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We report the experimental observation of nonlinear light localization and edge soliton formation at the edges of fs-laser written trimer wave-
guide arrays, where transition from non-topological to topological phases is controlled by the spacing between neighboring trimers. We found
that, in the former regime, edge solitons occur only above a considerable power threshold, whereas in the latter one they bifurcate from linear
states. Edge solitons are observed in a broad power range where their propagation constant falls into one of the topological gaps of the system,
while partial delocalization is observed when considerable nonlinearity drives the propagation constant into an allowed band, causing coupling
with bulk modes. Our results provide direct experimental evidence of the coexistence and selective excitation in the same or in different topo-
logical gaps of two types of topological edge solitons with different internal structures, which can rarely be observed even in nontopological
systems. This also constitutes the first experimental evidence of formation of topological solitons in a nonlinear system with more than one

topological gap.
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guide arrays

Topological insulators are physical structures that behave as con-
ventional insulators in the bulk, but exhibit unusual conductive prop-
erties arising due to the existence of topologically protected, localized
in-gap states at their edges that are immune to local deformations.
They have been encountered in different areas of physics, including
solid-state physics, acoustics, electronics, mechanics, physics of matter
waves, and optics. Topological insulators have been demonstrated in
different platforms and analyzed using various models, starting from
dimerized Su-Schrieffer-Heeger lattices, to systems with broken time-
reversal symmetry supporting unidirectional edge currents, time-pe-
riodic Floquet systems, structures with broken spatial inversion sym-
metry, such as valley Hall phononic or photonic crystals, various
higher-order insulator platforms, and many others [1, 2]. In contrast
with their widely studied electronic counterparts, photonic topologi-
cal insulators [3, 4] can exhibit a considerable nonlinear response,
therefore they exhibit new phenomena caused by self-action or para-
metric wave interactions that can alter the topological phases or affect
the propagation dynamics of topological edge states. The recent pro-
gress in the investigation of passive and active nonlinear topological
photonic systems is described in the reviews [5-7]. It includes, among
others, nonlinearity-induced inversion of topological currents [8, 9],
formation of self-sustained bulk topological currents [10, 11], nonlin-
ear tuning of edge state energies [12], condensation and lasing in edge
states in polariton systems [13-15], rich bistability effects [16, 17], en-
hanced parametric interactions [18-20], modulation instability of
edge states [21, 22, 14], and nonlinearity-induced topological phases
in systems that are topologically trivial in the linear regime [23-26].

One of the most genuine manifestations of nonlinearity in topo-
logical systems is the possibility to form edge solitons, namely self-
sustained states that inherit topological protection from the linear
counterparts from which they bifurcate. In multidimensional sys-
tems, such states may feature strongly asymmetric profiles reflecting
their hybrid nature. In 2D settings, these solitons may form spontane-
ously as a result of the development of modulation instability of peri-
odic nonlinear edge states [14, 21] (nonlinear localized modes may

also form in the bulk of the insulator as demonstrated in [10, 11]). Top-
ological soliton-like edge states that radiate in the course of propaga-
tion have been observed [27] in Floquet topological insulators [28-31],
while theory for envelope quasi-solitons built on edge states has been
developed for discrete [32-35] and continuous [36-39, 21] arrays of hel-
ical waveguides. Edge solitons may also form in waveguide array-
based valley Hall systems [40-43]; they were observed in truncated
photonic graphene lattice induced in atomic vapors [44]. Recently
nonlinear corner states were demonstrated in higher-order 2D topo-
logical photonic insulators [45, 46]. Among the simplest models ad-
mitting the formation of the 1D edge solitons bifurcating from linear
edge states are dimerized Su-Schrieffer-Heeger lattices [47]. Nonlin-
ear topological states in such lattices have been studied theoretically
in [48-54] and observed experimentally in electric circuits [24], topo-
logical fiber loops [55], polariton condensates [13, 56] and, in the
weakly nonlinear regime, in photonic lattices [57, 58]. However, most
experiments with weakly nonlinear edge states and edge solitons
were performed in structures with a single topological bandgap, ad-
mitting the formation of edge solitons of only one type. The coexist-
ence of several edge solitons with different internal structures has
never been observed experimentally to date, although theoretical pro-
posals have been recently put forward [59].

In this Letter we present the experimental observation of topolog-
ical edge solitons in photonic trimer arrays, which to date had been
studied only in the linear regime [60-64]. For suitable trimer separa-
tions, our system exhibits two topological bandgaps where edge
states with different internal structure and symmetry exist. Edge soli-
tons emanating from such edge states under the action of nonlinearity
undergo rich bifurcations and can be traced up to the point where
nonlinearity drives them into the upper allowed band, causing their
coupling with bulk modes. We observed two coexisting types of edge
solitons emanating from different gaps and show that they can be ex-
cited even at low powers, in contrast to conventional surface solitons
in nontopological lattices that feature considerable power thresholds
even in 1D settings [65-69] (the latter are substantially reduced in ar-
rays created in photorefractive crystals [70]).



We address the propagation of light in a waveguide array consist-
ing of N trimers, which can be described by the dimensionless
Schrodinger equation for the field amplitude ) :
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where the function R(z,y) = pzm . Oz —z,,,y) in the linear
Hamiltonian H describes the profile of the trimer array composed
from Gaussian waveguides Q(z,y) =e~ @+2)/9" of width @ and
depth p . To perform our experiments, we fabricated arrays consist-
ing of N =5 trimers in a 10 cm-long fused silica glass sample using
the fs-laser writing technique (see [71] for details). A microscope im-
ages of the fabricated arrays are presented in Fig. 1(a). The separation
between waveguides inside each trimer is identical and equal to pre-
selected d =33 ym, at which nonlinear localization is well ob-
served. The separation s between trimers is varied in the range
18 —44 pm and controls the transition between non-topological and
topological phases. Although our array is a line 1D structure, we use
the 2D Egq. (1) to account for all instabilities possible in the actual con-

tinuous experimental system.

We first numerically calculate the linear spectrum of the system
(all parameters as in [71]), which is central to understand the proper-
ties of the edge solitons. Linear eigenmodes of the array have the form
Y(z,y,2) = w(z,y)e™ , where b is the eigenvalue (propagation con-
stant) of themode, w describes the mode profile. The evolution of the
linear spectrum of the array with separation s between trimers is
shownin Fig. 1(b) for N =5 . At s > d [middle and bottom rows of
Fig. 1(a)], when the inter-trimer coupling is weaker than or equal to
the intra-trimer one, the system is topologically trivial. There are three

bulk bands in the spectrum shown with black dots and all modes are
spatially extended, see examples in Fig. 1(e) and 1(f). In contrast, at
s < d [top row of Fig. 1(a)] inter-trimer coupling becomes stronger
than intra-trimer one, driving the system into the topological phase.
This is accompanied by the appearance of fwo pairs of edge states
marked by the red dots in Fig. 1(b) in each of two topological finite
gaps in the spectrum, a remarkable distinctive feature of this system.
Notice that for a sufficiently small separation s , a pair of modes (sym-
metric and antisymmetric) in a given gap is nearly degenerate [cf.
modes 1 and 2 or modes 3 and 4 in Fig. 1(d)]. Modes in the top gap
feature two in-phase peaks in two outermost guides (modes 1 and 2),
while modes in the bottom gap feature two out-of-phase peaks in two
outermost guides (modes 3 and 4). The localization of the topological
edge modes progressively increases with the decrease of the value of
5 . Their appearance is consistent with the fact that the corresponding
topological invariant (winding number) [3, 4]

Wzifm(w,‘.(x,q)\a” |w,(z,y))dK (¢a)

calculated for the infinite « -periodic array [here w, (z,y) are the nor-
malized Bloch eigenmodes with momentum & , the integration is car-
ried over the first Brillouin zone of periodic array] is equal to 1, 2, and
1 for the top, middle, and bottom bands, respectively, in the topolog-
ical regime at s < d , and is O for all bands in trivial regime at s > d .
The spectrum for a larger array with N =9 trimers [Fig. 1(c)] is prac-
tically identical —only the density of states in the bulk bands increases.
The robustness of such topological states has been checked by adding
small disorder into waveguide depths and positions, which did not
lead to appreciable shifts of their propagation constants.
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Fig. 1. (a) Microphotographs of the fs-laser written arrays of trimers in the topological and non-topological regimes. Transformation of the eigen-
value spectra upon variation of spacing s for the array with N =5 trimers (b) and array with N =9 trimers (c). Topological branches are
shown in red. Eigenmodes of the topological (d) and nontopological (e), (f) waveguide arrays correspond to the blue dots in (b).

Topological edge solitons bifurcate from linear edge states when
§ < d . They canbe found in the form )z, y, 2) = w(z,y)e™ from Eq.
(1), leading to the nonlinear problem Hw —w? + bw = 0, where the
propagation constant is now an independent variable defining the
soliton amplitude and power U = [ |¢[* dzdy . The shape of the
edge soliton is determined by the symmetry of the edge state, from
which such soliton bifurcates. Figure 2(a) shows the family of out-of-
phase solitons emerging from the lower topological gap [see the top
row of Fig. 2(c) for soliton shapes]. In contrast to conventional surface

solitons, edge solitons do not feature an excitation power threshold
and form even atlow U values (see state 1 whose shape may resem-
ble that of the linear edge mode but it is a nonlinear state). When the
propagation constant of such soliton shifts into the second allowed
band, coupling with bulk modes occurs and the soliton acquires a
long tail in the array (state 2). Several branches emerge in the vicinity
of the allowed second band due to the interaction with the relevant
bulk modes.
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Fig. 2. Families of solitons bifurcating from out-of-phase (a) and in-phase (b) linear topological modes in array with s =18 pm . Black families
are stable, while magenta ones are unstable. Shaded regions show bulk bands. (c) Examples of the out-of-phase (top row) and in-phase (bottom
row) topological solitons corresponding to the blue dots in (a), (b).

Here we show only the simplest of them: black branches corre-  from the linear topological edge state in the top gap [see Fig. 2(b) and
spond to stable solitons, while magenta branches correspond to un- state 4 in Fig. 2(c)]. This family splits into two subfamilies with increas-
stable ones. Soliton stability was analyzed by propagating perturbed ~ ing b . One of them, with the lowest U, is found to be stable and cor-
states 1|,_, = w(z,y)[L + p(x,y)] in Eq. (1), where |p| < w iscom-  responds to a strongly asymmetric state with practically all power
plexnoise (up to 5% in amplitude), up to distances z ~10* thatal-  concentrated in the edge channel (state 5). The other family features
low detecting even weak instabilities (see dynamics in [71]). The sta- two nearly equal in-phase peaks in the two outermost guides (state 6)
ble family with the lowest power U in the top topological gap corre-  and turns out to be strongly unstable. Nonlinear states localized at the
sponds to well-localized out-of-phase solitons (see state 3) that remain ~ edge of the array in the non-topological regime at s > d exist only in
localized until b reaches the top allowed band. In turn, in-phaseedge ~ the semi-infinite gap and feature power thresholds for their for-
solitons with two in-phase left outermost peaks bifurcate directly =~ mation.
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Fig. 3. Nonlinear localization and soliton formation in non-topological arrays [with s = 44 ym (a) and s =33 ym (b)] and topological array [
s =18 pm ()] for out-of-phase excitation in two outermost left waveguides. The top row in each column shows the experimentally measured



fraction of energy S, concentrated in two left channels at the output versus input energy E of pulses. Each column compares the experimental
(red lines) and theoretical (blue lines) intensity cross-sections at y = 0 and 2D intensity distributions (insets) for increasing E' values.

One of the most representative features of our system is that out-
of-phase and in-phase edge solitons can coexist (in different or in the
same topological gap). They exhibit qualitatively different intensity
and phase structures allowing their selective excitation with properly
shaped inputs. For the experimental excitation of the out-of-phase sol-
itons, we use two out-of-phase beams coupled into two outermost
guides and providing the largest overlap with the target state [see Fig.
2(c), states 1 and 3]. These beams are derived from a Ti:Sapphire
femtosecond laser, delivering 175 fs pulsesat 1 kHz repetition rate.
To generate two independent beams, we used a Michelson interfer-
ometer with the possibility of a smooth phase change between
beams. To characterize the soliton excitation efficiency we measure
the fraction Sy = U, /U of the total power remaining in two excited
guides at the sample output for increasing pulse energies F (.S,
was defined using digitized output intensity distributions from 12.3
MP scientific CMOS camera Kiralux (Thorlabs) integrated inside two
cirdles of radius d /2 centered on two outermost guides, divided by
total power). Typical output intensity distributions for the non-topo-
logical array with s = 44 pm [Fig. 3(a)] show slow diffraction at low
E with most of the power distributing between three channels of the
first trimer, even at the largest available energy levels. S, does not
exceed 0.5-0.6 and the pattern considerably changes with £, so that
no soliton formation is observed. In a uniform array with s = 33 pm
[Fig. 3(b)] one observes strong diffraction into the array depth in lin-
ear regime and gradual contraction of light to two excited edge
guides with the increase of the pulse energy. It has to be stressed that
due to the pulsed nature of the excitation the tails of spatial distribu-
tions, where the contribution from linear pulse wings may be strong-
est, are somewhat more pronounced in the experiment than in spatial
theoretical simulations. In the uniform array, S, monotonically in-
creases from zero to ~ 0.7 illustrating the existence of a power
threshold for soliton formation. The picture changes qualitatively in
the topological regime. Thus, for s = 18 um [Fig. 3(c)] both topolog-
ical gaps become sulfficiently wide and bands substantially narrow
down [see Fig. 1(b)]. Our two-waveguide input nearly perfectly over-
laps with the strongly localized out-of-phase edge soliton, thus excit-
ing it even at the lowest power levels. A high excitation efficiency is
confirmed by large values of S, ~ 0.8 practically at all energies. In
this case, the second band is so narrow that when soliton crosses it,
we did not observe appreciable radiation into the bulk. Such radia-
tion is visible only for high power levels U ~1.60, when b ap-
proaches the top allowed band.

To excite in-phase edge solitons we rely on the fact that already at
moderate power levels this soliton becomes strongly asymmetric
with the largest fraction of its power concentrated in the edge guide
[Fig. 2(c), state 5]. Thus, we use single-spot excitation in this case. To
illustrate its efficiency for s =18 pm , in Fig. 4 we plot the fractions
of power concentrated in one, S;, and two, Sy, outermost left
guides. At lowest pulse energies E = 0.015 pJ nearly all power
concentrates in the edge guide, while at E ~ 0.235 pJ a considera-
ble fraction of it is transferred into the second guide, as confirmed by
numerical simulations. Note that this is consistent with excitation of
dynamically oscillating between two guides state since the power for
this input is not yet sufficient for the formation of stable asymmetric
edge soliton. An asymmetric in-phase edge soliton forms at
FE ~0.3 pJ and its shape remains practically unchanged over a
wide energy range, again as confirmed by numerics. Notice that for
this type of excitation and separation s, practically all light remains
in the two left outermost channels of the trimer array.
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Fig. 4. In-phase edge soliton formation in the topological array with
s =18 um for excitation of the single left outermost waveguide (left
column — experiment, right column — numerics). The top row shows
fractions of energy concentrated at the output in the left outermost
channel (S;) orin two left channels (S,) versusinputenergy E (in
experiment) or power U (in numerics). Intensity cross-sections at
y =0 and full 2D intensity distributions are shown for different in-
put energies.

In closing, we highlight that the very nature of topological trimer
waveguide arrays allows the direct exploration of different topologi-
cal edge states, as they allow the realization of structures with wide
topological gaps where solitons can be observed over a wide range
of input powers. Our observations open the way for the investigation
of nonlinear topological effects in 1D chains of dynamical or helical
guides, such as Thouless pumping via edge soliton states, realization
of power-controlled couplers based on topological waveguide ar-
rays, stable lasing in edge states from different topological gaps in
dissipative nonlinear systems, or the investigation of nonlinear phe-
nomena in 2D superlattice systems with richer topological properties
and spectra.
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