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We first revisit the mathematical modeling of the flexoelectric effect in the context of continuum mechanics at infinites-
imal deformations. We establish and clarify the relation between the different formulations, point out theoretical and
numerical issues related to the resulting boundary value problems, and present the natural extension to finite deforma-
tions. We then present a simple B-spline based computational technique to numerically solve the associated boundary
value problems, which can be extended to handle unfitted meshes, hence allowing for arbitrarily-shaped geometries.
Several numerical examples illustrate the flexoelectric effect in simple benchmark setups, as well as in new flexoelectric
devices and metamaterials engineered for sensing or actuation.

I. INTRODUCTION

Flexoelectricity generally refers to the two–way coupling
between strain gradient and electric polarization (direct and
inverse effects). Converse flexoelectricity couples polariza-
tion gradients with strain. All these effects have been demon-
strated experimentally in cantilever thin films or nanobeams
and truncated pyramids, under inhomogeneous mechanical
fields (direct effect)1,2 and under homogeneous applied elec-
tric field (inverse effect)3–6, and in truncated pyramids and in
PFM7 under inhomogeneous applied electric field8 (converse
effect). The setups mobilizing flexoelectricity, which neces-
sarily involve non-uniform fields, demand accurate theoret-
ical models for the quantitative evaluation of the effect and
in particular for the correct interpretation of characterization
experiments9.

Phenomenological models for flexoelectricity in crystalline
dielectrics were first proposed by Kogan 10 after the early
studies by Mashkevich and Tolpygo 11 and Tolpygo 12 . The
first comprehensive theoretical works by Tagantsev 13,14 clar-
ified the distinction between piezoelectricity and flexoelec-
tricity. In the mechanics community, Mindlin 15 formal-
ized the converse flexoelectric effect in elastic dielectrics. A
complete unified continuum framework, including strain gra-
dient elasticity, both direct and converse flexoelectric cou-
plings, and the polarization inertia effect was proposed later
by Sahin and Dost 16 . More recently, a simplified framework
for isotropic dielectrics was proposed by Maranganti, Sharma,
and Sharma 17 .

Nowadays, various continuum theories of flexoelectricity
co-exist in the literature. Some of them are based on ex-
tensions to the electromechanical setting of gradient elastic-
ity and other enriched continuum theories18–24. Other au-
thors consider the couplings with further physics, such as
the flexoelectric effect in ferroelectrics25,26, the coupling with
magnetic fields27,28 or photovoltaics29,30, and the contribu-
tions of surface effects31. General variational principles
for flexoelectric materials can be found in Liu 28 , Shen and
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Hu 31 , Hu and Shen 32 . The reader is referred to Yudin and
Tagantsev 33 , Nguyen et al. 34 , Zubko, Catalan, and Tagant-
sev 35 , Krichen and Sharma 36 , Wang et al. 37 for comprehen-
sive reviews of flexoelectricity in solids. Another focus of
recent research is the modeling of flexoelectricity for soft ma-
terials (e.g. polymers and elastomers), which requires a finite
deformation framework22,28,38–41.

All the aforementioned theories of flexoelectricity can be
classified depending on the following considerations:

• The choice of state variables describing the flexoelectric
effect. For the mechanics, either the displacement gra-
dient or its symmetrized form (i.e. strain) can be used,
which give rise to type-I or type-II flexoelectricity, re-
spectively. For the dielectrics, the most natural variable
is the electric polarization. However, there exist many
theories taking the electric field or the electric displace-
ment instead.

• The flexoelectric coupling considered explicitly, either
the direct one, the converse, both, or the Lifshitz-
invariant form. Section II A further elaborates on this
topic.

• The dielectric media surrounding the flexoelectric solid
being included in the modeling or not. Since Maxwell
equations hold in the whole R3, the electric potential
must be solved as well outside the flexoelectric solid,
in principle. However, if the dielectric permittivity of
the flexoelectric material is large enough as compared
to that of the surrounding media, zero-electric displace-
ment around the flexoelectric solid is a reasonable as-
sumption.

We present here an overview of various theoretical contin-
uum formulations for flexoelectricity and the resulting compu-
tational models based on the discretization of the correspond-
ing governing equations with smooth approximants. The
manuscript is structured as follows. Section II presents the
continuum modeling of type-II flexoelectricity models ne-
glecting the surrounding media. It includes the discussion of
flexoelectric couplings at infinitesimal deformations proposed
in literature, establishing the relationships between them, the



2

different variational principles governing the behavior of flex-
oelectric solids, their associated boundary value problems and
corresponding boundary conditions. The extension of the con-
tinuum modeling of flexoelectricity to finite deformations is
stated and discussed. Section III presents a computational
approach based on smooth B-spline basis functions, which
can be combined with the immersed boundary method to al-
low for arbitrarily-shaped geometries. h-adaptivity is eas-
ily achieved by means of hierarchical refinement. The non-
dimensionalization of the resulting equations is briefly com-
mented. In Section IV, we use the computational approach
discussed in Section III to solve the BVPs describing the elec-
tromechanical response of a flexoelectric cantilever beam in
bending, under both mechanical and electrical input, based
on the different formulations presented in Section II. A de-
tailed comparison of the electromechanical output is given
and several numerical issues are pointed out. In Section V
we explore the cantilever beam actuator in the regime of finite
deformations, and study the interplay between flexoelectric-
ity and electrostriction for different actuation levels. Then,
in Section VI, we propose a new flexoelectric device and
flexoelectricity-based piezoelectric metamaterials engineered
to harness the flexoelectric effect towards sensing/actuation
applications. Section VII concludes this manuscript.

II. CONTINUUM MODELING

In this Section we review the continuum modeling of the
flexoelectric effect considering type-II flexoelectricity mod-
els at infinitesimal deformations and neglecting the surround-
ing media. In Section II A we discuss the direct and converse
flexoelectric couplings and their relation via null Lagrangians.
Section II B presents the variational principles for flexoelec-
tric solids, taking either the electric polarization or the electric
potential as primal state variables, and explore their relation
via a partial Legendre transform. Section II C formulates the
boundary value problems of potential-based variational prin-
ciples using the direct and the Lifshitz-invariant flexoelectric-
ity models, and introduces the weak enforcement of essen-
tial boundary conditions via Nitsche’s method. Non-standard
boundary conditions, such as sensing electrode conditions, in-
terface conditions and generalized periodicity conditions are
briefly discussed as well. Finally, the modeling of flexoelec-
tricity at finite deformations is introduced in Section II C 4 c.

A. Direct and converse flexoelectricity

Following the works by Maranganti, Sharma, and
Sharma 17 , Yudin and Tagantsev 33 , the most general (type-
II) expression for the internal energy density describing the
bulk static flexoelectric effect in centrosymmetric dielectrics
can be written, under the assumption of infinitesimal deforma-
tions, in terms of the strain tensor ε, the electric polarization
field P and their corresponding spatial gradients in the fol-

lowing form:

ψ
(0)(ε,∇ε,P ,∇P ) =

1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

+
1
2

aklPkPl +
1
2

bi jklPi,kPj,l− f (1)li jkεi j,kPl− f (2)li jkεi jPl,k, (1)

where

• c is the usual fourth-order elasticity tensor,

• a is the usual second-order reciprocal dielectric suscep-
tibility tensor,

• h is the sixth-order strain gradient elasticity tensor, rep-
resenting the purely non-local elastic effects,

• b is the fourth-order polarization gradient tensor, repre-
senting the purely non-local effects of polarization,

• f (1) is the direct flexocoupling tensor,

• f (2) is the polarization gradient-strain coupling ten-
sor introduced by Mindlin in his theory of polarization
gradient15. In a more modern context, it is also known
as the converse flexocoupling tensor.

In non-centrosymmetric dielectrics, other relevant physics
arise, such as piezoelectricity, the linear two-way coupling
between strains and polarization. This coupling can be in-
corporated to Eq. (1) as an additional contribution to the in-
ternal energy density, ψpiezo = di jkεi jPk, with the third-order
piezoelectric tensor d. The interplay between flexoelectricity
and piezoelectricity is very rich and worth studying (see for
instance Abdollahi and Arias 5 and Bhaskar et al. 42 ). Here,
we focus on the formulation of flexoelectricity in centrosym-
metric dielectrics for the sake of simplicity. More complete
phenomenological formulations for flexoelectricity have also
been proposed and studied in the literature43,44, which con-
sider as well the linear couplings between strain and strain
gradients, polarization and polarization gradients, and polar-
ization gradients and strain gradients.

Assuming uniform material constants, the two latter terms
in Eq. (1) can be rewritten as follows:

− f (1)li jkεi j,kPl− f (2)li jkεi jPl,k =

− fli jkεi j,kPl− f (2)li jk
∂ (εi jPl)

∂xk
= (2a)

fli jkεi jPl,k− f (1)li jk
∂ (εi jPl)

∂xk
= (2b)

−1
2

fli jk
(
εi j,kPl− εi jPl,k

)
− 1

2

(
f (1)li jk + f (2)li jk

)
∂ (εi jPl)

∂xk
,(2c)

with the (effective) flexocoupling tensor

fli jk = f (1)li jk− f (2)li jk. (3)

The first terms in (2a)-(2c) are known, respectively, as the di-
rect, converse and Lifshitz invariant flexocouplings45–47, and
all of them represent both the direct and converse flexoelectric
effects, as discussed later on. The second terms in (2a)-(2c)
are null-Lagrangians48, in the sense that their bulk integral can
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be written as a surface integral by means of the divergence
theorem, e.g. for (2c):∫

Ω

1
2

(
f (1)li jk + f (2)li jk

)
∂ (εi jPl)

∂xk
dΩ =∫

Γ

1
2

(
f (1)li jk + f (2)li jk

)
εi jPlnk dΓ. (4)

Even though they affect boundary conditions, null La-
grangians are often omitted in the literature33,46, yielding dif-
ferent internal energy densities to Eq. (1) as

ψ
(Dir)(ε,∇ε,P ,∇P ) =

1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

+
1
2

aklPkPl +
1
2

bi jklPi, jPk,l− fli jkεi j,kPl , (5)

ψ
(Con)(ε,∇ε,P ,∇P ) =

1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

+
1
2

aklPkPl +
1
2

bi jklPi, jPk,l + fli jkεi jPl,k,(6)

and

ψ
(Lif)(ε,∇ε,P ,∇P ) =

1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

+
1
2

aklPkPl +
1
2

bi jklPi, jPk,l−
1
2

fli jk
(
εi j,kPl− εi jPl,k

)
. (7)

As derived later in Eq. (14), the bulk constitutive equations for
the physical stress σ and physical electric field E are

El =
∂ψ

∂Pl
− ∂

∂xk

(
∂ψ

∂Pl,k

)
= aklPk−bi jlkPi, jk− fli jkεi j,k,

(8a)

σi j =
∂ψ

∂εi j
− ∂

∂xk

(
∂ψ

∂εi j,k

)
= ci jklεkl−hi jklmnεlm,nk + fli jkPl,k,

(8b)

regardless of the choice of internal energy density, i.e. with
ψ representing either the original ψ (0), direct ψ (Dir), con-
verse ψ (Con) or Lifshitz-invariant ψ (Lif) energy densities of
flexoelectric materials. Since formulations differing in null
Lagrangians result in the same constitutive equations up
to divergence-free fields, they also yield the same Euler-
Lagrange equations. Null Lagrangians are thus viewed as
modeling choices49. In the absence of a clear physical in-
terpretation of the higher-order boundary conditions, assum-
ing natural boundary conditions to close the problem seems
a reasonable choice. However, the expressions of the natural
boundary conditions are actually different in each case, result-
ing in boundary value problems that are not equivalent, a fact
that is commonly overlooked. See computational examples
illustrating this fact in sections IV A and IV B.

The direct and converse flexoelectric effects are present in
all the aforementioned formulations, as revealed in the consti-
tutive equations for mechanics and dielectrics in Eq. (8). On
the one hand, the direct flexoelectric effect in Eq. (8a) induces
an electric field (or polarization) proportional to the strain gra-
dient, whereas the converse effect in Eq. (8b) consists on a

contribution to the mechanical stress proportional to the gra-
dient of polarization. Note that both flexoelectric effects are
governed by the same flexocoupling tensor f .

Frequently, the direct ψ (Dir) and converse ψ (Con) flexoelec-
tricity models are simplified, so that only strain gradients or
polarization gradients are present in the expression of the in-
ternal energy density. In the case of ψ (Dir), the polarization
gradient tensor b is typically neglected, yielding

ψ
(Dir)(ε,∇ε,P ) = ψ

(Dir)(ε,∇ε,P ,∇P )
∣∣
b=0

. (9)

In turn, the strain gradient elasticity tensor h can be neglected
in ψ (Con), resulting in

ψ
(Con)(ε,P ,∇P ) = ψ

(Con)(ε,∇ε,P ,∇P )
∣∣
h=0

. (10)

Such simplifications are convenient (and hence popular) in or-
der to facilitate the derivations of closed-form analytical so-
lutions for simple flexoelectric devices, e.g. Euler-Bernoulli
beams50–54 and Timoshenko beams55, and also to ease the
implementation of numerical solution methods, e.g. the finite
element (or related) methods. However, as reported in sev-
eral references15,18,28,56,57, either strain gradient or polariza-
tion gradient terms are required for a stable formulation.

B. Variational principles

The physics governing the behavior of dielectric materials
can be modeled at a continuum level by different variational
principles, depending on the state variables that are chosen
to describe them. The usual choice for the mechanical state
variable is the displacement field u, whose symmetric gra-
dient yields the strain field ε = 1

2

(
∇u+(∇u)T

)
. However,

different options are frequently considered for the electrical
state variable: either the electric polarization P , the electric
displacement D, or the electric field E. The following Sec-
tions focus on two of them, P and E, which give rise to two
different variational principles.

1. Minimization of the free energy Π[u,P ]

The most natural choice is taking the polarization field P
as the electrical state variable. This results in a variational
formulation in terms of the free energy of the system such
that, upon minimization over the admissible states, Euler-
Lagrange equations and boundary conditions follow as nec-
essary conditions28. Such free energy takes the form17,28

Π[u,P ] =
∫

Ω

(
ψ(u,P )+

1
2

ε0‖E‖2
)

dΩ−W ext, (11)

where Ω represents the flexoelectric material with internal en-
ergy density ψ (either ψ (0), ψ (Dir), ψ (Con) or ψ (Lif)), E is the
electric field —i.e. work-conjugate to the polarization field P
w.r.t. the internal energy density of the system— , 1

2 ε0‖E‖2 is
the corresponding electrostatic energy density, with ε0 being
the vacuum permittivity, and W ext is the external work.
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The corresponding variational principle is stated as a con-
strained minimization problem of the form

(u∗,P ∗) = argmin
u

min
P

Π[u,P ], (12a)

subject to

∇×E = 0 in Ω, (12b)
∇ ·D = q in Ω, (12c)

where Eq. (12b) and (12c) are the stationary Maxwell’s
equations in dielectrics (i.e. the Maxwell-Faraday’s and
Gauss’s laws),D being the electric displacement —i.e. work-
conjugate to the electric fieldE w.r.t. the total (internal + elec-
trostatic) energy density of the system— and q the external
electric free charges per unit volume. Generally, Maxwell’s
equations are stated over the whole space, including the mate-
rials and the ambient medium. Here, for the sake of simplic-
ity, we restrict Eqs. (12b) and (12c) to the material domain
Ω under the assumption that the flexoelectric material is sur-
rounded by a medium with a much lower permittivity, e.g. air,
and thus sustains a vanishingly small electric field. Consider-
ation of the full electrostatics including the ambient medium
implies stating Maxwell’s equations in the whole space and
setting electric continuity at the boundary of the material.

Such minimization leads to the following Euler-Lagrange
equations17,28:

∇ ·σ =−f ext in Ω, (13a)
∇ · (ε0E+P ) = q in Ω, (13b)

∇×E = 0 in Ω, (13c)

where f ext represents the external body forces per unit vol-
ume, and

σ(u,P ) =
dψ(u,P )

dε
=

[
∂ψ

∂ε
−∇ · ∂ψ

∂∇ε

]
(u,P ), (14a)

E(u,P ) =
dψ(u,P )

dP
=

[
∂ψ

∂P
−∇ · ∂ψ

∂∇P

]
(u,P ). (14b)

The system of equations in (13) is composed by the differ-
ential equations (13a) and (13b), corresponding to a (fourth-
order) coupled elliptic problem, and by Eq. (13c) which rep-
resents an additional constraint, requiring the irrotational-
ity of the resulting electric field E. This constraint hin-
ders the solution of the system in Eq. (13) to find u∗ and
P ∗, either by means of analytical closed forms or numeri-
cal approximations28. Hence, many authors prefer electric
field-based models instead of polarization-based ones, since
the electric field can be irrotational by construction, as ex-
plained next.

2. Optimization of the free enthalpy Π[u,φ ]

Instead of taking the polarization field to be the electrical
state variable, one (perhaps less intuitive) alternative consists

on considering the electric field E. Note that the Maxwell-
Faraday’s law in Eq. (12b) implies the existence of an electric
potential φ such that

E =−∇φ . (15)

Hence, by considering φ as the actual electrical state variable,
Maxwell-Faraday’s law is automatically fulfilled, without the
need of including it as a constraint.

A key ingredient required to proceed with this approach
is the analogous expression to ψ(u,P ) written in terms of
the electric field E (and u) instead of P . Such expression
is known as the free enthalpy density —also called electri-
cal Gibbs free energy density— of the system, which we de-
note by the symbol ψ(u,φ). Analogously to Section II A, one
can define several enthalpy densities for flexoelectric materi-
als, namely

ψ
(0)(ε,∇ε,E,∇E) =

1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

−1
2

κklEkEl−
1
2

Mi jklEi, jEk,l−µ
(1)
li jkεi j,kEl−µ

(2)
li jkεi jEl,k, (16)

ψ
(Dir)(ε,∇ε,E,∇E) =

1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

−1
2

κklEkEl−
1
2

Mi jklEi, jEk,l−µli jkεi j,kEl , (17)

ψ
(Con)(ε,∇ε,E,∇E) =

1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

−1
2

κklEkEl−
1
2

Mi jklEi, jEk,l +µli jkεi jEl,k, (18)

and

ψ
(Lif)(ε,∇ε,E,∇E) =

1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

−1
2

κklEkEl−
1
2

Mi jklEi, jEk,l−
1
2

µli jk
(
εi j,kEl− εi jEl,k

)
, (19)

where c is the elasticity tensor, κ is the electric permittivity
tensor, h is the strain gradient elasticity tensor, M is the gra-
dient dielectricity tensor and µ= µ(1)−µ(2) is the flexoelec-
tricity tensor. The direct and converse forms can be simplified
as well as

ψ
(Dir)(ε,∇ε,E) = ψ

(Dir)(ε,∇ε,E,∇E)
∣∣
M=0

(20)

and

ψ
(Con)(ε,E,∇E) = ψ

(Con)(ε,∇ε,E,∇E)
∣∣
h=0

, (21)

where the gradient dielectricity tensorM or the gradient elas-
ticity tensor h are, respectively, vanished.

The associated free enthalpy of the system reads52,58,59

Π[u,φ ] =
∫

Ω

ψ(u,φ) dΩ−W ext, (22)

where ψ represents one of the aforementioned free enthalpy
densities. The corresponding variational principle is stated as

(u∗,φ ∗) = argmin
u

max
φ

Π[u,φ ], (23)
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which is now an unconstrained optimization (min–max) prob-
lem given that Eq. (12b) is automatically fulfilled, and that
Eq. (12c) follows directly from the solution of the variational
principle (23) as one of the two associated Euler-Lagrange
equations59:

∇ ·σ =−f ext in Ω, (24a)
∇ ·D = q in Ω, (24b)

where

σ(u,φ) =
dψ(u,φ)

dε
=

[
∂ψ

∂ε
−∇ · ∂ψ

∂∇ε

]
(u,φ), (25a)

D(u,φ) =− dψ(u,φ)

dE
=

[
− ∂ψ

∂E
+∇ · ∂ψ

∂∇E

]
(u,φ).

(25b)

Equations (24)-(25) describe a (fourth-order) coupled ellip-
tic problem equivalent to that in Eqs. (13)-(14), but with no
additional constraints, thus facilitating (in general) its solu-
tion via numerical or analytical methods. If desired, the po-
larization field P ∗ is easily retrieved in terms of the obtained
solution (u∗, φ ∗) as

P ∗(u∗,φ ∗) =D(u∗,φ ∗)+ ε0∇φ
∗. (26)

3. Equivalence between different variational principles via
partial Legendre transform

The variational models based on free energy Π(u,P ) min-
imization and the ones based on free enthalpy Π(u,φ) opti-
mization are related by means of a partial Legendre transform.
That is: given one form, the other one is uniquely determined,
and it can be directly obtained –under some assumptions that
are next discussed– by a partial Legendre transform, thus re-
vealing the relations between the material parameters of each
form.

In particular, given an expression for the internal energy
density ψ , the corresponding free enthalpy density ψ is ob-
tained by substracting the electrostatic energy density to the
internal enthalpy density28,60,61, ψ

Int, which is found via the
following partial Legendre transform:

ψ(u,φ) = ψ
Int(u,φ)− 1

2
ε0‖E‖2

= min
P

(ψ(u,P )−P ·E)− 1
2

ε0‖E‖2. (27)

In the case of simplified direct internal energy density
ψ (Dir)(ε,∇ε,P ) in Eq. (9), i.e. without gradient polarization
term (b= 0), Eq. (27) reads

ψ
(Dir)(u,φ) = min

P

(
1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

+
1
2

amlPmPl− fli jkεi j,kPl−PlEl

)
− 1

2
ε0‖E‖2. (28)

The stationarity condition of the minimization results in

El =
dψ

dPl
= amlPm− fli jkεi j,k, (29)

which is explicitly invertible to

Pm = a−1
lm

(
El + fli jkεi j,k

)
= a−1

lm

(
El +EFlexo

l

)
, (30)

where EFlexo
l = fli jkεi j,k is well-known as the flexoelectric

field. By inserting Eq. (30) into (28), the free enthalpy density
is obtained as

ψ
(Dir)(u,φ) =

1
2

ci jklεi jεkl−
1
2

(
a−1

i j + ε0δi j

)
EiE j

+
1
2
(
hi jklmn−a−1

lm fmi jk fblmn
)

εi j,kεlm,n

−
(
a−1

lm fmi jk
)

Elεi j,k. (31)

The relation between the tensors c,a,f ,h in the direct in-
ternal energy density (9) and their counterparts c,κ,µ,h in
the free enthalpy density (20) is revealed by Eq. (31) as fol-
lows:

ci jkl = ci jkl , (32a)

κi j = a−1
i j + ε0δi j, (32b)

µli jk = a−1
lm fmi jk, (32c)

hi jklmn = hi jklmn−a−1
ab fai jk fblmn. (32d)

Further, by assuming the standard expression for isotropic
reciprocal dielectric susceptibility tensors a = (χeε0)

−1I =
(ε− ε0)

−1I, Eq. (32) simplifies to

ci jkl = ci jkl , (33a)
κi j = εδi j, (33b)

µli jk = χeε0 fli jk, (33c)

hi jklmn = hi jklmn−χeε0 fai jk f (1)almn, (33d)

which yields the standard definition of κ for isotropic di-
electrics, as a function of its electric permittivity ε , and
reveals a well-known feature of flexoelectricity: its linear
growth with the dielectric susceptibility χe. This is the rea-
son why materials with high dielectric constant (e.g. ferro-
electric perovskites) typically feature also large flexoelectric
constants34,35,59. Eq. (33d) is also noticeable, since it shows
that the strain gradient elasticity tensor in the free enthalpy is
reduced due to the flexocoupling tensor.

It is easy to show that the same partial Legendre trans-
form procedure, and hence Eq. (32), hold also for other den-
sity forms without gradient polarization/dielectricity terms
(b,M = 0), differing from (9) and (20) in null La-
grangians only62. However, considering the gradient polar-
ization/dielectricity terms (b,M 6= 0) breaks this equivalence,
since the resulting stationarity condition of the minimization,
analogous to Eq. (29), is rewritten as

El =
dψ

dPl
= amlPm− fli jkεi j,k−bi jlkPi, jk, (34)
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which does not allow an explicit inversion to find P (E). An
alternative consists on expressing the electric fieldE as a sum
of local Elocal and nonlocal Enl fields as follows:

E =Elocal +Enl, (35a)

E local
l = amlPm− fli jkεi j,k, (35b)

Enl
l =−bi jlkPi, jk, (35c)

and invert Eq. (35b), analogously to Eq. (30):

Pm = a−1
lm

(
E local

l + fli jkεi j,k
)
. (36)

With these definitions, bothE(ε,Elocal) and P (ε,Elocal) can
be expressed in terms of ε and Elocal, and introduced in
Eq. (27) to yield

ψ
(Dir)(u,Elocal) =

1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

−1
2

κklE local
k E local

l −µli jkεi j,kE local
l

−1
2

(
a−1

ip a−1
kq bp jql

)
E local

i, j E local
k,l , (37)

where higher order terms –i.e. terms depending on ∇∇ε ,
∇∇Elocal or higher derivatives– have been neglected. Upon
inspection of Eqs. (37) and (17), the following relation is re-
vealed:

Mi jkl = a−1
ip a−1

kq bp jql . (38)

However, the equivalence between energy and enthalpy forms
is not complete, since Eq. (37) is written in terms of the local
part of the electric field only. In particular, this implies that
the Maxwell-Faraday’s law in Eq. (12b) is rewritten as

∇×E = ∇×Elocal +∇×Enl = 0, (39)

hence ∇×Elocal 6= 0, preventing writing Elocal in terms of a
scalar potential field φ . Therefore, the associated variational
formulation remains constrained by the Maxwell-Faraday’s
law in Eq. (12b). This fact is sometimes overlooked in liter-
ature, where there is no distinction made between Elocal and
E, expressed in terms of φ via Eq. (15), regardless whether
the enthalpy density features gradient dielectricity or not.

C. Boundary value problems

In this Section, we consider the min-max variational prin-
ciple on Π[u,φ ] in Section II B 2 and derive the correspond-
ing boundary value problems for the Direct ψ

(Dir)(ε,∇ε,E)

and Lifshitz ψ
(Lif)(ε,∇ε,E,∇E) free enthalpy densities in

Eqs. (20) and (19).
Let Ω be a physical domain in RD, D= {2,3} . The domain

boundary, ∂Ω, can be conformed by several smooth portions
as ∂Ω=

⋃
f ∂Ω f (see Figs. 1a and 2a). At each point x∈ ∂Ω f

we define n f as the outward unit normal vector.

The boundary of the f -th portion of ∂Ω is a closed curve
(D = 3) or a pair of points (D = 2) denoted as ∂∂Ω f . The
union C =

⋃
f ∂∂Ω f represents the regions at which ∂Ω is not

smooth, and Ci j = ∂∂Ωi ∩ ∂∂Ω j, (i 6= j), represents the part
of C that is adjacent to ∂Ωi and ∂Ω j. In case D = 3, at each
point x ∈ ∂∂Ω f we define m f as the unit co-normal vector
pointing outwards of ∂Ω f , which is orthogonal to the normal
vector n f and to the tangent vector s f of the curve ∂∂Ω f (see
Fig. 1b and 1c). In case D = 2,m f is defined on ∂∂Ω f as the
outward unit tangent vector to ∂Ω f (see Figs. 2b and 2c).

The jump operator [[ ]] acting on a given quantity a is de-
fined on Ci j as the sum of that quantity evaluated at both sides
of Ci j, namely [[a]] = ai +a j, where ak is the value of a from
∂Ωk (see Fig. 1a).

1. Direct flexoelectricity

From Eq. (20) and (22), it follows that

Π[u,φ ] =
∫

Ω

(1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

−1
2

κklEkEl−µli jkεi j,kEl

)
dΩ

−
∫

Ω

W Ω dΩ−
∫

∂Ω

W ∂Ω dΓ−
∫

C
WC ds, (40)

where W Ω, W ∂Ω and WC represent the work densities exerted
by external sources in the domain Ω, on its boundary ∂Ω and
at the non-smooth region C of its boundary, respectively. In
this case, the admissible external sources of work are63

W Ω(u,φ) = f ext
iui−qφ , (41a)

W ∂Ω(u,φ) = tiui + ri∂
nui−wφ , (41b)

WC(u,φ) = jiui, (41c)

where f ext is the external body force per unit volume, q is the
external free electric charge per unit volume, t and j are the
forces per unit area (i.e. traction) and length, w is the surface
charge density (i.e. electric charge per unit area) and r is the
double traction (i.e. moment per unit area). The symbol ∂ n ≡
∂/∂n denotes the normal derivative.

Both the boundary of the domain ∂Ω and its non-smooth
region C are split into several disjoint Dirichlet and Neumann
sets as

∂Ω =∂Ωu∪∂Ωt = ∂Ωv∪∂Ωr = ∂Ωφ ∪∂Ωw, (42a)
C =Cu∪C j, (42b)

where ∂Ωu, Cu, ∂Ωv and ∂Ωφ are the Dirichlet regions where
either the displacement field, its normal derivative or the elec-
tric potential are prescribed:

u= u on ∂Ωu and Cu, (43a)
∂

n(u) = v on ∂Ωv, (43b)

φ = φ on ∂Ωφ . (43c)
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The Neumann regions ∂Ωt , C j, ∂Ωr and ∂Ωw correspond to
prescribed values of their enthalpy conjugates, i.e. the traction
t, the forces per unit length j, the double traction r or the
surface charge density w. Whenever a given boundary patch
∂Ω f belongs to ∂Ωu, its boundaries ∂∂Ω f must belong to Cu

as well, namely Cu =C∩∂Ωu, and hence C j =C \Cu.

Introducing the definitions (41) and (42) into Eq. (40) yields

Π[u,φ ] =
∫

Ω

(1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n−
1
2

κklEkEl

−µli jkεi j,kEl− f ext
iui +qφ

)
dΩ−

∫
∂Ωt

tiui dΓ

−
∫

∂Ωr

ri∂
nui dΓ+

∫
∂Ωw

wφ dΓ−
∫

C j

jiui ds. (44)

According to Eq. (23), the equilibrium states (u∗,φ ∗) corre-
spond to the saddle points in the enthalpy potential (44) meet-
ing the corresponding Dirichlet boundary conditions (43), im-
plying that all the admissible variations with respect to the
displacement and potential fields must vanish at (u∗,φ ∗):

δΠ[u∗,φ ∗] = δuΠ[u∗,φ ∗]+δφ Π[u∗,φ ∗] = 0,
∀(δu,δφ) ∈U0⊗P0. (45)

The functional spaces of the admissible variations U0, P0
must meet homogeneous Dirichlet conditions, i.e.

U0 = {δu ∈ [H2(Ω)]D | δu= 0 on ∂Ωu and Cu,

∂
n
δu= 0 on ∂Ωv}, (46a)

P0 = {δφ ∈ H1(Ω) | δφ = 0 on ∂Ωφ}. (46b)

Introducing Eq. (44) into (45) yields the weak form of the
problem:

Find (u,φ) ∈UD⊗PD such that, ∀(δu,δφ) ∈U0⊗P0,∫
Ω

(
σ̂i jδεi j + σ̃i jkδεi j,k− D̂lδEl

)
dΩ

=
∫

Ω

(
f ext

iδui−qδφ
)

dΩ+
∫

∂Ωt

tiδui dΓ+
∫

∂Ωr

ri∂
n
δui dΓ

−
∫

∂Ωw

wδφ dΓ+
∫

C j

jiδui ds, (47)

with functional spaces UD and PD fulfilling the Dirichlet
boundary conditions in Eq. (43), that is:

UD = {u ∈ [H2(Ω)]D | u= u on ∂Ωu and Cu,

∂
nu= v on ∂Ωv}, (48a)

PD = {φ ∈ H1(Ω) | φ = φ on ∂Ωφ}. (48b)

The Cauchy stress σ̂, the double stress σ̃ and the electric dis-
placement D̂ fields in Eq. (47) are the conjugate quantities to
the strain ε, the strain gradient ∇ε and the electric field E,
respectively, as follows:

σ̂i j =
∂ψ

(Dir)(ε,∇ε,E)

∂εi j
= ci jklεkl , (49a)

σ̃i jk =
∂ψ

(Dir)(ε,∇ε,E)

∂εi j,k
= hi jklmnεlm,n−µli jkEl , (49b)

D̂l =−
∂ψ

(Dir)(ε,∇ε,E)

∂El
= κlmEm +µli jkεi j,k. (49c)

Remark 1. In practice, in a finite element (FE) context, the
functional spaces in Eq. (46) and (48) are approximated by
means of a set of linear combinations of basis and test func-
tions. However, UD and U0 are in general difficult to ap-
proximate since they require fulfilling second order Dirichlet
conditions for the displacement field (i.e. prescribing its nor-
mal derivative). The typical approach to overcome this diffi-
culty is considering ∂Ωv = /0, which implies that only second
order Neumann boundary conditions are allowed, i.e. ∂Ω =
∂Ωr

58,64–67. This choice is further justified by the unclear
physical interpretation of second order Dirichlet boundary
conditions40.

The strong form of the problem is found by integrating the
LHS of Eq. (47) by parts (twice for some terms) and invoking
the divergence theorem on Ω, as follows:

∫
Ω

(
σ̂i jδεi j + σ̃i jkδεi j,k− D̂lδEl

)
dΩ

=
∫

Ω

(
−σ̂i j, jδui− σ̃i jk,kδεi j− D̂l,lδφ

)
dΩ+

∫
∂Ω

(
σ̂i jn jδui + D̂lnlδφ

)
dΓ+

∫
∂Ω

σ̃i jknkδui, j dΓ

=−
∫

Ω

[(
σ̂i j− σ̃i jk,k

)
, j δui + D̂l,lδφ

]
dΩ+

∫
∂Ω

[(
σ̂i j− σ̃i jk,k

)
n jδui + D̂lnlδφ

]
dΓ+

∫
∂Ω

σ̃i jknk
(
∇

S
j +n j∂

n)
δui dΓ,

=−
∫

Ω

[(
σ̂i j− σ̃i jk,k

)
, j δui + D̂l,lδφ

]
dΩ+

∫
∂Ω

[(
σ̂i j− σ̃i jk,k

)
n jδui + σ̃i jkn jnk∂

n
δui + D̂lnlδφ

]
dΓ+

∫
∂Ω

σ̃i jknk∇
S
j (δui) dΓ,

(50)

where the gradient of the variations of the displacement field δui, j in the last integral on ∂Ω is expressed in terms of its
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tangential ∇S
j δui and normal n j∂

nδui components, with ∇S being the surface gradient operator. This separation is required since
the tangential components of ∇δu on ∂Ω are dependent on δu, whereas the normal component is not. The last term in Eq. (50)
is expressed in terms of δu via integration by parts and the surface divergence theorem on ∂Ω:∫

∂Ω

σ̃i jknk∇
S
j (δui) dΓ =−

∫
∂Ω

∇
S
j
(
σ̃i jknk

)
δui dΓ+

∫
∂Ω

∇
S
j
(
σ̃i jknkδui

)
dΓ

=−
∫

∂Ω

∇
S
j
(
σ̃i jknk

)
δui dΓ+

∫
∂Ω

∇
S
l (nl) σ̃i jkn jnkδui dΓ+

∫
C

[[
σ̃i jknkmk

]]
δui ds. (51)

Combining Eqs. (51), (50), (47) and (46), we obtain∫
Ω

[[(
σ̂i j− σ̃i jk,k

)
, j + f ext

i

]
δui +

[
D̂l,l−q

]
δφ

]
dΩ =

∫
∂Ωt

[(
σ̂i j− σ̃i jk,k +∇

S
l (nl) σ̃i jknk

)
n j−∇

S
j
(
σ̃i jknk

)
− ti
]
δui dΓ

+
∫

∂Ωr

[
σ̃i jkn jnk− ri

]
∂

n
δui dΓ+

∫
∂Ωw

[
D̂lnl +w

]
δφ dΓ+

∫
C j

[[[
σ̃i jknkmk

]]
− ji

]
δui ds, (52)

which reveals the strong form of the problem, composed by
the Euler-Lagrange equations{(

σ̂i j− σ̃i jk,k
)
, j + f ext

i = 0 in Ω,

D̂l,l−q = 0 in Ω,
(53)

Dirichlet boundary conditions (43) and Neumann boundary
conditions(

σ̂i j− σ̃i jk,k +∇
S
l (nl) σ̃i jknk

)
n j

−∇
S
j
(
σ̃i jknk

)
= ti on ∂Ωt , (54a)

σ̃i jkn jnk = ri on ∂Ωr, (54b)

−D̂lnl = w on ∂Ωw, (54c)[[
σ̃i jkm jnk

]]
= ji on C j. (54d)

In view of Eq. (53), the definition of the physical stress σ
arises naturally as

σi j = σ̂i j− σ̃i jk,k = ci jklεkl−hi jklmnεlm,nk +µli jkEl,k, (55)

whereas the physical electric displacementD is simply D̂.

Remark 2. The traction t can alternatively be written as63

ti =
(
σ̂i j− σ̃i jk,k−∇

S
k σ̃ik j

)
n j + σ̃i jkÑ jk, (56)

where Ñ := S−Tr(S)n⊗n is the second-order geometry ten-
sor written in terms of the shape operator S of the surface ∂Ω.
The first term involves stress measures dotted with the normal
vector n (a first-order measure of ∂Ω, i.e. the orientation),
whereas the second term involves the double stress dotted with
the second-order geometry tensor (a second-order measure of
∂Ω involving its curvature).

2. Lifshitz-invariant flexoelectricity

With this model, the admissible external sources of work
are the ones corresponding to the direct flexoelectricity form
in Eq. (41), plus the high order dielectric quantities℘ (electric

charge density per unit length) and r (double charge density,
i.e. charge moment per unit area)62, analogous to j and r from
mechanics:

W Ω(u,φ) = f ext
iui−qφ , (57a)

W ∂Ω(u,φ) = tiui + ri∂
nui−wφ − r∂ n

φ , (57b)

WC(u,φ) = jiui−℘φ . (57c)

Accordingly, the boundary of the domain ∂Ω is split into
several disjoint Dirichlet and Neumann boundaries as

∂Ω = ∂Ωu∪∂Ωt = ∂Ωv∪∂Ωr

= ∂Ωφ ∪∂Ωw = ∂Ωϕ ∪∂Ωr, (58a)

C =Cu∪C j =Cφ ∪C℘, (58b)

where the high-order nature of the dielectrics leads to the def-
inition of the Dirichlet ∂Ωϕ and Neumann ∂Ωr boundaries
corresponding to prescribed values for the normal derivative
of the electric potential and its conjugate, i.e. the double
charge density r. The edges C are also split into corresponding
to the Dirichlet Cφ and Neumann C℘ edge sets, respectively,
where either the electric potential φ or the electric charge den-
sity per unit length℘are prescribed. In this case, analogously
to the mechanical partition of C, the sets Cφ = C∩ ∂Ωφ and
C℘ = C \Cφ . The corresponding Dirichlet conditions of the
problem are mathematically written as

u= u on ∂Ωu and Cu, (59a)
∂

n(u) = v on ∂Ωv, (59b)

φ = φ on ∂Ωφ and Cφ , (59c)
∂

n(φ) = ϕ on ∂Ωϕ . (59d)

With the definitions in (57),(58) and the enthalpy density in
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(19), the enthalpy potential in (22) reads

Π[u,φ ] =
∫

Ω

(1
2

ci jklεi jεkl +
1
2

hi jklmnεi j,kεlm,n

− 1
2

κklEkEl−
1
2

µli jk
(
εi j,kEl− εi jEl,k

)
− 1

2
Mi jklEi, jEk,l− f ext

i ui +qφ

)
dΩ

−
∫

∂Ωt

tiui dΓ−
∫

∂Ωr

ri∂
nui dΓ−

∫
C j

jiui ds

+
∫

∂Ωw

wφ dΓ+
∫

∂Ωr

r∂ n
φ dΓ+

∫
C℘

℘φ ds. (60)

The variational principle in Eq. (23) implies that feasible
equilibrium states u∗ ∈ UD, φ ∗ ∈PD must meet Dirichlet
boundary conditions (59), and their corresponding admissi-
ble variations δu ∈ U0, δφ ∈P0 must vanish as stated in
Eq. (45), where

UD = {u ∈ [H2(Ω)]D | u= u on ∂Ωu and Cu,

∂
nu= v on ∂Ωv}, (61a)

PD = {φ ∈ H2(Ω) | φ = 0 on ∂Ωφ and Cφ ,

∂
n
φ = ϕ on ∂Ωϕ}, (61b)

and

U0 = {δu ∈ [H2(Ω)]D | δu= 0 on ∂Ωu and Cu,

∂
n
δu= 0 on ∂Ωv}, (62a)

P0 = {δφ ∈ H2(Ω) | δφ = 0 on ∂Ωφ and Cφ ,

∂
n
δφ = 0 on ∂Ωϕ}. (62b)

Introducing Eq. (60) into (45) yields the weak form of the
Lifshitz-invariant flexoelectricity problem:

Find (u,φ) ∈UD⊗PD such that, ∀(δu,δφ) ∈U0⊗P0,

∫
Ω

(
σ̂i jδεi j + σ̃i jkδεi j,k− D̂lδEl− D̃lmδEl,m

)
dΩ

=
∫

Ω

(
f ext

iδui−qδφ
)

dΩ

+
∫

∂Ωt

tiδui dΓ+
∫

∂Ωr

ri∂
n
δui dΓ+

∫
C j

jiδui ds

−
∫

∂Ωw

wδφ dΓ−
∫

∂Ωr

r∂ n
δφ dΓ−

∫
C℘

℘δφ ds. (63)

The Cauchy stress σ̂, the double stress σ̃, the electric
displacement D̂ and the double electric displacement D̃ in
Eq. (63) are the conjugate quantities to the strain ε, the strain
gradient ∇ε, the electric fieldE and the electric field gradient

∇E, respectively, as follows:

σ̂i j =
∂ψ

(Lif)

∂εi j
= ci jklεkl +

1
2

µli jkEl,k, (64a)

σ̃i jk =
∂ψ

(Lif)

∂εi j,k
= hi jklmnεlm,n−

1
2

µli jkEl , (64b)

D̂l =−
∂ψ

(Lif)

∂El
= κlmEm +

1
2

µli jkεi j,k, (64c)

D̃lk =−
∂ψ

(Lif)

∂El,k
= Mi jlkEi, j−

1
2

µli jkεi j. (64d)

The strong form of the problem is found analogously to the
Direct flexoelectricity problem, and results in the following
Euler-Lagrange equations:

(
σ̂i j− σ̃i jk,k

)
, j + f ext

i = 0 in Ω,(
D̂l− D̃lk,k

)
,l
−q = 0 in Ω,

(65)

complemented with Dirichlet conditions (59) and Neumann
conditions(

σ̂i j− σ̃i jk,k +∇
S
l (nl) σ̃i jknk

)
n j

−∇
S
j
(
σ̃i jknk

)
= ti on ∂Ωt , (66a)[[

σ̃i jkm jnk
]]
= ji on C j, (66b)

σ̃i jkn jnk = ri on ∂Ωr, (66c)

−
(

D̂l− D̃lk,k +∇
S
i (ni) D̃lknk

)
nl

+∇
S
l

(
D̃lknk

)
= w on ∂Ωw, (66d)

−
[[

D̃ jkm jnk

]]
=℘ on C℘, (66e)

−D̃ jkn jnk = r on ∂Ωr. (66f)

The physical stress σ and physical electric displacement D
arise from Eq. (65) as

σi j = σ̂i j− σ̃i jk,k = ci jklεkl−hi jklmnεlm,nk +µli jkEl,k, (67a)

Dl = D̂l− D̃lk,k = κlmEm−Mi jlkEi, jk +µli jkεi j,k. (67b)

3. Weak enforcement of Dirichlet boundary conditions via
Nitsche’s method

So far, the functional spaces of the state variables (48) or
(61) are chosen such that Dirichlet boundary conditions are
automatically fulfilled. In computational flexoelectricity, this
implies having an interpolant space on the boundaries ∂Ω

where Dirichlet conditions are to be enforced, e.g. by means of
body-fitted meshes in a FE approach. However, it is typically
difficult to achieve such functional spaces while fulfilling the
C1 continuity requirement59.

An alternative to enforce essential boundary conditions
without constraining the functional spaces consists on incor-
porating them into the enthalpy functional, in a way that
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equilibrium states (u∗,φ ∗) satisfying the corresponding varia-
tional principle necessarily fulfill (in a weak sense) the Dirich-
let boundary conditions. We show here how to do so via
Nitsche’s method68 due to its simple form and convenient
numerical properties (i.e. self-consistency, symmetry, optimal
error convergence rates and preservation of the number of de-
grees of freedom69) as compared to other alternatives such as
the Lagrange multipliers or penalty methods.

Following Nitsche’s approach, an additional term
Π

Nitsche
[u,φ ] acting on the Dirichlet boundaries is in-

troduced in the enthalpy functional in Eq. (44) or Eq. (60)
to weakly enforce Dirichlet boundary conditions Eq. (43)
or Eq. (59), respectively. In the case of Lifshitz-invariant
formulation, it has the following form:

Π
Nitsche[u,φ ]

=
∫

∂Ωu

(
1
2

βu

(
ui−ui

)2
−
(

ui−ui

)
ti(u,φ)

)
dΓ

+
∫

∂Ωv

(
1
2

βv

(
∂

nui− vi

)2
−
(

∂
nui− vi

)
ri(u,φ)

)
dΓ

+
∫

Cu

(
1
2

βCu

(
ui−ui

)2
−
(

ui−ui

)
ji(u,φ)

)
ds

−
∫

∂Ωφ

(
1
2

βφ

(
φ −φ

)2
−
(

φ −φ

)
w(u,φ)

)
dΓ

−
∫

∂Ωϕ

(
1
2

βϕ

(
∂

n
φ −ϕ

)2
−
(

∂
n
φ −ϕ

)
r(u,φ)

)
dΓ

−
∫

Cu

(
1
2

βCφ

(
φ −φ

)2
−
(

φ −φ

)
℘(u,φ)

)
ds, (68)

with the numerical parameters βu,βv,βCu ,βφ ,βϕ ,βCφ
∈ R+

and Neumann terms explicitly depending on the state vari-
ables as defined in Eq. (66). For the direct formulation, the
last two lines in Eq. (68) must be omitted according to the
Dirichlet conditions (43). The penalty terms inserted in each
boundary integral are quadratic in the Dirichlet boundary con-
ditions, and its only purpose is to ensure equilibrium states
(u∗,φ ∗) being, respectively, actual minima and maxima of the
energy functional with respect to u and φ 63.

Remark 3. Nitsche’s formulations are self-consistent for any
value of the penalty parameters βu,βv,βCu ,βφ ,βϕ ,βCφ

. How-
ever, in the discrete space of numerical approximation of the
state variables, they must be large enough to ensure stability,
i.e. maintain the min-max nature of the corresponding varia-
tional principle. Nevertheless, arbitrarily large values are not
suitable since the conditioning of the linear system is dete-
riorated. The analytical derivation of lower bounds of the
penalty parameters can be found in Codony et al. 63 for the
discrete case using direct flexoelectricity, but moderate val-
ues of the penalty parameters are typically enough to ensure
convergence and enforce boundary conditions properly63,69,70.
Thus, the explicit computation of stability lower bounds can
be avoided by writing the penalty parameters in terms of a
mesh-independent dimensionless parameter ζ ∈ R+ as fol-

lows:

βu =
Y
h

ζ , βv =
(
`2

mech + `2
µ

)
βu, βCu =

βv

h
,

βφ =
ε

h
ζ , βϕ =

(
`2

elec + `2
µ

)
βφ , βCφ

=
βϕ

h
, (69)

where h denotes the characteristic length of the discretization
(typically, the mesh size), Y is the Young modulus, ε is the
electric permittivity, `mech is the mechanical length scale, `elec
is the dielectric length scale, `µ ∼ µ/

√
Y ε is the flexoelectric

length scale and µ is the flexoelectric tensor (see Appendix A
for further details on material parameters). A suitable value of
ζ can be determined empirically, e.g. in smooth B-spline ap-
proximations ζ = 10 to 100 typically provides stable results63.

The variational principle associated to the enthalpy func-
tional including the Nitsche’s term leads to the same Euler-
Lagrange equations and definition of Neumann terms63. How-
ever, the functional spaces for the state variables and their
variations are now unconstrained, at the cost of requiring more
regularity63. For the direct flexoelectricity form,

UD = U0 = [H2(Ω)]D with L2-integrable third
derivatives on the boundary ∂Ωu, (70a)

PD = P0 = H1(Ω), (70b)

where UD and U0 account for the integrals involving t in
Eq. (54a), requiring the computation of third order derivatives.
In practice, UD = U0 = [H3(Ω)]D are typically considered63.
Analogously, the Lifshitz-invariant form requires

UD = U0 = [H2(Ω)]D with L2-integrable third
derivatives on the boundary ∂Ωu, (71a)

PD = P0 = H2(Ω) with L2-integrable third
derivatives on the boundary ∂Ωφ . (71b)

Remark 4. Many authors in computational flexoelectricity ne-
glect the edge Dirichlet conditions (43a) on Cu

9,57,58,71 (or
analogously (59a) on Cφ ). In the cases where essential bound-
ary conditions are enforced strongly, as in conforming FE or
meshless discretizations, this fact has no practical relevance
since the strong imposition on the surface ∂Ωu (∂Ωφ ) auto-
matically implies the strong imposition on the adjacent edges
in Cu (Cφ ) as well. However, it is important to underline
that in frameworks where boundary conditions are enforced
weakly, dismissing edge conditions is equivalent to consider-
ing homogeneous Neumann edge conditions, which is wrong
on Dirichlet edges, and can completely spoil the quality of the
numerical results63.

4. Beyond standard boundary conditions

So far, we have mentioned that the standard conditions
along the boundary of the flexoelectric domain, arising natu-
rally from the derivation of the boundary value problems, are
either Dirichlet or Neumann. However, it is worth mentioning
other types of boundary conditions that are also frequent in
electromechanical boundary value problems:
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a. Sensing electrode condition. The electric potential
along electrodes placed on the surface of the devices is uni-
form, since they are made of conducting material. Electrodes
in actuation mode correspond to a standard Dirichlet bound-
ary condition for φ (see Eq. (43c) or (59c)), where the pre-
scribed voltage is constant.

In the case of electrodes in sensing mode, the electric po-
tential is uniform but a priori unknown. The corresponding
boundary condition at each electrode ∂Ω i

Φ
and their edges

∂∂Ω i
Φ

is mathematically written as

φ = Φ
i on ∂Ω

i
Φ and ∂∂Ω

i
Φ, ∀i = 1, . . . ,NΦ. (72)

where Φ1, . . . ,ΦNΦ ∈ R are additional state variables and NΦ

denotes the number of sensing electrodes in the system. Since
each Φi is not prescribed on ∂Ω i

Φ
nor ∂∂Ω i

Φ
, their energy con-

jugates –i.e. the total surface charge density on the electrode63

and on their edges– must vanish, that is,∫
∂Ωi

Φ

w dΩ = 0 on ∂Ω
i
Φ, ∀i = 1, . . . ,NΦ, (73a)∫

∂∂Ωi
Φ

℘ds = 0 on ∂∂Ω
i
Φ, ∀i = 1, . . . ,NΦ. (73b)

In the direct flexoelectricity model, high-order electrostatics
are not present, hence Eqs. (72) and (73) must hold on ∂Ω i

Φ

only.
In a discrete boundary value problem with body-fitted dis-

cretization, Eq. (72) can be enforced strongly by assigning the
same degree of freedom for φ to all the nodes on the electrode,
and Eq. (73) is then automatically fulfilled. Otherwise, they
must be enforced weakly e.g. via Lagrange multipliers72 or a
modified version of Nitsche’s method63.

b. Interface condition. Composite materials, i.e. do-
mains composed by multiple materials with different proper-
ties, can be used to achieve a specific functionality of an elec-
tromechanical device. The paradigmatic example consists on
cantilevers bimorphs for piezoelectric transduction5,73,74, but
one can also think of flexoelectricity-based devices with mul-
timaterial stacks46,75,76 or structured materials with geometri-
cally polarized cavities2,77–79 and even conducting/insulating
inclusions80,81.

In the context of discrete flexoelectricity boundary
value problems, high-order interface conditions must be
considered81. Such conditions correspond to high-order con-
tinuity of the state variables and high-order equilibrium, (i)
across the interface I between two adjacents subdomains, as
well as (ii) at the sharp regions S of the interfaces, shared by
multiple –possibly more than two– subdomains (see Fig. 3).

In the Lifshitz-invariant model, high-order continuity con-
ditions read

uL = uR on I, (74a)

ui = u j on S, (74b)

∂uL/∂nL = ∂uR/∂nL on I, (74c)

φ
L = φ

R on I, (74d)

φ
i = φ

j on S, (74e)

∂φ
L/∂nL = ∂φ

R/∂nL on I, (74f)

and high-order equilibrium conditions read

tL + tR = 0 on I, (75a)

∑
k
jk = 0 on S, (75b)

rL−rR = 0 on I, (75c)

wL +wR = 0 on I, (75d)

∑
k

℘
k = 0 on S, (75e)

rL− rR = 0 on I, (75f)

where L and R represent either sides across the interface I,
i 6= j represents all the pairwise combinations of subdomains
adjacent to S, and k sums over all the subdomains adjacent to
S. In the direct flexoelectricity model, high order electrome-
chanics are not present, i.e. Eqs. (74e),(74f),(75e) and (75f)
must not be considered.

The conditions in Eqs. (74) and (75) are implicitly fulfilled
in C1-conforming body-fitted discretizations. Otherwise,
they must be explicitly enforced, e.g. weakly via Nitsche’s
method81.

c. Generalized periodicity condition. Architected mate-
rials exhibit an intrinsic microstructure that is replicated pe-
riodically in space. In order to numerically compute their
overall bulk response, free of finite edge effects, undergoing
macroscopic displacement (sensor) or electric field (actuator)
conditions, an efficient strategy consists on exploiting the lat-
tice periodicity by studying a single representative volume
element (RVE) or unit cell under (high-order) generalized-
periodic conditions82,83. These set of conditions are a gen-
eralization of classical (high-order) periodicity conditions to
account for non-periodic solution fields with periodic gradi-
ents.

Consider an infinite lattice with translational periodicity
(L1e1,L2e2,L3e3) in R3. Without loss of generality, the flexo-
electricity boundary value problem can be reduced to a single
RVE defined as Ω ∈ (0,L1)× (0,L2)× (0,L3) with the proper
generalized periodic conditions (i) between a given periodic
boundary A of the RVE (i.e. x1 = 0, x2 = 0 or x3 = 0) and its
corresponding translational image A′ (i.e. x1 = L1, x2 = L2 or
x3 = L3), as well as (ii) between the intersections of A and A′

with the actual boundary of the infinite lattice, denoted as S
and S′ respectively (see Fig. 4).
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In the Lifshitz-invariant model, they read as follows:

uA = uA′ − [[u]]A on A and S, (76a)

∂uA/∂nA = ∂uA′/∂nA on A, (76b)

φ
A = φ

A′ − [[φ ]]A on A and S, (76c)

∂φ
A/∂nA = ∂φ

A′/∂nA on A, (76d)

tA + tA
′
= 0 on A, (76e)

jS +jS′ = 0 on S, (76f)

rA−rA′ = 0 on A, (76g)

wA +wA′ = 0 on A, (76h)

℘
S +℘

S′ = 0 on S, (76i)

rA− rA′ = 0 on A, (76j)

where [[ · ]]A are either known (enforced) or unknown (re-
solved) constant quantities denoting the difference of the state
variable within the brackets ( ·) across either sides of the RVE
along the direction orthogonal to the plane A. For the direct
flexoelectricity model, Eqs. (76d), (76i) and (76j) are disre-
garded and Eq. (76c) is enforced on A only.

In the context of flexoelectricity, generalized periodic-
ity conditions allow the systematic study and design of
flexoelectric metamaterials exhibiting an apparent piezo-
electric behavior83. An elegant way of enforcing high-
order generalized-periodic conditions in a discrete boundary
value problem consists on simply constructing a high-order
generalized-periodic approximation space82. Alternatively,
one can resort to enforcing generalized periodicity conditions
(76) weakly81.

subsectionFlexoelectricity in soft materials: beyond in-
finitesimal deformations

The interest on computational flexoelectricity in soft ma-
terials has increased in recent years22,38–41,64,84 due to differ-
ent reasons. On the one hand, a large flexoelectric response
is expected, since flexoelectric coefficients of polymers are
at least the same order of magnitude as those of hard crys-
talline materials85–87, but in turn they are much more com-
pliant. On the other hand, electromechanical actuation of
polymers by flexoelectricity overcomes the current limitations
of traditional actuation (based on the Maxwell stress effect,
i.e. an electromechanical coupling inducing a contribution in
the stress field quadratic to the electric field): (i) one-way cou-
pling, (ii) dielectric breakdown due to too large electric fields,
and (iii) irreversibility of the deformation sign36,88–90. We
present here a brief introduction of computational flexoelec-
tricity in the regime of finite deformations and review its most
relevant features.

Consider a deformable dielectric body described by Ω0 in
the reference (or undeformed) configuration, and by Ω in the
current (or deformed) configuration. The deformation map
χ : Ω0 → Ω maps every material point X ∈ Ω0 to the spa-
tial point x = χ(X) ∈ Ω. Relevant deformation measures in
this context are the deformation gradient F = ∇0χ, the Ja-
cobian determinant J = det(F) and the right Cauchy-Green
deformation tensor C = FTF. In the reference configuration,

the strain is represented by the Green-Lagrangian strain tensor
E= (C− I)/2, and the electric field in by E =−∇0Φ.

Analogously to the derivations for infinitesimal deforma-
tions, the Lagrangian description of the electromechanical
enthalpy density per unit undeformed volume correspond-
ing to a dielectric material with simplified direct flexoelectric
coupling can be derived via a partial Legendre transform of
the energy density. The detailed derivation can be found in
Codony et al. 41 , resulting in

Ψ̄
Enth(E,∇0E,E)

= Ψ
Mech(E,∇0E)−

1
2
E · κ̄ ·E−E · µ̄

... ∇0E, (77)

where ΨMech is an hyperelastic potential accounting for the
local and non-local mechanics, and the tensors

κ̄(E) = JC−1
ε, µ̄(E) = JC−1 ·µ (78)

are the effective dielectricity and flexoelectricity tensors41, re-
spectively, which explicitly depend on the Green-Lagrangian
strain E.

The enthalpy functional governing the physics of a flexo-
electric body is written, analogously to Eq. (44), as41

Π[χ,Φ] =
∫

Ω0

(
Ψ̄

Enth(E,∇0E,E)−Fext
iχi +QΦ

)
dΩ0

−
∫

∂ΩT
0

Tiχi dΓ0−
∫

∂ΩR
0

Ri∂
N
0 χi dΓ0

−
∫

CJ
0

Jiχi ds0 +
∫

∂ΩW
0

WΦ dΓ0,

(79)

where F ext is the external body force per unit reference vol-
ume, considered constant in the deformed frame (dead load),
Q is the external free electric charge per unit reference vol-
ume, T is the external traction in deformed frame per unit
reference area, R is the external double traction in deformed
frame per unit reference area, J is the external force per unit
reference length, and W is the external charge density per unit
reference area.

The equilibrium states {χ∗,Φ∗} are located at the saddle
points of Π satisfying

{χ∗,Φ∗}= arg min
χ∈X

max
Φ∈P

Π[χ,Φ], (80)

where X and P are the functional spaces for χ and Φ with
sufficient regularity fulfilling Dirichlet boundary conditions.
Vanishing the first variations of Π[χ,Φ] leads to the weak
form of the boundary value problem, whose corresponding
Euler-Lagrange equations read as follows41:

(FiISIJ),J +Fext
i = 0, (81a)

DK,K−Q = 0. (81b)

The physical second Piola-Kirchhoff stress S and the electric
displacementD are defined in terms of χ and Φ as

SIJ(χ,Φ) = SMech
IJ(χ,Φ)+SMaxwell

IJ(χ,Φ), (82a)

DL(χ,Φ) = JC−1
KL (εEK +µKIJMEIJ,M) , (82b)
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where

SMech
IJ =

∂ΨMech

∂EIJ
− ∂

∂XK

(
∂ΨMech

∂EIJ,K

)
+ JC−1

LMEM,K µLIJK

(83)

and D correspond to the extensions of Eq. (55) and (49c) to
finite deformations, respectively, and the additional term

SMaxwell
IJ =

J
2
(
C−1

MIC
−1
LJ +C−1

LI C−1
MJ−C−1

MLC−1
IJ
)

EMεEL (84)

is the total second Piola-Maxwell stress tensor41, arising as a
direct consequence of the strain-dependence of the effective
dielectricity tensor in Eq. (78a). It is also known as the elec-
trostrictive effect, a stress contribution intrinsically present in
the model at finite deformations (as long as the material is di-
electric) that is proportional to the square of the electric field.

In summary, the regime of finite deformations presents a
richer electromechanical behavior as compared to the one in
the limit of infinitesimal deformations. On the one hand,
one can study the interplay between the electrostrictive and
the flexoelectric effects in different scenarios, as illustrated in
Section V with the actuation of a soft flexoelectric cantilever.
On the other hand, the nonlinear definition of the strain field
implies geometrical nonlinearity, allowing the occurrence of
mechanical instabilities such as buckling, wrinkling or creas-
ing, which can be harnessed towards the design of tunable
flexoelectricity-based devices41.

III. NUMERICAL MODELING

The equations of flexoelectricity can only be solved an-
alytically in very simple settings, such as simplified Euler-
Bernoulli beam51,52,91, Timoshenko beam55 or Cosserat rod41

models. Otherwise, it is necessary to resort to computational
flexoelectricity.

The major challenge is to handle the C1 continuity of the
state variables required by the fourth-order PDE system. To
address this, several numerical alternatives have been pro-
posed, i.e. mesh-free approximations5,9,58,64,92, isogeomet-
ric analysis39,41,65,84,93, the C1 Argyris triangular element
approximation38, the immersed boundary B-spline method63

or the C0-interior penalty method72, amongst others. Another
family of numerical methods are those circumventing the C1

continuity requirement by introducing additional variables,
such as mixed formulations66,67,94, or those based on micro-
morphic theories of continua22,40. We refer to Zhuang et al. 59

for a comprehensive review on computational approaches to
solve flexoelectricity boundary value problems.

In this tutorial, in Section III A we focus first on open B-
spline approximations in body-fitted meshes (i.e. a particular
case within isogeometric analysis). It is a simple method to
successfully resolve the flexoelectricity equations in a smooth
approximation space, albeit only rectangular geometries (or
cuboidal ones in 3D) are allowed. It is therefore a suitable
method for the computational modeling of flexoelectricity in

beams. In Section III B, in order to circumvent this limita-
tion and allow arbitrarily-shaped geometries, we combine this
approximation with the immersed boundary method95,96, in-
volving non-conforming discretizations of the geometry and
non-interpolant discretizations of the state variables. Dirich-
let boundary conditions must be weakly enforced, and some
further numerical treatments in cut cells must be accounted
for, such as defining a numerical integration for cut elements
and alleviating ill-conditioning produced by degrees of free-
dom with small support within the domain. Section III C
presents the extension to hierarchical B-spline basis, allowing
h-refinement of the computational mesh, and the adimension-
alization of the resulting equations is shown in Section III D.

Using these approaches, as compared to the aforementioned
ones, yields multiple benefits, i.e. (i) trivial mesh generation,
(ii) easy handling of arbitrarily-shaped geometries, (iii) op-
timal convergence rates for the approximation error, that can
be systematically increased using higher-order B-spline bases,
(iv) cheap and robust evaluation of basis functions and deriva-
tives, (v) relatively small number of degrees of freedom for
a given spatial resolution, and (vi) good scalability and rela-
tively low matrix fill-in due to a compact and structured set of
basis functions.

A. Uniform open B-Spline basis

B-spline functions97–99 are smooth, positive-valued piece-
wise polynomials with compact support. Being p the poly-
nomial degree, they are by construction Cp−1-continuous
throughout the domain, and form a partition of unity. Since
they are polynomials in nature, they are explicitly evaluated
and exactly integrated by rich enough numerical quadratures.
However, they do not satisfy in general the Kronecker delta
property for p > 1.

A univariate B-spline basis of degree p consisting of n
basis functions on m = n + p cells is defined on the para-
metric space ξ ∈ Ξ = [k0,km] in terms of the knot vector
k = [k0,k1,k2, . . . ,km], where ki < ki+1. The i-th function of
this basis is defined recursively as97:

B0
i (ξ ) =

{
1 ki−1 ≤ ξ < ki

0 otherwise
,

Bp
i (ξ ) =

ξ − ki−1

ki+p−1− ki−1
Bp−1

i (ξ )+
ki+p−ξ

ki+p− ki
Bp−1

i+1 (ξ ),

i = 1, . . . ,n. (85)

Remark 5. In Equation (85) and throughout the rest of the
paper, we follow the convention that the first basis function
corresponds to index i= 1, and spans from ξ = k0 to ξ = kp+1.
Note that other references might consider 0-based indexing of
the basis functions or 1-based indexing for the knot vector
instead.

Different kinds of B-spline bases are obtained depending on
the choice of the knot vector. For simplicity, we consider eq-
uispaced knots ki = i, yielding a uniform B-spline basis where
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the i-th B-spline function can be expressed as a translation of
the first one as Bp

i (ξ ) = Bp
1(ξ − i+1) (see Fig. 5).

In order to enforce boundary conditions in a strong way, B-
spline bases must satisfy the Kronecker delta property at the
boundary, corresponding to the knots k0 and km in parametric
space. To do so, the basis is modified by knot multiplicity,
i.e. k = [k0, . . . ,k0,k1,k2, . . . ,km, . . . ,km], where k0 and km are
repeated p+ 1 times. In doing so, the continuity of the B-
Spline basis at these knots is decreased to C−1 (i.e. discontin-
uous), yielding a boundary-interpolant (or open) basis suitable
to enforce essential boundary conditions strongly (see Fig. 6).

In a D-dimensional space, the i-th B-spline function Bp
i (ξ)

of a D-variate B-spline basis (where i is the D-variate index
[i1, . . . , iD]) is defined as the tensor product of D univariate B-
spline functions as

Bp
i (ξ) = Bp

[i1,...,iD]
([ξ1, . . . ,ξD]) =

D

∏
d=1

Bp
id
(ξd),

id = 1, . . . ,nd , (86)

which is defined on the D-dimensional parametric space ξ ∈
Ξ = [k1,0,k1,m1 ]⊗·· ·⊗ [kd,0,kd,md ].

In order to use B-Spline basis (defined in the parametric
space Ξ) to approximate the state variables u and φ (defined
in the physical space Ω), let us define the geometrical map

ϕ : Ξ→Ω

ξ 7→ x=ϕ(ξ),
(87)

which maps a given point ξ ∈ Ξ in the parametric space to a
given point x ∈Ω in the physical space. The basis functions
N(x) ∈Ω are defined asN = [Bp ◦ϕ−1], in such a way that

[u(x)]d '
[
uh(x)

]
d
= Ni(x)au

id = Bp
i (ξ)a

u
id , (88a)

φ(x)' φ
h(x) = Ni(x)aφ

i = Bp
i (ξ)a

φ
i, (88b)

for d = 1, . . . ,D, where {au,aφ} are the degrees of freedom
(DOF) of the approximations uh(x) and φ h(x). Since we re-
strict ourselves to the case of Ω being a rectangle in case D =
2, or cuboid in case D = 3, i.e. Ω =x0+[0,L1]⊗·· ·⊗ [0,LD],
the map ϕ simply corresponds to an affine transformation
composed by a non-uniform scaling and a translation:

x=ϕ(ξ) = x0+J ·ξ, J =

 h1 0 0

0
. . . 0

0 0 hD

 , (89)

where hd is the size of each cell in physical space along the
dimension d, determined as hd = Ld/md .

This simple expression, with a constant and diagonal Ja-
cobian matrix J, facilitates the computation of (high-order)
gradients of the basis functions N(x) ∈ Ω, since the tensor

product structure of the basis is preserved, e.g.

∇
x

jNi(x) = h−1
j

(
∂

∂ξ j
Bp

i j
(ξ j)

) D

∏
d 6= j

Bp
id
(ξd), (90a)

∇
x

j [∇
x

jNi] (x) = h−2
j

(
∂ 2

∂ 2ξ j
Bp

i j
(ξ j)

) D

∏
d 6= j

Bp
id
(ξd), (90b)

∇
x

k [∇
x

jNi] (x) =

h−1
j h−1

k

(
∂

∂ξ j
Bp

i j
(ξ j)

)(
∂

∂ξk
Bp

ik
(ξk)

) D

∏
d 6= j
d 6=k

Bp
id
(ξd),

for j 6= k, (90c)

and so on.
Using the multivariate B-spline basis functions in Eq. (86)

and the geometrical map in Eq. (89), the state variables in
the boundary value problem are approximated by means of
Eq. (88). Volume, surface and line integrals are numerically
computed by standard Gaussian quadrature rules, and bound-
ary conditions are enforced strongly. In univariate open bases,
the DOF corresponding to the first and last basis functions can
be directly prescribed with the value of the boundary condi-
tion. In multivariate open bases, however, the values of the
control variables on the boundary are computed by means of
the L2 projection of the boundary condition onto the space
spanned by the corresponding B-spline basis functions.

The discretization and numerical approximation of the
weak form yield an algebraic linear system of equations for au

and aφ , and hence the approximated fields uh(x) and φ h(x)
are obtained.

B. Immersed boundary B-spline approximation

The aforementioned approximation is suitable for rectangu-
lar/cuboidal geometries only. In order to overcome this limita-
tion, we consider the immersed boundary method95,96, where
the arbitrarily-shaped domain Ω is embedded into a larger do-
main Ω� with rectangular/cuboidal shape, i.e. Ω ⊆ Ω�. The
geometrical map in Eq. (87) is redefined as

ϕ : Ξ→Ω�

ξ 7→ x=ϕ(ξ),
(91)

which is independent on Ω, and hence arbitrary geometries
are allowed. The basis functionsN(x)∈Ω� are now defined
on the embedding domain, which is discretized by means of
a uniform Cartesian grid as Ω� =

⋃
c Ωc

�, cf. Fig. 7a. Hence,
B-spline basis constitute a suitable approximation space on Ξ,
and Eqs. (88)-(90) hold.

Remark 6. Since the approximation space is unfitted to the
geometry, it is not interpolant on ∂Ω, even if B-splines of de-
gree p = 1 or any other family of basis functions are consid-
ered. Therefore, in the context of B-spline basis functions,
knot multiplicity does not provide any benefit, and uniform
knot vectors are typically considered instead.
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The physical boundary ∂Ω is allowed to intersect the cells
Ωc

� of the embedding mesh arbitrarily, leading to a unfitted
discretization of Ω. The cells with a nonempty intersection
with Ω are labeled as active, whereas outer (or inactive) cells
are neglected. Active cells can be either inner (Ωc

� ⊆ Ω, see
Fig. 7b) or cut (Ωc

� * Ω, see Fig. 7c).
a. Cell classification. Labeling a cell depending on its

intersection with Ω is usually accomplished by checking
whether all vertices of each cell (and possibly more points
within the cell) lie within the domain Ω (inner cell), only part
of them (cut cell) or none of them (outer cell). In the case
of implicit boundary representation (e.g. level set approaches)
it is enough to evaluate the level set function on the eval-
uation points (see Fries and Omerović 100 , Fries 101 , Kudela
et al. 102 , Legrain, Chevaugeon, and Dréau 103 ). For explicit
boundary representation (e.g. CAD descriptions), ray-tracing
procedures are required, as explained in Marco et al. 104,105 .

b. Enforcement of Dirichlet boundary conditions. Im-
mersed boundary methods permit considering arbitrary ge-
ometries and involve trivial mesh generation, at the cost of
having to deal with a non-conforming discretization. Since
the approximation space is defined independently of Ω, it is
not interpolant on its boundary ∂Ω, hence Dirichlet bound-
ary conditions must be weakly enforced, e.g. by means of
Nitsche’s method (cf. Section II C 3).

c. Numerical integration. An additional challenge, as-
sociated with the presence of cut cells, consists on defining
a good-enough numerical integration on cut cells. This im-
plies defining special quadrature rules for each cell Ωc

� since
only their intersection with Ω, i.e. Ωc

�∩Ω, is to be considered.
The standard approach consists on dividing Ωc

�∩Ω into sev-
eral non-overlapping sub-domains, each of them being easily
integrated with predefined quadrature rules.

On the one hand, conforming subdivision
approaches101,102,104, most of them based on the march-
ing cubes algorithm106, attempt to subdivide cut cells into
smaller conforming entities (e.g. squares or triangles in 2D,
see Fig. 8), even allowing in some cases curved faces or
edges107–109. On the other hand, non-conforming subdivision
schemes110,111 are based on quadtree/octree approaches,
where each cell is recursively subdivided into 2D pieces until
some predefined recursion level (see Fig. 9). Inner pieces are
completely integrated, whereas at those that remain cut in the
finest subdivision level, only the Gauss points that lie within
Ω are considered.

Conforming approaches are typically more accurate but
harder to implement, whereas non-conforming approaches are
typically easier to implement and as accurate as required by
increasing the recursivity.

Numerical integration on the faces and edges of cut cells
requires an explicit boundary representation, available only
if a CAD (or other explicit) description of ∂Ω is considered.
In the case of implicit boundary representations such as level
sets, an explicit approximation of ∂Ω must be precomputed at
each cell.

d. Cut-cell stabilization. Another challenge related
with cut cells consists on alleviating ill-conditioning pro-
duced by degrees of freedom with small intersection with Ω.

The resulting algebraic system of equations suffers from ill-
conditioning, i.e. large condition number of the system matrix,
in the presence of cut cells with a small portion in the domain,
i.e. when the volume fraction ηc = |Ωc

� ∩Ω| / |Ωc
�| � 1.

In particular, for the boundary value problems of flexoelec-
tricity considered in this manuscript, the condition number
scales with the minimum volume fraction ηmin = minc (ηc) in
meshes of fixed size h at a rate of η

−(2p+1−2/D)
min ,62 which im-

plies that ill-conditioning is more severe for high-order basis
(see Fig. 10).

Several strategies have been proposed to alleviate ill-
conditioning of trimmed cells, such as the ghost penalty
method112, the artificial stiffness approach110,111, the ex-
tended B-spline method113–116 or special preconditioning
techniques specifically designed for immersed boundary
methods117, among others. We recommend here the extended
B-spline approach by Höllig et al.113–116 due to its simplicity,
ease of implementation and good performance, cf. Fig. 10.
The main idea consists on removing the critical basis func-
tions (the ones with smaller intersection with Ω) from the ap-
proximation space and extrapolating well-behaved basis func-
tions from neighboring cells towards the cut cell. Fig. 11 illus-
trates this process for the univariate case. The modified basis
has less degrees of freedom, but the condition number and er-
ror converge rates are independent of ηmin, and equivalent to
those of body-fitted (untrimmed) methods113. The extended
B-spline basis stabilization can be easily implemented as a lin-
ear constraint on the approximation space of cut cells based on
the uniform Cartesian structure of the discretization62,113–116.

C. Beyond uniform meshes: local h-refinement via
hierarchical B-splines

So far, uniform meshes have been considered. However, in
practice, spatial h-adaptivity is required to increase the reso-
lution of the approximation where needed. In the context of
multivariate B-spline bases, refining the knot vectors around a
precise location is not effective since the tensor product struc-
ture of the basis yields a delocalized refinement that spans
along the whole mesh.

Alternatively, one can resort to hierarchical B-spline
refinement118, where the approximation space is locally en-
riched by replacing selected coarse B-spline basis functions
(parents) with finer ones (children), see Fig. 12. This process
can be performed recursively, leading to a parent-children hi-
erarchy spanning several levels of refinement, where each re-
finement level is defined by its own uniform knot vector set.

This process is based on a remarkable property of uniform
B-splines: their natural refinement by subdivision, by which a
uniform B-spline function can be expressed as a linear com-
bination of contracted, translated and scaled copies of itself
(see Fig. 13). Mathematically, the subdivision property is ex-
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pressed as the two-scale relation119:

Bp,`
i (ξ `) =

p+2

∑
j=1

[sp] jB
p,`
2(i−1)+ j(2ξ

`)

=
2i+p

∑
j=2i−1

[sp] j−2(i−1)B
p,`+1
j (ξ `+1), (92)

where ` ∈ N stands for the refinement level, ξ `+1 = 2ξ ` and
the scaling coefficients

[sp] j =
1
2p

(
p+1
j−1

)
=

2−p(p+1)!
( j−1)!(p+2− j)!

(93)

for j = {1, . . . , p+2}. This process maintains the properties of
the spanned functional space and, in particular, its regularity.

In practical computations, the goal is to refine some cells
in the mesh. In a hierarchical B-spline context, it corre-
sponds to refining some of the non-vanishing basis functions
on those cells. There exist different hierarchical refinement
strategies, depending on the relation between cells and basis
to be refined120–124, yielding to more or less localized refine-
ment.

D. Nondimensionalization of the equations

A subtle implementation detail of major practical relevance
is considering the nondimensionalization of all the variables
and parameters in the equations, specially since one is deal-
ing with a coupled problem with multiple physics. To under-
stand its relevance, think of the Kuu and Kφφ blocks in the
diagonal of the system matrix K. If one considers the Inter-
national System of Units (SI), their magnitudes are expressed
in Pa and F/m, corresponding to the Young’s modulus Y and
electric permittivity ε of the material. In a typical dielectric,
they are in the order of 109 (or higher) and 10−9 (or lower),
respectively, which makes at least 18 orders of magnitude dif-
ference! This would preclude the solution of the numerical
problem due to a very large condition number of K.

To avoid this issue, a simple strategy consists on dividing
all the variables in the problem by some normalizing factors.
In the case of flexoelectricity boundary value problems, there
are 3 independent magnitudes, e.g. length (or displacement),
stress and polarization. Defining some suitable normalizing
factors fL, fS and fP for each of them, the normalized afore-
mentioned magnitudes are defined as

u0 = u/ fL, σ0 = σ/ fS, P0 = P / fP. (94)

All the other quantities in the problem are divided by normal-
ization factors that are derived as a combination of fL, fS and
fP, e.g.

• the electric potential φ0 = φ/( fL fS f−1
P ),

• the Young’s modulus Y0 = Y/ fS,

• the flexoelectric coefficients µ0 = µ/( fP fL),

• the electric permittivity ε0 = ε/( f 2
P f−1

S ),

and so on. Typically, suitable values for the normalizing fac-
tors are fL ∼ Lgeom, fS ∼ Y and fP ∼

√
Y ε , where Lgeom is a

characteristic length of the geometry.

Remark 7. The normalized flexoelectric coefficients µ0 scale
inversely proportional to the size of the geometry, whereas the
normalized Young’s modulus and electric permittivity remain
constant. This fact reveals the well-known size-dependent na-
ture of the flexoelectric coupling, relevant only at sub-micron
scales.

IV. COMPUTATIONAL EXPERIMENTS OF CANTILEVER
BEAM BENDING WITH DIFFERENT FORMULATIONS

In this Section we make use of the numerical methods de-
scribed in Section III to solve different boundary values prob-
lems (BVP) stated in Section II C. We focus on cantilever
beam bending, the most well-known benchmark for flexoelec-
tricity, widely used by experimentalists to characterize the
transversal flexoelectric effect85,87,125–127. It has also been
studied numerically58,59,63 and analytically128,129. In the ex-
periments in Sections IV A and IV B, we analyze the elec-
tromechanical response of microscopic cantilevers under ap-
plied force and applied electric potential in closed circuit, re-
spectively, considering the Direct and Lifshitz-invariant flex-
oelectricity formulations.

A. Cantilever beam bending

We consider a 2D (plane strain) cantilever beam of length
L = 8µm and thickness H = 0.4µm. The material proper-
ties are simple enough to isolate the transversal flexoelectric
effect, i.e. a Young modulus Y = 100 GPa, electric permit-
tivity ε = 11 nC/Vm and transversal flexoelectric coefficient
µT = 1 µC/m. The other material parameters are set to 0. For
a complete description of material tensors, we refer to Ap-
pendix A.

The left tip is clamped and a vertical force F = −1µN/µm
is applied on the top right corner. The right tip is elec-
trically grounded and the other boundaries are free, which
corresponds to open-circuit electrical boundary conditions
(Fig. 14a). The transversal flexoelectric effect is triggered due
to the mechanically-induced gradient of axial strains along the
beam’s cross section.

The problem is numerically solved by means of the body-
fitted B-spline method in Chapter III. The results are shown in
Fig. 14. As pointed out in Section II A, the Lifshitz-invariant
and direct flexoelectricity boundary value problems are not
equivalent, even though their associated Euler-Lagrange equa-
tions (53), (65) coincide. The difference is due to the dif-
ferent boundary terms (e.g. tractions and surface charges) in
Eqs. (54), (66) given the different expressions in (49), (64).
In particular, traction-free or charge-free boundary conditions
have different meaning in each formulation and thus the re-
sulting fields are different.
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Two main differences are pointed out next. Firstly, the
mechanical results are quite similar. The axial strains vary
linearly along the cross sections of the bent beam in both
cases (Fig. 14c), as expected. However, the flexoelectricity-
induced stiffening of the beam41 is different in each case.
Comparing the maximum deflection of the direct-flexoelectric
beam (0.30 µm) and the Lifshitz-invariant-flexoelectric beam
(0.24 µm) with respect to a standard elastic one (0.32 µm),
it becomes apparent that the effective stiffness is increased
around 7% in the former and a 33% in the latter.

Nevertheless, the most interesting difference arises in the
electrical response, as shown in Figs. 14b and 14d. While the
direct flexoelectricity form presents an electric potential vary-
ing linearly along a cross section of the beam, the Lifshitz-
invariant form features boundary layers with opposite sign
than that of the bulk. This phenomenon is highlighted in
Fig. 14d, which depicts the transversal electric fields along
the middle cross section.

The electric response in the Lifshitz-invariant model resem-
bles the predicted theoretical response of flexoelectricity in
the presence of surface piezoelectricity35. Since the funda-
mental difference between the two studied BVPs is just the
null Lagrangian in Eq. (1), which is also acting on the surface,
a relation may exist between the modeling of null Lagrangians
and surface effects in this context.

Remark 8. As discussed later on in Appendix B, the appear-
ance of a boundary layer may lead to mesh-dependent spuri-
ous oscillations in the numerical solutions. Hence, some sta-
bilization technique is required in that case. The simulations
presented in this Section and the next one are properly stabi-
lized according to the approach described in Section B.

B. Cantilever beam actuator

In this experiment, we explore the transversal flexoelec-
tric effect triggered by electrical actuation. This device
was first used by Bursian and Zaikovskii 3 to experimen-
tally demonstrate for the first time the flexoelectric effect,
which had been predicted theoretically by Mashkevich and
Tolpygo 11 . Computational studies are also present in Abdol-
lahi et al. 58 , Zhuang et al. 59 .

We consider the same geometry and material properties
as in previous experiment. Here, an electric field across the
beam thickness is enforced by attaching an electrode on the
top boundary at prescribed voltage V = 5V, while the bottom
boundary is grounded, which corresponds to closed-circuit
electrical boundary conditions (Fig. 15a). Mechanically, the
left tip is clamped, and no force is applied. Due to the
transversal flexoelectric effect, the electric field will yield an
axial strain gradient along the thickness of the beam, inducing
a constant curvature.

The results are shown in Fig. 15, and are quite similar to the
ones reported in the cantilever bending case. The two differ-
ences between the direct and Lifshitz-invariant flexoelectricity
models are also present here. The latter presents more stiffen-
ing, in view of the maximum deflections obtained: 0.30µm
for the direct case and only 0.12µm for the Lifshitz-invariant

one. Boundary layers in the electric field distribution are also
obtained here for the Lifshitz-invariant form (Fig. 15d). How-
ever, in this case the bulk electric field is much larger than the
boundary layer effect, and hence the electric potential distri-
butions are much more alike (Fig. 15b).

V. COMPUTATIONAL ANALYSIS OF A SOFT
CANTILEVER ROD ACTUATOR

In this Section we illustrate the richer physics in the
regime of finite deformations by modeling a soft cantilever
rod actuator41. This device was considered by Bursian and
Zaikovskii 3 back in 1968 to experimentally demonstrate for
the first time the flexoelectric effect.

Let us consider the direct flexoelectricity boundary value
problem stated in Section II C 4 c in a compliant slender rod
of length L = 2µm and thickness H = 100nm, see Fig. 16a.
The left tip of the rod is clamped, while all other boundaries
are traction-free. The electric potential Φ at the top bound-
ary is set to a certain value V , and the bottom boundary is
grounded (Φ= 0). The voltage drop induces a transverse elec-
tric field EY =−V/H across the rod thickness which triggers
i) the flexoelectric effect, thereby generating a non-uniform
axial strain that bends the rod, and ii) the electrostrictive ef-
fect, yielding a uniform axial strain that elongates the rod. The
induced curvature and axial stretch are constant throughout
the neutral axis of the rod. Since the flexoelectric effect is
reversible in sign, the cantilever will bend upwards or down-
wards depending on the direction of the applied electric field.
However, since the electrostrictive effect is not, the beam
length will always increase regardless of the electric field di-
rection.

To solve the resulting non-linear system of equations, the
voltage V is applied incrementally in a sequence of load steps.
We resort to a modified-step monolithic Newton-Raphson al-
gorithm presented in Codony et al. 41 , that is robust against the
nonlinearities in the formulation, including the eventual pres-
ence of mechanical (geometrical) instabilites such as wrin-
kling, creasing or buckling.

Figure 16b-16d shows the electromechanical response of
the actuated rod modeled by an isotropic hyperelastic Neo-
Hookean law augmented with strain gradient elasticity as fol-
lows:

Ψ
Mech(E,∇0E) =

λ

2

(
[log(J )]2 + `2EII,KEJJ,K

)
+µ

(
Tr(E)+ `2EIJ,KEIJ,K

)
,

(95)

with Young’s modulus Y = 1.0GPa, Poisson ratio ν = 0.37
(that is, Lamé’s moduli λ ≈ 1.039GPa and µ = 0.685GPa),
mechanical length scale ` = 30 nm, dielectric permittivity
ε = 0.11nC/Vm and different combinations of the flexoelec-
tric constants. The results with negative curvature have been
omitted, and the effect of varying the shear flexoelectric con-
stant µS has been reported negligible for the studied cases41.
As expected, the axial strain of the rod (depicted in Fig. 16b)
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does not vary much with the different flexoelectric parame-
ters, since it is mainly a consequence of electrostriction. The
curvature (Fig. 16c), instead, varies significantly for the dif-
ferent combinations of flexoelectric parameters. The largest
response is found with positive µT and negative µL, as shown
in case A. For sufficiently large actuation, the rod is even able
to roll up forming a closed circle (Fig. 16d).

VI. COMPUTATIONAL ANALYSIS OF FLEXOELECTRIC
DEVICES AND METAMATERIALS

We analyze next several devices and metamaterials exploit-
ing the flexoelectric effect through the effective accumulation
of the response to gradients in the mechanical and electric
fields in the limit of infinitesimal deformation. The example
in Section VI A shows a scalable flexoelectricity-based defor-
mation sensor which works upon collective beam-bending, re-
sulting in a potential difference that accumulates from beam to
beam. In Sections VI B and VI C we simulate the RVE corre-
sponding to different engineered, geometrically-polarized ar-
chitected materials, and show that they feature apparent piezo-
electric behavior without piezoelectric constituents, allowing
its use in sensing or actuation applications.

A. Collective-beam bending scalable flexoelectric device

Previous works have shown that bending of thin struc-
tural elements is the most efficient way to mobilize
flexoelectricity9,75. We present here a setup achieving col-
lective beam bending in such a way that the flexoelectrically-
generated electric potential at the thin structural elements can
be effectively accumulated throughout the structure and col-
lected at the electrodes. The structure is composed of sev-
eral thin beams connected by vertical elements on one end
and to other beams through insulating connectors at the other
end. The insulating connectors are placed as to achieve a
non-centrosymmetric system and thus avoid internal cancel-
lation of flexoelectrically-generated electric potential of oppo-
site signs at the beams83. This unit is appropriately repeated
in series, producing a scalable device, here shown in 2D in
Fig. 17a. We analyze such a structure, with beam thicknesses
of t = 40nm and lengths of ` = 400nm, and beam spacings
of h = 280nm, under three point displacement as shown in
Fig. 17a, with δ = 40nm. The direct formulation for flexo-
electricity in Section II C 1 is used, with the interface condi-
tions in Section II C 4 b at the dielectric-insulator interfaces.
The material parameters are reported in Table I.

Figure 17b shows the electric potential, φ , distribution. The
accumulation of electric potential from the grounded (bottom-
left) towards the top-right edge is apparent. This electric po-
tential accumulation scales linearly with the number of con-
nected beams.

Material Y ν `mech ε µL µT µS
[GPa] - [nm] [nC/V m] [µC/m] [µC/m] [µC/m]

Matrix 152 0.33 1 141 150 110 110
Insulators 152 0.33 1 0 0 0 0

TABLE I: Material parameters in Section VI A

B. Geometrically-polarized periodic inclusions

Accordingly to Sharma, Maranganti, and Sharma 75 and
Mocci et al. 83 , geometrically-polarized inclusions embedded
in a non-piezoelectric matrix produce an apparently piezo-
electric response upon macroscopic homogeneous deforma-
tion. This response results from the effective accumulation
of the flexoelectric response to the localized strain gradients.
With this idea, one can endow any dielectric with apparent
piezoelectricity83.

We illustrate this idea by simulating the electromechan-
ical response of flexoelectric metamaterial with triangular
voids under homogeneous macroscopic vertical compression,
Fig. 18. We consider the Lifshitz-invariant flexoelectric for-
mulation, and barium strontium titanate (BST) in its paraelec-
tric phase as base material, see Table II for material param-
eters. Paraelectric BST is a non-piezoelectric dielectric with
high permittivity, and hence a good flexoelectric35.

To efficiently evaluate the performance of the peri-
odic structure, high-order generalized periodic conditions in
Eq. (76) are enforced in a single unit cell. Standard peri-
odicity for the solution fields along the horizontal direction
is applied ([[u]]x1 = [[φ ]]x1 = 0), whereas the jump in electric
potential along the vertical direction ([[φ ]]x2 ) is resolved as a
result of a prescribed vertical jump in the displacement field
([[u]]x2 = [[u]]x2 ).

Figure 18 (middle) shows the resulting electric potential
distribution on the deformed sensor. The plot on the right
represents the trend of the electric potential along the verti-
cal dashed line by computing a portion of the whole domain
(thin black line) and a single unit cell with a height of 3.15µm
with generalized periodicity conditions (thick magenta line).
Both simulations produce exactly the same result on a unit
cell far away from the top and bottom boundaries. A non-
vanishing net potential difference between the top and bottom
layers of the device is achieved upon homogeneous deforma-
tion. The observed apparent piezoelectricity is the result of
the accumulation of the flexoelectric response to strain gradi-
ents generated around the voids. This accumulation is in turn
possible because the triangular voids produce a geometrical
polarization of the microstructure. Such a material exhibits
also inverse apparent piezoelectricity under the application of
a homogeneous electrical bias83.

C. Bending-dominated lattice metamaterial

Building on the ideas discussed in Sections VI A and VI B,
a new class of flexoelectricity-based metamaterials have been
recently proposed by Mocci et al. 83 . These metamaterials
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Y ν `mech ε `elec µL µT µS
[GPa] - [nm] [nC/V m] [nm] [µC/m] [µC/m] [µC/m]
152 0.33 50 8 300 1.2 1.1 0.05

TABLE II: Material parameters of BST in Sections VI B and
VI C.

are bending dominated, low area fraction lattices, with a non-
centrosymmetric arrangement of small non-piezoelectric di-
electric beams. Upon homogeneous macroscopic deforma-
tion or electric bias, the metamaterial behaves as an appar-
ent piezoelectric due to the accumulation of the flexoelec-
tric response of the lattice beam components. Mocci et al. 83

show that it can reach performances comparable in some sit-
uations to those of very common piezoelectric materials, such
as quartz or PZT.

Figure 19 shows a bending-dominated BST lattice meta-
material in actuation mode, i.e. deforming due to an ap-
plied macroscopic electric bias ([[φ ]]x2 = [[φ ]]x2 ), modeled by
the Lifshitz-invariant flexoelectric formulation. A RVE of
the lattice is analyzed using generalized periodicity condi-
tions on the top and bottom faces, and standard periodicity
in the horizontal direction. The lattice unit cell is has dimen-
sions L1 = 4.8µm and L2 = 2.8µm and the beam thickness
is t = 160nm. The resulting vertical displacement ([[u]]x2 ) and
the deformed configuration are also depicted in a reduced por-
tion of the whole domain. The metamaterial behaves again as
an apparent piezoelectric despite its base material is not.

VII. CONCLUSIONS

We have reviewed the mathematical modeling of the flex-
oelectric effect in the regime of infinitesimal deformations,
including different flexoelectric couplings, variational princi-
ples and boundary value problems, and presented its natural
extension to the regime of finite deformations. We have also
described in detail an efficient computational approach based
on immersed-boundary hierarchical B-splines, enabling the
computation on arbitrarily-shaped geometries with attractive
numerical properties such as trivial mesh generation and op-
timal convergence rates. The provided numerical examples
illustrate the mechanisms behind the flexoelectric effect and
show the feasibility of engineered devices and materials de-
signed for a variety of electromechanical applications. More
specifically, we have shown that the Lifshitz-invariant formu-
lation leads to boundary layers, and we have proposed ma-
terial architectures capable of mobilizing the flexoelectric ef-
fect at a microstructural level and upscaling this effect to a
mesoscale.

This paper exemplifies how accurate computational meth-
ods can enable new material designs that exploit flexoelectric-
ity in engineering applications, for instance to yield apparent
piezoelectricity in metamaterials made of non-piezoelectric
base materials83, given the inherent complexity of setups mo-
bilizing field gradients. With this background, we expect that
materials designs can be optimized geometrically and topo-

logically 44,130,131, and that ultimately the fundamental de-
sign principles of flexoelectric metamaterials can be distilled.
There are some aspects that still hinder the quantitative eval-
uation of flexoelectricity. A clear physical interpretation of
the high-order fields is still missing, which would allow us to
solve the ambiguity regarding the high-order boundary con-
ditions on physical grounds. Continuum models would bene-
fit from a more precise connection with first principles. This
would allow us not only to identify parameters for the con-
tinuum descriptions, but also learn proper enrichments in or-
der to capture additional physics, e.g. finite sample effects.
These important effects, such as surface piezoelectricity and
surface flexoelectricity, have not been included here35. Fi-
nally, a wider and more precise experimental quantification of
flexoelectricity in an ample catalogue of materials would also
be desirable.

Avenues for future research in the mathematical and com-
putational modeling of flexoelectricity are vast. One of the
most appealing ones is the complete understanding and ex-
ploitation of flexoelectricity in soft materials. Despite larger
strain gradients (hence larger flexoelectric response) are eas-
ily possible together with functional deformation modes, the
fundamental mechanisms leading to flexoelectricity in poly-
mers remain unclear36. Other interesting research lines in-
volve the understanding and exploitation of flexoelectricity in
other important multifunctional materials, such as magneto-
electrics, liquid crystal elastomers, ferroelectrics or semicon-
ductors, with multiple potential applications.
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Appendix A: Material characterization

The material enthalpy density in an infinitesimal deforma-
tion framework is characterized by the tensors of elasticity c,
strain gradient elasticity h, dielectricity κ, flexoelectricity µ
and eventually gradient dielectricity M.

a. Elasticity tensor c. Isotropic elasticity is represented
by the fourth-order tensor c, which depends on λ and µ in the
following form:

cIJKL = λδIJδKL +2µδIKδJL. (A1)
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Remark 9. The Lamé parameters λ and µ are related with the
Young modulus Y and the Poisson’s ratio ν as λ = Y ν/(1+
ν)(1−2ν) and µ= Y/2(1+ν).

b. Strain gradient elasticity tensor h. We consider an
isotropic simplified strain gradient elasticity tensor132, which
depends on λ, µ and the mechanical length scale `mech in the
following form:

hIJKLMN = (λδIJδLM +2µδILδJM)`2
mechδKN . (A2)

c. Dielectricity tensor κ. Isotropic dielectricity is repre-
sented by the second-order tensor κ, which depends on the
electric permittivity ε as

κi j = εδi j. (A3)

d. Gradient dielectricity tensor M. Isotropic gradient
dielectricity is represented by the fourth-order tensor M. We
take a simple form depending on the electric permittivity ε

and the dielectric length scale `elec as

Mi jkl = ε`2
elecδikδ jl . (A4)

e. Flexoelectricity tensorµ. The cubic flexoelectric ten-
sor depends on the longitudinal µL, transversal µT and shear
µS parameters63,133. When oriented along the Cartesian coor-
dinates, it takes the following form:

µ
<x1>

LIJK =


µL, for L = I = J = K,

µT, for I = J 6= K = L,
µS, for L = I 6= J = K or L = J 6= I = K,

0 otherwise.
(A5)

The flexoelectric tensor µ oriented in an arbitrarily rotated
orthonormal basis is obtained by rotating µ<x1> as

µli jk = RlLRiIR jJRkK µ
<x1>

LIJK , (A6)

where R is the rotation matrix associated to the unit vectors of
the rotated basis.

The isotropic flexoelectric tensor is a particular case of the
cubic one with only two independent parameters, where µL =
µT +2µS.

Appendix B: Residual-based weak form stabilization

As discussed in Remark 8, depending on the geometry of
Ω, the boundary conditions, the material parameters and the
mesh size, the numerical solution to the flexoelectricity prob-
lem features spurious oscillations which completely spoil the
quality of the results. Fig. 20 shows an example, with spu-
rious oscillations arising in a Lifshitz-form flexoelectric can-
tilever beam with open circuit boundary conditions undergo-
ing bending (i.e. a similar setting to Section IV A). The beam
is L = 3.2µm long by H = 0.4µm thick. The dielectric ma-
terial has a Young’s modulus Y = 100GPa, Poisson ratio ν =
0.37, dielectric permittivity ε = 11nJ/V2m and longitudinal

and transversal flexoelectric coefficients µL = µT = 1µJ/Vm.
Other material coefficients are 0. A force of F = 100µN is
applied vertically on the top of the right end.

In view of the results in Sections IV A and IV B, and in
agreement with the experience of this manuscript’s authors,
the numerical instabilities are associated with the presence of
boundary layers in the electric field, which may frequently
appear when considering the Lifshitz-invariant flexoelectricity
formulation.

Remark 10. In the literature of computational flexoelectric-
ity, the direct flexoelectricity form is much more popular than
others, specially for the computational examples. Hence, it is
difficult to say whether numerical instabilities are also present
in other numerical schemes rather than smooth B-spline ap-
proximations.

A complete and exhaustive study of numerical instabili-
ties and the proposal of stabilization strategies is a matter of
current research of this manuscript’s authors, and is out of
the scope of this tutorial. However, it is instructive think-
ing of a simplified 1D-version of the Euler-Lagrange equa-
tions associated to the Lifshitz-invariant flexoelectricity form
(cf. Eq. (65)):{

Luuu+Luφ φ ≡ YuII−Y `2
mechuIV −µφ III =−b,

Lφuu+Lφφ φ ≡−εφ II + ε`2
elecφ IV +µuIII = q,

(B1)

depending on just five material parameters, namely the Young
modulus Y and mechanical length scale `mech, the dielectric
constant ε and the dielectric length scale `elec, and the flexo-
electric coefficient µ .

The corresponding weak form can be written as{
auu(δu,u)+auφ (δu,φ) = lu(δu),
aφφ (δφ ,φ)+auφ (u,δφ) = lφ (δφ),

(B2)

with appropriate boundary conditions, where

auu(δu,u) = (δuI ,YuI)Ω +(δuII ,Y `2
mechuII)Ω, (B3a)

aφφ (δφ ,φ) = (δφ
I ,−εφ

I)Ω +(δφ
II ,−ε`2

elecφ
II)Ω, (B3b)

auφ (δu,φ) =−1
2

µ
(
(δuI ,φ II)Ω− (δuII ,φ I)Ω

)
, (B3c)

lu(δu) = (δu,b)Ω, (B3d)
lφ (δφ) = (δφ ,−q)Ω. (B3e)

To stabilize this simple 1D model, we resort to the Galerkin
least-squares (GLS) method134–136, due to its simple form and
implementation. Following the GLS method, we make use of
Eq. (B1) to define the following bilinear forms:

Amech({u,φ},{δu,δφ})
=
(
Luuδu+Luφ δφ ,τmechrmech(u,φ)

)
Ω
, (B4a)

Aelec({u,φ},{δu,δφ})
=
(
Lφuδu+Lφφ δφ ,−τelecrelec(u,φ)

)
Ω
, (B4b)
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with the residuals

rmech(u,φ) = Luuu+Luφ φ +b, (B5a)
relec(u,φ) = Lφuu+Lφφ φ −q. (B5b)

Note that a solution fulfilling Eq. (B1) yields vanishing resid-
uals in Eq. (B5), and therefore the bilinear forms in Eq. (B4)
vanish too. Hence, they can be added to the original weak
form in Eq. (B2) while maintaining self-consistency:

auu(δu,u)+auφ (δu,φ)+Amech({u,φ},{δu,0})
+Aelec({u,φ},{δu,0}) = lu(δu), (B6a)

aφφ (δφ ,φ)+auφ (u,δφ)+Amech({u,φ},{0,δφ})
+Aelec({u,φ},{0,δφ}) = lφ (δφ). (B6b)

The stabilization parameters τmech,τelec provide control on the
second derivatives of the state variables and can be tuned as
a function of mesh size and material parameters. A reason-
able choice for the stabilization parameters can be found in
Codony 62 as

τmech = αmech
h2

Y
, τelec = αelec

h2

ε
, (B7)

where h represents the mesh size and αmech,αelec are dimen-
sionless scalars that can either be chosen as constant or de-
pendent on the relation between material parameters and mesh
size. By choosing large enough αmech and αelec, spurious os-
cillations in the numerical solution can be prevented.

A 2D implementation of the aforementioned GLS stabiliza-
tion is illustrated in Fig. 21, showing the control on the spuri-
ous numerical oscillations as the stabilization parameters are
tuned, and a robust approximation of {u,φ} for large enough
stabilization parameters.
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FIG. 1: Sketch of the geometry of Ω ∈ R3. (a) Detail of ∂Ω subdivided in smooth portions ∂Ωi and ∂Ω j, with their
corresponding normal vectors ni and n j, (b) detail of ∂Ωi, with the triplet {mi,si,ni} defined on ∂∂Ωi, and (c) detail of ∂Ω j,

with the triplet {m j,s j,n j} defined on ∂∂Ω j. The orientation of the tangent vector s is arbitrary, and not relevant in this
context. This figure was published in Codony et al. 63 , Copyright Elsevier (2019).
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FIG. 2: Sketch of the geometry of Ω ∈ R2. (a) Ω and the boundary ∂Ω subdivided in several smooth portions ∂Ω f , e.g. ∂Ωi
and ∂Ω j with their corresponding normal vectors ni and n j. The intersection between ∂Ωi and ∂Ω j is the corner Ci j. (b)

Detail of ∂Ωi, with the pair {mi,ni} defined on Ci j, and (c) detail of ∂Ω j, with the pair {m j,n j} defined on Ci j. This figure
was published in Codony et al. 63 , Copyright Elsevier (2019).
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FIG. 3: (a) Composite domain Ω = Ω1∪Ω2∪Ω3. (b) Detail
of the interface I between Ω1 and Ω2. (c) Detail of the point S

shared by all three subdomains.
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FIG. 4: (a) Architechted material with translational
periodicity. A unit cell (or RVE) is highlighted. (b) Periodic

boundaries of the RVE. (c) Intersections of the periodic
boundaries of the RVE with the actual boundaries of the

architected material.
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FIG. 5: First univariate uniform B-spline basis function
Bp

1(ξ ) of degree p: (a) Linear (p = 1), (b) Quadratic (p = 2),
(c) Cubic (p = 3), (d) Quartic (p = 4).
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FIG. 6: Univariate open uniform cubic (p = 3) B-spline basis
with knot vector k = [0,0,0,0,1,2,3,4,5,6,7,8,8,8,8].
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FIG. 7: Sketch of the immersed boundary method. (a)
Physical domain Ω ∈ R2 (red) embedded in Ω� (gray),

which is discretized by a Cartesian grid into several cells Ωc
�.

Inner cells are depicted in black stroke, cut cells in blue
stroke, and outer cells are not depicted. (b) Detail of an inner

cell. (c) Detail of a cut cell.
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FIG. 8: Conforming sub-division of cut cells into
non-overlapping triangles to perform numerical integration.
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FIG. 9: Non-conforming numerical integration of cut cells
via recursive quadtree sub-division.
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FIG. 10: Condition number against the minimum volume
fraction using different cut-cell stabilization techniques for
(a) Cubic spline mesh (p = 3), and (b) Quartic spline mesh

(p = 4).



FIG. 11: Extended B-spline approach on the right end of a
univariate mesh of degree p = 2. The resulting functional

space contains the extended basis functions {B̃2
3(ξ ), B̃2

4(ξ ),
B̃2

5(ξ )}, as a result of the extrapolation of the basis {B2
3(ξ ),

B2
4(ξ ), B2

5(ξ )} in Ω4
� towards Ω5

�. The critical basis B2
6(ξ ) is

removed.
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FIG. 12: Univariate uniform cubic (p = 3) hierarchical
B-spline basis. The basis functions B3,1

i (ξ 1), i = 3, . . . ,6 in
the coarsest level of refinement (`= 1) have been replaced by

their children B3,2
j (ξ 2), j = 5, . . . ,15 in the next (`= 2)

refinement level.
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FIG. 13: Two-scale relation of univariate B-splines. Top: Original (parent) B-spline Bp,1
1 (ξ 1) at level `= 1. Bottom: The

children B-spline basis functions Bp,2
j (ξ 2) at level `= 2 scaled by the factors [sp] j, for j = {1, . . . , p+2}, (a) Linear (p = 1),

s1 = 1
2 [1,2,1], (b) Quadratic (p = 2), s2 = 1

4 [1,3,3,1]., (c) Cubic (p = 3), s3 = 1
8 [1,4,6,4,1].
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FIG. 14: Cantilever beam bending using direct and
Lifshitz-invariant flexoelectricity forms. (a) Geometry and

boundary conditions. (b) Electric potential distribution within
the beams. (c) Axial strains at the cross section x = L/2. (d)

Transversal electric fields at the cross section x = L/2.
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FIG. 15: Cantilever beam actuator using direct and
Lifshitz-invariant flexoelectricity forms. (a) Geometry and

boundary conditions. (b) Electric potential at the cross
section x = L/2. (c) Axial strains at the cross section x = L/2.

(d) Transversal electric fields at the cross section x = L/2.
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FIG. 16: Actuation of soft cantilever rod with different
flexoelectric tensors µ [nC/m]. (a) Geometry and boundary
conditions. (b) Axial strain ζ (V ). (c) Curvature R−1(V ). (d)
Deformed configuration and electric potential distribution in

case A upon increasing voltage V [kV], indicated by the
number at the free end. This figure was adapted from that
published in Codony et al. 41 , Copyright Elsevier (2020).
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FIG. 17: Collective-beam bending device. The applied
displacement pattern induces strain gradients in the structure

while the material arrangement breaks the overall
centrosymmetry of the system, resulting in an accumulation

of the electric potential. (a) Geometrical configuration.
Flexoelectric material is depicted in orange, and the

insulating material is depicted in grey. The arrows represent a
vertical displacement of δ = 40nm. (b) Deformed shape and

resulting electric potential distribution.
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FIG. 18: Sensor device with geometrically polarized
inclusions embedded in a non-piezoelectric matrix. The

electric potential distribution is shown and plotted along the
dashed line, both for the whole domain (thin line) and a

single unit cell calculation (thick line). The electric potential
has been normalized as φ̂ = φε/µ .
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FIG. 19: Bending-dominated lattice metamaterial device in
actuation mode. The electric field-induced displacement is

depicted in a reduced portion of the lattice. The electric
potential has been normalized as φ̂ = φε/µ , and the

displacement field as û= u/L2.



(a)

0.2 0.25 0.3 0.35 0.4
y [μm]

0

4

8

12

16

ϕ
[V

] 
at

 x
 =

 L
/2

h=0.0275 μm

(b)

FIG. 20: Spurious, mesh-dependent oscillatory behavior of
the electric potential φ in a Lifshitz-invariant flexoelectric

cantilever beam. The B-spline basis is quadratic (p = 2) with
mesh size h = 0.0275µm. (a) Electric potential distribution

within the cantilever. (b) Detail of the electric potential along
the cross section at x = L/2.
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FIG. 21: Residual-based weak form stabilization in a
Lifshitz-invariant flexoelectric cantilever beam. The B-spline
basis is quadratic (p = 2) with mesh size h = 0.0275µm. The

stabilization parameters are chosen as αmech = αelec = α .




