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A. Arbués-Sangüesa1, A. Martı́n1, J. Fernández2, C. Ballester1, G. Haro1

1Universitat Pompeu Fabra, 2 Futbol Club Barcelona

adria.arbues@upf.edu

Abstract

Given a monocular video of a soccer match, this pa-

per presents a computational model to estimate the most

feasible pass at any given time. The method leverages of-

fensive player’s orientation (plus their location) and op-

ponents’ spatial configuration to compute the feasibility of

pass events within players of the same team. Orientation

data is gathered from body pose estimations that are prop-

erly projected onto the 2D game field; moreover, a geomet-

rical solution is provided, through the definition of a feasi-

bility measure, to determine which players are better ori-

ented towards each other. Once analyzed more than 6000

pass events, results show that, by including orientation as

a feasibility measure, a robust computational model can

be built, reaching more than 0.7 Top-3 accuracy. Finally,

the combination of the orientation feasibility measure with

the recently introduced Expected Possession Value metric is

studied; promising results are obtained, thus showing that

existing models can be refined by using orientation as a key

feature. These models could help both coaches and analysts

to have a better understanding of the game and to improve

the players’ decision-making process.

1. Introduction

Pep Guardiola, current Manchester City’s soccer coach

and former Futbol Club Barcelona’s, said once that elder

people claim that in yesteryear soccer you had to control the

ball, then look and turn around, and finally, make the pass,

while in today’s faster version of soccer, players need first

to look (and orient correctly) before controlling and passing

the ball. Therefore, getting orientation metrics may help

coaches to boost the performance of a team by designing

optimal tactics according to players’ strengths and weak-

nesses. However, the concept of orientation is a complex

concept without an exact definition, and during a soccer

game, there are a total of/up to 22 players oriented in their

own way at any given time during 90 minutes. In order to

avoid the so-called concept of paralysis by analysis, in this

paper soccer events are filtered, hence including just pass

events, which are the ones in where orientation takes the

most important role according to Guardiola’s words. The

main contribution of this research is a computational model

that, for each pass event, outputs the feasibility of receiving

the ball for each potential candidate of the offensive team.

The proposed model combines three different types of feasi-

bility measures, defined on the grounding assumption that,

among all potential receivers, the passer will move the ball

to the (a) best oriented, (b) less defended and (c) closest

available player. Orientation is obtained through a Com-

puter Vision state-of-the art method [1], which outputs an

orientation value for each player by projecting the upper-

torso pose parts in a 2D field. On top of these data, a novel

feasibility measure is introduced to describe how good/bad

the orientation fit between a passer and a potential receiver

is. Given the location of all defenders, another feasibility

metric is defined to establish how tough it is for the passer

to move the ball to a particular player; this metric takes

into account the distance of all defenders with respect to the

passing line, which is defined by the relative angle in the 2D

field that joins the passer and the receiver. Finally, pairwise

distances among offensive players are used to construct a

third feasibility measure based on the separation between

players, hence assuming that players close to the ball have

higher chances of receiving it than farther ones.

Results, expressed with Top-1 and Top-3 accuracy, show

that the combination of all feasibility measures outperforms

any of their individual performances, and that the model

strongly benefits from the inclusion of the orientation fea-

sibility measure. Moreover, existing state-of-the-art (SoA)

models have been tested and compared, both before and af-

ter adding orientation as a feature to predict the outcome of

passes, obtaining promising results which show that models

can be confidently refined by adding these type of data.

The rest of the paper is organized as follows: in Section

2, the related research is analyzed, including the details of

the methods this research stems from; the proposed com-

putational model is described in Section 3, along with all

technical details. Feasibility results, discussion and possi-

ble combinations are studied in Section 4, and finally, con-

clusions are drawn in Section 5.
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2. Related work

Since the irruption of Moneyball [15], sports clubs

started conducting research about applied data science with

the main purpose of boosting team performance. More con-

cretely, the inclusion of tracking data proved to be crucial

for the design of team strategies, so computer vision be-

came (and still is) a hot topic in this research field. Lately,

many contributions have been made towards geometric and

semantic sports analysis [17, 2, 27, 9, 24, 23, 29, 6, 8, 7, 25,

20], mostly driven by direct applications that might be use-

ful for coaches in order to prepare optimal tactics. In partic-

ular, recent contributions in soccer such as [21, 7, 6, 10, 5]

managed to better explain this sport analytically through

tracking data, among others. However, authors claim that

there is still a lack of contextualization due to undefined

variables, such as player body orientation. To the best of

our knowledge, the only method that aims to extract player

body orientation over soccer video footage was published

by Arbués-Sangüesa et al. [1]. This method computes play-

ers’ orientation by combining: (a) the angle of the player

with respect to the ball, with (b) an estimation of the body

orientation as a 2D projection of the normal vector to the

upper-torso. In order to do so, this work first uses Open-

Pose [19, 28, 3] over the soccer video footage to detect

player’s body keypoints. Moreover, a Support Vector Ma-

chine model (based on color and geometrical feature vec-

tors) is applied in order to ensure that OpenPose parts are

not swapped. This method achieves a median absolute error

of 26 degrees/player, and three different types of orientation

visualization tools are introduced: OrientSonars, Reaction

and On-Field maps. In the presented article, this method

is used to obtain the estimation of the orientation of each

player on the 2D field.

Moreover, soccer analysts have been struggling for many

years to find a way to assign some value to the individ-

ual actions performed by each player, thus obtaining spe-

cific metrics for each move. Different passing probability

models and the quantification of concepts such as the pass

risk/reward are introduced in [12, 16, 18], and deep anal-

ysis of passing strategies are studied in [11, 26, 5]; more

concretely, [13] proposes a passing prediction model based

on an end-to-end CNN approach. Note that none of the pre-

vious models take orientation into account. Furthermore,

given that the main reward of soccer players is to score a

goal, and knowing that this type of action is a rare event

during the 90 minutes of the game, Fernandez et al. [10]

introduced a new metric called Expected Possession Value

(EPV), which already existed for basketball scenarios [4].

The main objective of this metric is to predict an expected

value of scoring/receiving a goal at a given time in any field

position, based on a spatial analysis of the whole offen-

sive and defensive setup at that moment; more concretely,

in pass events, having a passer P , an EPV map can be

computed for each field position x ∈ R
2, which estimates

the above-mentioned expected-value if P passes the ball to

x. The main EPV model consists of different likelihood

components, especially emphasizing a passing probability

model. In the present paper we will include a comparison

and an analysis illustrating that those previous proposals

can be improved by introducing player orientation informa-

tion in the pass event analysis.

3. Proposed Pass-Orientation Model

In this section, we propose a computational model to es-

timate the most plausible ball player pass at any given time

based on the prior information that a player is going to ex-

ecute a pass. To achieve this goal, we will attribute a fea-

sibility score obtained by defining appropriate estimations

that take into account player orientation and the configura-

tion of the offensive and defensive team in the 2D field at

that time. Intuitively, it stems from the fact that, in a pass

event, there are 10 potential candidates of the same team

who might receive the ball, each one of them holding a par-

ticular orientation with respect to the passer and at a certain

position in the field.

Let u(·, t) be a color video defined on Ω × {1, . . . , T},

where Ω ⊂ R
2 denotes the image frame domain and

{1, . . . , T} is the set of discrete times. Given a time t,

our method first considers the visible players in u(·, t) (i.e.,

visible players in the image frame at time t) together with

their body orientation. In this paper the detection of the

players is given but, alternatively, a detector can be used

such as, e.g., [22, 7, 14]. On the other hand, the orien-

tation of the players in the 2D field is obtained with the

method described in [1] (for the sake of completeness, de-

tails have been given in previous Section 2). From now on,

the position and orientation of the players will be consid-

ered over a 2D field template. To simplify the notation, the

dependence on t of the considered elements will be omit-

ted. Let P denote the 2D position in the template field of

the player with the ball at time t who is going to execute

the pass. Let {Ri, i = 1, . . . , I} and {Dk, k = 1, . . . ,K}
denote, respectively, the 2D position in the field of the vis-

ible team-mates of P , and the current defenders at time t,

with I ≤ 10,K ≤ 11. The former ones constitute the set

of visible receivers of the ball at time t +∆t, being ∆t the

duration of the pass.

LetHi denote the prior or hypothesis that player P is go-

ing to pass the ball to receiverRi. The main idea is to define

a feasibility measure which is grounded on three elements:

(a) the body orientation of every player together with (b) the

pressure of the defenders Dk, both on P and Ri, and (c) the

relative position of Ri with respect to P . Then, the most

feasible ball pass Ĥ is computationally selected as the one

maximizing

Ĥ = argmax
i
F (i), (1)



where F (i) is the feasibility of the event pass in Hi, which

can be defined as

F (i) = Fo(i)Fd(i)Fp(i), (2)

where Fo(i), Fd(i), and Fp(i) stand for the orientation, de-

fenders and proximity scores, respectively, defined later in

this section. Finally, it must be stated that all feasibility

measures are obtained right at the moment when the passer

P kicks the ball.

3.1. Orientation

One of the aspects that drastically affects the outcome

of a pass is the players’ body-orientation. If a player is

relatively close to the passer and without being defended,

he/she might still not be able to receive the ball properly if

he/she is facing away. For a given pass event, the orienta-

tion of each player is computed using [1] in a window of

±Q frames with respect to the exact pass moment t. The

median value of these 2Q + 1 observations is considered

as the player orientation in the event at time t. In practice,

a window of 5 frames is used in 25 fps videos. Once ob-

tained this estimation, an orientation-based pass feasibility

measure is proposed, which takes into account geometri-

cal quantities and outputs a score of how well a player is

oriented in order to receive the ball. In order to take only

the orientation information into account (proximity between

players will be considered in the 3rd feasibility measure, as

seen in Subsection 3.3) all potential receivers Ri are placed

at the same distance with respect to the passer whilst pre-

serving the original angle in the 2D field between the passer

P and each receiver Ri. Note that this angle is only related

to relative position and not to player body orientation. This

step is illustrated in Figure 1.

Once all potential receivers are placed at an equidistant

distance Z > 0 with respect to the passer, the body orien-

tation of all players, expressed as φ(P ) and φ(Ri) for the

passer and the receiver i respectively is considered (it corre-

sponds to red vectors in Figures 1 and 2). Intuitively, φ(P )
provides an insight of the passer field of view, and by setting

a range of ±ψo with respect to the passer body orientation,

an approximate spectrum of the passer field of view is ob-

tained. By setting ψo> 0 to a fixed value (i.e. 30 degrees),

an isosceles triangle with the two equal sides of length 2Z
is defined (see Figure 2). This triangle is denoted by TP
and imposes a limit to the region where the player can pass

the ball. The same procedure is repeated for φ(Ri), with

the triangle TRi
indicating the field of view of the receiver,

which shows in which directions he/she can get a pass from;

the length of the two equal sides of triangle TRi
is set to Z.

Figure 2 displays some possible scenarios. We claim, and

numerically verify in Section 4.1, that the weighted area of

the intersection of triangles TP and TRi
gives a measure of

how easy it can be for a player to receive a pass in the given

Figure 1. In order not to take pairwise distances into account while

computing orientation feasibility, all players are moved towards an

equidistant distance (unit circle).

configuration: no intersection indicates the inability to get

it, whilst partial or total intersection indicates a proper ori-

entation fit. Accordingly, the orientation-based feasibility is

defined as

Fo(Ri) =
1

c

∫

TP∩TRi

(

e−d(P,x) + e−d(Ri,x)
)

dx (3)

where c > 0 is a normalizing constant and d(a, b) denotes

the Euclidean distance between a and b normalized so that

the maximum distance in the field is 1.

Let us first discuss the weights in (3). The intrinsic ge-

ometry of the triangle has an obvious limitation when it

comes to shape intersection: considering the vertex that co-

incides with the passer position as the triangle beginning,

triangles contain a large portion of area in regions placed

far from their beginning. Hence, the values inside the com-

puted triangles are weighted according to their relative po-

sition with respect to the triangle beginning, fading out in

further positions. This effect can be seen as different color

opacity in the triangles displayed in Figure 2. Finally, the

reasoning for setting different triangle heights is that, if

both passer’ and receiver’ associated triangles had the same

height, players that are located behind a passer who is not

looking backwards would intersect notably, despite being a

non feasible pass (like in the top-centered example sketch

of Figure 2).

3.2. Defenders Position

Apart from considering the visible player s of the offen-

sive team, the behavior of the defenders, {Dk}k, is con-

tinuously changing the decision-making process. Even if a

player is near the passer and properly oriented, the prob-

ability of receiving the ball can be really low if he/she is

properly guarded; however, it is hard to define how well

a player is being defended at a time. Considering only

passing events, defenders close to the line that connects the

passer with the receiver (passing line) are the ones in a more



Figure 2. Individual scenarios of intersection given the relocated

players of Figure 1. As it can be seen, the top-right player is the

best oriented candidate to receive the ball.

advantageous position to transform a pass into a turnover.

Let us denote by β(P,Ri) the angle in the 2D template field

between the passer P and the receiverRi (see Figure 1), and

by β(P,Dk) the one between the passer P and defender

Dk. Using this angle, the proposed defenders-based feasi-

bility will take into account two feasibility scores: (a) the

feasibility Fd,P (Ri) of passing in the direction of β(P,Ri)
and (b) the feasibility Fd,R(Ri) of receiving the ball from

P . For the first case, the distance and the angle of all de-

fenders with respect to the passer is computed. Therefore,

the definition of the feasibility measure Fd,P (Ri) depends

on the Euclidean distances of the closest defenders with re-

spect to the passer:

Fd,P (Ri) =

exp

(

−
1

J

∑

k∈NP

w (β(P,Dk), β(P,Ri)) (1− d(P,Dk))

)

(4)

where NP denotes the set of the J nearest neighbor defend-

ers from P , according to the weighted distance dw, defined

as

dw(P,Dk) = w(β(P,Dk), β(P,Ri)) d(P,Dk) (5)

where d(P,Dk) denotes the normalized Euclidean distance

between P and Dk. Finally, the weights w are defined as

w(β(P,Dk), β(P,Ri)) =











0.25 if α < 22.5o

0.5 if 22.5o ≤ α < 45o

2 otherwise

(6)

where α = |β(P,Dk)−β(P,Ri)| (modulus 360o). In prac-

tice, we take J = 3.

Function w is used to model that defenders close to the

passing line (and thus with an associated small ω value) en-

tail a higher risk for that specific pass. This whole procedure

can be seen in the left side of Figure 3, where the three clos-

est defenders are highlighted for two hypothetical passes.

For Fd,R(Ri), the same procedure is repeated with re-

spect to the receiver; however, in order to have two indepen-

dent quantities, the J nearest neighbors considered when

computing Fd(P ) are discarded. Hence, NRi
is the set of

the J nearest neighbor defenders fromRi (according to dW )

belonging to N C
P , i.e., the complement of NP (that is, the

set of the visible defenders at time t that are not in NP ).

The feasibility to receive the ball from a given angle can be

expressed as:

Fd,R(Ri) =

exp



−
1

J

∑

k∈NRi

w (β(Ri, Dk), β(P,Ri)) (1− d(Ri, Dk))





(7)

The right part of Figure 3 shows a graphical example,

where the top closest weighted defenders are found with

respect to the receiver once discarded the closest defend-

ers found when computing Fd,P (Ri) (Figure 3). To con-

clude, the defenders feasibility is defined as Fd(Ri) =
Fd,P (Ri)Fd,R(Ri), and it is a measure of how likely the

event of passing to a particular player is, given the defen-

sive spatial configuration.

3.3. Pairwise Distances

Finally, the position in the 2D field affects also the pass-

ing options, as players placed closer to the passer have a

higher probability of receiving the ball. For this reason, the

feasibility of receiving the ball based on pairwise distances

or proximity can be defined as inversely proportional to the

distance by:

Fp(Ri) = exp (−d(P,Ri)) (8)

3.4. Combination

Once all three independent feasibility measures are com-

puted, Equation (2) is proposed to combine them. Notice

that a low feasibility value in one of the three features (ori-

entation, defenders or distance) indicates that the pass is

highly risky, no matter what the other values are.

4. Results

The dataset provided by F.C. Barcelona included 11

whole games of their team; not only video footage was pro-

vided, but also eventing data. By filtering pass events, 6038

pass events were gathered; these pass events are tagged as

well with a binary flag of their outcome, indicating if the

receiver was able to control the ball properly (from now on,

called successful pass) or not. In this Section, several ex-

periments will be detailed with one main goal: to study if



Figure 3. Computation of Fd,P (Ri) and Fd,R(Ri) for two different potential receivers. For both cases, (left) general setup, plus detection

of the 3 closest weighted defenders in the scenario of the (middle) left-sided and (right) right-sided player.

proper orientation of soccer players is correlated with suc-

cessful receptions, thus maximizing the probability of creat-

ing a potential goal opportunity. Hence, in order to examine

the effect of including the orientation, another baseline pass

model will be used for testing, which will only use the out-

put of Fp and Fd; more concretely, F will be compared with

Fpd, defined as:

Fpd(Ri) = Fp(Ri)Fd(Ri). (9)

For the whole dataset, in order to measure accuracy, a Top-

X metric is obtained by comparing the ground truth receiver

of the each pass event with the one indicated by the feasi-

bility scores among all candidates. This metric indicates the

number of times (expressed as a percentage) where the cur-

rent receiver of a given pass is included in the first X can-

didates according to the feasibility models. In this Section,

Top-1 and Top-3 accuracy metrics will be studied under dif-

ferent conditions. Moreover, histograms will be plotted for

each scenario. In all cases, the number of bins is 9, as it

corresponds to the number of potential receivers of a play;

note the goalkeeper has been excluded because it does not

appear in the frame domain in many scenarios. The height

of each particular binBn (with n ≤ 10) represents the num-

ber of times that the ground truth receiver has been consid-

ered the n best candidate according to the feasibility values

(for instance, B1 equals the number of times that the actual

receiver was considered as the best option). In these Fig-

ures, the histograms of successful (blue) and unsuccessful

(orange) passes are plotted together.

4.1. Orientation Relevance in Pass Feasibility

The importance of orientation in the computation of the

proposed feasibility F will be shown by comparing the re-

sults of F with the ones obtained with the baseline feasi-

bility Fpd, which does not include orientation. As it can be

seen in Table 1, in both cases the Top-1/3 metric shows that

the introduced features in the feasibility computation are di-

rectly correlated to the outcome of the play: the difference

in Top-1 accuracy between successful and non-successful

Figure 4. Histogram distribution comparison between Fdp and F ;

note that the later includes the computed orientation feasibility.

Top-1

(Succ.)

Top-1

(NSucc.)

Top-3

(Succ.)

Top-3

(NSucc.)

Fpd 0.299 0.149 0.650 0.411

F 0.367 0.175 0.702 0.487

Table 1. Top-1/3 accuracy for successful/non-successful passes ob-

tained before (Fpd) and after (F ) including orientation as a feasi-

bility measure.

passes is more than the double, and in Top-3 is more than

0.2. Besides, orientation makes a difference by comple-

menting distance and defenders. Apart from boosting the

difference between successful and non-successful passes by

a margin of 0.04/0.02, F outperforms Fpd Top-1 accuracy

by 0.07 and Top-3 by 0.05. Visually, this difference can be

spotted in the first bins of the histogram displayed in Fig. 4.

Decomposed Fo - Fd - Fp Performance.

In order to show how useful the individual estimations are,

the performance of the three individual feasibility measures

(Fp, Fd, and Fo) is studied together with their combina-

tion. These results are shown in Table 2 and Figure 5. For

the successful passes, the histogram of all three components

share more or less the same shape. However, the top bins of

Fp have higher values (0.34, 0.70 for Top-1 and Top-3 ac-

curacy respectively); as a result, the bottom bins have low

values, which means that it is unlikely to pass the ball to

players placed far away with respect to the ball. For the

unsuccessful passes, Fd and Fp components seem to be the



Figure 5. Histogram distribution among potential receivers eval-

uating individual feasibility components. From left-right, top-

bottom: (a) Fp, (b) Fd, (c) Fo and (d) Combination.

Top-1

(Succ.)

Top-1

(NSucc.)

Top-3

(Succ.)

Top-3

(NSucc.)

Fo 0.260 0.232 0.566 0.546

Fp 0.340 0.320 0.704 0.665

Fd 0.243 0.107 0.604 0.336

Table 2. Top-1/3 accuracy for successful/non-successful passes ob-

tained with all three individual feasibility estimations.

most and less relevant ones, respectively. This means that

passing to a player who is far away does not always imply

a turnover, but passing to a well-defended player does (0.14

difference in Top-1 accuracy). Generally, Fo resembles Fp,

but the histogram is more distributed (flat shape). Com-

bining all three methods (by computing their product) adds

some value due to contextualization. For instance, orienta-

tion by itself does not take pairwise distances into account:

this means that, in particular scenarios, players placed far

away in the field might be the best potential candidates

in terms of orientation, but as it has been proved, these

passes will hardly ever exist. Besides, our proposed feasi-

bility measure F (declared in (2)) combines all three com-

ponents and keeps the high Top-1 and Top-3 metrics of Fp

whilst preserving the difference between the successful/not-

successful passes of Fd. The bottom-right histogram shows

that this goal has been accomplished.

4.2. Players’ Field Position / Game Phase

Once analyzed the impact of orientation as a feasibility

measure, in this Subsection, its effect on different kind of

players and game phases is analyzed. By classifying them

according to the basic field positions (defenders, midfielders

and forwards), Figure 6 and Table 3 show the differences, in

terms of orientation-based feasibility, among them, which

state that midfielders are the ones under bigger Fo influ-

ence. When introducing orientation in the feasibility mea-

Figure 6. Histogram distribution, obtained with (left) Fdp and

(right) Fdpo, for different player positions. From top to bottom:

defenders, midfielders, and forwards.

Top-1

(Succ.)

Top-1

(NSucc.)

Top-3

(Succ.)

Top-3

(NSucc.)

Fpd (def.) 0.354 0.134 0.724 0.436

F (def.) 0.404 0.162 0.720 0.521

Fpd (mid.) 0.235 0.114 0.575 0.341

F (mid.) 0.341 0.196 0.673 0.456

Fpd (for.) 0.278 0.158 0.589 0.426

F (for.) 0.315 0.178 0.653 0.459

Table 3. Top-1/3 accuracy for successful/non-successful passes,

before/after including orientation, split by player position.

sure, both the Top-1 and Top-3 accuracy have a boost of

0.10 while preserving a similar difference in successful-

unsuccessful differences (first 3 bins of the midfielders his-

togram). Defenders are not heavily affected by orientation,

mostly because of the many security passes that they per-

form: in this type of pass (usually between defenders), both

players have no opponents surrounding them, and they can

freely pass to their closest team-mates without having to

be strictly oriented towards them. Forwards are also af-

fected by orientation, but they give and receive less passes;

besides, in their domain, passes do not only have a high

turnover risk, but also a high potential reward.

In a similar way, passes can be also classified according

to the location of the passer in relation to the defensive team

spatial configuration, as it is not the same a security pass of

a defender than another pass of the same defender but in the

offensive side of the court. In order to introduce this kind of

context, different phases of the offensive plays are evaluated

individually by clustering the 2D coordinates of the defen-

sive players in the field. Bearing in mind that in a soccer

lineup there are mainly 3 rows of horizontally distributed

players (both for offense and defense), three phases (dis-

played in Figure 7) can be defined: (a) build-up, when the

ball is located before the first row of defenders, (b) progres-

sion, after the first and before the third row of defenders,

and (c) finalization, after the last row of defenders. Results



Figure 7. Game phases depend on the position of the passer with

respect to the defense spatial configuration.

Figure 8. Histogram distribution, obtained with (left) Fdp and

(right) Fdpo, for different game phases. From top to bottom: build-

up, progression and finalization.

Top-1

(Succ.)

Top-1

(NSucc.)

TOP-3

(Succ.)

Top-3

(NSucc.)

Fpd (bu.) 0.282 0.143 0.610 0.382

F (bu.) 0.355 0.162 0.688 0.444

Fpd (pr.) 0.297 0.128 0.659 0.365

F (pr.) 0.372 0.162 0.712 0.480

Fpd (fi.) 0.326 0.185 0.687 0.490

F (fi.) 0.376 0.203 0.710 0.534

Table 4. Top-1/3 accuracy for successful/non-successful passes,

before/after including orientation, split by player game phase (bu

- build up, pr - progression, and fi - finalization).

are displayed in Figure 8 and Table 4. Once again, the effect

of orientation is vital in the half-court, with a notable differ-

ence between successful and non-successful passes in the

progression phase (around 0.2 difference in both Top-1 and

Top-3, and more than 0.7 Top-3 accuracy). As expected, the

build-up and finalization game phases are, respectively, the

ones with lower and higher risk, but even in these extreme

cases, the inclusion of Fo also boosts the pass accuracy met-

rics.

4.3. Combination with Expected Possession Value

As mentioned in Section 2, EPV is a recently introduced

indicator that tries to boost individual/team performance by

assigning value to individual actions, using (among others)

Figure 9. (a) Pass event and zoom in the passer region; (b,c-top)

output of the pass probability/EPV models respectively of [10],

typically Ψ equals 0.015, (b,c-bottom) output example made by

hand; the combination of the existing models with body orienta-

tion would refine the restricting the area of potential receivers.

a pass probability model. However, the EPV model of [10]

does not take the body orientation of players into account,

thus producing results that, despite being notably accurate,

can be refined. An example is shown in Figure 9; for the dis-

played pass event, the spatial output of the pass probability

model (left) and the EPV map (right) can be seen in the mid-

dle row. As observed in the original frame, the passer (white

circle) is the central mid-fielder, who is directly facing the

right-central defender; for this reason, the passer cannot see

in his field of view the left-central defender, hence lowering

the latter’s receiving chances. However, the output of the

pass probability model considers the left-central defender

as a notable candidate, and EPV does not penalize this pass

as a risky one. Nevertheless, by combining our orientation-

based feasibility measure Fo with the output of the (a) orig-

inal probability model or the (b) output of the EPV model,

maps could be adapted accordingly, thus enhancing poten-

tially good receivers in particular regions as it is displayed

in the last row of Figure 9.

The main challenge when combining both methods is the

dimension miss-alignment: both the pass probability and

EPV models extract an output map with a value for each

discretized field position (downscaled to 104 × 68), whilst

the proposed model defines an individual feasibility value

for each of the 10 potential receivers. In order to get a single

probability/EPV value for each player in the field, and being

ρ the output map (defined by the pixels of the downscaled



Figure 10. Geometrical approach to assign discretized pass proba-

bility/EPV field values to particular potential receivers.

field), a geometrical solution is provided; its approach is

based on the idea that an individual value can be obtained

by integrating the probability/EPV values on a meaningful

area that extends from the passer to the receiver. In par-

ticular, for a given receiver Ri, first, a disc Qi of radius

q > 0 is defined around his/her 2D field position, and then,

a tubular region Si of fixed width s > 0 is defined from P

(starting position) to Ri (thus, its length is proportional to

the distance between the passer and the potential receiver).

The final individual value for receiver Ri, denoted here as

V (Ri), can be obtained as:

V (Ri) =
1

Area (Qi ∪ Si)

∫

Qi∪Si

ρ(x)dx (10)

where Area (Qi ∪ Si) denotes the area of the regionQi∪Si.

In practice, q and s have been set to 5
Wρ

and 2
Wρ

, respec-

tively, being Wρ the width of the output map ρ (i.e. 104).

Note that Equation (10) can be used for both types of maps,

being ρ the output of either the pass probability model (from

now on VP ) or the EPV generic model (from now on VE).

Visually, this whole procedure can be seen in Fig. 10 for

four different receiver candidates. For comparison pur-

poses, the individual probabilities VP /expected values VE
are multiplied by our feasibility orientation estimation Fo,

(Subsection 3.1); in this way, the effect of orientation itself

can be tested for VPFo and VEFo. Note that the other com-

ponents Fp and Fd have not been used, as both pass proba-

bility and EPV models already include this type of informa-

tion in its core. Results are displayed in Table 5 and Fig. 11.

As it can be seen, better accuracy is obtained when taking

orientation into account in all scenarios, especially in the

top-1 accuracy case, obtaining a boost of almost 0.1 in the

output of the current pass probability model. Moreover, ori-

entation also improves the raw performance of VE (0.07 im-

provement in Top-1 accuracy), especially by solving miss-

leading cases in which players are located out of the field of

view of the passer. As a conclusion, it has been proved that

merging orientation in the SoA implementation of EPV [10]

could help getting a more accurate model, which can lead

to a better understanding of the decision-making process.

Figure 11. Histogram distribution of VP and VE , plus the corre-

sponding addition of Fo component.

Top-1

(Succ.)

Top-3

(Succ.)

VP 0.243 0.567

VP + Fo 0.332 0.612

VE 0.266 0.606

VE + Fo 0.337 0.637

Table 5. Top-1/3 Accuracy of the EPV models’ output, plus their

comparison when merging orientation feasibility.

5. Conclusions

In this paper, a novel computational model that estimates

the feasibility of passes in soccer games has been described.

The main contribution of the proposed method is the in-

clusion of orientation data, estimated directly from video

frames using pose-models, into a passing model, which has

proved to be a key feature in the decision-making process of

players and is strictly correlated to the play outcome. Orien-

tation feasibility is computed with a geometrical approach

among offensive players, and it is combined with two other

estimations, based on the defenders location with respect

to potential receivers, and pairwise distances. Moreover,

the combination of the model’s output with existing pass

probability/EPV models has been studied, obtaining confi-

dent results which indicate that SoA methods can be refined

by including orientation data. As future work, apart from

studying the viability of this type of model in other sports,

a passing feasibility discretization of the full-field will be

modelled, since players tend to pass not only to the position

where the receiver is, but also to large free spaces in front

of him/her. Finally, using orientation as a core feature, team

action recognition could be applied over the spatial offen-

sive configuration to optimize team tactical strategies.
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