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Abstract—This paper proposes robust model-based prognostics
approaches based on zonotopic Joint Estimation of States and
Parameters (JESP) for Linear Parameter-Varying (LPV) systems.
Zonotopes are employed due to their simple computations with
a reduced number of vertices. Thus, Zonotopic Set-Membership
(ZSM) and Zonotopic Extended Kalman Filter (ZEKF) ap-
proaches are investigated for the JESP which plays a crucial
role in the proposed Prognostics and Health Management (PHM)
approach. The zonotopic estimators are optimally-tuned using a
specially formulated Linear Matrix Inequality (LMI) framework
to guarantee a high estimation accuracy and less conservative
results. Furthermore, a Recursive ZSM (RZSM) approach is
derived from a conventional Recursive Least Squares (RLS)
filter for the sake of Remaining Useful Life (RUL) forecasting
of exponentially-decayed parameters. Additionally, a polynomial
RUL forecasting approach has been also proposed based on
the ZEKF approach. Finally, a degraded DC-DC converter is
modelled as an LPV system and examined with the proposed
approaches, and the obtained results show their efficiency.

Index Terms—Model-based prognostics, zonotopes, set-
membership, extended Kalman filter, linear parameter-varying,
linear matrix inequality, joint state-parameter estimation

I. INTRODUCTION

Model-based PHM approaches are mainly based on state
observations in various engineering applications [1]. The more
the system is critical, the more the stability and accuracy
constraints should be guaranteed. From the perspective of
the high complexity level of the prognostics techniques, the
PHM is directed towards complex uncertain systems with
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unknown behaviors. The latter can be described as nonlinear
dynamical systems that require advanced JESP techniques
to deal with such uncertainties [2]. On one hand, random
Gaussian perturbations and noises characterize the stochastic
approaches which are employed in the EKF for nonlinear sys-
tems. On the other hand, the remarkable feature of bounding
the unknown uncertainties in the deterministic set-membership
approach is very interesting for the reliability assessment,
especially in the prognostics framework. Furthermore, the
set-membership approach makes use of the several type of
sets for bounding uncertainties. Polytopes such as boxes
and parallelotopes are efficient with linear models, ellipsoids
require simple implementation, yet they lack flexibility and
could lead to pessimistic estimation, and zonotopes provides
a trade-off between simple arithmetic computations and high
flexibility when compared to other sets [1], [3], [4]. On account
of feasible application of zonotopes, the ZSM approach is
employed for JESP based on the prediction, measurement
and intersection steps. Moreover, the ZSM-based JESP carries
out the burden of multi-output systems and guarantees the
estimation process by repeating the intersection between the
measurement strip of each output and the predicted zonotope
[5]. Hence, the JESP is the reliable base of the proposed PHM
approach that aims to forecast the RUL on a macro level.
Wherefore, a RZSM approach has been derived based on the
conventional RLS filter in a zonotopic scheme to indirectly
predict the bounded RUL of the system based on the estimated
zonotopic parameter from ZSM and a general exponential
decay for degradation.
Moreover, based on the broad application of the EKF, in
addition to the provided flexibility of zonotopes, a ZEKF
approach is also provided in this paper for the JESP [6], [7].
Hence, we also propose a zonotopic RUL prediction based on



polynomial parameter degradation which predicts the End of
Life (EoL) of the system and provides a bounded RUL [8].
A nonlinear embedding has been applied to the dynamical
system with varying parameters which transforms the nonlin-
ear system to an LPV that performs well with both proposed
approaches [9]. Additionally, an LMI-based optimization is
formulated to guarantee optimal, fast and accurate tuning of
the ZSM and ZEKF estimators. Beside the existing online
tuning techniques, the proposed LMI-based problem can be
applied to nonlinear systems in addition to the fact that
is designed to be solved offline and only simple heuristic
operations are solved online. Hence, these benefits provide
a faster estimation and forecasting due to less computational
operations and time.
This paper is structured as follows. Section II provides a back-
ground material regarding zonotopes. Section III highlights the
problem formulation of the PHM approaches for LPV systems.
Thus, Section IV addresses the proposed estimation and fore-
casting approaches. Moreover, both prognostics approaches
have been examined with a degraded DC-DC converter in
Section V that shows their effectiveness in the results. Finally,
the conclusions are drawn in Section VI.

II. PRELIMINARIES

Definition II.1. A zonotope Z = 〈c,G〉 ⊂ Rn with center
c ∈ Rn and the generator matrix G ∈ Rn×m is a polytopic
set defined as a linear image of the unit hypercube [−1, 1]m,
as follows:

〈c,G〉 = {c + Gs, ‖s‖∞ ≤ 1}. (1)

Definition II.2 (Sum of Zonotopes). The Minkowski sum of
two zonotopes results into a zonotope. Given two zonotopes
Z1 = c1⊕G1Bm1 ∈ Rn, and Z2 = c2⊕G2Bm2 ∈ Rn, their
sum is defined as follows:

Z = Z1 ⊕Z2 = (c1 + c2)⊕ [G1 G2]Bm1+m2 . (2)

Definition II.3 (Reduction operator). The weighted reduction
operator ↓q,w is used to reduce and limit the size of the vertices
of the generator matrix G to q columns, while preserving the
inclusion property of zonotopes.

Definition II.4 (FW−radius). The weighted Frobenius radius
of a given zonotope Z = 〈c,GZ〉 ∈ Rn is the weighted
Frobenius norm of the same zonotope:

‖Z‖F,W = ‖G‖F,W . (3)

The F−radius is similar to the FW−radius with W is an
identity matrix.

III. PROBLEM FORMULATION FOR PROGNOSIS
FRAMEWORK

A. Problem set-up

Consider the average model of a switched discrete-time
linear parameter-varying system:

xk+1 = A(ρk)xk + B(ρk)uk + Eωωk, (4)
yk = C(ρk)xk + D(ρk)uk + Eυυk, (5)

where ρk is a vector that contains all the varying parameters
(i.e. ρk,1, . . . , ρk,nρ ). xk ∈ Rnx , yk ∈ Rny and uk ∈ Rnu
are the states, outputs and inputs of the system respectively.
For the sake of notation simplicity, in the following we will
use Ak = A(ρk) ∈ Rnx×nx , Bk = B(ρk) ∈ Rnx×ny ,
Ck = C(ρk) ∈ Rnu×ny and Dk = D(ρk) ∈ Rnu×nu for
denoting the state matrix, input matrix, output matrix and feed-
through matrix, respectively. Eω ∈ Rnx×nx and Eυ ∈ Rny×ny
are the direction matrices for the process and measurement
noises, uncertainties and perturbations, ωk ∈ Rnx and υk
∈ Rny , respectively. The uncertainties are assumed to be
bounded by unitary hypercube zonotope centered at 0

ωk = 〈ωc = 0, Inω 〉 = [−1, 1], ∀k ≥ 0, (6a)
υk = 〈υc = 0, Inυ 〉 = [−1, 1], ∀k ≥ 0, (6b)

In this paper, the varying parameters ρ of the LPV model (4)
describe the nonlinear degradation equations of power elec-
tronic components that are augmented to the state vector, and
embedded in the state-space matrices such that xk ∈ Rnm+p

contains m states and p parameters:

xk =
[
xk xρk

]ᵀ
=
[
x1 . . . xm ρ1 . . . ρp

]ᵀ
. (7)

Moreover, ρ1, . . . , ρp are considered as unknown but bounded
as [ρk, ρk]. Furthermore, the small unknown variations δρk
are included as uncertainties in the direction matrix Eω .
Henceforth, x denotes the joint states and parameters vector of
the zonotope X , and xρ represents the augmented parameter
vector only of the zonotope Xρ. ρ0,i denotes the initial value
of the parameter ρi.

B. Proposed PHM approaches

The proposed PHM approaches in Figure 1 are mainly based
on the following three steps:

1) System Modeling: The dynamical model with augmented
nonlinear parameters which are characterized as degra-
dation models, is represented in LPV form. Thus, the
latter contains the varying joint states and parameters
that will be estimated afterwards using zonotopes for
the sake of RUL forecasting.

2) Zonotopic-based JESP: The joint estimation plays a
crucial role in the PHM approach. Since the LPV is
modelled to contain all the joint variations, we have
proposed two approaches for the JESP. The ZSM and
the ZEKF are optimally tuned based on an LMI solver.
Hence, their investigation in the JESP framework can
guarantee a robust base for the following step of RUL
forecasting.

3) RUL Forecasting: The aim of this whole study is to
forecast the RUL of degraded systems such as power
converters. Thus, based on the ZSM and the ZEKF esti-
mators, two RUL forecasting approaches are assigned
to them accordingly. The target of the RZSM is to
retrieve the zonotopic parameter estimation from the
ZSM estimator and recursively predict the exponentially
decayed degradation models that will result into an



online forecasting of bounded RUL. Unlike the RZSM
predictor, the polynomial EoL approach is applied to
the ZEKF and forecast the bounded RUL based on a
polynomial EoL model solving.

LPV augmented
with ρ

ZEKF for JESPZSM for JESP

Return X̂ρ Return X̂ρ

RZSM for
exponential
degradation
prediction

Polynomial
prediction of

zonotopic EoL

Bounded RUL
forecasting

Fig. 1. Diagram of the two proposed approaches for JESP and RUL
forecasting

IV. PROPOSED APPROACHES FOR JESP AND RUL
FORECASTING

This section is dedicated to firstly explain the ZSM and the
RZSM approaches. Secondly, the ZEKF and the polynomial
EoL approaches are assigned for zonotopic JESP and RUL
forecasting. Thirdly, the LMI-based optimal tuning for both
approaches is addressed. It should be noted that for the sake of
notation simplification, the vectors and matrices of the ZEKF
approach will be superscripted by (ZEKF), and similarly for
the ZSM. (ˆ) and (˜) denote estimated and predicted elements,
respectively.

A. ZSM-based JESP and RUL forecasting

The consistent state-bounding zonotope X̂k,i at each com-
ponent of the measured output yk,i can be obtained based on
a zonotopic Luenberger observer as follows [3], [5], [10]:

X̂ ZSM
k,i = x̂ZSM

k ⊕ ĜZSM
k Bm+nx+ny , (8)

where,

x̂ZSM
k = x̃ZSM

k + λk,i(yk − (Ckx̃
ZSM
k + Dkuk)), (9a)

ĜZSM
k = [(I− λkCk)G̃ZSM

k,↓q,W − λkEυ], (9b)

with,

x̃ZSM
k = Ak−1x̂

ZSM
k−1 + Bk−1uk−1, (10a)

G̃ZSM
k = [Ak−1Ĝ

ZSM
k−1,↓q,W Eω], (10b)

where x̂ZSM
k is the center of the consistent state-bounding

zonotope, ĜZSM
k denotes its generator matrix, x̃ZSM

k denotes
the center of the uncertain predicted zonotope X̃ ZSM

k , and λ is

the tuning matrix that is extensively explained throughout this
section. Additionally, i refers to the ith output component at
each time sample k.
Given each measurement yk,i of the measurements vector
yk at time instant k of the same model, the consistent
measurement set Xyk,i , denoted by the strip is computed as
follows:

Xyk,i = {x ∈ Rnx : |yk,i − (Cᵀ
k,ix

ZSM
k + Dkuk)| ≤ Eυk,i},

(11)
where Cᵀ

k,i is a vector of the ith row of the matrix Ck at time
instant k. The estimated consistent zonotope (8) is obtained
by intersecting the uncertain predicted zonotope (10) and the
strip (11) as:

X̂ ZSM
k,i = X̃ ZSM

k ∩ Xyk,i = 〈x̂ZSM
k,i , Ĝ

ZSM
k,i 〉, (12)

Remark. The computation of the predicted state set for multi-
output systems is implemented as in the single-output case by
repeating the intersection per each output.

Proposition IV.1. For a guaranteed zonotopic inclusion, the
intersection between the measurement strip Xyk,i of each of
the output components, and the predicted state-bounding set
X̃k is successively repeated for i = 1, . . . , ny at each time
sample k [3], [5]. Thus, this correction step is repeated with
every output component yk,i of yk until ny in order to obtain
the consistent estimated state zonotopic set with guaranteed
inclusion, at each time instant k as:

X̂ ZSM
k,ny (λ1, . . . , λny ) = x̂ZSM

k,ny (λ1, . . . , λny )

⊕ĜZSM
k,ny (λ1, . . . , λny )Bm+nx+ny ,

(13)

1) RZSM approach for RUL forecasting: The continuous-
time degradation variation is proposed as follows:

∆ρt,i ≡ xZSM
ρt,i − ρ0,i = α1,ie

α2,it, (14)

Then, it is discretized and rewritten in logarithmic form, to be
able to deal with the previously estimated zonotopic parameter
X̂ ZSM
ρk,i

of the augmented parameter ρk,i as:

ln (x̂ZSM
ρk,i
− ρ0,i) = ln (α1,i) + α2,i · k · Ts, (15)

where k ∈ N and Ts is the sampling time, ρ0 is known and
x̂ZSM
ρk,i

is the center of the consistent estimated zonotope X̂ ZSM
ρk,i

.
The degradation equation (15) is reformulated as follows:

ln (x̂ZSM
ρk,i
− ρ0,i)︸ ︷︷ ︸

yρk,i

=
[
1 k · Ts

]︸ ︷︷ ︸
Cα

[
ln (α1,k,i) α2,k,i

]ᵀ︸ ︷︷ ︸
αᵀ
i

. (16)

Next, the same ZSM approach equations (9) and (10) are
utilized for the α parameters estimation and prediction as:

α̂k,i = Aαα̃k,i + Lαk,i(yρk,i −Cαk,i α̃k,i) (17a)

Ĝαk,i =
[
(I− Lαk,iCαk,i)G̃αk,i −Lαk,iEαυ

]
(17b)

where Aα = I and Lα is the tuning matrix of the RZSM for
degradation parameters estimation.



Moreover, the bounded degradation models are predicted on-
line from k measurement sample to N as:

x̃ρ[k→N],i
= ρ0,i + α̂1,ie

α̂2,i[k+1→N ], (18a)

x̃ρ[k→N],i = ρ0,i + α̂1,ie
α̂2,i[k+1→N ]. (18b)

Finally, given the experimentally defined threshold (TH) ρTH

of the power electronic components in the literature, the RUL
forecasting is computed such that:

˜RULk,i : x̃ρ[k→N],i ∩ ρTH
i , k ≤ tEoL

k,i < N (19a)
˜RULk,i : x̃ρ[k→N],i

∩ ρTH
i , k ≤ tEoL

k,i < N (19b)

B. ZEKF-based JESP and RUL forecasting

The ZEKF is designed to follow the same structure of
the EKF for the estimation process with zonotopic bounding.
Unlike the ZSM approach, the zonotopic state estimation
X̂ ZEKF = 〈x̂ZEKF, ĜZEKF〉 is based on the current time measure-
ment yk instead of the previous yk−1. Thus, by introducing the
tuning matrix Λ to the model (4), the center and the generator
matrix of X̂ ZEKF are given as [1], [6], [11]:

x̂ZEKF
k+1 = Akx̂

ZEKF
k + Bkuk + Λk(yk −Ckx̂

ZEKF
k −Dkuk),

(20a)

ĜZEKF
k+1 =

[
(Ak − ΛkCk)ĜZEKF

k,↓q,W , Eω, −ΛkEυ

]
, (20b)

where yk is the measured output vector and ŷk is its estimation
at each time step.

Remark. There is no strip intersection process needed in the
ZEKF approach where the structure follows the conventional
EKF prediction and estimation process. Moreover, is is worth
noting that Λ is introduced to the ZEKF approach instead
of the observer gain in a conventional filter. All the tuning
matrices of the ZSM and ZEKF are optimally computed instead
of employing the conventional online gains.

1) ZEKF-based polynomial RUL forecasting: Consider two
general polynomial equations that describe the variations of an
unknown degradation model in an interval form as:

∆ρ
k,i
≡ x̂ZEKF

ρk,i
− ρ0,i = bp,iβ

p + bp−1,iβ
p−1 + · · ·+ b1,iβ,

(21a)

∆ρk,i ≡ x̂
ZEKF

ρk,i
− ρ0,i = bp,iβ

p
+ bp−1,iβ

p−1
+ · · ·+ b1,iβ.

(21b)

It is worth noting that a linear EoL-RUL model has been
considered in this paper. Thus, the bounded EoL equations
are obtained as follows:

1) At t = 0, the system is assumed to be 100% healthy
with 0% degradation

2) Solve (21) with the previously estimated x̂ZEKF
ρk

and return
the coefficients b.

3) Resolve the same equation with the calculated coeffi-
cients b for ∆ρk = max(TH)%, where the max(TH) is
the experimentally obtained accepted threshold of each
power electronic components, and return βEoL.

4) Forecast the interval RUL equations as follows:

RULk,i = βEoL
k,i
− k, RULk,i = β

EoL
k,i − k, (22)

C. Optimal computation of λ∗,L∗α and Λ∗

1) LMI-based optimization of the tuning matrices: λ,Lα
and Λ play a significant role in the correction step of the pre-
diction of states and parameters. The optimal tuning serves the
whole prognosis framework and not limited to the JESP only.
In particular, the goal of tuning is to minimize the effect of the
uncertainties and increase the accuracy of the estimation due to
robustness constraints. Therefore, there exist few methods for
the computations of the tuning matrices that can guarantee an
optimal enclosure of zonotopes. The online technique is based
on the reduction of the FW−radius of the generator matrices
of zonotopes. It has shown remarkable performances, yet it is
limited to linear models and can consume more computational
time and process than the offline techniques. Hence, an LMI-
based optimization problem has been proposed to solve a
reduced and limited number of tuning matrices offline, where
only a simple arithmetic operation is computed online to obtain
the optimal tuning matrix. λ∗,L∗α and Λ∗ are considered the
optimal tuning matrices and are all tuned using the LMI-based
technique. For notations simplification purposes, only λ∗ is
addressed and the same techniques apply to L∗α and Λ∗ as
well. Given the LPV model in (4) and following the structure
of the zonotopic JESP in ZSM, RZSM and ZEKF, the optimal
tuning matrix λ∗ is computed offline if there exists a positive
scalar γ such that:

λ? = Ψ−1W. (23)

Hence, by introducing the matrices Q and R as tuning param-
eters, the proposed optimization problem is solved following
this form:

minimize
W,Ψ

γ

subject to[
γI I
I Ψ

]
� 0,

−Ψ ΨA−WC Ψ
√
Q

ᵀ
W

? −Ψ 0 0
? ? −I 0
? ? ? −R−1

 � 0

(24)

where ? denotes symmetrical elements. Furthermore, the LMI-
based framework (24) reduces and limits the maximum num-
ber of solving the optimization problem to N computations.
Consequently, only the interpolation of the offline-obtained
tuning matrices is computed online at each k as follows:
An approach is proposed to solve the LMI optimization
problem offline with reduced arithmetic operations. Based on
the augmented vector (7) and the model (4), ρk,i denotes the
varying parameters in zonotopic form as Xρk,i = 〈ρ0,i,Gρk,i〉.
Where ρ0,i is the center of the parameter zonotope Xρk,i and
denotes the nominal value of ρi.

Xρk,i ⊂ Rnρ+ : |xρk,i − ρ0,i| ≤ ρTH
i , ∀k > 0, (25)



where ρTH
i is the value of the statistically and experimentally

obtained TH of the physical components [12]. Thus, the
polytopic representation of (4) is obtained using the bounding
box approach and considering the range of variation of the
varying parameters.

xk+1 =
N∑
i=1

µi (ρk) (Aixk + Biuk), (26a)

yk =
N∑
i=1

µi (ρk) (Cixk + Diuk), (26b)

where µi are the coefficients of the polytopic decomposition
such that:

N∑
i=1

µi (ρk) = 1, µi(ρk) ≥ 0, ∀i = 1, . . . , N. (27)

Finally, a varying value for the tuning matrix (23) is obtained
as follows:

λ?(ρk) =
N∑
i=1

µi (ρk)λ?i , (28)

where λ?i are obtained by solving (24) at the vertices of the
polytopic model (26a)-(26b).

2) Online computation of the tuning matrices: There exists
a classical online method to compute the tuning parameter,
based on the minimization of the Frobenius norm of the gener-
ator vertices using. Additionally, the proof of the computation
of the optimal λ∗, Lα and Λ∗ has shown its independence
of the weighting matrix [1], [4]. λ∗on, Lαon and Λon∗ denote
the tuning matrices of the online classical approach, and are
determined (by only featuring λ∗on and applies for all) as:

λ∗kon
=

G̃kG̃
ᵀ
kC

CᵀG̃kG̃
ᵀ
kC + EυE

ᵀ
υ

. (29)

Remark. It is worth mentioning that the same tuning matrices
are obtained if the LMI-based optimization was solved online
or offline by interpolation. Nevertheless, it is preferable to
adopt the polytopic approach for the sake of less compu-
tational time and memory consumption, In addition to its
application to nonlinear systems unlike the online approach.

V. CASE STUDY

A 30 kW Boost converter is examined as an application
of the proposed prognostics approaches in terms of degraded
MOSFET. The cascading damage affects various parameters
in the system. Briefly, the interconnection of the components
complicates the estimation process of the states due to the
very slow degradation behaviors. Moreover, from the technical
perspective, the degradation models are nonlinear models that
are included into the system model. Thus, to reduce the
computational complexity of the online Jacobian linearization,
the system has been transformed into an LPV. See [2] for
detailed analysis about the degradation behaviors of the critical
components, their effects and their modeling with the full
numerical application which are not included in this paper

due to the size limitations. The following state-space matrices
characterize the average model of the boost converter with
MOSFET degradation:

Ak =


−1.136× 105 −1363 0 0

622.6 −0.00727− 0.0385x̂ρk −4452 −2397.26x̂2,k

0 130 0 0
0 0 0 1

,
(30a)

Bk =


113636.6 0

6226 356.1
0 200
0 0

 , (30b)

Ck =

[
−9.0909 0.909 0 0

0 0.052 1 0

]
, (30c)

Dk =

[
9.0909 0

0 −0.08

]
, (30d)

where xρ denotes the fault precursor of the MOSFET RON, the
switching frequency is 15 kHz and the duty cycle is d = 0.35.
Figure 2 illustrates the estimated zonotopic parameter X̂ρ and
shows an increment in the value of the on-resistance RON of
the MOSFET throughout the whole degradation process. The
other states such as input capacitor voltage, inductor current,
and output capacitor voltage are also affected by the cascading
damage. However, they are not illustrated in this paper due
the size limitations. The centers of the ZSM and the ZEKF
approaches are estimated with high accuracy when compared
to the empirical degradation model of MOSFET. Additionally,
the estimated bounds by the ZSM show a tighter enclosure
than the estimated bounds of the ZEKF.

Fig. 2. Zonotopic estimation of the varying parameter Xρ by ZSM and ZEKF
approaches

Moreover, based on the aforementioned explanation, both RUL
forecasting approaches require a zonotopic estimation of the
degraded parameter. Thus, Figure 3 illustrates the forecasted
bounded RUL by each approach. The empirical RUL of the
system is shown in green in function of cycles. Hence, the
ZSM provides a bounded RUL forecasting with full enclosure
around the empirical RUL. On the other hand, the results of
the polynomial RUL prediction of the ZEKF do not exceed
the safe zone of the empirical model. However, the bounds
converge towards the real EoL in a very conservative way



Fig. 3. Bounded RUL forecasting using the RZSM and the polynomial ZEKF
approaches

with narrow bounds.
As an example, for an online measurement at cycle = 6000,
the empirical RUL, the predicted zonotopic RUL [ ˜RUL, ˜RUL]
of the ZEKF, and the RZSM approaches are approximated
at 7700 cycles, [6510, 6750] and [6330, 7953] respectively.
Consequently, the RZSM provides the most consistent and
optimistic RUL bounds.

VI. CONCLUSIONS

A complete investigation about the performance of the two
proposed prognostics approaches has been addressed in this
paper. Zonotopes are employed for the sake of their known
flexibility and simple computations with high accuracy. In
broad, the proposed PHM is designed for dynamical systems
with unknown degraded parameters which is transformed into
an LPV model. Moreover, the ZSM and the ZEKF have
shown efficient estimation results with very close bounds, due
to the formulated LMI problem that guarantees an optimal
tuning for both estimators. Furthermore, an online bounded
RUL forecasting has been provided based on the estimated
zonotopic varying parameter in each approach. Thus, the
specially-designed RZSM for parameter estimation, predicts
the degradation models in a general exponential decay and in-
directly forecasts the RUL. On the other hand, the polynomial
prediction approach also provides a bounded RUL forecasting
based on polynomial models. Finally, the results have shown
that the RZSM is perfectly bounding the empirical RUL, and
too conservative RUL enclosures have been obtained by the
polynomial ZEKF approach. Current and future studies will
consider more degraded parameters in the system in order to
upgrade from micro-level to macro-level prognosis.
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