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Abstract:

Purpose: The  cost  and  environmental  impact  of  energy  is  driving  better  quantification  of  energy
utilization in a business context. Determining an entire business electrical energy usage, inclusive of  core
operations  and  support  activities,  in  a  singular  evaluation  protocol  is  a  challenge.  The  challenge  is
exasperated when changes occur in the business, where every change implies significant rework of  the
business energy calculations. This study develops a holistic energy determination model for the entire
business requiring minimum inputs for energy re-calculation, when aspects of  the business changes. 

Design/methodology/approach: The  research  adopts  a  quantitative  approach  enabled  through  a
Discrete Event Model. The model is developed based on the activities performed in every functional area
of  the  business.  The  activities  are  captured  using  business  process  science.  The  processes  are  then
developed into a DES Model. The model development cycle includes data collection, model development
and configuration, model validation and scenario models for optimization.

Findings:  A coal fired power generation business, with multiple sites is comprehensively simulated to
evaluate the baseline electrical energy demand and associated CO2 emissions. The results are captured at
various  levels  of  the business  including;  Enterprise;  site,  business  function and equipment level.  The
generation sites operational functions are identified as major electrical energy consumers. The adoption of
Industry 4.0 technologies of  Internet of  Things, Big Data Analytics, mobility and automation demonstrate
energy savings of  1% of  total site demand. As the Industry 4.0 technologies are applied to a limited
number of  processes, the results demonstrate the capability of  these technologies having a significant
impact on electrical energy demand and CO2 emission when applied to a broader spectrum of  business
processes.

Research limitations/implications: The research is limited to a multi-site energy generating company,
which is a coal to energy business. 

Practical implications: The research has significant practical implications, mostly on the mechanisms to
evaluate business energy utilisation.  The ability  to  include all  areas of  the business is  a  key practical
differentiator, as compared to traditional models focusing on operations only.

Originality/value: The model is unique in that it is a model that is system agnostic to any production
configuration, most especially changes in configuration. This implies that the model can be easily and
quickly adapted with changes in the business. This implies the model proposed would be significantly more
adaptable when compared to traditional approaches. 
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1. Introduction
Energy is considered a necessity in today’s society. It contributes to every aspect of  daily life including; access to
clean and safe drinking water; communication, quality healthcare and food. This is further affirmed by the United
Nations Sustainable Development Goal 7, which states “Ensure access to affordable,  reliable, sustainable and
modern  energy  for  all”(United  Nations,  2020).  The  economic  and  social  growth  of  developing  countries  is
significantly contributing to the rise in global energy demand (Aslani & Mohaghar, 2013). Rentsch  and Heinzel
(2015) state that energy consumption is on the rise globally, and not only in digitalised and developing countries.

Traditional power generation has been via fossil fuels such as coal and natural gas, which has detrimental impacts
on the environment (Peng,  Chen & Yao,  2021).  Whilst  the  transition to renewable  energy  sources is  rapidly
expanding, coal remains a significant fuel source (Feng, Yang, Hou, Duan, Yang & Wang, 2021), accounting for
36% of  global power generation (IEA, 2020a). The existing power plants generate 30% of  global energy related
CO2 emissions (IEA, 2019). Further to this, the existing coal fired power generation fleet is fairly young, with 60%
of  power generation stations less than 20 years (IEA, 2020a), and an additional 170MW is under construction
(IEA, 2019). Whilst there is a decline in use of  coal for power generation in Europe and North America, South
East Asia is emerging as a key region for growth of  coal power generation (Clark, Zucker & Urpelainen, 2020;
Gagarin, Sridhar, Lange & Bazilian., 2020). It is estimated that global carbons emissions due to power generation
will increase to 42% by 2040 (Feng et al., 2021).

The past and present investments in coal power generation necessitates efficiency improvements (IEA, 2020a).
Fostering energy efficiency offers a cost effective approach to GHG emissions reduction (Sun, Edziah, Sun &
Kporsu., 2021). Many governments have strategic policies to drive renewable energy diffusion, and to reduce to
high-energy intensities,  (Sun et  al.,  2021). In 2019 the US Department of  Energy invested 38 million dollars
towards  improvement  of  power  plant  performance  (IEA,  2020a).  The  Fourth  Industrial  Revolution  delivers
significant  optimization  options  for  coal  power  generation  facilities,  including  increased  operational  flexibility
towards  integration  of  renewable  technologies  (IEA,  2017).  However,  implementation  of  Fourth  Industrial
Revolution (4IR) technologies and processes comes with additional energy requirements. This additional energy
requirements are offset by the higher energy efficiencies achieved.

There  are various  mechanisms for analysing and improving the performance of  energy  systems,  with energy
modelling being among the most established (Bhattacharyya & Timilsina, 2010; Jebaraj & Iniyan, 2006). The energy
models typically applied at power generation sites are at the process and equipment level. These models are highly
specific, and data intensive (quantitative and disaggregated data), and proprietary (Munsamy, Telukdarie & Fresner,
2019). There is a notable gap at the business level, as business functions such as maintenance, logistics, planning,
HR and finance are excluded. 

This  research  propositions  an  energy  optimization  model,  based  on  business  processes  and  Discrete  Event
Simulation (DES), for power producers. The model includes all equipment demand, activity-based demand and
buildings energy demand.

2. Literature Review

Electricity, is the fastest growing final energy source, but there is approximately 1 billion people without access to
electricity (IEA, 2020b). Power generation companies are typically large, multinational enterprises or government
owned entities as the cost of  construction (inclusive of  planning and designing) and operation is significant and
have long operational lifespans. These companies operate multiple generation, distribution and support service sites
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globally, and are thus required to adhere to varying labour and environmental regulations (specific per country) and
manage large staff  contingents. 

Coal  is  still  a significant source for power generation (Feng et  al.,  2021),  and with 60% of  coal  fired power
generation stations less than 20 years, efficiency improvements are critical (IEA, 2020a). Energy modelling is a tool
widely applied in the management and optimization of  energy systems (Bhattacharyya & Timilsina, 2010; Herbst,
Tor,  Reitze  & Jochem 2012).  Various  power  suppliers  and their  service  providers  including Aspen,  Rockwell
Automation, General Electric (GE), Honeywell, ABB and Schneider Electric, have developed energy models and
tools.  The  models  and  tools  may be  applicable  to different  industries  such  as;  Aspens  Energy  Analyzer  for
optimization of  heat exchanger networks (Aspen Technology Inc., 2021a) and Aspen Utilities for optimization of
energy use and reduction of  emissions and costs (Aspen Technology Inc., 2021b), or specific to an industry such as
GE PSLF Simulation Engine, which is applicable to the power industry and some of  its capabilities include stability
analysis and thermal and voltage analysis (GE, 2019). Key characteristics of  these models include: specificity of
application, it is typically focused on a single area of  application or a specific type of  equipment; having a specific
objective such as utilities optimization; requiring quantitative and highly disaggregated data; requiring users with a
moderate to high engineering and/or technical proficiency and the software are proprietary (Munsamy et al., 2019).
A key limitation of  these models are the specificity to a process or equipment, typically on the operational side, thus
unable to provide a complete business energy evaluation, inclusive all business activities. 

The Fourth Industrial Revolution is presenting new opportunities for the power generation sector. Digitalization
has the potential to revolutionize the current energy sector; the capability to identify the energy user, supply the
user with the required energy at the right time and place and at the lowest cost (IEA, 2017). Digitalization could
potentially  save the  power  sector 80 billion US dollars  per year  (IEA,  2017), through improved power  plant
efficiency, reduction in operations and maintenance costs and unplanned outages. Potential improvements due to
application of  digital technologies include: prediction of  Heat Recovery Steam Generator (HRSG) tube leaks;
identification of  valves requiring repair or replacement by utilizing smart meters; increased accuracy of  modelling
of  operational  functions by using machine learning;  real time notification to personnel of  order and updates;
training and real time tracking of  performance via augmented and virtual reality and heat-rate improvements up to
3% by use of  machine learning (Guzman, Prasanna, Safarik & Tanwar., 2019). 

Whilst, power generation companies provide an essential service of  electricity generation, it is still a business. A
business  is  an entity  that  seeks  to  profit  from activities  by  offering specific  goods or  services  to customers.
(Temponi, Bryant & Fernandez, 2009), defines a business as a dynamic set of  interacting elements, inclusive of
technical processes, organisational processes, technical functions, departments, business centres and subsystems like
finance, production, marketing, and management. A business comprises functional areas, hierarchical organisation
from management to knowledge workers, and corporate strategic vision or goals that need to be fulfilled through
timeous  execution  of  operations  or  activities  (Moeuf,  Pellerin,  Lamouri,  Tamayo-Giraldo  & Barbaray,  2017).
Existing conventional  approaches to value creation are no longer enough in handling increasing requirements
pertaining to cost, efficiency, flexibility,  adaptability, stability and sustainability (Hofmann & Rusch, 2017). Yao,
Xiao, Jian and Shu (2021) state that electricity companies need to urgently develop models that guide their decision-
making  processes,  and governments  need models  to guide  low-carbon policies.  To enable  informed decision
making, the business must be represented holistically and comprehensively, inclusive of  all business cross-links,
interdependencies, and deviations. 

Business processes, which detail the sequence of  steps in execution of  business activities (Bititci & Muir, 1997), is a
common  business  management  tool.  The  business  activity  is  any  activity  conducted  by  the  business;  boiler
operation, steam turbine start-up, ordering of  goods/services, maintenance of  pump; recruitment of  personnel and
upgrading of  ICT systems. Business processes are inherently detailed, technical and while being sequential also
includes parallel operational paths, cross-links with other business processes and decision blocks. Decision blocks
determine the business process path to be followed when there are multiple parallel paths. Examples of  decision
blocks include; did the coal pass the quality test, is the equipment under maintenance a statutory equipment, with
each possible answer following a different process path. Cross-links indicate the interdependencies of  the business
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processes; the generation schedule is interlinked to the maintenance plan and inventory management business
processes.

Business Process Simulation (BPS) evaluates the performance of  a business activity under multiple scenarios, thus
allowing  comparative  analysis  towards  identification  of  best  operational  practices  (Camargo,  Dumas  &
Gonzalez-Rojas, 2020). BPS enables computation of  various performance measures such as cycle time, resource
utilisation, and waiting times for each task in the process. As business processes detail the sequence of  tasks in
execution of  business activities, the simulation of  business processes is Discrete Event Simulation. 

Discrete Event Simulation (DES) models a system as a sequence of  events (Agalianos, Ponis, Aretoulaki, Plakas &
Efthymiou, 2020). Paulista, Peixoto  and de Assis-Rangel (2019) applied DES in evaluating the electrical energy
consumption and generation at a diary plant. Kohl, Spreng and Franke (2014) applied DES to evaluate the energy
demand of  individual products and their variants. Keshari, Sonsale, Sharma and Pohekar (2018) applied DES to
quantify  and comparatively  analyze the energy  demand of  a  paper  and pulp plant  under  varying operational
conditions. Cataldao, Taisch and Stahl (2013) applied DES in evaluating the energy demand of  a production line,
comprising of  four operating machines. The energy demand of  the whole plant and each machine is analyzed. DES
is also used to solve issues that involve continuous approaches such as energy flow or in industries based on
pipeline network fluids (Ekyalimpa, Werner, Hague, AbouRizk & Porter 2016). DES is an established method to
support decision making for planning tasks in production and logistics and is mostly established in large enterprises
(Lang, Reggelin, T., Muller, B., & Nahhas, 2021). May, Barletta, Stahl, & Taisch (2015) affirmed that DES can be
used to verify behaviour of  energy consumption in different production scenarios, thus providing decision making
resources regarding the energy contract to be made with the local concessionaire. The numerous applications of
DES in energy management and optimization supports its adoption in this research. This research adopts business
processes as the basis for DES towards development of  a comprehensive (inclusive of  all business activities) energy
optimization model for a power generator.

3. Methodology
For power generation companies to achieve its mandate, of  generation and distribution of  electricity to end users,
the following business functions are required: Strategy (SR); Integrated Planning (IP); Logistics (Log); Sales and
Marketing  (S&M);  Customer  Service  Management  (CSM);  Human  Resources  (HR);  Information  and
Communication  Technologies  (ICT);  Financial  Management  (FM);  Power  Production  (PP),  Transmission  (T);
Distribution (D); Maintenance (Main); Research and Development (R&D), Develop Product and Services (DPS)
and Safety, Health, Environment, Quality and Risk (SHEQR). The aforementioned is a high level functional area
representation, with each of  these functional areas delineated into various process areas and finally into business
processes. As each business process is linked to a specific functional area, a business process hierarchy is developed.
In developing the business process hierarchy for the power generation company, the following established business
process hierarchies were considered;  ARIS (Davis & Brabander,  2007),  SAP (SAP,  2016) and APQC Process
Classification  Framework  (PCF)  (APQC,  2015).  A  four-level  hierarchy  is  developed  for  a  power  generation
company, as detailed below:

• Level 0 - Functional area: Is the highest level of  the business such as Power Production, Human Resources
and Financial Management.

• Level 1 - Process Area: Is the categorisation of  activities within a functional area, such as Recruitment
within the Human Resources function.

• Level 2 - Business Process: Details the sequences of  tasks for a specific business activity such as recruit
candidates.

• Level 3 - Business Process Step: Is a single step of  the business process such as post advert on the selected
mediums for the recruit candidate business process.

A screen and select candidate business process, which is part of  the Human Resources function, is illustrated in
Figure 1. 
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Figure 1. Screen and select candidate business process
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At Level 3 of  business process step, the execution details are explicit, refer to Figure 1. This facilitates quantification
of  resource requirements of  personnel, raw material, equipment (process and ICT), resource utilisation time and
task execution time. This data is utilised in quantifying the energy demand and CO2 emissions of  the power
generation company, as per Equations 1 and 2 (Munsamy et al., 2019; Munsamy & Telukdarie, 2021).

(1)

The execution structure of  Equation 1 enables analysis of  energy demand and CO2 emissions at various business
resolutions: business process, process area, business function, site level and company level, facilitating effective
optimisation.

(2)

Where

o = Number of  resources 
n = Number of  business process steps
m = number of  business processes
l = number of  process areas
k = number of  functional areas
j = number of  sites

An illustration of  the execution of  Equations 1 and 2 are illustrated in the Table 1. 

Business
Process Business Process Step Resource

Resource
Energy

Demand (W)

Number of
Resources
Required

Resource
Utilisation
Time (hr)

Energy
Demand

(Wh)

Screen and select
candidates

Review applicants and select 
candidates who meet the criteria.

Laptop 30 4 1.00 120

Screen and select
candidates Select candidates for interview Laptop 30 1 0.50 15

Screen and select
candidates

Select candidates for interview Printer 2287 1 0.03 76

Screen and select
candidates Notify candidates of  interview Laptop 30 1 0.17 5

Screen and select
candidates

Arrange logistics for candidates Laptop 30 1 0.33 10

Screen and select
candidates

Prepare documentation for 
interview and invite required 
personnel from the organisation

Laptop 30 2 2.00 120

Screen and select
candidates

Prepare documentation for 
interview and invite required 
personnel from the organisation

Printer 2287 1 0.08 191

Screen and select
candidates Conduct interview Laptop 30 1 1.00 30

Screen and select
candidates

Select candidate Laptop 30 1 1.00 30

Table 1. Calculation of  energy demand for the screen and select candidate business process
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The simulation of  the energy demand and associated CO2 emissions at the lowest level of  Level 3, is rolled up to
the proceeding levels, enabling analysis at each categorised business level and the business as a whole. The approach
for quantifying and optimising the energy demand is illustrated in Figure 1. The initiation point for model execution
is the business process/es for simulation (extracted from the database), as illustrated in Figure 1 and Table 1. The
business processes database is developed in Microsoft Visio and structured as per the business process hierarchy. 

The next step is determination of  the resources required for execution. Due to the vast resource requirements of  a
power generation company, the resources are functionally categorised; ICT (inclusive of  hardware and network
devices), process (boiler, steam turbines, fans) and Building Technical Services (BTS). BTS includes the HVAC, and
lighting demand of  the various buildings/facilities at each site. As the HVAC and lighting demand is dependent on
the space function such as canteen, meeting room, office space and plant operations, the HVAC and lighting
demand are calculated per space type. For each resource category, the resources are further classified based on
design  parameters;  boilers  are  further  categorised  as  sub-critical,  critical  or  super  critical.  This  categorisation
structure enables each resource to have a unique identifier for ease of  database management and extraction of  data.
The data sources included: open source data such company annual reports, supplier brochures and equipment
specification sheets; peer-reviewed publications; white papers and reports from established organisations such as
the International Energy Association. For simulation of  each business process step, the resources are extracted
from the resources databases developed in Microsoft Excel.

For simulation of  the energy demand and CO2 emissions, the model is coded in Microsoft Excel Visual Basic
Application (VBA). Microsoft Excel VBA is selected due to its compatibility and ease of  integration with Microsoft
Excel and Visio. In simulation of  the energy demand and CO2 emissions, the exact state of  every business variable
cannot  be  accurately  predicted  due  to  the  dynamics  of  the  business  and  external  factors  effecting  business
operations.  This is  especially  relevant in simulating decisions  blocks,  which determines the process path flow
followed. Considering the decision block, “Did the coal pass the quality test?” it is challenging to accurately predict
exactly how many coal quality tests are passed and failed due to various external factors. Thus in simulation of  the
decision blocks, the model applies the Random Function constrained to the upper and lower limit operational
range. The application of  the Random Function introduces noise to the model. Monte Carlo Simulation handles
variables as stochastic variables (Bonate, 2001). Monte Carlo Simulations are applied to limit the influence of  the
Random Function. The Monte Carlo Simulations are executed until the baseline state is achieved, which is defined
as a negligible change in the Standard Error of  the Mean (SEM) of  the simulated energy demand. Due to the
number of  operational sites of  a power generator, the Monte Carlo Simulation is initially run for the site with the
largest number of  decisions, as the greater the number of  decision blocks the greater the variability. The number of
simulations required to achieve negligible change in the Standard Error of  the Mean, is applied for the remaining
sites.  The  median  values  of  all  the  Monte  Carlo  Simulation  (until  negligible  change  in  SEM)  is  applied  in
determining the baseline energy demand and CO2 emissions. 

Optimisation is simulated by substituting current business processes with optimised business processes and/or by
technology substitution. An optimisation database is developed, comprising the:

• Re-engineered business processes: Business processes which have been modified by adoption of  digital
technologies, energy efficient technologies and “smart” resources.

• Resources: Includes “smart” resources such as smart meters, and green or efficient technologies such as
variable frequency drives and low NOx burners. 

The user would select the appropriate option/s from the database. The user can select a re-engineered business
process such as an Internet of  Things Enabled Production Tracking business process, where radio frequency identification
tags are attached to equipment for real time capturing of  process information, that support decision making on
process operations. Alternatively, the user can select a specific resource such as the use of  variable frequency drive,
with the model replacing all conventional motors with variable frequency drives for the specific business process.
This approach enables comparative analysis between the as-is and optimised processes. 
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The increasing availability of  advanced technologies results in multiple optimisation options. However the use of
these technologies is limited to a company’s financial and resource capacity. To determine the optimisation option
with the greatest impact to the objective of  reduction of  energy demand and associated CO2 emissions, the Design
of  Experiment  (DOE)  methodology  is  applied.  The  DOE methodology  evaluates  the  optimisation  options
singularly and in combinations to determine which option/s results in the highest energy and CO2 emissions
reduction.

Figure 2. Energy modeling approach
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4. Results

The application  of  business  processes  for  discrete  event  modelling  simulation  in  quantifying  and optimising
electrical energy is demonstrated via application to a power generating company comprising three operational sites,
with each site in a different geographic location. The sites are: Corporate site; Generation Site 1 with a generation
capacity of  3600 MW and Generation Site 2 with a generation capacity of  3000 MW. The corporate site establishes
the vision, strategy and policies of  the company and executes functions such as HR, S&M, CSM, ICT, R&D and
FM.

Generation sites 1 and 2 produce electricity via coal fired boilers and execute support functions such as HR,
Logistics, Maintenance, ICT, SHEQR and FM. Generation Site 1 produces electricity via six 600MW boiler, with a
coal feed rate of  1800 ton/hr. Generation Site 2 produces electricity via six 500MW boiler, with a coal feed rate of
1400 ton/hr. For the power production function, only the steam generation process from coal delivery to steam
turbine is simulated. The balance of  plant operations of  water treatment, transformer and generator are excluded
due to limited access to operational data. In evaluating the electrical energy demand it is assumed the coal mines are
in close proximity to the respective generation sites allowing the transfer of  coal from the mine to the generation
sites via a conveyor belt system. The resource requirements for the power production process include but not
limited to; conveyor belts, boilers, turbines, various types of  pumps and fans, electrostatic precipitators, control
systems, instrumentation and coal mills. Both of  the generation sites have 83 decision blocks each, varying from,
“the  number  of  coal  samples  that  pass  the  quality  test”  to  “does  the  material  inventory  meet  the  planned
production requirements.” Generation Site 1, with the higher generation capacity of  3600 MW, was simulated first
to determine the number of  Monte Carlo Simulations. For Generation Site 1, at 4600 simulations the change in the
standard error of  the mean of  the electrical energy demand is negligible. Thus for Generation Site 2 and the
Corporate Site, the Monte Carlo simulations are run 4600 times each. 

Each site’s electrical energy demand is cumulative of  the business activities (executed as per the business process),
Building Technical Services (BTS) and network requirements. The energy demand of  all three sites is evaluated on
an annual basis, with the results detailed below. 

Figure 3. Electrical energy demand and CO2 emissions of  each site 

Figure 3 illustrates that the generation sites are the largest contributors to the company’s electrical energy demand,
as expected. Generation site 1 has a 22% higher electrical energy demand, due to a higher generating capacity of
3600MW as compared to 3000MW of  generation site 2. 

The second level of  analysis is at the functional level (Level 0 as per the business process hierarchy), as illustrated in
Figure 4. In the following graphical illustrations p refers to primary axis and s to secondary axis.
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Figure 4. (a) Generation site electrical energy demand profile. (b) Corporate site electrical energy demand profile

The generation sites  electrical  energy  demand is  five to six  times greater  than that  of  the corporate  site,  as
illustrated in Figure 4. At the generation sites, the largest consumer of  the electrical energy demand are the business
activities, which encompasses all activities executed including power production. For the generation sites, BTS has
the second highest electrical demand followed by network, refer to Figure 4(a). At the corporate site, the largest
contributor is BTS, followed by network and business activities, respectively. 

For the functional area analysis, the generation sites are evaluated separately from the corporate site due to the
difference in scale of  electrical energy demand. Further to this, for the generation sites the power production
functional area electrical energy demand is excluded from Figure 5, due to its significantly larger energy demand in
comparison to the other functional areas. The functional areas illustrated in Figure 5, can be considered as support
functions to power production. 

Figure 5. Electrical energy demand of  the various functional areas at each generation site

The SHEQR functional area has the highest electrical energy demand, attributed to the frequent quality testing,
such as coal quality testing. This is followed by the financial management and logistics functions, respectively. The
voluminous repetitive tasks of  the financial management function such as payment of  suppliers and staff, results in
it having the second highest electrical demand. 
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Figure 6. CO2 emissions of  the various functional areas at each generation site 

The CO2 emissions is directly proportional to the electrical energy demand, as detailed in Equation 2. The SHEQR,
financial management and logistics functional areas are the top three contributors to the CO2 emissions.

Figure 7. Electrical energy demand of  the power production
functional areas at each generation site

The high electrical energy demand of  the power production function is attributed to the steam generation process
equipment demand of  pumps, compressors and fans. The steam generation process runs on a 24-hour basis.
Figures 5 to 7 illustrate that the two generation sites have similar energy demand profiles for the various functional
areas. This is due to both sites generating power via coal combustion and each site having six coal fired boilers and
six  steam  turbines,  resulting  in  a  similar  number  of  auxiliary  equipment  such  as  electrostatic  precipitators,
condensers, fans and pumps per boiler. Further to this, the number of  personnel is similar; generation site 1 has
730 personnel and generation site 2 has 711 personnel.

For  the  corporate  site,  customer  service  management  is  the  highest  consumer  of  electrical  energy  demand,
followed by  strategy  and  financial  management.  The  same trend is  observed  for  the  CO2 emissions  of  the
corporate site.

The site level and functional area analyses reveal that the power production functional area of  the generation sites is
the largest contributor to the electrical energy demand. Hence an analysis of  the equipment level energy demand is
conducted for the steam generation business process (refer to the Appendix for the business process). Figure 9
illustrates the equipment having the highest electrical energy demand.
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Figure 8. Electrical energy demand and CO2 emissions of  the corporate site

Figure 9. Equipment electrical energy demand of  the steam generation process

The energy demand of  most process equipment is similar for both sites, with the exception being the primary air
fan. The difference is attributed to; generation site 1 consumes 22% more coal than generation site 2 and differing
operational parameters, equipment efficiency and operational status. 

The  results  illustrate  the  proposed  energy  model’s  capacity  to  simulate  the  electrical  energy  demand from a
company level down to an equipment level. For this study, the two generation sites and specifically the power
production functional areas are identified as the key contributors to the power company’s energy demand and is the
focus of  optimisation. 

4.1. Optimization of  the Baseline Energy Demand Via Scenario Analyses

Optimisation is focused on the business areas having the greatest potential to reduce electrical energy demand and
associated CO2 emissions. The baseline energy demand reveals the equipment of  the steam generation process as
the highest consumers of  electrical energy. Figure 9 illustrates that all of  the identified equipment have electric
motors, hence Variable Frequency Drives (VFD) are selected for optimising the performance of  pumps and fans.
VFD regulates the speed of  the motor based on the flows at that specific time, while conventional motors operate
at a constant speed, typically at the higher speed range to accommodate all flow requirements. 
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The business process were reviewed and the Industry 4.0 technologies of  automation, Internet of  Things (IoT),
and Big Data Analytics (BDA) were selected for application.

• Automation:  Utilising  software  and  systems  to  process,  transform  and  analyse  data  against  key
performance indicators such as planned generation output, emissions rate and boiler throughput. It is also
used for the automatic generation of  various reports. 

• IoT: Equipment are fitted with Radio Frequency Identification (RFID) tags for real time acquisition of
data. The data is analysed and information is transferred back to the equipment for self-adjustment in real
time. IoT also facilitates the ability to access data and specific systems from anywhere and at any time.

• BDA: The analysis of  large volumes of  data for predictive purposes; equipment failures, maintenance
intervals and optimum operational regimes.

These technologies are applied to the following business processes of  the power production functional area:

• Production tracking:  Tracks the performance of  the power generation process against  set production
targets such as steam throughput and equipment performance indicators.

• Review Performance:  Reviews  the  performance  of  the  power  generation  functional  area  against  key
performance indicators such as planned generation output, emissions rate, and safety targets. 

• Out of  specification coal: Details the various steps to be executed when the coal is determined as being
out of  specification. 

The application of  the identified optimisation technologies to the aforementioned business processes requires
significant capital, resource and time investment. Due to capital,  resource and time constraints,  the Design of
Experiment (DOE) methodology is utilised is identifying the best optimisation option/s. 

For the DOE analysis, there are four optimisation options; VFD, IoT, Automation and BDA, with each option
having two levels; applied or not applied. This results in a 42 factorial, with a total of  16 optimisation scenarios. The
impact of  the various optimisation scenarios on the electrical energy demand is illustrated in Figure 10.

Figure 10. Impact of  optimization technologies on electrical energy demand

The adoption of  VFD results in an energy demand reduction of  approximately 22% at each generation site. The
impact of  automation, IoT and BDA is low; BDA reduces the energy demand by 0.2% at each site and combined
automation, BDA and IoT reduces the energy demand by 0.9% and 0.8% at generation sites 1 and 2 respectively.
This is attributed to the technologies only being applied to a limited number of  business processes.
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Figure 11. Impact of  optimization technologies on CO2 emissions

The CO2 emission profile follows the same profile as the electrical energy demand. The adoption of  the VFD
results in a CO2 emissions reduction of  approximately 22%. 

Figure 12. Impact of  VFD on individual process equipment energy demand

Due to the high impact of  VFD, the results are delineated to the equipment level. Figure 12 demonstrates that the
adoption of  VFD results in a 25% reduction in the energy demand of  the individual equipment at each generation
site. 

The optimisation results demonstrate that adoption of  VFD would enable the highest reduction in site electrical
energy demand and CO2 emissions. Although the impact of  IoT, BDA and automation was low (due to limited
application), it demonstrated the potential of  these technologies.
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5. Conclusion

The ability to fully quantify all aspects of  energy utilisation, and CO2 emissions at a company is not a simple
activity. The energy quantification is further challenged if  there is a change at the business or operational level. This
research adopts an activity based approach, where business activities are logically captured as business processes.
The processes, once fully mapped are then converted to a Discrete Event Model. The model represents the entire
business but more importantly is dynamic enough to accommodate changes in the business. The model is adopted
to forecast optimisation. The model is also predictive and the research team integrate cleaner production and 4IR
scenarios to guide decision makers on the impact to business energy consumption based on these optimisation
options. The model is able to identify major energy users and opportunities. 

The model is adopted to simulate and identify the impact of  Cleaner production and 4IR interventions. The results
provide insights into the ability to represent all business activities as business processes, and develop and validate a
process centric Discrete Event Model. The model simulates optimisation scenarios and determines the impact to
the coal to energy generation business. 

The model as constituted forecasts the impact of  CP and 4IR in the order of  magnitude of  between 0.2% for BDA
with VSD potentially impacting the business at 22%. The model has the capacity to forecast individual or any
combination of  CP and 4IR implementation. The model is activity based so changes in the business can be forecast
effectively. 

The research team embark on an ambitious model development, encompassing all business functions. The model
delivered,  together  with  associated  results  proves  that  business  process  models  can  be  adopted  for  energy
predictability and optimisation.
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Appendix 

Figure A1: Steam generation business proces
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