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Abstract

We show that anisotropic planar anti-guiding waveguide structures
with two radiation channels towards the surrounding cladding materi-
als can support unidirectional guided resonances (UGRs), where radia-
tion is cancelled in one of the radiation channels and redirected into the
other. Their formation is subtle as it requires breaking the so-called
polar anisotropy-symmetry of the structures. Then, UGRs appear at
specific wavelengths and light propagation directions, are robust, and
are characterised by phase singularities in the channel in which radia-
tion is cancelled. The mechanism we describe allows for ready selection
of the radiation direction, as well as tuning of the wavelength and the
propagation angle at which UGRs occur.

Unidirectional guided resonances (UGRs) are unbounded states of pho-
tonic structures where light is radiated from a waveguide via only one radi-
ation channel even though multiple channels may be available. Their exis-
tence has been recently put forward and experimentally observed in photonic
crystal structures [1]. By and large, control of the proportion of radiation
escaping via each radiation channel is desirable for various applications, such
as photonic crystal surface emitting lasers [2], vertical grating couplers [3, 4]
or light detection and ranging devices [5], to name a few. Several schemes
have been proposed to obtain unidirectional radiation by directing all radia-
tion into a single channel, for example using stacked reflectors [6, 7], interfer-
ence from radiating antennae [8], or asymmetric photonic crystal structures
[9, 10, 11]. However, the aim of perfectly unidirectional radiation was only
achieved using the concept of topologically enabled radiation cancellation
that is typical of bound states in the continuum (BICs) [1]. BICs are states
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that remain radiationless even though they exist embedded in the continuum
part of the spectrum [12, 13]. They have been a topic of intense recent study
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], which has led to several potential
applications [25, 26, 27, 28]. Photonic BICs arise due to symmetry protec-
tion or destructive interference via parameter tuning [29]. BICs are zeroes
of radiation by definition and therefore correspond to polarisation or phase
singularities and may exhibit topological properties [30, 31, 32, 33, 34, 35].
The insight into the mechanism of radiation cancellation gained from BICs
has been harnessed in structures with multiple radiation channels to create
directional resonances [36], and perfect UGRs [1, 37].

Anisotropic planar waveguides are known to support leaky modes above
the light line (see [38, 39, 40, 41], and references therein). They are intrin-
sically hybrid, i.e., they comprise the six electromagnetic field components,
and arise as complex solutions of the eigenvalue equation where, for moder-
ate leakage losses, the imaginary part of the eigenvalue provides a good ap-
proximation of the radiation losses via the radiation channels. It has recently
been established that under suitable conditions in structures with a single
radiation channel, radiation of the leaky modes can be totally cancelled,
thus yielding anisotropy-induced BICs [19, 34, 42, 43]. Anisotropy induced
BICs have also been used for diverse applications [44, 45]. It must be prop-
erly appreciated that, due to their full-vector hybrid structure, such states
are of a totally different nature than BICs arising in systems described with
scalar transverse electric and transverse magnetic mode sets. One salient
consequence is the profound role that anisotropy-symmetry (dictated by the
orientations of the optical axes of the materials relative to the waveguide
geometry and to each other), rather than standard material symmetry, has
on the light propagation phenomena that are possible.

In this Letter, we address structures with two radiation channels and
show that, under proper conditions, they can support UGRs where radiation
is cancelled in one of the radiation channels and fully redirected into the
other. More specifically, we analyze anti-guiding waveguide structures using
the Berreman transfer matrix method [46], supplemented by the condition
for BIC existence. This formalism readily reveals that the two radiation
channels are strongly coupled at the boundaries due to birefringence. We
find that UGRs only appear when at least one of the optic axes (OAs) in the
structure is taken out of the waveguide plane, breaking the polar anisotropy-
symmetry. They are robust and exhibit phase singularities in the radiation
channel that is cancelled. Here we focus on describing the physical properties
of the UGRs and the practical conditions that make them possible, based
on the analysis elaborated in detail in Ref. [34].

The class of structures we study is depicted in Fig. 1(a). It comprises
negative birefringent uniaxial materials in the substrate, the core/film and
the cover. D is the thickness of the film and thus D/λ is the normalized
dimensionless thickness or normalized operating wavelength. We consider
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Figure 1: (a) Waveguide comprising three negative birefringent materials
whose optical axis orientations are assumed to be varied independently. (b)
Schematic of the refractive indices of the structure. The dashed red boxes
indicate the index/polarisation corresponding to the radiation channel.

propagation along the y direction, while x is orthogonal to all the waveguide
interfaces. The angle φ denotes the azimuthal orientation in the interface
plane between the propagation direction and the projection of the film OA.
∆c and ∆s give the misalignment of the OAs of the cover and the substrate
with respect to the film, such that ∆c/s = φ − φc/s. θs, θf and θc are the
polar angles of the substrate, film and cover OAs with respect to the normal
to the interface plane. Without loss of generality, unless otherwise specified,
here we consider identical uniaxial negative materials in the substrate and
the cover (i.e., nos = noc = 1.7 > nes = nec = 1.3), with the refractive in-
dices of the material of the film situated between those of the cover and the
substrate (nos > nof = 1.6 > nef = 1.4 > nes), as shown in Fig. 1(b). The
ordinary index of the cover and substrate being the highest refractive index
of the structure ensures that no guided modes can be supported and the
ordinary polarisation in the substrate and the cover always provide the two
aforementioned radiation channels via which light in the film can couple to
the radiation continuum. It is assumed that the OAs of the substrate, film
and cover are independently oriented during the fabrication of the waveg-
uide.

The radiation channels are equivalent when the structure is mirror-
symmetric about the x = 0 plane and it is expected that such structures
will support lines of BIC existence in a manner analogous to anisotropic
waveguides with a single radiation channel. Figure 2(a) shows the funda-
mental semi-leaky mode supports lines of interferometric (INT) BICs (blue
lines) for a structure that maintains mirror-symmetry even though azimuthal
anisotropy-symmetry is broken (∆c = ∆s 6= 0◦). Figure 2(b) shows the ra-
tio of the radiation channel amplitudes in dB for the mode in Fig. 2(a).
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Figure 2: (a) Fundamental leaky mode supported by a geometrically
symmetric structure with ∆c = ∆s = 5◦, (c) an asymmetric structure
with ∆c = 0◦ and ∆s = 5◦ and (e) an asymmetric structure with
noc 6= nos = 1.8. In all cases the OAs are contained in a plane parallel to
the interface (θ = 90◦). The remaining parameters are defined in the main
text. The color shows attenuation length L of the leaky mode, defined as
the length at which the field amplitude decays to 1/e of the initial value.
The white area corresponds to areas beyond the mode cutoff. The ratio of
radiation channel amplitudes (in dB) is shown in (b, d, f) for the respective
structures in (a, c, e).

The symmetric structure has equivalent radiation channels and therefore
the radiation in the two channels is identical. In the case that the mirror
symmetry about x = 0 is broken, radiation into the two channels is asym-
metric as shown in Figs. 2(c-f) for two different perturbations of the mirror
symmetry. Figure 2(c) shows the fundamental semi-leaky mode in a struc-
ture where the OAs in the cover and the substrate are no longer parallel,
namely ∆c = 0◦ 6= ∆s = 5◦. Then, BIC lines collapse to a BIC point, per-
forming a topological transition in the dispersion diagram [34]. In addition,
the asymmetry in the structure leads to some asymmetry in the radiation
into the two channels, as shown in Fig. 2(d) but this is not substantial. If the
asymmetry in the structure arises from the use of different materials in the
cover and the substrate, e.g., with noc 6= nos while keeping ∆c = ∆s, once
again the BIC lines collapse to BIC points [Fig. 2(e)] and yet again the radi-
ation in the two channels is asymmetric but not substantially [see Fig. 2(e)].
In both cases, complete unidirectional suppression of the radiation is not
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Figure 3: (a) Fundamental leaky mode supported by a structure with only
polar anisotropy-symmetry breaking (∆c = ∆s = 0◦ and θf = 85◦). (b)
Ratio of radiation channel amplitudes in dB for the mode in (a). The
dashed black circles in (b) mark the unidirectional guided resonances. (c)
Phase of the radiation channel (ordinary wave) amplitude in the cover,
measured with respect to the phase of the extraordinary confined wave. (d)
Same as (c) but for the substrate radiation channel amplitude. The dashed
grey circles in (c,d) show the screw phase dislocations in the radiation
channel amplitudes.

observed.
The mirror symmetry with respect to the x = 0 plane can also be broken

by taking at least one of the OAs out of the interface plane, i.e., by breaking
the polar anisotropy symmetry. Figure 3 shows the fundamental semi-leaky
mode when the film OA is at θf = 85◦. Even though ∆c = ∆s = 0◦, the
structure is geometrically asymmetric and therefore the equivalence of the
radiation channels is also broken. Again, BIC lines collapse to BIC points, as
the one shown at φ = 90◦ and D/λ ≈ 1.434 as shown in Fig. 3(a) (more BIC
points exist above D/λ > 1.5). The radiation into the two different channels
is distinct as shown in Fig. 3(b) but now there is a relevant qualitative
difference. The blue and red lines indicate strongly asymmetric radiation
(note the change in limits of the color scale) to the cover and the substrate,
respectively. Moreover, there are specific points (dashed black circles in
Fig. 3(b)) in the φ − D/λ space where the ratio diverges. At these points
radiation into one channel is entirely canceled while all radiation escapes via
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Figure 4: Same as Fig. 3 but for both azimuthal and polar anisotropy-
symmetry breaking ∆c = −∆s = 10◦ and θf = 85◦.

the other channel. Thus, such points correspond to unidirectional guided
resonances [1]. Because ∆c = ∆s = 0, the two UGRs occur at the same
value of D/λ = 0.643, and at symmetric directions about φ = 90◦, in this
case specifically at φ = 62.09◦ and φ = 117.91, radiating to the cover and the
substrate, respectively. As Fig. 3(a) shows, radiation losses do not decrease
at the UGR (the color scale is homogeneous at the UGR point). Therefore,
the UGR in one radiation channel deviates all the radiation to the opposite
channel on the leaky mode.

Topological transitions in the dispersion diagram of the structures from
BIC lines to BIC points caused by polar anisotropy-symmetry breaking re-
sult in zeroes of radiation characterised by screw phase singularities in the
radiation channel amplitude at the BIC point [34]. This is the case for the
BIC point in Fig. 3(a), which results in screw phase singularities at exactly
the same point, φ − D/λ, for the two channels, as shown by the phase of
the radiation channel amplitudes in the cover and the substrate, as depicted
in Figs. 3(c) and (d). The winding number is opposite in the substrate and
cover radiation channels, as could be observed by the gradual change in
the phase, which is only appreciable upon zooming in the plot. The UGRs
correspond to screw phase singularities (grey dashed circles in Figs. 3(c,d))
that do not coincide in the φ −D/λ space for the two channels, indicating
that radiation is zero only in the corresponding channel, which has become
decoupled from the continuum due to destructive interference. The UGRs in
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this system are characterised by integer winding numbers assigned to their
corresponding phase singularities unlike the UGRs in photonic crystals that
are assigned half integral charges [1].

We also found that it is possible to switch the perfectly unidirectional ra-
diation from the cover to the substrate by changing the polar OA orientation
to θf = 95◦. Then, the position of the UGRs is interchanged, so that the
UGR at φ = 62.09◦ radiates to the substrate and the UGR at φ = 117.91◦

radiates to the cover. Changing the polar OA orientation is equivalent to a
180◦ rotation of the structure, or to reversing the direction of propagation
from +y to −y. This kind of switching is a characteristic property of the
system we are addressing and cannot be realised in a structure with only
one radiation channel where one of the cladding materials forbids radiation.

Figure 4 shows the fundamental semi-leaky mode for a structure where
both polar and azimuthal anisotropy-symmetry is broken (θf = 85◦ and
∆c = −∆s = 10◦). In this case, there are no BICs supported on the fun-
damental semi-leaky mode as shown in Fig. 4(a). The lines of strongly
asymmetric radiation to one radiation channel present in Fig. 3(b) also dis-
appear in Fig. 4(b) but the UGRs survive, as shown by the dashed black
circles Fig. 4(b). Again, the cancellation of radiation in one channel is com-
pensated by an increase of radiation into the other channel, so that the total
loses on the leaky mode, Fig. 4(a), are not altered by the presence of the
UGRs. Like in the case of Fig. 3, the UGRs appear at symmetric positions
with respect φ = 90◦ and correspond to screw phase singularities in the
radiation channel which has been decoupled from continuum [Figs. 4(c,d)].

We therefore establish that UGRs are possible only under polar anisotropy-
symmetry breaking, as azimuthal anisotropy-symmetry breaking or material
asymmetry in the structure does not create them. If ∆c = −∆s, UGRs are
located at mirror symmetric positions about φ = 90◦ on the leaky mode.
With polar anisotropy symmetry broken and ∆c 6= −∆s, UGRs continue to
exist though they are no longer placed in symmetric positions about φ = 90◦

on the leaky mode. When the UGRs for the two radiation channels coincide
in the φ −D/λ space, a BIC is created, as is the case of the BIC point in
Fig. 3. Similarly, when θf returns to θf = 90◦ and the structure evolves
from the situation with broken polar anisotropy-symmetry to the situation
where polar anisotropy-symmetry is restored, the two UGRs in Fig. 3 follow
a trajectory in the φ −D/λ space until they coincide at φ = 90◦ and form
the BIC lines in Fig. 2(a). Therefore, UGRs only appear/disappear when
BICs are broken/restored, and as the screw phase singularity indicates, they
are robust against any perturbation.

The light propagation dynamics that occurs at the UGR is shown by
finite-difference time-domain (FDTD) calculations using MEEP [47]. The
results are shown in Fig. 5 for the structure Fig. 3 with θf = 85◦. The UGR
radiating only to the cover with φ = 62.09◦ and D/λ = 0.643 (left circle in
Fig. 3(b)) is shown in Fig. 5(a), resulting in radiation to the cover. Fig. 5(b)
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Figure 5: FDTD calculation of unidirectional guided resonances, showing
the z-component of the magnetic field (Hz), in a structure with only
polar anisotropy symmetry breaking (θf = 85◦ and ∆c = ∆s = 0◦) for
D/λ = 0.643 and (a) φ = 62.09◦ and (b-c) φ = 117.91◦. (a) and (b)
corresponds to forward propagation with radiation into the cover and
substrate, respectively. (c) Simultaneous forward and backwards propa-
gation. The Y propagation distance is normalized relative to the wavelength.

shows the UGR radiating only to the substrate at φ = 117.91◦. Fig. 5(c)
shows the scenario where the structure is excited in the centre with both
forward and backward propagation with φ = 117.91◦. For forward prop-
agation, in the +y direction, the situation does not change, and radiation
goes to the substrate, as in Fig. 4(b). A change of propagation direction
to −y results in radiation going to the cover, as the situation is equivalent
to having φ = 62.09◦ or orienting the film OA at θf = 95◦. Note that in
the FDTD calculations, we use the eigenmode source provided by MEEP,
which does not exactly match the improper leaky mode, resulting in some
reshaping during propagation.

Therefore, we conclude that unidirectional guided resonances can exist
in anisotropic anti-guiding waveguides with multiple radiation channels only
when polar anisotropy-symmetry is broken. When the polar anisotropy-
symmetry is not broken, the UGRs in the two channels coincide to form a
BIC. Thus, the UGRs arise from the same mechanism as anisotropy induced
BICs. Anisotropy-induced UGRs show screw phase singularities and their
existence conditions are robust under variation of system parameters. They
also allow for switching of the perfectly unidirectional radiation from cover
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to substrate and vice versa. These findings highlight the new phenomena
introduced by the concept of (natural or artificial) anisotropy-symmetry and
are relevant to the practical applications of UGRs in waveguide structures
made of birefringent materials whose optical axis orientation can be var-
ied during the fabrication process or during operation, such as liquid crys-
tals. Unidirectional radiation may have important applications in several
optoelectronic devices such as on-chip lasers, directional optical antennas or
directional couplers [1], and our results open the possibility to implement
them in off-axis geometries in anisotropic materials.
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