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Energy-conserving numerical methods are widely employed within the broad area of 
convection-dominated systems. Semi-discrete conservation of energy is usually obtained 
by adopting the so-called skew-symmetric splitting of the non-linear convective term, 
defined as a suitable average of the divergence and advective forms. Although generally 
allowing global conservation of kinetic energy, it has the drawback of being roughly twice 
as expensive as standard divergence or advective forms alone. In this paper, a general 
theoretical framework has been developed to derive an efficient time-advancement 
strategy in the context of explicit Runge–Kutta schemes. The novel technique retains the 
conservation properties of skew-symmetric-based discretizations at a reduced computa-
tional cost. It is found that optimal energy conservation can be achieved by properly 
constructed Runge–Kutta methods in which only divergence and advective forms for the 
convective term are used. As a consequence, a considerable improvement in computational 
efficiency over existing practices is achieved. The overall procedure has proved to be able 
to produce new schemes with a specified order of accuracy on both solution and energy. 
The effectiveness of the method as well as the asymptotic behavior of the schemes is 
demonstrated by numerical simulation of Burgers’ equation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Over the past few decades, substantial research efforts have been devoted to the construction of numerical methods 
mimicking fundamental properties of the underlying mathematical/physical system. These so-called physics-compatible dis-
cretizations have gained increasing popularity over the years, especially in numerical simulations of turbulent flows [1]. In 
this last context, energy-preserving numerical methods are usually the preferred choice, as they provide a natural stabil-
ity bound over long-time integration. Moreover, being free of numerical diffusion, they ensure that the energy cascade is 
not artificially contaminated, in fully-resolved computations, and that the contribution of subgrid-scale motions is entirely 
modeled, in under-resolved cases [2].

Finite difference and spectral energy-conserving schemes found in literature are often built upon the skew-symmetric 
splitting of the convective term, which is defined as an average of the divergence and the advective forms [3,4]. When 
coupled to operators satisfying a discrete summation-by-parts rule (i.e., centered finite-difference and spectral schemes), 
skew-symmetric methods ensure semidiscrete global conservation of energy for incompressible flows in the inviscid limit, 
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and prevent spurious production or dissipation of kinetic energy by convection for compressible flows [5]. The skew-
symmetric splitting yielded relatively stable simulations for both incompressible [6] and compressible [7] turbulence, and 
proved to be also beneficial in reducing the amplitude of aliasing errors [8].

Despite its remarkable features, one relevant drawback of the skew-symmetric form is that its computation is roughly 
twice as expensive as standard divergence or advective forms alone [9]. Moreover, full energy conservation (i.e., in time 
as well as in space) requires the use of costly implicit time-stepping methods, otherwise a (typically dissipative) error 
is introduced regardless of the spatial scheme. Finally, fully-conservative methods are not always advantageous as they 
can display aliasing issues for under-resolved computations without numerical regularization [10]. A trade-off between 
cost-effectiveness and conservation properties is thus warranted.

The additional expense related to the use of the skew-symmetric form has been mentioned by many authors (e.g. [11]). 
Most of the attempts appeared so far to achieve cost-effective implementations are simply based on using the advective and 
divergence form at alternate time steps [9,12]. In this paper, a novel time-advancement strategy that mimics the conser-
vation properties of skew-symmetric-based schemes at a reduced computational cost is presented. It is found that optimal 
energy-conservation properties can be achieved by properly constructed Runge–Kutta schemes in which a different form 
(advective or divergence) for the convective term is adopted at each stage. This splitting strategy is able to reproduce the ef-
fects of the skew-symmetric form on energy conservation, up to a specific order of accuracy. The main achievement is that, 
since the method is based only on advective and divergence forms, it can be considerably faster than skew-symmetric-based 
techniques.

The analysis is conducted by considering the inviscid Burgers’ equation, which is a well-known prototype equation of 
considerable physical and mathematical interest. The reason for this choice stems from the fact that, while the general 
idea can be extended to more complete models, the detailed analysis on convergence and orders of accuracy requires some 
analytical developments which are, in the first instance, more neatly conducted on a model equation. In this respect, the 
Burgers’ equation can be considered as the simplest partial differential equation reproducing some of the peculiar features 
of nonlinear convective transport terms present in more realistic models (e.g., the Navier–Stokes equations). Hence, besides 
the intrinsic value of the application of the present theory to Burgers’ equation, the present analysis is intended also as a 
first step towards the application to more complex systems.

The paper is organized as follows. In Section 2, the discrete energy conservation properties of both spatial and temporal 
discretizations are reviewed. In Section 3, a first, simple approach to obtain a cost-effective energy-conserving method is 
analyzed. The theoretical development for energy-preserving Runge–Kutta schemes is presented in Section 4. Results are 
shown in Section 5. In Section 6, some indications are given for the extension of the main idea to the incompressible 
Navier–Stokes equations. Finally, Section 7 presents a summary.

2. Conservation properties of semi-discretized equations

2.1. Spatial discretization

Energy-conservation properties of spatial discretizations of nonlinear convective terms can be investigated by considering 
the inviscid Burgers’ equation, which can be formally written as

∂t u +N (u) = 0, (1)

where the non-linear convective term N (u) can be expressed in one of the equivalent forms u∂xu (advective), ∂xu2/2
(divergence) or (∂xu2 + u∂xu)/3 (skew-symmetric). When posed on an interval [a,b] with periodic boundary conditions, 
Eq. (1) has solutions for which all the moments are conserved:

d

dt

b∫
a

un

n
dx =

b∫
a

un−1 ∂u

∂t
dx = −

b∫
a

un ∂u

∂x
dx = −

u(b)∫
u(a)

un du = 0.

Specifically, the total momentum and the total energy of the solution (which are obtained in the cases n = 1 and n = 2, 
respectively) remain fixed to their initial values during time evolution.

Although in the continuous case the different forms of the convective term are mathematically equivalent, their spatially 
discretized counterparts can behave very differently, especially in terms of energy-preserving features and aliasing errors. 
This is due to the fact that discrete operators generally are not guaranteed to correctly reproduce the numerical equivalents 
of integration by parts and differentiation chain rule (cf. [4]). The beneficial conservation and aliasing properties of the 
skew-symmetric form have long been recognized by many authors [4,9,13], while there is much more debate about the 
other two formulations. The present analysis examines the energy-conserving behavior of the spatially discretized version 
of Eq. (1) when the different forms are employed.

To pursue the scope, the semi-discretized version of the Burgers’ equation is considered, which can be expressed by 
introducing the matrix C(u) as

du + C(u)u = 0. (2)

dt
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In this equation u is the vector of the nodal values of u, i.e. ui(t) = u(xi, t) and C(u) can assume one of the following forms, 
Cadv = UD, Cdiv = 1

2 DU or Cskw = (DU + UD)/3, where U = diag(u) and D is the derivative matrix associated with the spatial 
discretization. Hereinafter, the analysis will be conducted by considering uniform meshes and periodic boundary conditions. 
For spectral methods and centered finite difference schemes, both explicit and compact, the derivative matrix turns out to 
be skew-symmetric.

The conservation properties of the discretized equation (2) can be inferred by considering the induced equations for 
the evolution of the discrete counterpart of integral, i.e. the scalar product. By premultiplying Eq. (2) by 1T , where 1 is 
the column vector of all ones (discrete integrator on uniform mesh), it can be shown that, for skew-symmetric derivative 
matrices, the total momentum p is conserved, for both Cadv and Cdiv. From this result one easily concludes that every 
discretization employing a linear convex combination of the advective and divergence forms (e.g. the skew-symmetric form) 
conserves total momentum.

As regards global energy conservation, the relevant scalar product is uT u = ‖u‖2, for which the evolution equation reads:

d

dt
‖u‖2 = −2uT C(u)u. (3)

Since the time derivative of the energy of any solution of the semi-discretized equation (2) can be expressed as a quadratic 
form associated to the matrix C, a sufficient condition for the semi-discretized equation to be energy-conserving is that 
the matrix C is skew-symmetric for every u. Similar considerations have been recently employed for the construction of 
difference operators which are optimized by forcing the reproduction of crucial symmetry properties of the underlying 
differential operator, in spite of minimizing local truncation error [14,15].

From this analysis one immediately concludes that the semi-discretized equation (2) obtained by employing divergence 
or advective forms is not globally energy-conserving, since the associated matrices Cdiv and Cadv are in general not skew-
symmetric. The averaged skew-symmetric form, on the other hand, is naturally energy-conserving in cases in which the 
derivative matrix D is skew-symmetric. This property is also readily seen to be equivalent to the numerical analogue of 
integration by parts.

The analysis presented above can be completed by characterizing the different errors on energy conservation introduced 
by the divergence and advective forms. By evaluating Eq. (3) in the two cases one obtains:

dEadv

dt
= −uT UDu (4)

dEdiv

dt
= −1

2
uT DUu = 1

2
uT UDu (5)

where E = ‖u2‖/2. From Eqs. (4) and (5) it follows that:

dEdiv

dt
= −1

2

dEadv

dt
. (6)

Eq. (6) shows that the energy derivatives for the divergence and convective forms have opposite signs and that their relation 
is such that an average of the two forms with weights 2 and 1 (which defines the skew-symmetric form) furnishes exact 
conservation of energy:

dEskw

dt
=

2
dEadv

dt
+ dEdiv

dt
3

= 0. (7)

2.2. Time-advancement

In contrast to spatial discretizations, energy conservation properties of time-integration algorithms are much less dis-
cussed in literature. It is generally believed that the errors due to the spatial discretization are much larger than those 
coming from time-advancement, especially in numerical simulation of turbulent flows. In such cases, the time-step is usu-
ally dictated by accuracy and not by stability restrictions, leading to particularly small energy errors. Common choices 
for time-integration methods are the multi-step Adams–Bashforth or the multi-stage Runge–Kutta schemes. In the present 
paragraph, the attention will be focused on the latter.

The application of a generic Runge–Kutta scheme to the semi-discrete equation (2) reads:

un+1 = un − �t
s∑

i=1

biC(ui)ui (8)

ui = un − �t
s∑

j=1

aijC(u j)u j, (9)

where s is the number of stages. The coefficients aij and bi are often arranged into the so-called Butcher array [16]:
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where ci = ∑
j ai j . Since the semi-discretized Burgers’ equation constitutes a system of autonomous ordinary differential 

equations, the ci coefficients will not be displayed hereinafter. Nonetheless, these coefficients might still come into play 
whenever time-dependent source terms or boundary conditions are considered. Eqs. (8)–(9) can be manipulated to give an 
expression for the evolution of energy in a single time step of the Runge–Kutta procedure. By defining �E = En+1 − En , 
Eqs. (8)–(9) easily lead to the relation [17]:

�E

�t
= −

s∑
i=1

biu
T
i C (ui)ui

︸ ︷︷ ︸
I

− �t

2

s∑
i, j=1

(
biai j + b ja ji − bib j

)
uT

i CT (ui)C
(
u j

)
u j

︸ ︷︷ ︸
II

. (10)

The two terms in the right-hand side of Eq. (10) can be defined as

I) Spatial error: 
∑s

i=1 biuT
i C (ui)ui ;

II) Temporal error: 
�t

2

∑s
i, j=1

(
biai j + b ja ji − bib j

)
uT

i CT (ui) C 
(
u j

)
u j .

The first one is composed by a linear combination of s different terms, each having the usual structure of a quadratic 
form for the convection matrix C. Each term is identically zero if a skew-symmetric form is adopted for C, hence the name 
spatial error appears to be appropriate.

The second quantity causing a variation of energy has a more complex structure and does not vanish in general, even 
in the case of skew-symmetric operators C. It can be nullified only for suitably chosen Runge–Kutta integrators, and this 
justifies the term temporal for this part of the error. It is well known that for the temporal error to be zero one has to 
employ so-called symplectic methods, for which biai j + b ja ji − bib j = 0, a constraint which cannot be satisfied by explicit 
methods [17].

2.3. Computational cost

The above considerations can be summarized as follows. If one employs a spatial discretization in which the (com-
putationally more expensive) skew-symmetric form for the convective operator is adopted, the spatial error on energy 
conservation is absent. The temporal error due to Runge–Kutta integration is however still present and it can be shown 
to vanish, as �t is reduced, at least with the same order of accuracy of the Runge–Kutta scheme employed. If one wants 
to completely nullify the temporal error, implicit (symplectic) methods have to be employed, thus further increasing the 
computational cost per time step. The employment of a non-energy-conserving spatial discretization (e.g. in divergence or 
advective forms), on the other hand, produces a zeroth order error on energy conservation (due to the spatial part of the 
error) independently of the accuracy of the Runge–Kutta procedure employed. This situation cannot be alleviated by the 
time integration procedure, since the error is completely due to the spatial discretization and would still be present in an 
exact integration of the system of ODEs.

On the other hand, the number of floating point operations required to perform a complete time-advancement step 
depends heavily on the form adopted for the non-linear term. The practical implementation of the skew-symmetric form 
in a finite-difference code is easily shown to be roughly twice as expensive as standard divergence or advective forms 
alone. In the framework of incompressible Navier–Stokes equations, for instance, the splitting form requires 18 derivatives 
evaluations, while the advective or divergence forms take 9 derivatives [7]. In 1D, both numbers are reduced by a factor of 9. 
Although the other modules of the overall solution algorithm can take a certain part of the total CPU time (e.g., solution 
of pressure equation, computation of viscous terms, etc.), the net cost increase due to the use of the skew-symmetric 
splitting can be noteworthy, especially for explicit time-marching algorithms or in spectral codes. By using the cost metric 
presented in Appendix A, it can be shown that in order to advance in time the convective term with a standard RK4 
scheme and a second-order central difference scheme, 52 operations per node are required for the skew-symmetric form, 
while 28 operations are needed for divergence or advective forms. The difference increases as the spatial order of accuracy is 
increased. The objective of the present work is to investigate time-advancing strategies that are able to retain the beneficial 
properties of the skew-symmetric form at a reduced computational cost.
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3. Alternating time advancing strategy

In Section 2, the favorable energy-conservation properties of the skew-symmetric form have been commented. Perhaps, 
the most useful information stemming from this analysis lies in the observation that the skew-symmetric splitting averages 
the energy errors introduced by the divergence and advective forms, so that they completely cancel out (cf. Eq. (7)). This 
interpretation naturally suggests that it is reasonable to expect a significant error reduction by an algorithm in which 
the advective and divergence forms are used at alternate time steps. Clearly, for infinitely small time-steps, the beneficial 
properties of the skew-symmetric form would be exactly recovered.

Similar approaches have been investigated by some authors in the past, but the technique does not seem to be con-
solidated and well understood. In the framework of nonlinear convective terms approximations, the alternating approach 
was employed, for instance, by Kerr [12] for a scalar equation, and later analyzed numerically by Zang [9] for the incom-
pressible Navier–Stokes equations, showing well-behaved performances. In both cases, the alternating strategy was applied 
without any theoretical analysis of accuracy, and only a qualitative comparison among the various methods was given. In 
the following, as a prelude to the new method, an analysis of the energy conservation properties of alternating schemes 
with reference to Burgers’ equation is presented.

By defining the scalar function F (u(t)) = −uT UDu, Eqs. (4) and (5) can be rewritten as:

dEadv

dt
= F (11)

dEdiv

dt
= −1

2
F . (12)

Eqs. (11) and (12) can be used to evaluate the energy produced over a small time step �t by exact time integration of 
Eq. (3). By employing a Taylor series expansion for E , one has in general:

E (t + �t) − E (t) = αF (u(t))�t + α
dF

dt

∣∣∣∣
t

�t2

2
+ α

d2 F

dt2

∣∣∣∣
t

�t3

6
+ O (�t4) (13)

with α = 1 in the advective case and α = −1/2 in the divergence case.
Eq. (13) represents the spatial energy conservation error occurring over a single time-step. The spatial error can be either 

entirely canceled by employing a skew-symmetric form or minimized — up to a certain order of accuracy — by alternating a 
suitable sequence of convective and divergence forms at each time step.

The variation in the energy E produced over a certain number of time increments can be calculated (as a Taylor series 
expansion) by simply summing the increments obtained at each time step. If an alternating procedure is employed, the 
correct increments relative to the form employed at each time step have to be considered. For an arbitrary number n of 
alternating steps, the energy variation is given by the following expression:

�E = En − E0 =
n−1∑
i=0

αi F0�t +
n−1∑
i=0

(2i + 1)αi
dF

dt

∣∣∣∣
0

�t2

2
+

n−1∑
i=0

(3i(i + 1) + 1)αi
d2 F

dt2

∣∣∣∣
0

�t3

6
+ O (�t4), (14)

where the coefficient α has been indexed with the suffix i to highlight that a different form for the convective term is 
employed at each time step. Since the procedure has to be consistent with the skew-symmetric form as �t tends to zero, 
one should consider an alternating protocol in which at least three integration steps are included for the minimal sequence 
which is repeated during time integration. For such a sequence, the first order condition α0 + α1 + α2 = 0 imposes the 
consistency condition that among the three integration time steps, two upgrades have to be performed with the divergence 
form and one with the advective form. By employing the notation that the letters A and D are used to denote advective 
and divergence forms respectively, any one of the sequences DDA, ADD and DAD produces an integration which is of first 
order with respect to energy conservation. The second order condition, when imposed on sequences already satisfying the 
first order condition, is equivalent to the relation α2 + 2α3 = 0 which is satisfied only by the values α1 = 1 and α2 = −1/2, 
corresponding to the sequence DAD. This last sequence is the only possible minimal sequence of three time steps producing 
a second order scheme for the conservation of energy, provided that the time integration procedure in each time step 
is performed at least with second order accuracy. No third-order accuracy can be achieved with a three-step alternating 
protocol. In order to reach higher accuracy, it can be shown that one has to consider sequences involving at least 18 
alternating forms.

In Fig. 1, numerical results are presented concerning the time-evolution of energy for various sequences. Results are 
obtained by integrating the inviscid Burgers’ equation with periodic boundary conditions on the domain [0, 1], discretized 
by N = 100 equidistant mesh points, with initial conditions u0(x) = sin(πx) and �t = 10−4. A fourth-order explicit central 
scheme is used for spatial integration, while for time-integration an implicit mid-point method is adopted. The latter belongs 
to the class of so-called symplectic integrators, hence it does not introduce any error on energy conservation [17]. Its use 
allows to closely resemble the theoretical analysis of Eqs. (13)–(14), which is based on exact time-integration of energy. 
Fig. 1 shows that the energy associated to the divergence and advective forms soon bifurcates from the initial state. A similar 
behavior is followed by their single alternance (AD), which does not satisfy the consistency relation; it is interesting to note, 
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Fig. 1. Time-evolution of normalized energy for Burgers’ equation integrated by employing alternating advective and divergence forms arranged in various 
sequences.

Fig. 2. Convergence of the relative error on energy conservation for different sequences of alternating divergence and advective forms.

however, that its error value lies in between the A and D curves. This is due to the fact that the errors introduced by 
advective and divergence forms have opposite signs, although they are not equal in magnitude. As a consequence, at each 
time step the alternation globally produces an error whose magnitude lies between that of the errors given by divergence 
and advective forms alone.

On the contrary, the second-order DAD sequence oscillates around the initial conditions, assuming a very accurate value 
at the end of the sequence. Note that the two first order sequences DDA and ADD and the second order sequence DAD are 
obtained one by the other by cyclically permuting the forms. This implies that the curve labeled with DAD actually displays 
the errors produced by all these three sequences. The empty circles on the curve denote the error measured at the end of 
the sequence DAD, while dots denote the error measured at the end of the other two sequences. Fig. 2 shows the time-step 
convergence of the relative error on energy conservation at t f = tb/2, where tb is the break-time at which characteristic 
lines intersect. The plot fully confirms the analysis by displaying the correct scalings predicted by theory.

In Fig. 3 the time evolution of the normalized energy is reported in the case in which an 18-forms, third order, sequence 
is adopted. The figure reports a time history in which both the positive and negative errors on energy erratically accumulate
during the evolution around a zero mean value. This plot, however, displays also a regular pattern in which the energy 
approaches zero (to plotting accuracy) after each group of 18 time steps (empty circles on the curve). This behavior is 
a confirmation that the chosen sequence of forms computes an energy, at the end of the cycle, which is a higher order 
accurate function of the exact (constant) energy of the system. An accurate inspection of the plot shows also that there is 
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Fig. 3. Time evolution of the normalized energy for the 18-forms, third order sequence ADDDADDDADDADADADD (solid line). Dashed line is the second 
order sequence DAD, which is plotted for comparison.

another regular pattern on the main curve (highlighted by black dots) for which the error goes near zero at the end of each 
9 time steps computation. The explanation of this regular behavior consists in the fact that the subsequence constituted 
by the first 9 forms actually turns out to be a second order sequence of forms for energy conservation. An analogous plot 
relative to a longer time integration would show that, as time goes on, the black dots deviate from the constant mean value 
more rapidly than the empty circles.

4. Alternating Runge–Kutta schemes

The alternating procedure analyzed in the previous section, while being highly attractive for its simplicity and easiness 
of implementation, has some drawbacks, mainly associated to the oscillatory character of the energy evolution. The theo-
retically predicted scaling of the energy conservation, as the time increments are reduced, is obtained only when measured 
at the end of each sequence of alternating forms, when the different errors of advective and divergence discretizations are 
globally compensated. At intermediate stages, the energy of the solution usually deviates from its mean value in an oscil-
latory fashion, with an amplitude which either diverges or reduces as a first order function of the time increments. This 
oscillatory character of the energy can possibly constitute a source of amplification of errors when the solution is coupled 
to other nonlinear convective transport phenomenologies, as in the case of the Navier–Stokes equations. Another rigidity of 
the procedure is that the theoretical development presented in the previous section is based on the hypothesis that all the 
time increments within a given sequence are equal. This can constitute a difficulty when a variable time step algorithm is 
employed, since the time increments adjustment can be performed only at the end of each sequence, if one wants to save 
the maximum order of accuracy for the conservation of energy.

A more elegant and compact method can be developed by coupling the alternating procedure to a multi-stage, one-step 
time integration method. The time integration strategy presented in this section employs a Runge–Kutta scheme and aims 
to reproduce the skew-symmetric form behavior by adopting a suitable sequence of advective and divergence forms within 
the stages of a Runge–Kutta scheme, in order to globally compensate the errors relative to a single time step.

The method developed overcomes many of the disadvantages of the “external” alternating procedure, since the solution is 
computed at the end of the various stages of the Runge–Kutta upgrade, when the alternating sequence has been completed. 
The energy evolution is free of any oscillating behavior and the time step adjustment can be made exactly in the same 
manner as it is usually made for a standard Runge–Kutta scheme. Moreover, the highly underdetermined structure of the 
system of equations for the coefficients of the Runge–Kutta scheme usually allows one to have more degrees of freedom, 
which can be employed for the achievement of different targets.

4.1. R–K schemes

The proposed procedure is based on a modified Runge–Kutta time advancement, which can be expressed, for Burgers’
equation, as:

un+1 = un − �t
s∑

biCi(ui)ui (15)

i=1
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ui = un − �t
s∑

j=1

aijC j(u j)u j . (16)

Eqs. (15)–(16) differ from the standard form of Eqs. (8)–(9) for the fact that the discretized convective operator C is indexed 
by a suffix, meaning that a different form (i.e. divergence or advective) can be used for its evaluation at each stage. For 
instance, in the case of a three-stage Runge–Kutta scheme, the convective forms C1, C2, C3 employed within the stages of 
the time advancement procedure can be arbitrarily chosen among the possible sequences of advective and divergence forms. 
The coefficients aij and bi are usually set in such a way that the maximum formal order of accuracy is obtained for the 
convergence of the solution. This procedure is based on the matching of the different terms arising in the Taylor expansions 
of both the right hand side of Eqs. (15)–(16) and of the difference un+1 − un , evaluated exactly by taking into account 
the right hand side of the original system of ODEs. The result is a (usually strongly underdetermined) system of nonlinear 
equations, whose solutions are expressed as families of schemes with equal order of accuracy parametrized by one or more 
constants. In the present approach this procedure is complemented by the additional requirement that a formal order of 
accuracy is achieved also for the conservation of energy. The optimization is performed on both the coefficient values and 
on the possible sequences of the Ci ’s and is based on the expression of the energy produced in a single time step by the 
Runge–Kutta procedure as a Taylor series.

4.2. Energy evolution

The energy error occurring over a single time-step for the modified Runge–Kutta procedure can be expressed as:

�E

�t
= −

s∑
i=1

biu
T
i Ci (ui)ui − �t

2

s∑
i, j=1

(
biai j + b ja ji − bib j

)
uT

i CT
i (ui)C j

(
u j

)
u j . (17)

The idea of adopting different discretized forms inside the stages of a Runge–Kutta procedure presents new possibilities for 
obtaining cost-effective energy-preserving algorithms. In general, the alternating procedure associated to a given sequence 
of forms produces separately both spatial and temporal errors. In this case, however, there is the possibility of conserving 
energy up to a certain order of accuracy if the mixed (spatial and temporal) errors are weighted is such a way that they 
globally compensate, at least asymptotically as �t tends towards zero, with a certain accuracy. The advantage presented by 
the alternating procedure is of course the low cost evaluation of the convective term at each stage.

The starting point of the analysis is the evaluation of the energy error as a Taylor series expansion in the time step 
increment �t . This expression can be obtained by recursively substituting Eq. (16) into the right hand side of Eq. (16) itself 
and in Eq. (17). The key ingredient of the procedure will be, as shown below, the linearity of the Ci(ui) as functions of ui . 
By expressing the terms u j at the right hand side of Eq. (16) through Eq. (16) itself and by employing the exact relation:

C j
(
u j

) = C j
(
un) − �t

∑
k

a jkC j (Ck (uk)uk) (18)

one easily obtains:

ui = u − �t

⎛
⎝∑

j

ai jC ju

⎞
⎠ + �t2

⎡
⎣∑

j,k

ai ja jk
(
C jCk + C jk

)
u

⎤
⎦ + O

(
�t3

)
(19)

where the summations are extended to the number of stages s and the following conventions have been adopted: u = un; 
C j = C j

(
un

)
; C jk = C j

(
Ck

(
un

)
un

)
. In these last two relations, and in the following ones involving the matrices Ci , paren-

theses denote functional dependence. In all the other cases in which the functional dependence of the matrices C j is not 
specified, it is assumed that the quantities are evaluated at un .

Eq. (19) can be employed in order to express Ci (ui) as a Taylor series in �t through Eq. (18):

Ci (ui) = Ci − �t
∑

j

ai jCi j + �t2
∑
i, j

ai ja jk
(
Ci, jk + Ci jk

) + O
(
�t3

)
(20)

where the further definitions have been introduced: Ci, jk = Ci
(
C jCku

)
and Ci jk = Ci

(
C jku

)
.

By substituting Eqs. (19)–(20) into Eq. (17) one obtains the expression for the energy variation �E as a Taylor series. 
The spatial part of the error is:

−
∑

i

biu
T
i Ci (ui)ui = −uT

(∑
i

biCi

)
u + �t uT

⎡
⎣∑

i, j

biai j

(
CiC j + Ci j + CT

j Ci

)⎤⎦u −

− �t2uT
∑
i, j,k

biai j

[
a jk

(
CiC jCk + CiC jk + Ci, jk + Ci jk + CT

k CT
j Ci + CT

jkCi

)
+

+ aik

(
Ci jCk + CT

j CiCk + CT
j Cik

)]
u + O (�t3).
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The temporal part turns out to be:

−�t

2

∑
i j

gi ju
T
i CT

i (ui)C j
(
u j

)
u j = −�t

2
uT

⎡
⎣∑

i, j

gi jC
T
i C j

⎤
⎦u + �t2

2
uT

⎡
⎣∑

i, j,k

gi ja jkFi
jk + gijaikF j

ik

⎤
⎦u + O

(
�t3

)

where gij = biai j + b ja ji − bib j and Fi
jk = CT

i C jk + CT
i C jCk . The sum of the two contributions can be rearranged to give:

�E

�t
= −uT

[∑
i

biCi

]
u + �t

2
uT

⎡
⎣∑

i j

2biai j
(
CiC j + Ci j

) + gijC
T
i C j

⎤
⎦u −

− �t2

2
uT

⎧⎨
⎩∑

i jk

2biai j
[
a jk

(
CiC jCk + CiC jk + Ci, jk + Ci jk

) + aik
(
Ci jCk

)] +

+ g′
i j

(
Fi

jka jk + F j
ikaik

)}
u + O

(
�t3

)
(21)

where g′
i j = biai j − b ja ji + bib j .

Eq. (21) constitutes the basic relation on which the optimized Runge–Kutta schemes can be constructed. The procedure 
is based on the principle that suitable choices for the coefficients bi and aij can nullify the successive terms in the series 
expansion of �E , thus identifying “optimal” schemes for what concerns conservation of energy.

From a practical point of view, the determination of the coefficients is obtained by explicitly imposing the conditions 
that the various terms at the right hand side of Eq. (21) vanish, independently of u. These constraints conduct to the 
determination of algebraic nonlinear equations involving the coefficients bi and aij which can be coupled to classical order 
conditions to give a global system for the determination of new Runge–Kutta schemes. The number and the structure of the 
nonlinear equations related to energy conservation depend on several parameters, such as the number of stages, the chosen 
sequence of Ci ’s and the details of the spatial discretization. In general, each of the operators involving the product or the 
composition of two or more matrices Ci (i.e. each of the terms CiC j , Ci j , CT

i C j , . . . ) has to be considered as an independent 
function of the state vector u. In these general cases the number of constraint to be imposed to the coefficients dramatically 
grows with both the number of stages and the order of accuracy, since the number of independent groups to be nullified 
grows linearly with the number of stages and more than linearly with the order of accuracy. In such situations the global 
system of equations quickly becomes overdetermined, especially in the more appealing case of explicit schemes. The key 
observation that strongly simplifies the structure of the needed constraints is that when the “physically compatible” relation 
DT = −D for the discrete derivative operator can be assumed, the advective and divergence discrete forms are related by (
Cadv

)T = −2Cdiv and the various products or compositions of matrices Ci are no more a set of independent functions of u. 
In fact, the various terms at the right hand side of Eq. (21) can be grouped as a linear combination of fewer independent 
terms. For instance, each of the 3s terms CiC j , Ci(C ju) and CT

i C j can be recast into one of the three basic forms CadvCadv, 
CadvCdiv and CdivCadv. A similar procedure can be applied to the constant term and to the higher order contributions.

In what follows, the analysis will be limited to Runge–Kutta schemes with up to four stages and to the requirement of 
a maximum of second-order on energy conservation. The argument will not be treated exhaustively since the manipulation 
of third-order terms on energy conservation and of higher-order Runge–Kutta schemes would require involved calculations 
which add little to the exposition of the main idea behind the technique, which is the principal motivation of this paper.

5. Results

5.1. Two and three-stage R–K methods

The analysis is firstly conducted for the simple case of two-stage explicit Runge–Kutta methods. The free parameters for 
these schemes are b1, b2 and a12 and the maximum order conditions which can be satisfied are that of a second order 
scheme: b1 + b2 = 1 and b2a21 = 1/2. By imposing these two constraints one obtains the well known one-parameter family 
b1 = 1 − θ , b2 = θ and a12 = 1/2θ , with θ �= 0. The free parameter θ can be fixed by requiring that also the first order 
condition on energy conservation is satisfied by b1 and b2, for each given alternation of forms. In the case of two stages 
schemes this condition reduces to: uT (b1C1 + b2C2)u = 0. For a standard Runge–Kutta method in which C1 = C2, this term 
cannot vanish, except for the case in which the skew-symmetric form is employed, since the condition to be satisfied by 
b1 and b2 would be b1 + b2 = 0, which is incompatible with the first order condition b1 + b2 = 1. In the case in which 
an alternation of forms is employed, one has different conditions on the bi ’s, one for each alternation sequence. If the first 
stage is computed by adopting the advective form and the second the divergence form (sequence AD) one has the condition

uT (b1A+ b2D)u = 0, (22)

where the more compact notations A = Cadv = UD and D = Cdiv = DU/2 have been employed. This equation can be simpli-
fied by noting that in the case in which the derivative operator is a skew-symmetric matrix, the relation AT = −2D is easily 
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Table 1
2 stages optimized Runge–Kutta methods.

AD-2S1E(2) DA-2S1E(2)

0
3
4 0
1
3

2
3

0
3
2 0
2
3

1
3

derived, which in turn implies: uT
Au = −2uT

Du. It will be useful in what follows to express this circumstance by intro-
ducing an equivalence relation between the various operators. In this context, two matrix operators (which are functions of 
the vector u) will be “equivalent” if their quadratic forms associated to the vector u are equal for each value of u. Related 
to this definition, the following notation will be used A (u) ∼ B (u) if uT A (u) u = uT B (u) u for all u. With this notation, 
one has A ∼ −2D and the operator D can be factored out in Eq. (22), which is hence satisfied, independently of u, if and 
only if b2 = 2b1. This last condition fixes the parameters of the Runge–Kutta scheme to the values b1 = 1/3, b2 = 2/3 and 
a12 = 3/4, which has second order accuracy on the convergence of the solution and first order accuracy on the conser-
vation of energy. In what follows, the following synthetic notation will be employed. Each method is accompanied by an 
acronym in which the alternating sequence is indicated together with the theoretical order of accuracy on solution (S) and 
on energy-conservation (E). The number of derivatives computations required per time-step is also reported in bracket. This 
quantity is used here as a simple and intuitive cost metric in order to compare the performances of the various schemes. 
In this notation the derived scheme is referred to as AD-2S1E(2). The dual scheme DA-2S1E(2) can be easily obtained with 
the same procedure, which leads to b1 = 2b2. The coefficients of the schemes are summarized in Table 1.

Optimized three stage methods can be derived by applying a similar procedure. The number of free parameters for the 
case of explicit three stages schemes rises to six (s(s + 1)/2), while the number of conditions to be satisfied for the case 
of an order 3 scheme is four. Hence, the family of classical third-order, three-stage schemes is at best parametrized by two 
constants, although two one-parameter families of third order schemes also exist (cf. Butcher [16]). The degrees of freedom 
constituted by the free parameters can be employed, for example, to guarantee a first order accuracy on conservation of 
energy in the cases in which alternating divergence and advective forms are used. The number of possible sequences in 
which the same form is not repeated three times is six. For each of these sequences, a relation between the constants bi
has to be satisfied for first order conservation of energy. This additional constraint can then be imposed to the coefficients 
satisfying third order relations to obtain 3S1E(3) schemes, as it has been done for two stage schemes. This procedure, 
however, although giving a complete picture of all the possible solutions, would be a little cumbersome, since each of 
the six admissible sequences should be separately considered for each of the three families of third order schemes. Here, 
a treatment is presented in which, by renouncing to the complete analysis of all the possible solutions, the full system 
of order relations (on the solution and on the energy) is directly solved in the general case, without discussing the many 
exceptional cases. The treatment can be developed at once for all the possible sequences by observing that in all cases the 
equation related to first order conservation of energy: uT (b1C1 + b2C2 + b3C3)u = 0, leads to the relation

α1b1 + α2b2 + α3b3 = 0 (23)

where αi = 1 or αi = −1/2 in the cases Ci = A or Ci =D, respectively. For the determination of 3S1E(3) families of schemes, 
Eq. (23) has to be coupled to the classical relations for a third order Runge–Kutta scheme:∑

i

bi = 1 (24)

∑
i

bi

∑
j

ai j = 1

2
(25)

∑
i

bi

⎛
⎝∑

j

ai j

⎞
⎠2

= 1

3
(26)

∑
i

bi

∑
j

ai j

∑
k

a jk = 1

6
. (27)

The general solution for this system can be obtained in two steps: first, derive b1, b2 and b3 from the linear equations (24)
and (23) as a one-parameter family of coefficients. Second, solve for a21, a31 and a32 from the nonlinear system (25)–(27)
by considering b2 and b3 as parameters, yielding

a21 = 1 − 2b3c±
2b2

a32 = 1

6b3a21

a31 = c± − a32 (28)
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Fig. 4. Coefficients a21, a31 and a32 as functions of the parameter b3 for the two families associated with the 3S1E schemes for the sequence ADA.

where

c± = 1

2 (b2 + b3)

⎛
⎝1 ±

√
1 − (b2 + b3) (3 − 4b2)

2b3

⎞
⎠ (29)

which is real for (b2 +b3)(3 −4b2)/2b3 ≤ 1. Eqs. (28)–(29) furnish two families of one-parameter schemes for each sequence 
of alternating forms inside the three stages, provided that b1, b2 and a12 �= 0 and that the coefficients b2 and b3 lie in the 
range of real values for c± .

As an example, for the sequence C1 = A, C2 = D, C3 = A, (i.e. for the sequence ADA), first order conservation of energy 
leads to the relation: b1 − b2/2 + b3 = 0 which, coupled to Eq. (24) has the solution b1 = 1/3 − θ , b2 = 2/3 and b3 = θ . 
In Fig. 4 the coefficients a21, a31 and a32 of the two families associated with this sequence are reported. The dots on the 
curves relative to the first family of coefficients are the values of the coefficients of the classical Kutta scheme (b1 = b3 = 1/6, 
b2 = 2/3, a21 = 1/2, a31 = −1, a32 = 2), which is a member of this class of schemes and hence has a first order accuracy 
on energy conservation when employed in conjunction with the ADA alternation of forms. In Fig. 4, the range of values 
of b3 leading to b1 < 0 are shaded, as in Runge–Kutta methods the coefficients bi are normally taken positive for stability 
reasons [16].

The treatment of the second order term in the energy expression needs some additional care. Eq. (21) shows that it is 
composed by the sum of several terms, each being proportional to a quadratic form involving one of the operators Ci C j , 
CT

i C j , Ci j . The first two operators, constituted by the product of convective matrices, are equivalent in all cases to one of 
the operators AA, DD, AD and DA multiplied by a scalar. Actually, since uT

AAu = 4uT
DDu, one has AA ∼ 4DD and the 

number of independent forms reduces to three. Hence, each of the products between two convective matrices Ci C j or CT
i C j

is equivalent to one of the basic operators AA, AD and DA, multiplied by a scalar. It can be easily shown, although not 
completely evident at first, that also the composite terms Ci j are always equivalent to one of the three forms AA, AD and 
DA. This fact can be shown by observing that for every vector u and for every matrix B the following relation holds:

diag (Bu) u = UBu

where, as usual, U = diag (u). This relation can be employed in order to express the forms Ci j into one of the basic forms 
AA, AD and DA. As an example, for the terms D (Au) and A (Au) (parentheses denoting functional dependence) one has:

uT
D (Au)u = uT 1

2
Ddiag (Au)u = uT 1

2
DUAu = uT

DAu

uT
A (Au)u = uT diag (Au)Du = −uT Ddiag (Au)u = −uT DUAu = −2uT

DAu.

By acting in a similar way on the other possible terms Ci j one finally obtains the following equivalences:

D (Au) ∼ DA

A (Au) ∼ −2DA

A (Du) ∼ −1

2
AA

D (Du) ∼ DD ∼ 1
AA.
4
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Fig. 5. Convergence of the relative error on energy conservation as a function of the time step �t for different Runge–Kutta schemes with 2 and 3 stages.

These relations can be employed in the evaluation of the second order term in Eq. (21), and permit to group the various 
terms into three independent ones, associated to the forms AA, AD and DA, independentely of the number of stages. 
Hence, the number of equations associated to the fulfillment of second order accuracy on energy conservation is three. The 
form of these equations depends, of course, on the particular alternation sequence. These three relations can be coupled 
to first and second order equations on the accuracy of the solution (two equations) and to the first order equation on the 
accuracy of energy conservation. The result is a system of six nonlinear equations in the six unknowns b1, b2, b3, a21, a31
and a32 for the determination of explicit three stage 2S2E(3) Runge–Kutta schemes. Due to nonlinearity, it is difficult to 
ascertain if this system has in general a solution and, in that case, if it is unique. Among all the possible sequences of forms 
for the case of explicit three stage methods, it is found that only in the case of the two sequences ADA and DAD a solution 
can be found. In all the other cases the system has no solution. Moreover, the solution, when available, is not unique.

The sequence ADA produces the system:

b1 + b2 + b3 = 1 1st order on the solution

b2a21 + b3 (a31 + a32) = 1

2
2nd order on the solution

b1 − b2

2
+ b3 = 0 1st order on the energy

b2
2 − b3a32 = 0

2 − b3 (a32 − 2a31) + b2b3 + b1b2 = 0

b2
1 − 2b2a21 + 2b3a31 + 2b1b3 + b2

3 = 0

⎫⎪⎬
⎪⎭ 2nd order on the energy

whose solution is easily found by successive substitution and can be expressed as the one-parameter family of schemes 
(ADA-2S2E(3)):

b1 = 1

3
− θ, b2 = 2

3
, b3 = θ a21 = 1

3
, a31 = 1

6θ
, a32 = 1

9θ
(30)

which is valid for b3 �= 0. The analogous family of DAD-2S2E(3) schemes is:

b1 = 2

3
− θ, b2 = 1

3
, b3 = θ a21 = 1

3
, a31 = 1

3θ
, a32 = 1

18θ
. (31)

It can be readily seen that none of these schemes can satisfy Eqs. (26)–(27) for a particular value of θ , and hence three 
stage 3S2E(3) schemes cannot be obtained.

In Fig. 5 the convergence of the relative error on energy conservation for different Runge–Kutta schemes with 2 and 3
stages is reported. The curve labeled AD-2S1E is relative to the 2 stage Runge–Kutta scheme reported in Table 1, while the 
curve labeled ADA-3S1E is the classical Kutta scheme with ADA alternation of forms. The curves displaying second order 
convergence and labeled ADA-2S2E and DAD-2S2E are relative to the schemes whose coefficients are given in Eqs. (30) and 
(31) respectively. The plot shows that all the schemes display the correct scaling with time step �t .
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5.2. Four-stage R–K methods

Four stage explicit Runge–Kutta methods are characterized by ten coefficients, which can be determined (at least as 
families of values) by imposing the required order of accuracy on the solution in the form of nonlinear constraints. The 
standard procedure is to obtain the families of coefficients by imposing the eight nonlinear conditions necessary to obtain 
4th order accuracy. The complete solution to this system is quite cumbersome to reproduce here, and is usually given as 
a two parameter family of coefficients, or, in some exceptional cases, as a number of one-parameter families. An extensive 
treatment of this problem, together with the steps to be carried out in order to solve the nonlinear systems of conditions, 
can be found in the classical book by Butcher [16]. The undertaken approach will be again to complement the classical 
procedure by introducing the possibility of alternating the forms inside the various stages of the Runge–Kutta method. 
Then, the nonlinear constraints on the coefficients associated to conservation of energy (for a given order of accuracy) will 
be taken into account. The complete treatment of all the particular cases which can arise in this procedure is out of the 
scope of the present work. The variety of nonlinear conditions and the number of particular cases exceptionally grow as one 
introduces all the possible sequences of alternating forms. In this paragraph, it will be simply illustrated how the general 
program can be carried out, and some representative examples will be given.

The analysis starts with 4S1E(4) schemes, which can be obtained by imposing the first order condition on energy con-
servation on the families of schemes satisfying fourth order conditions on the solution. As examples, some of the special 
one-parameter classes of schemes identified by Kutta are analyzed, which are reported in the book by Butcher [16] and 
labeled as case I–case V. The first special case identified by Kutta (case I), for which a family of fourth order schemes is 
obtained and given by the following Butcher array:

case I
0

1 − θ 0
6θ2(1−2θ)

γ (θ)
6θ2

γ (θ)
0

12θ3−24θ2+17θ−4
2(1−θ)μ(θ)

θ(1−2θ)
2(1−θ)μ(θ)

1−θ
μ(θ)

0
μ(θ)
γ (θ)

1
γ (θ)

1
γ (θ)

μ(θ)
γ (θ)

where γ (θ) = 12θ(1 − θ), μ(θ) = 6θ − 1 − 6θ2 and a31 + a32 = θ . This family produces fourth order schemes provided 
a21 /∈

{
0,1/2,1/2 ± √

3/6,1
}

. Given a generic sequence of forms, identified as usual by the sequence of αi , the first order 
condition on energy conservation gives: (α1 +α4)μ(θ) + (α2 +α3) = 0 which conducts to the requirement that the function 
μ(θ) assumes specific values in correspondence of each sequence of αi :

μ(θ) = − (α2 + α3)

(α1 + α4)
.

The results of this analysis is that the sequences AAAD and DAAA produce two 4S1E(4) schemes, corresponding to 
θ = (1 ± √

3)/2, as well as the sequences AADA and ADAA, which also produce two 4S1E(4) schemes corresponding to 
θ = (2 ± √

2)/4. All the other sequences produce zeroth order schemes on conservation of energy. The case II family of 
schemes:

case II
0
θ 0

1
2 − 1

8θ
1

8θ
0

1
2θ

− 1 − 1
2θ

2 0
1
6 0 2

3
1
6

is a 4S1E(4) family, independently of θ , for the two sequences ADDA and AADA. The cases III, IV and V:

case III case IV case V
0
1
2 0

− 1
12θ

1
12θ

0

− 1
2 − 6θ 3

2 6θ 0
1 − θ 2 θ 1

0

1 0
3
8

1
8 0

1 − 1
4θ

− 1
12θ

1
3θ

0
1 1 − θ 2 θ

0
1
2 0

1
2 − 1

6θ
1

6θ
0

0 1 − 3θ 3θ 0
1 2 − θ θ 1
6 3 6 6 6 3 6 3 6
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are 4S1E(4) schemes with the sequences ADAA, AADA and ADDA respectively. Note that class V schemes are of particular 
interest, since the ‘classical’ Runge–Kutta scheme belongs to this class for the case θ = 1/3. The analysis shows that when 
implemented with a sequence ADDA the ‘classical’ Runge–Kutta scheme has a first order conservation of energy.

In addition to 4S1E(4) schemes already illustrated, the ten coefficients arising in four stages Runge–Kutta methods can 
be fixed by imposing, for each of the possible sequences of alternating forms, a third order accuracy on the solution (four 
equations) together with a second order accuracy on energy conservation (four equations). The solution of the eight-equation
nonlinear system (when available) will produce 3S2E(4) schemes and, since the system of equations is overdetermined, 
in general one expects that also families of schemes, having one or more parameters, will appear. The nonlinear systems 
associated to the 14 possible sequences of alternating forms all have four common equations, given by the third order 
constraints for a four stage method:

b1 + b2 + b3 + b4 = 1

b2a21 + b3(a31 + a32) + b4(a41 + a42 + a43) = 1

2

b2a2
21 + b3(a31 + a32)

2 + b4(a41 + a42 + a43)
2 = 1

3

a21(b3a32 + b4a42) + b4a43(a31 + a32) = 1

6
. (32)

In addition to these equations there is the first order energy conservation constraint:

α1b1 + α2b2 + α3b3 + α4b4 = 0

where, as usual, the coefficients αi depend on the particular sequence of forms, and three equations for second order 
conservation of energy, whose structure depends on the particular sequence. In Appendix A the four equations associated to 
second order conservation of energy are reported for all the possible sequences of alternating forms. Each of these nonlinear 
systems can be separately studied in order to obtain families of 3S2E(4) schemes for every given sequence. The complete 
characterization of all the possible solutions for each alternating sequence is, again, out of the scopes of the present study. 
However, some general considerations, together with some particular solutions, will be presented, as it has been done for 
previous cases. In many circumstances symbolic nonlinear solvers can also be employed to simplify the task of obtaining 
solutions.

The structure of the nonlinear system is such that in many cases significative simplifications can be obtained by firstly 
considering the equations for first order accuracy on both solution and energy. These two equations involve only the bi ’s 
and immediately furnish the numerical value of one of the unknowns (when three forms are equal within the sequence) 
or of the sum of two unknowns. In some circumstances this information alone can be sufficient in order to conclude that 
the nonlinear system has no solutions, as in the cases of the sequences AAAD and AADD. In general, it is found that in 
many cases a next useful step is the derivation of the bi ’s as parametric functions of the aij ’s by solving the linear equations 
in the bi ’s. At this point, the remaining fully nonlinear equations can be attacked. It results that, among the possible 14 
series, the six sequences starting with AA or DD have no solution, together with the two sequences ADDD and DAAA. The 
remaining six sequences have solutions which are parametrized by one or more constants. Such families of schemes are 
usually quite difficult to express compactly, but representative examples can be obtained by fixing one or more constants.

As an example, the case of the sequence ADDA is considered, for which the complete nonlinear system for the coefficients 
is given by Eqs. (32), for third order accuracy on the solution, and by equations:

b1 − b2

2
− b3

2
+ b4 = 0 1st order on the energy

9

8
b3a32 + b4(2a41 − a42 − a43) − (b1 + b4)(b2 + b3) = 0

b3a32 − 4b4(a42 + a43) + (b2 + b3)
2 = 0

4b2a21 + b3(4a31 − a32

2
) − 4b4a41 − 2(b1 + b4)

2 = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ 2nd order on the energy (33)

for second order accuracy on the energy. By making the assumption a32 = 0 and b2 = 0 or b3 = 0, after some manipulations 
one obtains the two families:

0
25θ−42
75θ−28 0

1
3 0 0

14
25

28
75 − θ θ 0

1
28 0 2

3
25
84

0
1
3 0

75θ+98
225θ

0 0
14
25

28
75 − θ θ 0

1
28

2
3 0 25

84

The choice of the parameter θ = 0 for the first family or θ = 28/75 for the second is particularly convenient from a compu-
tational point of view and conducts to the schemes:
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Fig. 6. Convergence of the relative error on energy conservation as a function of the time step �t for different R–K schemes with 4 stages.

(ADDA)1-3S2E(4) (ADDA)2-3S2E(4)

0
3
2 0
1
3 0 0

14
25

28
75 0 0

1
28 0 2

3
25
84

0
1
3 0
3
2 0 0

14
25 0 28

75 0
1

28
2
3 0 25

84

For the other sequences, solutions to the corresponding nonlinear system are in general quite difficult to obtain ana-
lytically. In all these cases, however, a symbolic solver is usually able to derive one or more families of solutions typically 
parametrized by two constants. From these expressions one can optimize the scheme by imposing additional requirements. 
An example of the result of this procedure is the scheme:

ADAD-3S2E(4)

0
1
3 0

14
25

37+1/3
100 0

0 0 1
3 0

177+11/7
5×103

1
4

25
84

5
12

which has been obtained with the aid of a symbolic manipulator and by requiring a maximum number of zeros in the 
Butcher array for the sequence ADAD.

The convergence of the relative error on energy conservation for this last scheme is reported in Fig. 6, where also the 
convergence properties of various four stage methods presented in this section are included. The scheme ADAA-4S1E is 
the fourth order RK scheme labeled as case III, for the value of the parameter θ = 1/12. The scheme ADDA-4S1E is the
‘classical’ fourth order Runge–Kutta scheme belonging to case V for θ = 1/3. In all cases the theoretically predicted scaling 
is recovered.

It is worth noting that many of the schemes presented in this section as well as in Section 5.1 can be further optimized 
to achieve multiple purposes, which were not taken into consideration in the present paper. For instance, the remaining 
degrees of freedom of the proposed 3S2E methods can be exploited to optimize the dispersion and dissipation properties 
in wavenumber space [18]. Moreover, low-storage implementations have not been taken into account. Note also that for 
some methods, ci > 1 occurs (cf. DA-2S1E(2) and (ADDA)1,2-3S2E(4) schemes). In such cases, care must be taken when these 
methods are used in conjunction with time-dependent terms [16].

5.3. Computational efficiency analysis

The performances of the various schemes derived in Section 5.2 have been assessed by means of a comparison in terms 
of computational efficiency, i.e., on an Error–Cost plane. This analysis is also meant to guide the reader through the selection 
of the best methods.
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Fig. 7. Comparison in terms of computational efficiency between classical and novel schemes.

Several choices can be made regarding the error. In accordance with the aim of the paper, the kinetic energy conservation 
error is considered here. As a representative unit time, t f = tb/2 is chosen, where tb is the break-time at which characteristic 
lines intersect for the inviscid Burgers’ equation. The computational cost is calculated by means of the cost-metric presented 
in Appendix A.

The results are reported in the graph of Fig. 7. The plot was constructed by analyzing the energy errors in a range 
of Courant numbers C = u�t/�x, in particular 0.1 < C < Cmax, where Cmax is the maximum bound allowed by linear 
stability for each scheme. The cost is then obtained by multiplying the number of floating-point operations by the number 
of time-steps needed to integrate the inviscid Burgers’ equation from t0 to t f . The left-end of each curve corresponds to 
the simulation run at the maximum Courant number. In the upper portion of the graph, the corresponding Courant number 
dependence is also reported for convenience. One 3S1E, two 4S1E and two 3S2E alternating schemes are compared to 
three-stage and four-stage Runge–Kutta methods in fully skew-symmetric form. For the latter, the classical Kutta and RK4 
methods are considered, respectively. The computational cost for all the curves is normalized with respect to the cost of the 
RK4 in skew-symmetric form run at the maximum Courant number. The results were obtained by integrating the inviscid 
Burgers’ equation with periodic boundary conditions on the domain [0, 1], discretized by N = 100 equidistant mesh points, 
with initial condition u0(x) = sin(πx). A fourth-order explicit central scheme was used for spatial integration. Varying the 
number of mesh points did not significantly affect the qualitative picture in terms of efficiency comparison among the 
various schemes.

Several conclusions can be drawn from the graph. For the smallest error levels, the classical RK4 in skew-symmetric form 
is the most efficient scheme, due to the high order of accuracy, together with the particularly compact Butcher tableau. How-
ever, there is a very large range of energy errors in which several alternating schemes are the most efficient ones. For such 
methods, the plot shows that the possible computational time saving can be up to 50%, although this value can be rather 
case dependent. In particular, the ADDA-4S1E, i.e. the alternating version of the classical RK4 scheme, results as the most 
efficient method. This result is particularly remarkable, since many computational codes built upon the skew-symmetric 
RK4 can be easily recast in a more efficient procedure by simply switching the SSSS sequence to the alternating ADDA 
one. By using the same arguments, it can also be concluded that the three-stage Kutta method in skew-symmetric form 
can be profitably substituted by its alternating counterpart. It is worth reminding that for classical skew-symmetric spatial 
discretizations, the global energy error is constituted only by the temporal part, while for the new methods it is a mix of 
spatial and temporal contributions.

Further insight can be gained from the following considerations. The crossover point in efficiency is the result of a 
balance between two effects: the reduction in computational cost of the alternating procedure and the higher formal order 
of accuracy on energy conservation of the skew-symmetric schemes. At lower values of C the formal order of accuracy 
prevails, while at higher values the errors of the two approaches become comparable and the maximum time saving is 
reached.

In the case previously discussed, the crossover point in efficiency occurs for Courant numbers greater than ≈0.4. It has 
to be underlined that this point can shift somewhere to the left or right depending on various parameters, such as the final 
integration time or the initial condition. However, additional numerical tests (not reported here) show that the main trends 
are retained in a variety of situations. The fact that the better performances of the novel schemes occur in the range of 
moderate values of the Courant number is advantageous, since this is the range of practical interest for many applications.

As an alternative, the performances of the ADAD-3S2E scheme are also particularly good. In addition, one has to con-
sider that 3S2E schemes have two remaining degrees of freedom, that can be further exploited to achieve specific targets, 
depending on the problem under study.
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6. Extensions to incompressible Navier–Stokes equations

As already stressed in the Introduction section, the proposed ideas may be applied to more realistic systems. When 
looking at such cases, one should first of all highlight that the developed technique rests on the assumption that C(u) is a 
linear function of u. Hence, a straightforward extension can be attempted within the class of nonlinear convection models 
which can be expressed as the product of a linear function of the velocity field and the velocity field itself. This class is still 
wide and includes, most remarkably, the incompressible Navier–Stokes model.

In the case of 2D and 3D incompressible flows, the divergence free condition assures an equivalence between the contin-
uous advective and divergence forms. The analysis can thus be conducted by following a procedure similar to that employed 
for the scalar 1D Burgers’ equation.

An extension of the proposed technique to incompressible Navier–Stokes equations has to firstly take into account the 
layout of the variables on the grid. In a staggered system, the divergence free condition renders the divergence and skew 
symmetric forms discretely equivalent. When turning to regular or collocated grid systems this equivalence is not assured, 
even in the case of divergence-free velocity fields. A straightforward application of the novel procedure can hence be at 
first tested within a regular grid system (i.e. a grid in which both velocity components and pressure are stored at the same 
points). In this case, an analogous underlying structure of the discrete operators occurs and a similar time saving for the 
computation of the convective term can be obtained by employing only the more economical advective and divergence 
forms.

The overall time saving can be influenced by many other computational modules, whose relative importance is strongly 
case dependent. The procedure is expected to be particularly advantageous in cases in which the computation of the nonlin-
ear term takes a relevant part of the whole algorithm. For instance, spectral methods are often used in conjunction with the 
skew-symmetric formulation to perform stable long-time integrations of homogeneous isotropic turbulence. In such cases, 
the solution of the pressure equation is practically costless and the viscous term is often treated analytically. Most of the 
CPU time is spent to compute the non-linear term, and a regular-type arrangement of flow variables is usually employed. 
Therefore, a noteworthy time-saving is expected by adopting the proposed method.

The main points of the extension to Navier–Stokes equations are outlined as follows:

1. The semidiscretization of the momentum equation contains a nonlinear term of the form C(u)u where the matrix C(u)

is a block-diagonal operator. Each block is relative to one spatial component of u and contains the derivative matrices 
along the three spatial directions.

2. As in the case of 1D Burgers’ equation, there is a simple relation between Cadv and Cdiv which in this case is 
(Cadv)T = −Cdiv. This immediately implies that the energy variations due to divergence and advective forms are equal 
in magnitude and have opposite sign.

3. An equation for the energy error introduced over a single time step advancement of the modified RK procedure, ana-
logue to Eq. (21), can be written for the case of inviscid, incompressible NS equations. Note that in this case the pressure 
gradient affects the convective operators appearing in Eq. (21).

4. A new set of nonlinear relations involving the coefficients aij and bi can be derived by imposing the vanishing of 
successive terms in the expansion. Since the relation between Cadv and Cdiv in NS equation is different from that for 
the Burgers’ equation, different systems of equation take place, leading to different optimized RK schemes.

As in the 1D Burgers’ case, the redundant degrees of freedom can be exploited to optimize the dispersion and dissipation 
properties in wavenumber space, as well as to improve the accuracy of the pressure, as in [19].

7. Conclusions

A novel technique for cost-effective energy preserving simulations has been developed. The method consists of a time-
integration strategy in which the costly skew-symmetric form is profitably split into sequences of divergence and advective 
forms within the stages of a properly constructed Runge–Kutta (RK) scheme. A general framework for the design of the alter-
nating RK schemes has been established, based on a theoretical analysis of the energy error occurring for the fully-discrete 
problem. It is found that one and three additional constraints are necessary to achieve first- and second-order accuracy on 
energy conservation, respectively. The procedure has proven to be able to produce new time-saving methods with a speci-
fied order of accuracy on both solution and energy conservation. Where possible, the remaining degrees of freedom for the 
choice of coefficients can be properly exploited for further purposes, e.g., to minimize dissipation and dispersion errors, or 
to achieve a computationally efficient Butcher tableau.

An alternative procedure has also been analyzed, in which the splitting is carried outside the RK scheme, i.e., the diver-
gence and advective forms are used at alternate time steps in a given sequence. Although this procedure can lead (formally) 
to an arbitrary order of accuracy on energy conservation, it produces an oscillatory pattern in the time-evolution of energy, 
in contrast to alternating RK schemes.

The performances as well as the formal order of accuracy of the new methods have been demonstrated systematically 
by numerical tests on the Burgers equation. The computational cost of the various schemes has been assessed by a suitably 
constructed cost-metric which accommodates both space discretization schemes and Runge–Kutta coefficients. On equal or 
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comparable performances, the new schemes can save up to 50% of CPU time for the time-advancement of the non-linear 
term, in comparison with standard Runge–Kutta methods.

In particular, the ADDA-4S1E, i.e. the alternating version of the classical RK4 scheme, results as one of the most efficient 
methods in a variety of situations.

The methods proposed in the paper have been derived for a 1D equation on uniform mesh and in the simple case of 
periodic boundary conditions. In this last hypothesis the derivative operator is typically skew-symmetric and this property 
has been used in various parts of the derivation. However, a more general formulation including the treatment of general BCs 
could be accomplished in the framework of SBP operators [20,21], that generalize the symmetry properties of the derivative 
matrices to include boundary terms. The extension of the main technique to more complex systems, e.g., to incompressible 
Navier–Stokes equations, has been outlined in the paper and will be the subject of future work.

Appendix A. Cost analysis

In a one-dimensional setting, an explicit central difference discretization of the non-linear convective term reads, for the 
ith grid point:

∂x
u2

2

∣∣∣∣
i
≈

L∑
l=1

wl

(
u2

i+l − u2
i−l

)
(A.1)

u∂xu|i ≈ ui

L∑
l=1

wl
(
ui+l − ui−l

)
, (A.2)

in case of divergence and advective form, respectively. In (A.1) and (A.2), L determines the size of the computational stencil 
and thus the accuracy of the approximation (i.e., 2L), while it is implicitly assumed that the coefficients of the scheme 
already take into account the grid spacing. On a grid of N elements, the number of floating-point operations required to 
calculate the above terms (spatial operations) is equal for the divergence and advective terms. It involves N multiplications 
to evaluate the products u2 or u ·∂u, plus L multiplications and L sums per node to calculate the difference formula, yielding 
a total of

O sp
a,d = N(1 + 2L). (A.3)

It is assumed that additions and multiplications take roughly the same computational effort. The skew-symmetric form 
requires the evaluation of advective and divergence forms separately, together with a linear combination of these quantities, 
for a total of:

O sp
s = 2N(1 + 2L) + 3N. (A.4)

If an explicit s-stage Runge–Kutta scheme is adopted for time-advancement:{
un+1 = un − �t

∑s
k=1 bk N (Uk)

Uk = un − �t
∑k−1

j=1 akj N (U j),
(A.5)

then the number of floating-point operations contains, assuming that �t is included within the coefficients:

• sO sp evaluations of the non-linear term;
• b̂N sums and b̂N multiplications for the final update, where b̂ is the number of non-zero bk coefficients;
• âN multiplications between the non-zero (and non-unity) coefficients akj and the terms N (U k);
• (s − 1)N sums between un and the other terms, within the stages, except for the first stage;
• (â − 1)N sums between the remaining terms, within the stages.

The total (i.e. spatial and temporal) number of operations is then

O tot
a,d = 2N(s + Ls + â + b̂ − 1), (A.6)

for advective or divergence forms, while for the skew-symmetric form is

O tot
s = 2N(3s + 2Ls + â + b̂ − 1). (A.7)

By comparing Eqs. (A.6) and (A.7), an average factor of order 2 can be established between the approaches.
The developed cost-metric has been validated against the measured CPU times obtained with a Fortran 90 program writ-

ten by the authors. Two reference Runge–Kutta schemes have been considered for validation, namely the three-stage Kutta 
scheme (RK3) and the classical RK4, for both the convective/divergence and skew-symmetric cases, and for a second- and 
fourth-order difference scheme. The measured CPU times have been averaged over 10 runs. Various parameters have been 
varied during the numerical experiments (e.g., the number of nodes, the size of the arrays, the number of time-steps, etc.) 
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Table 2
Comparison between cost-metric estimates and measured CPU times for two Runge–Kutta schemes and various spatial discretizations. The CPU times 
have been normalized with respect to the RK3 scheme with second-order central difference in advective/divergence form. For convenience, the number of 
operations is reported for N = 1.

Scheme â b̂ s L = 1 L = 2

O tot
a,d Tcpu O tot

s Tcpu O tot
a,d Tcpu O tot

s Tcpu

RK3 2 2 3 18 1.00 32 1.46 24 1.29 48 2.19
RK4 2 2 4 22 1.28 46 1.90 30 1.69 62 2.86

showing minor effect on the results. The comparison between the cost-metric and the CPU times is reported in Table 2. The 
agreement between the operation count and the actual CPU times is satisfactory, if one considers that the cost-metric does 
not take into account issues related to storage or access to array variables. The results may also depend slightly upon the 
optimization level of the compiler and on the architecture of the computer.

Appendix B. Nonlinear systems for 3S2E(4) schemes

AAAD

b1 + b2 + b3 − b4

2
= 0

2b2a21 + 2b3(a31 + a32) − b4 (b1 + b2 + b3) = 0

b2
4

2
= 0

2b2a21 + 2b3(a31 + a32) − 2b4(a41 + a42 + a43) + (b1 + b2 + b3)
2 = 0 (B.1)

AADA

b1 + b2 − b3

2
+ b4 = 0

2b2a21 + b4 (2a41 + 2a42 − a43) − b3 (b1 + b2 + b4) = 0

b2
3

2
− 2b4a43 = 0

2b2a21 − 2b3(a31 + a32) + 2b4(a41 + a42) + (b1 + b2 + b4)
2 = 0 (B.2)

AADD

b1 + b2 − b3

2
− b4

2
= 0

2b2a21 + b4a43 − (b1 + b2) (b3 + b4) = 0

(b3 + b4)
2 = 0

2b2a21 − 2b3(a31 + a32) − 2b4(a41 + a42) + (b1 + b2)
2 = 0 (B.3)

ADAA

b1 − b2

2
+ b3 + b4 = 0

b3(2a31 − a32) + b4 (2a41 − a42 + 2a43) − b2 (b1 + b3 + b4) = 0

−b2
3

2
+ 2b3a32 + 2b4a42 = 0

2b2a21 − 2b3a31 − 2b4(a41 − a43) − (b1 + b3 + b4)
2 = 0 (B.4)

ADAD

b1 − b2

2
+ b3 − b4

2
= 0

b3(2a31 − a32) + 9

8
b4a42 − (b1 + b3) (b2 + b4) = 0

4b3a32 − b4a42 − (b2 + b4)
2 = 0

2b2a21 − 2b3a31 + 2b4

(
a41 − a42 + a43

)
− (b1 + b3)

2 = 0 (B.5)

8
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DAAA

−b1

2
+ b2 + b3 + b4 = 0

b2a21 + b3(a31 − 2a32) + b4(a41 − 2a42 − 2a43) + b1 (b1 + b3 + b4) = 0

2b2a21 + 2b3a31 + 2b4a41 − b2
1

2
= 0

2b3a32 + 2b4(a42 + a43) + (b2 + b3 + b4)
2 = 0 (B.6)

DADA

−b1

2
+ b2 − b3

2
+ b4 = 0

b2a21 − b3a31 + b4(a41 − 2a42 + a43)(b1 + b3)(b2 + b4) = 0

2b2a21 + 2b4(a41 + a43) − 1

2
(b1 + b3)

2 = 0

2b3a32 − 2b4a42 − (b2 + b4)
2 = 0 (B.7)

DADD

b1 − 2b2 + b3 + b4 = 0

b2a21 − b3a31 − b4(a41 + a43) + b2 (b1 + b3 + b4) = 0

−2b2a21 − 1

2
(b1 + b3 + b4)

2 = 0

2b3a32 + 2b4a42 − b2
2 = 0 (B.8)

DDAA

b1 + b2 − 2b3 − 2b4 = 0
9

8
b2a21 − b3(a31 + a32) − b4(a41 + a42 − 2a43) − (b1 + b2)(b3 + b4) = 0

b2a21 − 4b3(a31 + a32) − 4b4(a41 + a42) + (b1 + b2)
2 = 0

1

2
b2a21 + 4b4a43 + 2(b3 + b4)

2 = 0 (B.9)

DDAD

b1 + b2 − 2b3 + b4 = 0
9

8
b2a21 − b3(a31 + a32) + 9

8
b4(a41 + a42) − b3(b1 + b2 + b4) = 0

b2a21 − 4b3(a31 + a32) + b4(a41 + a42) + (b1 + b2 + b4)
2 = 0

1

2
b2a21 + b4(

a41

2
+ a42

2
− 4a43) + 2b2

3 = 0 (B.10)

DDDA

b1 + b2 + b3 − 2b4 = 0

b2a21 − b3a31 − b4(a41 + a43) + b2 (b1 + b3 + b4) = 0

−2b2a21 − 1

2
(b1 + b3 + b4)

2 = 0

2b3a32 + 2b4a42 − b2
2 = 0 (B.11)

ADDD

−2b1 + b2 + b3 + b4 = 0
9

8
b3a32 + 9

8
b4 (a42 + a43) − b1 (b2 + b3 + b4) = 0

b3a32 + b4 (a42 + a43) + (b2 + b3 + b4)
2 = 0

4b2a21 + b3

(
4a31 − a32

)
+ b4

(
4a41 − a42 − a43

)
− 2b2

1 = 0 (B.12)

2 2 2
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DAAD

−b1 + 2b2 + 2b3 − b4 = 0

b2a21 + b3 (a31 − 2a32) − b4a41 + (b1 + b4) (b2 + b3) = 0

2b2a21 + 2b3a31 − 1

2
(b1 + b4)

2 = 0

2b3a32 + 2b4 (a42 + a43) + (b2 + b3)
2 = 0 (B.13)

ADDA

2b1 − b2 − b3 + 2b4 = 0
9

8
b3a32 + b4 (2a41 − a42 − a43) − (b1 + b4) (b2 + b3) = 0

b3a32 − 4b4 (a42 + a43) + (b2 + b3)
2 = 0

4b2a21 + b3
(

4a31 − a32

2

)
− 4b44a41 − 2 (b1 + b4)

2 = 0 (B.14)
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