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Abstract: Wildfires are natural ecological processes that generate high levels of fine particulate matter
(PM2.5) that are dispersed into the atmosphere. PM2.5 could be a potential health problem due to its
size. Having adequate numerical models to predict the spatial and temporal distribution of PM2.5

helps to mitigate the impact on human health. The compositional data approach is widely used in the
environmental sciences and concentration analyses (parts of a whole). This numerical approach in the
modelling process avoids one common statistical problem: the spurious correlation. PM2.5 is a part
of the atmospheric composition. In this way, this study developed an hourly spatio-temporal PM2.5

model based on the dynamic linear modelling framework (DLM) with a compositional approach.
The results of the model are extended using a Gaussian–Mattern field. The modelling of PM2.5 using
a compositional approach presented adequate quality model indices (NSE = 0.82, RMSE = 0.23, and
a Pearson correlation coefficient of 0.91); however, the correlation range showed a slightly lower
value than the conventional/traditional approach. The proposed method could be used in spatial
prediction in places without monitoring stations.

Keywords: air pollution; CoDa; environmental statistics; DLM; Gaussian fields

1. Introduction

Wildfires are natural or human-based phenomena that emit various air pollutants into
the atmosphere [1,2]. PM2.5 is one of the most critical pollutants to human health produced
by wildfires [3,4]. PM2.5, inhaled and transported by the bloodstream, can impair the lungs
and other vital organs, and its impact is more harmful if the source is from wildfires [5,6].
On the other hand, PM2.5 emitted from biomass burning (carbonaceous aerosols from
wildfires) contributes to one of the largest variables of uncertainty in the current estimates
of radiative forcing [7,8].

The accurate predictions of fine particulate matter related to wildfires can aid decision-
makers in mitigating the environmental and socio-economic impacts of wildfires [9–11].
In this sense, among the most important studies are those models that seek to estimate
the emission of PM2.5 using a set of fixed-source profiles (land use, vegetation inventories,
types of forest, chemistry, and physics characteristics) [12–14]. In this way, we could
mention some examples, such as the BlueSky modelling framework developed by the Fire
Consortium for the Advanced Modeling of Meteorology and Smoke (FCAMMS), which
combines state of the art emissions, meteorology, and dispersion models to generate the
best possible predictions of smoke impacts across the landscape. Another example is the
Sparse Matrix Operator Kerner Emissions Modeling System (SMOKE), developed by the
Center for Environmental Modeling for Policy Development (CEMPD), which is based
on RatePerStart (RPS) emission rates [15]. However, the results from the emission models
could be wrong even if representative source profiles are used, and thus a contradiction
in the empirical evidence for ground-level monitoring could appear [16–22]. On the
other hand, measures of PM2.5 from monitoring stations on the surface could be used
in statistical models under a dispersion modelling approach. The dispersion models are
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usually presented in univariate spatio-temporal research [23–26]. For instance, Mirzaei et al.
used a land use regression with ground-level monitoring of smoke to propose exposure
models [27]. The dynamic linear modelling framework is commonly used in air quality
models due to its flexibility in treating time series in both stationary and non-stationary
approaches [28–33]. For instance, Cameletti et al. developed a daily spatio-temporal
model for PM10 for Piemonte in Italy with an extensive network of monitoring stations [34].
Sánchez-Balseca and Pérez-Foguet, with a limited number of monitoring stations, presented
hourly spatio-temporal PM2.5 modelling in wildfires events, a validation method using
PM10 levels and a PM2.5/PM10 ratio was proposed as well. Both studies used DLM with a
Gaussian–Mattern field due to its low computational cost [35].

PM2.5 is an air pollutant and thus part of an atmospheric composition (e.g., µg/L,
mg/kg, wt%). Compositional data (CoDa) belong to a sample space called the simplex.
If PM2.5 data are not treated under a compositional approach, the results could draw
wrong conclusions [36,37]. One statistical problem if compositional data are not adequately
treated is the spurious correlation. In a composition of two elements that sum a constant,
the increase in one of them means reducing the other component, and vice versa. The two
elements have an inverse correlation imposed upon them, even if these two elements have
no relationship. This imposed correlation is called a spurious correlation and could be
eliminated through transformations in the form of logarithms of ratios (log-ratios) [38]. The
isometric log-ratio (ilr) transformation is the most used due to its advantage of representing
the simplex space orthogonally [39]. In addition, the CoDa approach has been widely used
in other environmental fields (soil, water, geology, etc.), but the application in air pollution
modelling is scarce.

This article presented a compositional, hourly spatio-temporal model for PM2.5 based
on a dynamic linear modelling framework. To extend the results of the model in places
with no monitoring stations, a Gaussian–Mattern field is used. The remainder of this article
provides the site description, datasets used, a brief background on the statistical tools (DLM
and CoDa), the methodology (Section 2), the results (Section 3), the discussion (Section 4),
and the principal conclusions (Section 5).

2. Data and Methodology
2.1. Wildfire Description

Quito had unprecedented wildfires in September 2015, and the 14th of September
was the most remarkable air pollution event. Quito is located in Ecuador in the Andean
mountains at 2800 m.a.s.l., and it has 2,240,000 inhabitants. Figure 1 presents the satellite
image that represents the wildfire event with points of red colour. The MODIS Terra/Aqua
sensor platform was used to obtain the thermal anomalies/active fire image [40]. The
yellow points are the monitoring stations for PM2.5.

2.2. Data
2.2.1. PM2.5 Data

PM2.5 data were collected hourly during September (720 hours) by the Air Quality
Network of Quito, which is formed by five monitoring stations, and they are described
in Table 1. The monitoring network used a Thermo Fisher Scientific FH62C14-DHS Con-
tinuous Ambient Particulate Monitor 5014i with beta rays’ attenuation method (Waltham,
Massachusetts, USA), as suggested by the Environmental Protection Agency (EPA). The
Air Quality Network of Quito is a permanent air pollution surveillance network. The
data were obtained from the open-source online data repository managed by the environ-
mental agency of Quito, and hosted at Secretaria de Ambiente del Distrito Metropolitano
de Quito [41].
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Figure 1. Wildfire event on 14 September 2015, obtained from the MODIS-Terra/Aqua sensor
platform in Quito. The wildfires are represented by red points, and the monitoring stations by
yellow points.

Table 1. Monitoring stations for PM2.5 and their main characteristics.

Station Name Station Code Location Elevation (m.a.l.s.)

Carapungo ST_1 78◦26′50′′ W, 0◦5′54′′ S 2851
Belisario ST_2 78◦29′24′′ W, 0◦10′48′′ S 2835

Cotocollao ST_3 78◦29′59.2′′ W, 0◦06′38.8′′ S 2739
Centro ST_4 78◦30′50.4′′ W, 0◦13′17.6′′ S 2820

Los Chillos ST_5 78◦27′18.8′′ W, 0◦17′49.5′′ S 2453

2.2.2. Meteorological Data

The meteorological data were collected from meteorological assimilation systems
based on satellite data. This article used Modern-Era Retrospective analysis for Research
and Applications version 1 and 2 (MERRA and MERRA-2) from NASA’s Giovanni web
platform; MERRA-2 published many analysis products used in meteorological and air
quality modelling [42,43]. Some works used the soil surface temperature variable to indicate
wildfire events [44–46]. Table 2 shows the main characteristics of meteorological data.

Table 2. Meteorological data descriptions.

Covariates Units Temporal Resolution Spatial Resolution Source

Air temperature K Hourly 0.5◦×0.625◦ lat-lon M2I1NXLFO.5.12.4
Pressure mb Hourly 0.5◦×0.625◦ lat-lon M2T1NXRAD.5.12.4

Radiation W×m−2 Hourly 0.5◦×0.625◦ lat-lon M2T1NXSLV.5.12.4
Surface temperature K Hourly 0.5◦×0.667◦ lat-lon MAT1NXSLV
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2.3. Statistical Modelling
2.3.1. Dynamic Linear Models (DLM)

Two equations defined the dynamic linear modelling; the first one is denoted as
the observation equation. The dependent variable, yst, is the observed generic pollutant
concentration at spatial location s (s = 1, . . . , S) on time t (t = 1, . . . , T) and it is described
in Equation (1):

yst = Xst × β+ θst + vst (1)

where vst denotes the measurement error, which is assumed to be independent, and it
has a variance, σ2

v. The vector of regression coefficients is represented by vector β; Xst
represents a vector of regressors that change temporally. Operator “×” is used to indicate
multiplication of scalars, vectors or matrices depending on the context in this article. The
second equation that describes the dynamic linear modelling is related to the term θst; its
name is the system equation, and it describes a dynamic autoregressive first-order model,
shown as:

θst = a× θs, t−1 + wst (2)

where wst is the temporal and spatial error; it has a normal distribution and a variance,
σ2

w/
(
1− a2). The temporal and spatial variance (σ2

w) is based on the correlation between
monitoring stations and their Euclidean spatial distance using a Gaussian–Mattern field,
and is parameterized by the empirically derived correlation range (ρ). This empirically
derived correlation range is the distance at which the correlation is close to 0.1. For more
details, see [34,47–49].

2.3.2. Compositional Data (CoDa) Approach

Compositional data belong to a sample space called the simplex SD, which could be
represented in mathematical terms as:

SD =
{

x = (x1, x2, xD) : xi 0(i = 1, 2, D), ∑D
i=1xi = K

}
(3)

where K is defined a priori and is a positive constant. xi represents the components of
a composition. The next equation represents the isometric log-ratio (ilr) transformation
(Egozcue et al. [36]).

Z = ilr(x) = ln(x)×V (4)

where x is the vector with D components of the compositions, V is a D× (D− 1) matrix
that denotes the orthonormal basis in the simplex, and Z is the vector with the D− 1
log-ratio coordinates of the composition on the basis, V. The ilr transformation allows for
the definition of the orthonormal coordinates through the sequential binary partition (SBP),
and thus, the elements of Z, with respect to the V, could be obtained using Equation (5)
(for more details see [39]).

Zk =

√
rk×sk

rk + sk
ln
(

gm(xk+)

gm(xk−)

)
; k = 1, . . . , D− 1 (5)

where gm(xk+) and gm(xk−) are the geometric means of the components in the kth parti-
tion, and rk and sk are the number of components. After the log-ratio coordinates are ob-
tained, conventional statistical tools can be applied. For a 2-part composition, x = (x1, x2),
an orthonormal basis could be V = [ 1√

2
,− 1√

2
], and then the log-ratio coordinate is defined

using Equation (6):

Z1
∗ =

√
1× 1
1 + 1

ln
x1

x2
(6)

After the log-ratio coordinates are obtained, conventional statistical tools can be
applied.
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2.4. Methodology: Proposed Approach Application in Steps

To propose a compositional spatio-temporal PM2.5 model in wildfire events, our
approach encompasses the following steps: (i) pre-processing data (PM2.5 data expressed
as hourly 2-part compositions), (ii) transforming the compositions into log-ratio coordinates,
(iii) applying the DLM to compositional data, and (iv) evaluating the compositional spatio-
temporal PM2.5 model.

Models were performed using the INLA [48], OpenAir, and Compositions [50] pack-
ages in the R statistical environment, following the algorithm showed in Figure 2. The R
script is described in [51].

Figure 2. Algorithm of spatio-temporal PM2.5 model in wildfire events using DLM.

Step 1. Pre-processing data
To account for missing daily PM2.5 data, we used the compositional robust imputation

method of k-nearest neighbor imputation [52,53]. Then, the air density from the ideal gas
law was used to transform the concentration from volume to weight (Equation (7)). The
concentration by weight has absolute units, while the volume concentration has relative
units that depend on the temperature [49]. The air density is defined by temperature (T),
pressure (P), and the ideal gas constant for dry air (R).

δair =
P

R× T
(7)

The closed composition can then be defined as [PM2.5, Res], where Res is the residual
or complementary part. We fixed K = 1 million (ppm by weight). Due to the sum(xi) for all
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compositions x is less than K, and the complementary part is Res = K - sum(xi) for each
hour. The meteorological and geographical covariates were standardized using both the
mean and standard deviation values of each covariate. For meteorological missing data, a
simple imputation method was used.

Step 2. Log-ratio transformation
The two components (PM2.5 and the residual) are first log-transformed into one log-

ratio coordinate for each hour (Z∗1) using Equation (6), where x1 represents the PM2.5 levels
and x2 describes the residual part (Res) for each hour.

Step 3. Model application
The log-ratio coordinate is the dependent variable (yst) in the DLM modelling frame-

work, and the independent variables (Xst) are described by the meteorological data that
change spatial-temporally. The posterior estimates—β, vst, wst, σv, σw, a, and ρ—are
obtained from the regression using Bayesian inference. The empirically derived correlation
range was defined in km. The spatial distribution of PM2.5 in places with no monitoring
stations was featured using a triangular irregular mesh for monitoring stations of PM2.5
and a grid of 4 km between each intersection of meteorological data, as proposed by
Sánchez-Balseca and Pérez-Foguet (2020) [49].

It is necessary to recover the original units for the estimates in compositional data
analysis [54]. Once results are back-transformed in proportions, (p×E; sum(p×E) = 1), they
are multiplied by K to obtain the model results in original units.

Step 4. Model Evaluation
For this step, the Nash–Sutcliffe efficiency index (NSE) and the Pearson correlation

coefficient were used. Both the NSE and the Pearson correlation are independent of the
scale of measurement of the variables. The NSE scale ranges from 0 to 1, whereby NSE = 1
means the model is perfect, NSE = 0 means that the model is equal to the average of the
observed data, and negative values mean that the average is a better predictor.

3. Results

The compositional spatio-temporal air pollution modelling used five monitoring
stations and 720 hours in a wildfire event. The posterior estimates (mean, quantiles, and
standard deviation) for the parameters σ2

v, σ2
w, a, and ρ are presented in Table 3. The spatial

variance (σ2
w) was slightly more significant than the measure variance (σ2

v). The empirically
derived correlation range was about 26.006 km; this represents the distance at which the
correlation is close to 0.1. The parameter a is 0.7547, which was directly proportional to the
spatial and temporal variance.

Table 3. Posterior estimates (mean, standard deviation, and quantiles).

Parameter Mean SD 25% 50% 97.5%

σ2
v 0.082 0.0037 0.0753 0.0822 0.0900

σ2
w 0.129 0.0080 0.1144 0.1295 0.1462
ρ 26.01 1.8850 22.648 25.872 30.039
a 0.754 0.0187 0.7160 0.7554 0.7897

The compositional model presented an intercept of about −12.618 that represents, in
the original units, 0.018 ppm of PM2.5 (see Table 4). Considering the threshold for fine
particulate matter suggested by WHO in a 24 h average, about 0.022 ppm (using an air
density value equal to 1.15 kg/m3 to transform it into concentration in mass), the intercept
value does not exceed the limit in a wildfire event. The regression coefficients of altitude, air
temperature, and radiation had negative values. The concentration of PM2.5 decreases with
increasing altitude [55]. The air temperature and radiation are related to thermal inversion
and air density, and thus their increase means the PM2.5 concentration decreases [56]. The
surface soil temperature had a positive influence on the concentration of PM2.5.
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Table 4. Regression coefficients of meteorological and geographical covariates.

Covariate Mean SD 25% 50% 97.5%

Intercept −12.618 0.0280 −12.67 −12.618 −12.562
Altitude −0.218 0.0362 −0.289 −0.218 −0.147
UTMX −0.058 0.0293 −0.116 −0.058 −0.001
UTMY 0.190 0.0240 0.1432 0.190 0.237

Air Temp. −0.139 0.0275 −0.1937 −0.139 −0.085
Pressure 0.021 0.0092 0.0030 0.021 0.039

Radiation −0.087 0.0227 −0.1318 −0.087 −0.042
Surface Temp. 0.022 0.0220 −0.0214 0.0218 0.0650

The compositional model presented an NSE of 0.82, an RMSE of 0.23, and a Pearson
correlation coefficient of 0.91. Figure 3 shows the highest hourly concentration of PM2.5
presented in the wildfire at 16:00 h on 14 September 2015. It illustrates the spatial il-
coordinate (without back-transformed process) and the logarithmic concentration of PM2.5
on its original units (ppm).

Figure 3. (a) The predictive ilr-coordinate related to PM2.5 concentration on 14 September 2015; (b) the predictive logarithmic
concentration of PM2.5 in ppm on 14 September 2015. The black border shows the administrative boundary of Quito.

4. Discussion

This article presented a compositional spatio-temporal air pollution model for PM2.5
using meteorological and geographical covariates. The proposed model showed adequate
quality model metrics; in addition, spurious correlation was avoided by applying the ilr-
transformation. The values of the quality model metrics obtained in this article were similar
to those obtained using a conventional approach. The RMSE criterion displayed the most
evident difference; it was about 0.23 when using a compositional process, whereas it was
about 0.32 when using a traditional approach. The empirically derived correlation range,
when using a conventional approach, was about 27 km; this is slightly higher than the value
obtained in previous work, which was 26 km (Sánchez-Balseca and Pérez-Foguet [35]). In
this sense, the compositional approach had better quantitative modelling performance but
a slightly lower capacity for spatial correlation than the conventional approach [34].

The interpretation for modelling ilr-coordinates could be complicated because the
information is only in the relationships between the parts [36]. For this reason, the log-ratio
used in this article should be interpreted as the influence of PM2.5 in the composition of
air when using a relative approach. This approach transforms a univariate analysis into a
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bivariate (multivariate) analysis [37]. Usually, the variable thermal anomalies are used to
identify wildfires; however, this information is available only two times per day in some
territories. For this reason, this article uses the temperature of the surface soil as a spatial
wildfire indicator due to the temporal resolution needed (hourly). However, the PM2.5
measures could be distorted by the secondary organic aerosol (SOA) formation [57–59].

For further works, the compositional approach for univariate analysis could be per-
formed using the centered log-ratio (clr) or the additive log-ratio (alr), which Aitchison
proposed in 1982 [60].

5. Conclusions

The compositional approach performs the modelling of PM2.5 slightly better than
the conventional approach. However, the compositional approach presented a slightly
lower correlation range than the traditional approach. The compositional spatio-temporal
PM2.5 model showed adequate quality indexes and thus could be used to determine the
concentration of fine particulate matter in places where there are no monitoring stations
for wildfire scenarios. This information could allow for the determination of zones with
significant impacts on human health.
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