
DO-178C Certification of General-Purpose GPU Software:
Review of Existing Methods and Future Directions

Matina Maria Trompouki∗ Leonidas Kosmidis†,∗
∗Universitat Politècnica de Catalunya (UPC) †Barcelona Supercomputing Center (BSC)

Abstract—General-Purpose GPU software is considered for use
in avionics to satisfy the increased computational requirements
of future systems. Therefore, it needs to be certified following
the DO-178C guidance as all airborne software. In this work,
we review the existing methods in the literature, we analyse
their advantages and disadvantages, and we discuss how they
can be combined to obtain certification with lower effort and
cost. Our focus is restricted on application-level software, under
the premise that successful completion of verification of avionics
graphics GPU software products has been demonstrated, so their
GPU compiler has been considered acceptable for these already
DO-178C certified products, or existing qualified GPU compilers
exist. Finally, we discuss upcoming solutions for certified general
purpose GPU computing.

I. INTRODUCTION

Avionics software has been executed for decades on single-
core computing platforms and its certification has been per-
formed with the evolution of the DO-178 series of standards.
However, the traditionally used single-core processors cannot
satisfy any more the relentless need for higher performance
which is required in order to offer advanced safety-related
features in avionics. For this reason, the aviation industry
explores the use of more complex hardware platforms such
as multi-cores and Graphics Processing Units (GPUs).

While multi-cores can provide a moderate increase in the
on-board computing capability of modern aircraft and can
effectively replace single-core platforms, arguably they cannot
enable the use of very demanding algorithms such as the
ones required to implement higher degrees of autonomy. For
such massively parallel workloads, GPUs are naturally a more
appropriate choice. In fact, GPUs have been successfully
employed in many different domains to accelerate general
purpose computations. For example, the majority of supercom-
puters in the Top 500 list, relies on GPUs in order to achieve
high performance processing of complex scientific computa-
tions. Moreover, GPUs are used in both desktop and hand-held
devices to speed up the processing of generic computations
ranging from physics simulations to Artificial Intelligence (AI)
processing tasks. Finally, GPUs are also being adopted in
safety critical industries such as the automotive [1] and the
space sectors [2], to enable functionalities such as autonomous
driving and advanced image processing assisted by AI.

However, the use of multi-core systems in avionics is
simpler, thanks to the use of ARINC 653 compliant operating
systems, which provide a common time and space partitioning
abstraction regardless of whether the underlying platform is
single-core or multi-core. Therefore, from the functional point

of view, a multi-core avionics system can be programmed
with the same single-core programming model employed in
legacy systems. As a consequence, the ”only” implication in
terms of certification comes from the timing issues introduced
by sharing hardware resources from the software instances
running in parallel on the various CPU cores of the platform.
For this reason, DO-178C is directly applicable to certify the
functionality of multi-core software, while CAST-32A [3] is
used in order to deal with the identification and mitigation of
channels of interference in timing.

On the other hand, the use of GPUs in avionics for general
purpose computations is more challenging from the certifi-
cation perspective. Using GPUs in the aforementioned non
safety-related or less stringent safety-critical domains relies on
the use of programming models such as CUDA or OpenCL
which do not meet the restrictions imposed by functional
safety standards and coding guidelines for the development
of safety-critical software such as MISRA-C [4], as it has
been recently reported by [5]. In particular, these widely used
general purpose GPU (GPGPU) programming models depend
on features such as pointers, dynamic memory allocation and
other dynamic features like on-the-fly code compilation.

While GPUs have been considered only recently for general
purpose processing in avionics systems, they have been used in
aircraft for their primary design purpose – graphics processing
– for many years already. In particular, the glass cockpit
of modern aircraft is equipped with several primary flight
displays, multi-function displays, Heads-Up Displays (HUD)
or head-mounted displays (HMD) [6] [7]. For example, in
an Airbus A320 cockpit there are 4 LCD displays, in A350
6 very large displays and in A380 10 large displays while
aircraft from other manufacturers include similar equipment.
In addition, recent models feature also touch screens [8]
[9]. These visual instruments are driven by avionics-grade
GPUs [10] certified according to CAST-29 [11] certification
recommendations.

On the software side, these GPUs work with graphics
software stacks – GPU graphics APIs and device drivers –
certified by FAA and EASA for the highest criticality level
DAL-A according to DO-178C. Currently Khronos OpenGL
SC 2.0 [12] graphics standard and its predecessor OpenGL
SC 1.0.1 [13] are the only GPU-related software solutions
known to be already certified in actual aircraft for visual
processing in glass cockpit applications. These two OpenGL
subsets are tailored for critical systems by lacking dynamic
features which can result in runtime failures. Thanks to their

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
DOI 10.1109/DASC52595.2021.9594412

TABLE I
OVERVIEW OF EXISTING DO-178C CERTIFICATION-READY GENERAL PURPOSE COMPUTING SOLUTIONS

GPGPU Method Flexibility Certification Effort for Analysis Manual Code Lines of Code Performance
Effort with Automated Tools Review Effort Required

OpenGL SC 1.0.1 + + + ++ ++ +
OpenGL SC 2.0 ++ ++ + +++ +++ ++
Brook Auto / BRASIL ++ ++ + + + ++

certification credit, known techniques for performing general-
purpose computations with graphics can be used to accelerate
computing algorithms.

In this paper, we first examine how general purpose com-
putations can be achieved using graphics. Then we review
the state-of-the-art options which exist for the implementation
of general-purpose computations on GPUs so that they can
achieve DO-178C certification building on the aforementioned
certified graphics technologies and we discuss their advan-
tages and disadvantages. Next we review the current work-
in-progress regarding the next generation certified general-
purpose computing solutions on modern GPUs and discuss
future directions.

II. BACKGROUND

A. Graphics APIs and Shading Languages

GPUs are special hardware units designed to accelerate
graphics computations. In order to produce a 3D visual output,
the scene is described using a set of vertices which are
assembled in basic geometric primitives such as points, lines
and triangles. Next, they are positioned in the 3-dimensional
space using their Cartesian coordinates and carry additional
colour information. In addition, the camera position in the 3D
space is specified, together with a projection matrix which is
used to convert the 3D information to a planar image.

During the vertex processing stage, the GPU is performing
the required matrix calculations in order to convert the geo-
metric primitives to their 2D projection on screen. Then, the
triangles are rasterized, that is, converted to discrete pixels.
In the next step, fragment or pixel processing, each pixel is
shaded, obtaining its colour which is written in the framebuffer
in order to be displayed on the screen or saved in an off-
screen image for later display. The colour is computed using
a combination of complex calculations of fixed or interpolated
values from the vertex shading processing and of predefined
images (known as textures) which can be either sampled at
specific coordinates or interpolated.

The aforementioned graphics operations are described using
a graphics Application Programming Interface (API). Several
graphics APIs exist which offer similar capabilities such as
OpenGL and DirectX and very recently Vulkan. OpenGL is
a portable, royalty-free family of graphics APIs with open
specification defined by the Khronos Group, and has versions
spanning desktop, embedded (ES) and safety-critical (SC)
systems. DirectX on the other hand is a proprietary graphics
API developed by Microsoft, while Vulkan, which we discuss
more in the last part of this article, is a low-level software API

defined by Khronos for both graphics and compute operations,
which enables low-level access to the GPU hardware for
maximum control over its execution.

Some GPU API versions feature programmable stages such
as the vertex or fragment processing. In this case, programs
can be written which will be executed for each vertex or each
pixel of these stages, using a shading language. Similar to the
graphics APIs, shading languages look much alike and have
similar capabilities. OpenGL and Vulkan use the GLSL (GL
shading language) family of shader languages while DirectX
uses HLSL (High-Level shader language).

B. General Purpose Computations using Graphics

In order to perform general purpose computations with
graphics APIs, the general purpose processing algorithm has
to be converted in graphics terms. Several complex algorithms
have been accelerated in this way, during the first years of
GPGPU computing in the early 2000s, before the appearance
of general purpose GPU languages such as CUDA or OpenCL.
During that time, researchers have realised that the parallel
computing capabilities of GPUs can outperform CPUs and
they managed to leverage their power in this way. A compre-
hensive collection of the variety of techniques developed over
the years can be found in [14].

In its simplest form, this procedure is implemented as
follows. The input and output data of the algorithm are mapped
to textures, which are represented by 2D arrays. Then the
programmer draws a planar geometry parallel to the texture,
which covers exactly the desired portion of the texture on
which computation has to be performed e.g.. a rectangular
region. The parallel computation which is invoked for each
output position is described in a fragment shader or a fixed
function specified by the graphics API. Finally, the graphics
hardware takes care of the execution.

III. CERTIFICATION-READY GENERAL-PURPOSE
COMPUTING USING GRAPHICS

In this Section we survey the 3 certification-ready solutions
for general-purpose computations on top of graphics APIs.
Table I summarises the characteristics and trade-offs of each
method in terms of certification effort and performance, which
are further analysed in the description of each solution.

A. OpenGL SC 1.0.1

OpenGL SC 1.0.1 [13] is the first Khronos’ graphics stan-
dard which focuses on safety critical systems. Being a cut-
down version of the OpenGL ES 1.0 specification, it offers
only fixed function graphics processing. This means that the

GPU operations which can be performed for each vertex and
for each output pixel are predefined and cannot be changed.

In terms of certification, this is very convenient since it
only requires to certify the CPU API code according to
DO-178C as any other airborne CPU software. Historically,
programmable GPUs featured only this fixed functionality,
because the functionalities exposed by the OpenGL 1.x API
were implemented directly in hardware, and therefore could
not be changed.

However, this is not the case in modern GPUs, which are
fully programmable both in vertex and fragment processing,
as well as in other stages of the graphics pipeline which are
not used for general purpose computations and therefore their
description is considered outside of the scope of this paper,
such as geometry and tessellation. This means that a modern
OpenGL SC 1.0.1 driver is restricting access to the pro-
grammable features of the GPU, providing only access to the
functionality exposed by the OpenGL SC 1.0.1 specification.
Internally, this functionality is implemented using software,
i.e. vertex and fragment shaders, which have been written and
validated by the GPU driver vendor. The fixed functionality
provided by each of the API calls can be implemented with
minimal shaders, consisting of just a few GPU instructions.
Moreover, the outcome of these operations can be easily
validated against the well known behaviour of older fixed func-
tionality GPUs which implement these operations in hardware
and the official Khronos OpenGL SC 1.0.1 Conformance suite.

Therefore, OpenGL SC 1.0.1 provides the easiest path to
certification at the expense of limited functionality, since if
some desired operations are not provided by the standard, they
cannot be implemented. This reduces significantly the potential
for general purpose computations on the GPU. However, there
are still a few general purpose algorithms which can be
accelerated this way. For example, basic image processing
tasks can be accelerated. Other types of algorithms include
sorting [15], cryptographic operations such as AES [16] and
matrix operations such as matrix multiplication [17].

The biggest limitation in this case is that the OpenGL SC
1.0.1 standard only supports textures with 4 channels (Red,
Green, Blue, Alpha) of 8-bit each. In the past this was a
true hardware limitation of older GPUs, similar to the fixed
function limitation that we mentioned earlier. However, all
current GPUs do support at least 32-bit integer and floating
point formats, with latest ones supporting even 64-bit ones.
In fact, higher precision textures have been added in GPUs
before full programmability was introduced, which means that
there exist GPGPU techniques with fixed functionality relying
on 24 or 32-bit texture support and therefore cannot be used
on OpenGL SC 1.0.1. Therefore, the fact that this feature
is not exposed by OpenGL SC drivers reduces the potential
for general purpose acceleration, but it simplifies further the
validation of the fixed functionality, allowing even exhaustive
range tests for the GPU operations.

It is worth noting that although in terms of standards
compliance, general purpose algorithms implemented in that
way are trivial to be checked with existing code analysis

tools for conventional avionics software, manual code reviews
checking their functionality are more complicated. The reason
is that the graphics hardware is used in non-obvious ways
in order to achieve the desired functionality. Consequently,
extensive documentation of the code is required when this
method is used.

B. OpenGL SC 2.0

The OpenGL SC 2.0 standard added support for pro-
grammable shaders, enabling more advanced processing ca-
pabilities. Similar to the OpenGL SC 1.0.1, it is based on the
embedded version of the OpenGL standard, in particular on
the OpenGL ES 2.0, which introduced programmable shaders
in the embedded GPUs. While OpenGL SC 1.0.1 featured
some differences with its base standard, OpenGL SC 2.0 is a
fully compatible subset of OpenGL ES 2.0. As with its safety-
critical predecessor, the OpenGL SC 2.0 specification has
removed all dynamic features which complicated certification,
mainly the online compilation of vertex and fragment shaders.

In terms of the CPU graphics API, apart from some small
differences in the API calls with the OpenGL SC 1.0 version,
OpenGL SC 2.0 does not present any particular challenge
with respect to certification. The main difference comes from
the fact that now GPU code is explicitly provided in a
programming language instead of being hidden behind fixed-
functionality API calls. Both vertex and fragment shaders are
written in the OpenGL ES Shading Language 1.0 [18] (GLSL
ES 1.0), which is the same dialect used in OpenGL ES 2.0.

Interestingly, GLSL ES 1.0 is a very certification friendly
subset of C. Unlike C, it is a strongly typed language, requiring
explicit conversions between different types. Both static and
dynamic recursion is disallowed and loop structures are well
defined. Support for non-statically determined loop structures
such as while and do-while loops is not mandatory to
be supported, while for loops can only use a single, non-
global loop variable which cannot be changed within the loop
body. While array indexing is supported, both for matrices and
textures, no pointers exist in the language. Function parameters
need to be explicitly annotated as read-only inputs (in), output
(out) and both input and output (inout) similar to Ada. GPU
programs can have multiple read-only inputs but can have only
a single, write-only output. These features make GLSL ES 1.0
very convenient to be checked with code analysis tools for
regular safety-critical CPU code. Such checks are performed
statically when the shaders are compiled and linked offline.
At runtime, the program only needs to load the precompiled
and verified GPU binaries.

Out-of-bounds array accesses do not result in memory
violations i.e. memory corruption or exceptions, but depending
on the texture configuration specified using the host OpenGL
SC 2.0 API, may return the value of the first or the last element
of the texture dimension (CLAMP_TO_EDGE) or simply wrap
around over the texture values (REPEAT). This is frequently
desired behaviour in graphics in order to avoid expensive
checks over border conditions, as well as simplifying the

written code, but it also acts in favour of safety when OpenGL
SC 2.0 is used for general purpose computations.

As mentioned earlier, a vast body of works exists regard-
ing the implementation of a multitude of general purpose
algorithms, mainly using programmable shaders and extended
precision textures [14]. However, the OpenGL SC 2.0 standard
retains the same limitation with OpenGL 1.0.1 (and their ES
counterparts), that only 4-component textures are permitted
for GPU input and output despite the actual capabilities of
the underlying hardware, which means that known GPGPU
techniques cannot be directly used. A software solution to
overcome this limitation has been developed quite recently,
with the work presented in [19]. In that paper, mathematical
transformations for conversion from and to any C supported
format were introduced, enabling the use of any existing
techniques for GPGPU computing over OpenGL SC 2.0.

In terms of flexibility, OpenGL SC 2.0 allows to implement
almost any general purpose algorithm, with few limitations.
First, the size of the input and the output of the program
is limited by the maximum texture dimensions allowed by
the GPU hardware. In case there is a need to process larger
data sets, this has to be implemented by manually passing
the data to and from the GPU in multiples of that size, and
possibly process them in steps. Furthermore, since textures
are natively represented as 2D arrays, the programmer needs
to use manually implemented address translation tricks to
convert single dimensional array accesses to 2D and vice
versa. Moreover, atomic operations within the GPU shaders
are not permitted, although they can be emulated with certain
graphics tricks such as the blending feature which is exposed
with a fixed-functionality API call. Similarly, the fragment
processors which are mainly used for running general purpose
computations are not capable of scatter i.e. writing in arbitrary
positions in the output. However, this functionality can be
implemented with address sorting [20] or vertex shaders and
the blending functionality in order to handle atomic updates in
the same output positions [21]. Also, the support for bitwise
operators within OpenGL SC 2.0 shaders is limited, which
makes it not suitable for algorithms which rely on operations
of this kind.

Compared to OpenGL SC 1.0.1, OpenGL SC 2.0 can
achieve not only higher functionality and flexibility for gen-
eral purpose computing, but also higher performance. As
we already mentioned, fixed function operations are usually
implemented in software with few instructions. Multiple fixed
function passes of an OpenGL SC 1.0.1 applications can be
merged in a single fragment shader in OpenGL SC 2.0. This
means that for the same computation, less GPU calls are
needed, and therefore higher performance can be achieved.
In terms of lines of code, although the amount of API calls is
reduced in OpenGL SC 2.0, there is additional code written
for the vertex and pixel shaders. As a consequence, the
certification cost of OpenGL SC 2.0 code is higher compared
to OpenGL SC 1.0.1, since now the user is responsible also
for the verification of the GPU shaders.

Fortunately, the compliance checking of both CPU API

calls and GPU code can be performed easily with automated
tools. However, in terms of manual code review, understanding
OpenGL SC 2.0 GPGPU code can be more complex than
understanding OpenGL SC 1.0.1 GPGPU code. The reason
is that not only the graphics hardware is used for non-obvious
operations, but also the complexity of the code is increased due
to the numeric format conversions and address translations, as
well as when scatter and blending functionality are used for
the implementation of atomic operations.

C. Brook Auto / BRASIL

The third alternative solution for general purpose computa-
tions on DO-178C certified graphics environments is Brook
Auto [5] / BRASIL [22]. This solution is an evolution of
the Brook GPU language [23], predecessor of CUDA. It
defines a safety-critical GPGPU language subset with several
recommended features by functional safety standards, allowing
the certification of the application code as opposed to CUDA.

Brook Auto [5] shares many common features with GLSL
ES 1.0 which is used in OpenGL SC 2.0 shaders. The reason
is that Brook Auto generates GLSL ES 1.0 code, taking away
the complexity introduced by the numerical conversions and
address translations which are required for GPGPU computing
on this safety critical API, as explained in the previous
subsection. The Brook Auto subset complies with MISRA-
C [4]. In addition to the strong typing and absence of recursion
which are common with GLSL ES 1.0, Brook Auto enforces
all loops to be statically upper bounded. In addition, similar to
GLSL 1.0 the output of the kernel needs to be annotated with
the out keyword. Therefore, Brook Auto can be statically
analysed with existing tools used for avionics CPU code.

Brook Auto has an open-source source-to-source compiler
implementation called BRASIL [22], which generates GLSL
ES 1.0 code for the GPU shaders and OpenGL SC 2.0 code
for the CPU API management. Therefore it also hides all
the complexity related to the texture management, vertex
setup, offline shader compilation and shader loading and setup
during execution. As a consequence, Brook Auto resembles
significantly the CUDA programming model, in which the
programmer can just focus on writing the GPGPU code, invoke
it similar to a CPU function call, and only take care of data
movements from and to the GPU.

Brook Auto supports multiple compiler back-ends, includ-
ing the generation of sequential, deterministic CPU code
which can be used for debugging, GPU emulation and code
coverage analysis at source code level, as well as for functional
validation. In addition, it features a multi-core back-end which
allows to execute the same code on multi-core architectures,
as well as various GPU back-ends, which facilitates the
development of the application code regardless of the target
platform. A big benefit of this approach is that it allows the
migration of the application code in a new target platform
from a single Brook Auto / BRASIL code base, as we discuss
in the next Section.

The tool qualification of the Brook Auto BRASIL compiler
according to the ISO 26262 automotive standard for ASIL

D – the highest assurance level in automotive – has been
studied in a recent academic work [22]. Although DO-178C
and its Software Tool Qualification supporting document DO-
330 [24] define more Tool Qualification Levels than ISO
26262, essentially the required evidence for the tool quali-
fication of a tool such as a compiler used for the development
of code of the highest criticality in both standards is very
similar. In particular, BRASIL relies on extensive checks of
the generated code and allows full source code traceability to
facilitate additional manual inspection.

Thanks to its small codebase and compliance with safety-
critical standards and language subsets (MISRA C, ISO 26262,
OpenGL SC 2), Brook Auto/BRASIL can lower the DO-
178C certification cost of avionics GPGPU software. In a
recent demonstration with an avionics case study from Airbus
Defence and Space, Madrid, Spain on top of an avionics-grade
AMD E8860 GPU and a certified OpenGL SC 2.0 driver from
CoreAVI, Brook Auto achieved a reduction of an order to
magnitude in the amount of code and in the development time
compared to a manual OpenGL SC 2.0 implementation [25].
More importantly, this result was achieved without prior
knowledge of the language.

In terms of flexibility, the OpenGL SC 2.0 back-end of
Brook Auto has identical capabilities and limitations with
manually implemented OpenGL SC 2.0 GPGPU code. The
only difference is that in its current version, Brook Auto lacks
native support for scatter and atomic operations, which are
frequently avoided in GPGPU computing since they result
in lower performance compared to scatter-to-gather trans-
formation used in GPUs. Despite that, the address sorting
technique [20] which we mentioned earlier can be used.
Brook+ [26], AMD’s offering to compete with CUDA when it
first appeared, already provided syntax for native scatter sup-
port. As a Brook subset, Brook Auto code is fully compatible
with the Brook+ toolchain, so in order to retain this property,
we are currently working on the implementation of scatter
preserving compatibility with Brook+.

Regarding performance, [5] has shown that Brook Auto /
BRASIL generated code can achieve between 50% and 90% of
the performance of a small hand written and optimised matrix
multiplication benchmark. Further comparison with a more
complex avionics case study provided in [25] showed that
Brook Auto / BRASIL code can achieve the same real-time
performance with the handwritten OpenGL SC 2.0 version,
meeting the 60 frames per second refresh rate requirement
of an avionics display. Deeper investigation removing the
requirement to limit performance to the display refresh late
has shown that the performance difference between the two
solutions is minimal, and only exhibited under the highly
optimised CoreAVI GPU driver, while on the AMD GPU
driver the two versions provided almost identical performance.

Overall, from the above comparison we can conclude that
Brook Auto / BRASIL is a step ahead compared to OpenGL
SC 2.0 in the development of avionics GPGPU software, since
not only it can achieve DO-178C certification in the same
way that OpenGL SC 2.0, but it can also reduce its cost.

This is achieved by automating low-level, error prone tasks
and by providing additional verification means. This allows
to perform code reviews in smaller amounts of Brook Auto
/ BRASIL code focusing on the true functionality of the
software, while the full generated OpenGL SC 2.0 and GLSL
ES 1.0 code is also available for code review as in the case
of manual OpenGL SC 2.0 GPGPU application development,
and traceable back to Brook Auto / BRASIL code.

IV. UPCOMING CERTIFIED GPGPU METHODS

In the previous Section we examined the existing GPGPU
methods which can achieve DO-178C certification in air-
craft flying today. However, general-purpose GPU computing
is highly desired in certified environments and industry is
currently working in the development of new solutions that
will bring new capabilities, such as the upcoming Vulkan
SC standard by Khronos and other methods building on top
of it. Table II summarises the certification and performance
trade-offs of these solutions, which we discuss in detail in the
following subsections.

A. Vulkan SC

Vulkan SC is a safety-critical subset of Khronos’ Vulkan
standard which is currently under definition. However, an early
preview implementation of Vulkan SC is already available by
CoreAVI, known as VkCore. Vulkan SC’s low-level hardware
access allows fine-grained hardware control beyond the one
that is possible at the OpenGL SC 2.0 level, enabling high-
performance and new functionalities, both in terms of graphics
and compute. When it will be ratified by Khronos, it is going
to be the first certified native general-purpose GPU computing
solution. This means that general purpose computations will
be specified directly by the programmer without the need to
be mapped to any obscure graphics-related operations, similar
to CUDA, OpenCL or Brook.

As it is the case of other solutions which enable GPU
programmability, Vulkan SC consists of two parts: a CPU-
oriented API and a GPU programming language. The CPU
API allows the configuration of the GPU in order to per-
form graphics or compute operations. In terms of graphics
processing, Vulkan SC can achieve the same functionality as
OpenGL SC 1.0.1 or OpenGL SC 2.0, as well as to extend
them with arbitrary new features, fully exploiting the hardware
capabilities of GPUs. However, due to the low-level nature of
Vulkan SC and the fine-grained control that it offers, the same
functionality is achieved with many more API calls. Note that
this is not necessarily negative. A similar increase has been
experienced between OpenGL SC 1.0.1 and OpenGL SC 2.0,
since additional capabilities are offered.

In a similar way, Vulkan can enable general purpose com-
pute processing. Again, Vulkan SC can implement the same
functionality offered by general purpose GPU languages such
as CUDA, OpenCL or Brook. However, the same functionality
is offered again with significantly more API calls. In terms
of the lines of code required for compute among different
solutions, CUDA and Brook require the least amount of code.

TABLE II
OVERVIEW OF UPCOMING GENERAL PURPOSE COMPUTING SOLUTIONS FOR DO-178C CERTIFICATION

GPGPU Method Flexibility Certification Effort for Analysis Manual Code Lines of Code Performance
Effort with Automated Tools Review Effort Required

Vulkan SC +++ +++ + +++ +++ +++
ComputeCore + - - - - +++
Brook Auto / BRASIL (Vulkan SC) ++ ++ + + + ++

For each CUDA or Brook API call, OpenCL requires multiple
API calls, since it provides finer-grained control [27]. The
same relationship exists between OpenCL and Vulkan, each
API call of which corresponds to multiple API calls of Vulkan.

Regarding the GPU programming language, Vulkan uses
the OpenGL Shading Language (GLSL) similar to OpenGL
SC 2.0, both for graphics and compute shaders. The main
difference is that Vulkan supports the latest GLSL version
which is constantly updated with new features. Each new
GLSL version is a superset of the previous one and the
programmer can specify the GLSL version required by a given
shader, which means that even OpenGL SC 2.0 vertex and
fragment shaders written in GLSL ES 1.0 can be used directly
with Vulkan. Vulkan GLSL shaders have similar properties
with the GLSL ES 1.0 ones analysed in the previous Section,
which makes them certification friendly, including the absence
of pointers. Therefore they can be analysed by existing tools
used for conventional CPU avionics code.

In the case of compute shaders, Vulkan exposes additional
features such as bitwise operations, access to on-chip memory
shared by multiple GPU threads executing in the same GPU
shader core, synchronisation among threads and atomic oper-
ations. Moreover, in addition to 2D texture accesses, Vulkan
allows accessing GPU memory in a flat, 1D fashion as it is
the case in CPU code. This removes the restrictions of read-
only inputs and single-output restrictions of OpenGL SC 2.0,
however when this feature is used, the additional safety of
out-of-bounds accesses provided by the texture hardware is no
longer guaranteed. In addition, a unique property of compute
shaders (also known as kernels) is that the programmer has
full control over how many GPU threads will be used for the
computation and how they will be organised in groups which
will be executed in the same GPU shader core.

As in the case of the existing safety critical GPU standards,
Vulkan SC is also going to be compatible with the full
Vulkan standard, removing dynamic features which can hinder
certification. Among these features, the concept of offline GPU
shader compilation similar to OpenGL SC 2.0 is going to be
preserved. More concretely, Vulkan GLSL code is compiled to
SPIR-V bytecode which is portable among different GPU and
driver vendors and is translated offline to the target GPU binary
code. When the GPU application starts executing, the GPU
binary code is loaded and executed using the corresponding
Vulkan SC API calls.

Due to the fact that Vulkan SC is a very low-level API,
it offers maximum flexibility in the implementation of any
GPU operation available by the GPU hardware and high

performance. This comes at the expense of higher complexity
and amount of code, mainly at API level, but also at the shader
level, since the new functionalities allow writing more com-
plex shader code. Consequently, manually written Vulkan SC
graphics code will have increased certification cost compared
to OpenGL SC 2.0 graphics code. However, graphics code for
avionics Human Machine Interfaces (HMIs) is rarely manually
written. Instead, qualified code generators are used such as
SCADE’s Display or DISTI’s GL Studio, which facilitate
certification regardless of the graphics solution.

On the other hand, manually written Vulkan SC com-
pute code can have a similar certification cost with GPGPU
techniques over OpenGL SC 2.0, because despite the higher
number of lines of code, the general purpose functionality is
more obvious for manual code reviews. Therefore, compared
to other general purpose GPU programming languages, Vulkan
SC will require higher development and certification effort
considering that the certification cost depends on the code size.

However, Vulkan is not intended to be used directly by the
application developers, with very few exceptions in which the
application requires low-level access to the GPU hardware
features which cannot be exploited in another way. Instead,
Vulkan is a building block that can be used for building higher
level abstractions. For example, we can see a similar trend in
the gaming industry, which was one the main drivers of the
Vulkan development, aiming to satisfy the need of gaming
developers to have full control over the GPU operations in
order to achieve high performance. No game title is developed
in Vulkan, despite its portability. Instead, Vulkan is used to
build highly optimised game engines, which are subsequently
used by application developers. Moreover, GPU driver vendors
use Vulkan as a basis for their OpenGL based software stacks,
which in the past were directly implemented on top of the
hardware. Other companies such as Google, use Vulkan in
the ANGLE project as a translation layer for various graphics
APIs [28] in order to support multiple platforms for the
Chromium browser and the Android operating system.

We expect a similar situation in the avionics industry. In
fact, CoreAVI already provides an implementation of their
OpenGL SC 1.0.1 and OpenGL SC 2.0 drivers on top of
Vulkan SC, which are known as VkCore GL SC 1 and VkCore
GL SC 2. Therefore, we are argue that Vulkan SC will be
used with higher-level abstractions to lower the certification
cost of future avionics GPGPU software. Two solutions in
this direction are vendor-provided libraries and high-level GPU
languages such as Brook Auto / BRASIL, which we discuss
in the following subsections.

B. ComputeCore

A solution which can minimise certification cost of GPGPU
avionics code is the use of precompiled, optimized and certi-
fied GPU implementations provided by safety critical driver
vendors or experts. This is the solution offered currently
by CoreAVI with the ComputeCore product, which offers
common algorithm implementations such as matrix operations,
Fast Fourier Transforms (FFTs) or image filters, executed
on top of CoreAVI’s Vulkan SC driver. Conceptually, this
approach is very similar to the shaders which nowadays imple-
ment the fixed functionality of OpenGL SC 1.0.1 within GPU
drivers, as we described in the previous Section. However, the
big difference in this case is that ComputeCore algorithms are
not trivial, but they are computationally intensive algorithms
which are commonly used in multiple different applications.
Moreover, their use is significantly easier, since they only
consist of a GPU accelerated function call, compared to the
complex set up of graphics APIs. This reduces the effort
required for manual code reviews and automated code analysis
to the same level followed for regular avionics CPU code.

In general, the performance of GPGPU software depends
on the particular implementation choices taken during code
development. The same functionality can be achieved in
multiple, different ways, some of which can provide better
average performance than others, but can make the execution
time non-deterministic, affecting its worst case execution time.
For example, we have discussed earlier that modern GPUs
are capable of performing scatter operations and atomic op-
erations. However, the same functionality can be achieved at
algorithmic level by converting the processing pattern of an
algorithm from scatter to gather [20]. The performance and
determinism of different implementations can differ vastly [29]
[30], so it is up to the programmer to make the best choice. On
the other hand, GPGPU libraries such as ComputeCore already
incorporate such decisions in their design. Moreover, since the
implementation is provided by the GPU driver implementers
who have access to much more hardware-related information
for the target GPU, they can achieve better performance and
determinism. Furthermore, the vendors can provide complete
certification evidence for these libraries, as they do also for
their GPU driver.

As a consequence, this method minimizes the certification
cost at the expense of reduced flexibility, e.g. it provides only
a finite number of algorithm implementations. Therefore, if
there is a need for a new type of e.g. image filter which
is not included in the library, it has to be requested to be
implemented by the vendor – provided that it is general enough
so that other clients can also benefit from such development
or as a part of a special agreement between the client and
the library vendor. Alternatively, the new algorithm has to
be implemented by the application user, as a regular GPGPU
algorithm, similar to the rest of their CPU application code.
However, in that case the end user will be responsible for the
certification of GPGPU code.

C. Brook Auto / BRASIL Vulkan SC back-end

Another orthogonal solution which enables full programma-
bility is the use of a higher-level GPU programming language
like Brook Auto / BRASIL, which we introduced in the
previous Section and can reduce the certification cost of
GPGPU code. Thanks to the retargetable nature of the Brook
Auto / BRASIL source-to-source compiler, Vulkan SC code
can be easily generated for the verbose API calls, as well
as GLSL code for the GPU kernels. In this way, GPGPU
programmability can be achieved, leveraging the performance
benefits and full control offered by Vulkan SC compared to
the existing OpenGL SC 2.0 back-end. At the same time,
BRASIL’s tool qualification methodology can be reused for
the new Vulkan SC back-end, as well as its traceability to
source code.

Currently we are working in the development of a Vulkan
SC back-end within the BRASIL compiler. Similar to the
OpenGL SC 2.0 back-end, we preserve compatibility with
AMD’s Brook+ [26] Brook dialect for the kernels, in order
to allow access to the new features of GPU shaders which are
exposed with the use of Vulkan SC. In particular, from the
Brook Auto syntax point of view, the scatter implementation
is identical to the one we are implementing on the OpenGL SC
2.0 back-end, however its implementation is more straightfor-
ward on top of Vulkan SC. In addition, shared memory access,
bit-wise operation support and the organisation of the GPU
threads in groups are also included, as well as the possibility
to access regular arrays in addition to textures. In that case,
both read and write access to an input array are supported
and multiple outputs from a single GPU kernel. For read-only
inputs and write-only outputs we also provide the possibility to
use the texture functionality as in the case of OpenGL SC 2.0,
in order to leverage the additional memory safety protection
offered by the GPU texture hardware. Unlike manual Vulkan
implementation, using this feature in Brook Auto / BRASIL
is completely transparent to the programmer.

The only functionality not present in the original Brook+
specification which is exposed by Vulkan SC is the one of
atomic operations. For this feature we selected to implement
the same syntax with GLSL used by Vulkan SC, in order to
ease the transition of Vulkan SC programmers to Brook Auto.

Apart from the reduction of the amount of source code
required for GPGPU development, the second most important
benefit of Brook Auto / BRASIL compared to the other meth-
ods is code reuse. Brook Auto application code developed for
the OpenGL SC 2.0 back-end can be executed without changes
on the Vulkan SC back-end. This can reduce significantly the
re-certification cost of an application on top of a new platform.
Manual code review of the original Brook Auto code does
not need to be repeated, while the certification artefacts used
for the OpenGL SC 2.0 version can be reused. Manual code
inspection only needs to be performed on the generated Vulkan
SC code, which is traceable to the Brook Auto version. This
is also true for any other GPU or other accelerator technology
which might appear in the future and can obtain a Brook

Auto / BRASIL back-end, including multi-cores. Brook Auto
/ BRASIL will be able to provide an easy way to migrate
legacy GPGPU code to new platforms, while retaining low
cost of re-certification. Therefore, it is a good choice for long
term investment in this programming method.

Obviously, Brook Auto code using features only available
on the Vulkan SC back-end (e.g. shared memory) is not
portable to an older OpenGL SC 2.0 target, however this is
not expected to happen, since migration happens only towards
newer hardware and software platforms.

On the other hand, new developments in Brook Auto /
BRASIL using the Vulkan SC back-end have comparable
certification effort with the Brook Auto / BRASIL OpenGL
SC 2.0 back-end. The reason is that in terms of manual code
reviews of Brook Auto code, the same amount of code is used
regardless of the back-end used, while the generated Vulkan
SC code even though is larger than the generated OpenGL SC
2.0 code, it is more straightforward regarding its functionality.
Moreover, in terms of code compliance checks with automated
tools, the amount of effort is low in both back-ends, either
for the Brook Auto or the generated code, and it’s further
facilitated by the certification friendly features of Brook Auto
and its implementation.

Since this is still work in progress, we do not have any
performance numbers yet, but we expect higher performance
than the one obtained on the OpenGL SC 2.0 back-end, thanks
to the opportunities for lower level access in the GPU features
offered by Vulkan SC. Moreover, based on the overhead
analysis of our Brook Auto / BRASIL OpenGL SC 2.0 back-
end presented in [25], under extreme conditions we expect a
similar performance difference as the one observed with the
highly optimised CoreAVI OpenGL SC 2.0 driver compared
to a manually written Vulkan SC application. However, a
comparison between the amount of code required for the
implementation of the same avionics application in Vulkan
and in Brook Auto [31] shows that Vulkan required 25× more
lines of code for the same functionality and 12 times more
development time. Therefore, a slight loss of performance
compared to the handwritten Vulkan SC implementation can
be acceptable given the additional benefits provided by Brook
Auto / BRASIL.

D. Discussion

We believe that all three upcoming solutions for certified
GPGPU software are complementary and orthogonal between
them, and we foresee all of them used for different cases.
The ComputeCore library approach will be the first one to be
adopted, since it lowers significantly the bar to entry in terms
of GPGPU code certification and provides high performance.
With the demand for general purpose computations on avionics
GPUs to be increased in the following years, we expect
the need for more complex functionality to be implemented,
requiring more flexibility. In that case, the end users will need
to develop their own GPGPU applications.

Brook Auto / BRASIL and possibly other certification-
friendly high-level languages which may appear, will be pre-

OpenGL SC 1.0.1
(VkCore GL SC 1)

Vulkan SC GPU Driver
(VkCore)

OpenGL SC 2
(VkCore GL SC 2)

Brook Auto/BRASIL
OpenGL SC 2.0 Backend

Brook Auto/BRASIL
Vulkan SC BackendCompute Core

Application Software

Fig. 1. Overview and possible combinations of upcoming certified GPGPU
solutions. Note that the use of OpenGL SC 1.0.1 and OpenGL SC 2.0 is
mutually exclusive.

ferred by most application developers of safety critical GPGPU
software, since they provide a familiar and productive GPGPU
programming model similar to the widely used CUDA and
OpenCL. At the same time they provide a significant reduction
in the certification cost of the GPGPU code according to DO-
178C thanks its certification friendly features, reduction of
the amount of manually written code and support for tool
qualification.

On the other hand, expert safety-critical application devel-
opers with specific performance or other needs who require
explicit control over the GPU use, will select to program
directly in Vulkan SC. These will be users who can afford
this and will be committed to invest significantly in this new
technology.

Finally, we consider also the possibility for combined solu-
tions as shown in Figure 1. For example, it won’t be uncom-
mon to use ComputeCore for the GPGPU for a universally
used algorithm such as matrix multiplication, but implement
also other GPGPU operations which are not available in
ComputeCore using Vulkan SC or Brook Auto / BRASIL’s
Vulkan SC back-end. In a similar way, if an application uses
both graphics and compute, it might use ComputeCore or
Brook Auto for the GPGPU part of the application and Vulkan
SC or OpenGL SC 2.0 implementation on top of Vulkan SC
for the graphics part.

V. CONCLUSION

In this paper we described the existing state-of-the-art
graphics-based GPGPU methods, which can achieve DO-178C
certification today. These include the implementation of gen-
eral purpose computations on top of Khronos’ safety critical
GPU APIs OpenGL SC 1.0.1 and OpenGL SC 2.0, as well as
the certification-friendly CUDA-like GPGPU language Brook
Auto and its qualifiable source-to-source BRASIL compiler,
which generates OpenGL SC 2.0 code. We discussed their
trade-offs in terms of performance, flexibility, productivity and
certification effort, identifying Brook Auto / BRASIL as the
best of the two worlds.

In addition, we discussed the new generation GPGPU
solutions for safety-critical systems which are currently under
definition, their relation with the existing certified approaches
and their trade-offs. These solutions are mainly centred around
Khronos’ upcoming safety-critical graphics and compute API,
Vulkan SC, and two complementary and orthogonal solutions
on top of it. A library of precompiled and certified common

algorithms implementation such as CoreAVI’s ComputeCore
and a Vulkan SC back-end for Brook Auto / BRASIL. Com-
puteCore will provide the fastest and easier path towards the
certification of Vulkan SC based GPGPU computing, whereas
Brook Auto / BRASIL or similar technologies will facilitate
custom GPGPU developments and will reduce the certification
cost of such a low-level GPU API. In special cases where
full GPU control is required and the additional effort can
be managed, Vulkan SC will be used directly. Finally, the
possibility of using a combination of these solutions is also
very probable, since the end user can mix and match them
based on their needs and their trade-offs.

ACKNOWLEDGMENTS

This work was performed within the Airbus TANIA-
GPU Project ADS (E/200) in collaboration with the project
partners Airbus Defence and Space, Madrid, Spain and
CoreAVI, Canada. It was also partially supported by
the European Space Agency (ESA) through the GPU4S
(GPU for Space) activity, the Spanish Ministry of Econ-
omy and Competitiveness under grants PID2019-107255GB
and FJCI-2017-34095 (Spanish State Research Agency /
http://dx.doi.org/10.13039/501100011033) and the HiPEAC
Network of Excellence.

REFERENCES

[1] S. Alcaide, L. Kosmidis, H. Tabani, C. Hernandez, J. Abella, and F. J.
Cazorla, “Safety-Related Challenges and Opportunities for GPUs in the
Automotive Domain,” IEEE Micro, vol. 38, no. 6, pp. 46–55, 2018.

[2] L. Kosmidis, I. Rodriguez, A. Jover-Alvarez, S. Alcaide, J. Lachaize,
O. Notebaert, A. Certain, and D. Steenari, “GPU4S: Major Project
Outcomes, Lessons Learnt and Way Forward,” in Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2021.

[3] Certification Authorities Software Team (CAST), “Multi-core Pro-
cessors,” November 2016, https://www.faa.gov/aircraft/air cert/design
approvals/air software/cast/media/cast-32A.pdf.

[4] Motor Industry Software Reliability Association, MISRA-C:2012.
Guidelines for the Use of the C Language in Critical Systems, 2013.

[5] M. M. Trompouki and L. Kosmidis, “Brook Auto: High-level
Certification-friendly Programming for GPU-powered Automotive Sys-
tems,” in Design Automation Conference (DAC), 2018.

[6] J. L. Tchon and T. J. Barnidge, “Review of the evolution of display
technologies for next-generation aircraft,” in Display Technologies and
Applications for Defense, Security, and Avionics IX; and Head- and
Helmet-Mounted Displays XX, vol. 9470, International Society for
Optics and Photonics. SPIE, 2015, pp. 85 – 93.

[7] J. M. Ernst, L. Ebrecht, and S. Schmerwitz, “Virtual cockpit instru-
ments displayed on head-worn displays – capabilities for future cockpit
design,” in 38th Digital Avionics Systems Conference (DASC), 2019.

[8] Airbus. (2019) Airbus begins deliveries of first A350 XWBs with
touchscreen cockpit displays option to customers. [Online]. Available:
https://www.airbus.com/newsroom/press-releases/en/2019/12/airbus-
begins-deliveries-of-first-a350s-with-touchscreen-cockpit-displays-
option-to-customers.html

[9] Boeing. (2016) Touchscreens come to 777x flight
deck. [Online]. Available: https://www.boeing.com/features/2016/07/
777x-touchscreen-07-16.page

[10] D. Joncas, “COTS GPU Selection Considerations for Mil-Aero Elec-
tronics,” Engineers’ Guide to Military & Aerospace, pp. 36–39, 2012.

[11] CAST-29, Use of COTS Graphical Processors (CGP) in Airborne
Display Systems. Certification Authorities Software Team (CAST),
1997.

[12] Khronos Group, OpenGL SC 2.0.0 (Full Specification), 2016.
[13] ——, OpenGL SC Safety-Critical Profile Specification, Version 1.0.1,

2009.
[14] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E.

Lefohn, and T. J. Purcell, “A Survey of General-Purpose Computation
on Graphics Hardware,” in Eurographics 2005.

[15] N. K. Govindaraju, N. Raghuvanshi, and D. Manocha, “Fast and
approximate stream mining of quantiles and frequencies using graphics
processors,” in Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, 2005, pp. 611–622.

[16] D. L. Cook, J. Ioannidis, A. Keromytis, and J. Luck, “CryptoGraphics:
Secret Key Cryptography Using Graphics Cards,” in RSA Conference,
Cryptographer’s Track (CT-RSA), 2005, pp. 334–350.

[17] E. S. Larsen and D. McAllister, “Fast matrix multiplies using graphics
hardware,” in Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing (SC), 2001, p. 55.

[18] Khronos Group, The OpenGL ES Shading Language V1.0, 2009.
[19] M. M. Trompouki and L. Kosmidis, “Towards General Purpose Com-

putations on Low-end Mobile GPUs,” in 2016 Conference on Design,
Automation & Test in Europe (DATE), 2016.

[20] I. Buck, “Taking the plunge into GPU computing,” in GPU Gems 2.
Addison Wesley, 2005, pp. 509–519.

[21] T. Scheuermann and J. Hensley, “Efficient Histogram Generation Us-
ing Scattering on GPUs,” in Proceedings of the 2007 Symposium on
Interactive 3D Graphics and Games (I3D), 2007, pp. 33–37.

[22] M. M. Trompouki and L. Kosmidis, “BRASIL: A High-Integrity GPGPU
Toolchain for Automotive Systems,” in 2019 IEEE 37th International
Conference on Computer Design (ICCD), 2019, pp. 660–663.

[23] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: Stream Computing on Graphics
Hardware,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 777–
786, 2004.

[24] RTCA and EUROCAE, DO-330 / ED-215, Software Tool Qualification
Considerations, 2011.

[25] M. Benito, M. M. Trompouki, L. Kosmidis, J. D. Garcia, S. Carretero,
and K. Wenger, “Comparison of GPU Computing Methodologies for
Safety-Critical Systems: An Avionics Case Study,” in Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE), 2021.

[26] AMD, “AMD Brook+ Subversion Repository,” 2009,
https://sourceforge.net/projects/brookplus/.

[27] I. Rodriguez, L. Kosmidis, J. Lachaize, O. Notebaert, and D. Steenari,
“GPU4S Bench: Design and Implementation of an Open GPU
Benchmarking Suite for Space On-board Processing,” Universitat
Politecnica de Catalunya, Tech. Rep. UPC-DAC-RR-CAP-2019-1,
https://www.ac.upc.edu/app/research-reports/public/html/research
center index-CAP-2019,en.html.

[28] J. Madill, “ANGLE: OpenGL on Vulkan,” in Vulkan Developer Day,
Montréal, Canada, 2018.

[29] B. He, N. K. Govindaraju, Q. Luo, and B. Smith, “Efficient Gather and
Scatter Operations on Graphics Processors,” in Proceedings of the 2007
ACM/IEEE Conference on Supercomputing (SC), 2007.

[30] J. Gómez-Luna, J. González-Linares, J. Benavides, and N. Guil, “An
optimized approach to histogram computation on GPU,” Machine Vision
and Applications, vol. 24, pp. 899–908, 07 2013.

[31] M. Benito, M. M. Trompouki, L. Kosmidis, J. D. Garcia,
S. Carretero, and K. Wenger, “Evaluation of Graphics-based
General Purpose Computation Solutions for Safety Critical Systems:
An Avionics Case Study,” Poster presented at the Conference
on High-Performance Graphics (HPG), 2020. [Online]. Available:
https://www.highperformancegraphics.org/posters20/01 benito SCS.pdf

