undis-
torted.

Proof: The case of Fz of elements with only y-carets is actually symmet-
ric to Fx. If instead we had chosen spines consisting of y-carets, and the
generating set for Fτ by adding carets to this y-spine, we would have
ended up with exactly the same situation as in Proposition 9.1 and the
result for Fx follows immediately.

For the subgroup Fy, elements here have x-carets in the spine and
y-carets in the interior and left side of the trees. To compute the number
of carets of their normal forms most of the y-carets have to be trans-
formed into x-carets (except a few at the bottom with no left children),
but as we have seen in Lemma 7.1, the number of carets can at most
triple in this process. Hence the number of carets in F and in Fτ differ
by a multiplicative constant, so the distances do too, and the inclusion
is undistorted.

It is interesting to remark that in previous examples of groups of the
Thompson family where two different types of carets appear, copies of F
inside which use only one type of caret were always distorted. See [15]
and [6]. Hence, Fτ is the first known example of a group of the Thompson
family whose elements have two types of carets but whose F subgroups
of a single type of caret are undistorted.

10. Conclusions and future directions

The properties of this group which are different from those of F arise
from the special type of carets and their relation. The basic move pro-
vides the new relation not seen before, which in turn causes torsion in
the abelianisation. Furthermore, previous examples where we have two
different types of carets (Thompson–Stein groups, higher dimensional
Thompson’s groups) have distorted copies of F inside, due to the fact
that these carets do not merge well and lead to a fast growth of the num-
ber of carets. Here, due to the relation and the basic move, carets can
have their type easily changed and hence their number does not grow.
This is the reason why F is undistorted in Fτ .

The original motivation to study this group was the question by Brin
of whether every finitely presented group of piecewise-linear homeomor-
phisms of R could be found as a subgroup of F . This is the reason
the torsion in the abelianisation was considered, since it was not known
whether a subgroup of F could have torsion in the abelianisation. A
finitely generated subgroup of F was found whose abelianisation con-
tains 2-torsion during the Oberwolfach workshop 1823b Cohomological
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and Metric Properties of Groups of Homeomorphisms of R (see [5]). The
authors would like to thank the participants of the workshop for very
fruitful discussions. However, the following is still open:

Question 10.1. Can a finitely presented subgroup of F have torsion in
its abelianisation?

Brin’s question has been answered by Lodha [14], where it is proved
that the Thompson–Stein group F2,3 is not a subgroup of F . However,
this group has non-cyclic slope group. Hence we believe that the follow-
ing is still interesting:

Question 10.2. Does Fτ embed in F?

Many of the properties for Fτ are also present in the groups Tτ and Vτ ,
the T and V versions of Fτ . For instance, we can still perform basic moves
and also have a copy of Z2 in the abelianisation. Hence, these groups are
no longer simple, but both have an index-two subgroup which is simple.
These ideas have been developed in [9], which is the natural continuation
of this paper.
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