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ABSTRACT
The COVID-19 pandemic has caused a general shortage of personal protection products and ther-
apeutic devices, which has highlighted the need for each country to have its own production
resources and not depend solely on imports. Given the time that elapses between the onset of an
epidemic and its detection, as well as the time required to activate production and the lead time
of purchasing operations, it is necessary to have a permanent reserve, which we call shield stock, in
order to immediately meet the demand for equipment at the beginning and throughout the course
of the epidemic. This situation is analysed in order to identify the most relevant decisions in the
scenario described, formulate a cost optimisation model and develop procedures to find the most
economical combinationof shield stock, domestic production capacity and imports to guarantee the
immediate satisfaction of demand and the restoration of the shield stock after the epidemic, as a pre-
ventative measure. The procedure is illustrated with a specific pattern of the spread of the epidemic
and some numerical examples.
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1. Introduction

The COVID-19 pandemic, both because it was unex-
pected and because of its characteristic rapid expansion,
high mortality rate and the initial lack of vaccines or
treatments, has been an unprecedented challenge for the
health systems of all the world’s countries. Many of them
have suffered from an insufficient supply of personal pro-
tective equipment and devices or instruments needed
to diagnose and care for patients. In a pandemic like
COVID-19, some of these items must be available with-
out delay at the time they are needed, as their lack has
very serious or even fatal consequences.

Examples of these products are personal protec-
tive equipment (PPE), ventilators, diagnostic systems or
medicines for the treatment of the disease. To set out our
ideas, we will now refer to PPE on the understanding that
the developments we present are also applicable to other
products that have a demand with characteristics simi-
lar to those of PPE. Similar requirements of items such
as ammunition or specific materials can arise from situa-
tions of a different nature, such as the outbreak of conflict
or the sudden increase in demand for a fashion product,
but we will not refer to them in the rest of this work.

As the experience with COVID-19 has dramatically
shown, when an epidemic outbreak occurs the demand
for various products experiences a substantial and abrupt
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increase that often cannot be met with the available pro-
duction capacity. Therefore, in these cases and concern-
ing essential products, in order tomeet the demand at any
moment from the beginning to the end of the outbreak,
there must be a sufficient permanent stock and, possibly,
the country’s own production has to be complemented
with imports from countries with excess manufactur-
ing capacity. In addition, once the epidemic is over, the
system needs to be prepared for the next outbreak.

Hence, being prepared to adequately deal with an epi-
demic of this nature has a considerable cost that should
be minimised. Thus, the problem arises of designing a
procurement-inventory system with the best combina-
tion of permanent stock (henceforth called shield stock),
production capacity available, domestic production and
imports that will allow the required constraints to be
fulfilled.

The goal of this paper is to identify themost important
decisions in the scenario described, model the situation,
and develop procedures to find the optimal values of the
main elements of the procurement-inventory system cor-
responding to an item essential in the fight against the
epidemic.

The following section is devoted to an overview of the
related literature. Section 3 includes the assumptions that
define the problem, the notation and the formulation of
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the optimisation model. Section 4 sets out the calcula-
tion and optimisation of costs which, in Section 5, are
illustrated with the application to the case of a triangu-
lar evolution of the epidemic. Finally, Section 6 presents a
summary of the results and indications on possible future
lines of research.

2. Literature overview

The papers related more or less directly to the prob-
lem addressed in this study deal with epidemics, disrup-
tions, disasters and the impact of these events on supply
chains. Therefore, they are placed mainly in the fields of
humanitarian, disaster and health care management.

Both disasters and epidemics require as quick a reac-
tion as possible. However, disasters, i.e. sudden calami-
tous events such as earthquakes or floods, cause great
damage, loss and destruction, generating immediate and
important needs of resources for assistance. Epidemics,
on the other hand, last for weeks or months, with both an
ascending phase and a descending one; they generate a
continuous consumption of resources which, in the early
stages after the start of the outbreak, remains generally
low. The differences between both events must be taken
into account in logistics and inventory management.

Whybark (2007) pointed out that little literature was
available on disaster relief inventories and called for
research into their management. Nine years later, how-
ever, Balcik, Bozkir, and Kundakcioglu (2016), in a liter-
ature review on inventory management in humanitarian
supply chains, included seventy-five references on papers
proposing ‘policies and models to determine how much
to stock, where to stock and when to stock throughout
the humanitarian supply chain’. Some papers (Hale and
Moberg 2005; Rawls and Turnquist 2010; Jahre, Paziran-
deh, and Van Wassenhove 2016; Sharifyazdi et al. 2018;
Hansen, Friedrich, and Transchel 2020) focus mainly on
the pre-positioning of emergency supplies.

On the other hand, with an approach closer to that
adopted in the present paper, there is a predominance of
recent articles that consider pre- and post-disaster deci-
sions regarding inventorymanagement and procurement
in an integrated manner. To this end, Balcik and Ak
(2014) and Hu, Han, and Meng (2017) present two-stage
stochastic programming models for joint decision mak-
ing concerning inventory and procurement in human-
itarian relief. Torabi et al. (2018) point out that the
optimum levels of pre-position relief items are affected
by pre-disaster contractual agreements and post-disaster
procurements; they also indicate, however, that frame-
work agreements (Balcik and Ak 2014) frequently used
by humanitarian organisations can be considered as a
kind of inventory prepositioning, since they do not

rely on the suppliers’ post-disaster production capacities.
Although it has no direct relation with disaster manage-
ment, Takemoto andArizono (2020) is interesting insofar
as it analyses coordination in supply chains with capacity
reservation contracts.

Other papers devoted to disaster management (Boin,
Kelle, and Whybark 2010; Day 2014) focus on the
resilience of the disaster relief supply chain networks
and make recommendations to enhance supply chain
resilience. Of course, the resilience of the supply chains
is an important topic which is not always related to dis-
asters or epidemics and reviewing the literature on this
subject is beyond the scope of the present paper.

The COVID-19 outbreak, although relatively recent,
has already led to a certain number of published papers,
particularly about the impacts of the new virus on sup-
ply chains. Ivanov (2020) uses simulation to predict the
impact of epidemic outbreaks on global supply chains.
Ivanov and Dolgui (2020) discuss the viability of inter-
twined supply chains to improve resilience. Singh et al.
(2020) deal with the disruptions in food supply chains
caused by COVID-19 and they also indicate the need
to adopt mathematical approaches to deal with issues
related to manufacturing essential items and shortages of
healthcare equipment to combat the consequences of the
pandemic. Sodhi, Tang, and Willenson (2021) examine
the causes of the prolonged shortages of critical prod-
ucts in the US, as a consequence of the COVID-19, and
propose a research agenda to develop responsive supply
chains to fight future pandemics. Ivanov (2021) proposes
and discusses four adaptive strategies to maintain supply
chain viability when facing a pandemic.

Regarding epidemics, Dasaklis, Pappis, and Rachani-
otis (2012) provide an overview of the literature on their
control and the required logistics operations. In partic-
ular, the authors examine the contributions regarding
logistical attributes and methodologies. They show that
stockpiling medical resources was common practice in
order to face the consequences of influenza and sim-
ilar epidemics and that, in contrast, inventory replen-
ishment policies during an ongoing epidemic outbreak
were scarce; moreover, they point out that most papers
included in the review consider only the purchasing cost,
leaving aside other components of inventory manage-
ment (such as handling, picking, packing and prepar-
ing for shipment) that involve additional costs. Paul
and Venkateswaran (2018), who deal with the dynamic
replenishment of drugs during an epidemic, advocate
combining resource allocation with the appropriate sup-
ply chain management. They highlight the importance
of the detection threshold on the dynamics of the
epidemic and state that most of the resource alloca-
tion models assume that resources are already available.
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Significant examples of papers adopting this assumption
are Radonovich et al. (2009), Rebmann et al. (2011) and
Hashikura and Kizu (2009), who point out that even
the amount of PPE that should be stored in hospital
settings has been unclear. Harrington and Hsu (2010),
however, deal with the so-called Manufacturer Reserve
Programs, used bymanufacturers to promote stockpiling
of drugs by organisations such as hospitals in preparation
for epidemics.

Summing up, this concise analysis of the literature
shows that in order to face the consequences of an epi-
demic such asCOVID-19 it is necessary, before the detec-
tion of the outbreak, to adopt measures with regard to
essential products that include the formation of suffi-
cient stock to provide an immediate response in the early
stages of the epidemic’s spread. A robust and resilient
supply chain is also needed, which includes the possibil-
ity of purchasing the product from suppliers that have
stocks initially and manufacturing capacity throughout
the course of the epidemic.

However, we have not found direct precedents in
the literature that address the scenario described in this
work, which indicates the need to formalise a model and
develop the procedures to find optimal solutions.

3. Definition and formulation of the problem

In this section we establish the assumptions defining the
problem to be solved, and we formalise the objective
function and the constraints that configure the corre-
sponding cost optimisation model.

We consider a recurrent epidemic, which occurs at
times difficult to predict and has a first phase of ascent
and a second, usually longer, of descent, with a total dura-
tion of T units of time. The duration of epidemic cycles,
i.e. the time between the onset of one outbreak and that
of the next, is irregular, but its expected value is known.

The treatment of the epidemic requires PPE, whose
demand must be met promptly at all times. The func-
tion D(t)(0 ≤ t ≤ T) of PPE demand accumulated since
the beginning of the epidemic, expressed in PPE units, is
known. It is a derivable function, whereD′(t) = d(t) ≥ 0
is a continuous, unimodal function, with d(0) = d(T) =
0, which has a maximum at t̂, the peak of the epidemic.
Therefore, D(t) is strictly convex between 0 and t̂ and
strictly concave between t̂ and T, since its derivative is
increasing and decreasing during the first and the second
phases of the epidemic, respectively.

Although the unimodality of the demand rate does
not reflect all the real patterns of an epidemic spread,
since these may possibly include local oscillations, it can
be a reasonable approach in most cases, according to
the information relative to COVID-19 which has been

published in preprints (Rocha 2020; Shayak and Sharma
2020) or journal papers (Kim, Seo, and Yeom 2020).

In order to satisfy the condition that the demand be
met without delay, the health authorities have a shield
stock of s units of the product and an available domestic
capacity of PPE manufacturing equal to r PPE units per
unit of time, where it is supposed that r can adopt any
non-negative value. The PPE units obtained by means
of this available domestic production capacity will be
bought by the health authorities at a price of c MU. Let
p be the number of units produced using this available
capacity. The supply of these units can start τ ≤ t̂ units of
time from the beginning of the epidemic, where the term
τ includes both the time that elapses from the start of the
epidemic until its detection and the lead time of theman-
ufacturing plant. The average cost of having the capacity
reserve r is equal to ϕ(r)MUper epidemic cycle, where ϕ

is a known increasing function for r ≥ 0. Dedicated pro-
duction capacity is available to meet the regular demand
for PPE and to keep the level of shield stock constant
under normal circumstances.

Maintaining and holding the shield stock has an aver-
age cost of h MU per unit of PPE per cycle. After the
outbreak of the epidemic, the level of shield stock should
be restored to the same level as at the onset, not beyond
the instant T̂ ≥ T (for the sake of simplicity the case with
a different value of the stock at t = 0 and at t = T̂, which
require slight straightforward changes in the model, is
not developed here). Note that the cost h may have to
include that of replacing units because of spoilage, since
the time between successive outbreaks may be lengthy
in terms of the product’s life (Sodhi, Tang, and Willen-
son 2021, point out that managing a stockpile requires
procurement, inventory rotation, audits, and inspection
to ensure all items are in good working condition). It is
assumed that the units that make up the shield stock are
usable at the start of the pandemic (at least until produced
or bought units are available) and that the product has
a long enough life so that the units obtained during the
planning horizon do not need to be replaced in the course
of the pandemic.

The health authorities can also resort to buying from
external suppliers, at a price c̃ MU, q PPE units which
will be delivered from the instant τ̃ ≤ t̂ at the appropri-
ate pace. The number of units purchased does not have an
upper bound and can be freely set by the health author-
ities. Note that a part of the total units bought, qs, can
be used to reduce the amount of the shield stock, while
qa = q − qs ≥ 0 will only be used, if necessary, to com-
plete the total number of units required to restore the
level of the shield stock not later than T̂. Therefore,

p + qs + qa = D(T) (1)
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In the case of the first outbreak of COVID-19, it may
be that in some countries the moments of the onset of
domestic production and the arrival of imports (τ and τ̃ ,
respectively) have come after the peak of the epidemic.
However, in a model for the design of the protection sys-
tem it is reasonable to assume that these actions begin
shortly after detection of the outbreak, because large
stockswould otherwise be required. Additionally, the fact
of having operational domestic production capacity and
rapid access to imports provides more flexibility when
dealing with fluctuations in infections or a longer dura-
tion of the outbreak than was initially forecast. In any
case, relaxing the assumption τ , τ̃ ≤ t̂ requires only basic
changes that simplify both the optimisation model and
the corresponding calculations.

The assumption that q does not have an upper bound
can be relaxed, this implying only minor changes in the
model and a lower bound on r to assure the feasibility of
restoring the shield stock at T̂. Given r, let�(r; s, p, qs, qa)
be the expected value of the cost per epidemic cycle:

�(r; s, p, qs, qa) = c · p + h · s + c̃ · (qs + qa) (2)

And let γ (r) be the cost of the optimal combination of
shield stock level, domestic production and imports:

γ (r) = min
s,p,qs,qa

�(r; s, p, qs, qa) (3)

Then, ∀r ≥ 0, the optimal expected cost per epidemic
cycle is

�(r) = ϕ(r) + γ (r) (4)

where �(r) is the objective function to be minimised.

Additionally, from now on it will be assumed that τ ≤
τ̃ . Certainly, the opposite case, τ > τ̃ , may occur in prac-
tice. However, in order not to lengthen the paper unnec-
essarily, we will not deal with it, as it requires only simple
changes in the developments corresponding to assump-
tion τ ≤ τ̃ . These are slightly more complex because the
level of domestic production between τ and τ̃ must be
decided, which does not apply if τ > τ̃ .

To promptly satisfy the demand at anymoment during
the outbreak of the epidemic, the shield stock, together
with any imported units, must be sufficient to cover the
maximum difference between the accumulated demand
and the domestic production. LetΔ(r) be this maximum
difference when PPE units are produced at a rate r during
all the interval [τ ,T]:

�(r) = max
τ≤t≤T

(D(t) − r · (t − τ))

= max
τ≤t≤T

(D(t) − r · t) + r · τ (5)

Let ρD be theminimumvalue of r so that�(r) = D(τ )

(Figure 1). Then, �(r) strictly decreases from �(0) =
D(T) to �(r) = D(τ ) r ≥ ρD.

Given r ∈ [0, ρD], it must be taken into account that,
by virtue of the previously stated assumptions concern-
ing D(t), this maximum difference (when it is not neg-
ative) corresponds to a value of t ∈ [t̂,T]. Indeed, as
for t ∈ [τ , t̂] the expression D(t) − r · (t − τ) is a con-
vex function, if it has a point with null derivative in
[τ , t̂] it corresponds to a minimum which has a nega-
tive value (i.e. with the accumulated value of the domestic
production greater than the accumulated demand). The
function reaches its maximum positive value either at

Figure 1. Minimum production ratio, ρD, to satisfy the demand using only the minimum shield stock and domestically produced units.
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Figure 2. Maximum difference between accumulated demand and domestic production.

t = τ (where D(t) − r · (t − τ) = D(τ ) ≤ �(r) ∀r ∈
[0, ρD]) or at t = t̂. Hence, �(r) corresponds to the
unique value of t ∈ [t̂,T] such that the derivative of the
expression D(t) − r · (t − τ) with respect to t is equal to
0, which leads to d(t) = r (Figure 2).

Therefore, to determine �(r) we have to solve the
equation:

d(t) = r (6)

And substitute t with its solution θ(r) at D(t) −
(t − τ) · r.

From which it is:

�(r) = D(θ(r)) − (θ(r) − τ) · r (7)

And, from d�(r)
dr = dD(θ(r))

dθ · dθ
dr − dθ

dr · r − (θ(r) − τ)

and dD(θ(r))
dθ = r:

d�(r)/dr = τ − θ(r) ≤ 0 (8)

Moreover, d
2�(r)
dr2 = − dθ

dr = −
(
dr
dθ

)−1
and dr

dθ = dd(θ)
dθ ,

taking into account that θ(r) ≥ t̂, giving:

d2�(r)
dr2

= −
(
dd(t)
dt

)−1

|t=θ(r)
> 0 (9)

The function �(r) is, therefore, decreasing and
convex.

Therefore, the previously mentioned value ρD is, tak-
ing (7) into account, the solution of the equation

D(θ(r)) − (θ(r) − τ) · r = D(τ ) (10)

And, in order to promptly satisfy the demand at
any moment during the outbreak of the epidemic, the
condition

s + qs = �(r) (11)

must hold.
However, if c̃ < c, it is better to import than manufac-

ture the (T̂ − τ̃ ) · r units that could be obtained during
the interval [τ̃ , T̂] using the reserve of production capac-
ity. In view of this observation, when c̃ < c, themaximum
difference between total demand and domestic produc-
tion will be:

�̂(r) = D(T) − p (12)

where p is the domestic production during the interval
[τ , τ̃ ], so that:

0 ≤ p ≤ (τ̃ − τ) · r (13)

Moreover, theremust be enoughdomestic production,
together with any imports, to be able to restore the shield
stock at T̂. Let P(r) = (T̂ − τ) · r be the potential domes-
tic production between τ and T̂ and ρP so that P(ρP) =
D(T); i.e. the value of the available domestic production
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rate that would allow placing the desired level of stock at
time T̂ without resorting to imports. Then:

p ≤ P(r) = (T̂ − τ) · r (14)

ρP = D(T)

T̂ − τ
(15)

Therefore, given that the cost ϕ(r) is increasing, the
values of r to consider in the design of the system are
those belonging to [0, ρ̂] where

ρ̂ = max(ρD, ρP) (16)

Then, the shield stock, s, in order to satisfy the accu-
mulated demand at τ and τ̃ (and therefore, since D(t) is
convex in [0, t̂], at any moment in [0, τ̃ ]) must fulfil the
following condition:

s ≥ max(D(τ ),D(τ̃ ) − (τ̃ − τ) · r)
since any imported units cannot be available before τ̃ .

Now, let ρτ̂ be the production rate for which D(τ̃ ) =
D(τ ) + (τ̃ − τ) · r; i.e. the minimum production rate at
which the sum of a shield stock equal to D(τ ) and the
domestic production in [τ , τ̃ ] is sufficient to meet the
accumulated demand at τ̃ :

ρτ̃ = D(τ̃ ) − D(τ )

τ̃ − τ
(17)

Then, s has a lower bound, š(r), which depends on r as
follows:

š(r) = D(τ̃ ) − (τ̃ − τ) · r0 ≤ r ≤ ρτ̃ (18)

š(r) = D(τ ) ρτ̃ ≤ r ≤ ρ̂ (19)

Note that if τ̃ < τ , the lower bound of s is equal to
D(τ̃ ) ∀r ∈ [0, ρ̂] and the definition of ρτ̃ makes no sense.

When the available production rate, r, is not high
enough for D(T) units to be manufactured from τ to
T̂, units must be imported to cover the difference δ(r),
where

δ(r) = max(D(T) − P(r), 0)

= max(D(T) − (T̂ − τ) · r, 0) (20)

Since P(r) is the potential domestic production and
not the actual one, δ(r) is a lower bound on q, the total
number of imported PPE units. Even when the domes-
tic production capacity can provide D(T) PPE units
throughout the interval [τ , T̂], with the aim of minimis-
ing the total cost and depending on the values of h, c
and c̃, it may be appropriate to import a certain number
of units instead of manufacturing them using domestic
production capacity. As previously mentioned, part of

the imported units, qs, can be used to complement the
shield stock in order to cover the maximum difference
�(r) between accumulated demand and accumulated
domestic production. Therefore,

qs ≤ �(r) − š(r) (21)

Note that�(r) − š(r) ≥ 0 ∀r ∈ [0, ρ̂] because�(r) −
D(τ̃ ) + (τ̃ − τ) · r has a negative derivative (τ − θ(r) +
τ̃ − τ = τ̃ − θ(r) < 0) and therefore decreases
from �(0) − D(τ̃ ) = D(T) − D(τ̃ ) > 0 to �(ρτ̃ ) −
D(τ ) ≥ 0.

Suppose that to minimise the total cost qs has
to take its feasible maximum value, i.e. qs = �(r) −
š(r) (this happens, as will be made clearer below,
when c̃ < c + h) and qa just the value necessary
to restore, along with qs and the domestic produc-
tion, the shield stock, s, at T̂ (this happens when
c̃ ≥ c), i.e. qa = max(δ(r) − �(r) + š(r), 0). Let y(r) =
δ(r) − �(r) − š(r). Then, y(0) = δ(0) − �(0) + š(0) =
D(T) − D(T) + D(τ̃ ) = D(τ̃ ) > 0, while y(ρP) = δ(ρP)

− �(ρP) + š(ρP) = 0 − �(ρP)+D(τ )≤ 0. Therefore,
there is at least one value r ∈ [0, ρP] for which y(r) =
0. Moreover, y′(r) = –T̂ + θ(r) + τ − τ̃ < 0 for r ∈
[0, ρτ̃ ) and y′(r) = –T̂ + θ(r) < 0 for r > ρτ̃ , i.e. y(r) is a
strictly decreasing function in [0, ρP], which implies that
y(r) = 0 has a unique solution. Let ρa be this solution, i.e.

ρa = r|δ(r) − �(r) + š(r) = 0 (22)

Then, when qs = �(r) − š(r), qa = δ(r) − �(r) +
š(r) (r ∈ [0, ρa]) and qa = 0 (r ≥ ρa). Therefore, r > ρa
implies qs = q > δ(r). On the other hand, since δ(ρP) =
0, ρa ≤ ρP.

Now, we have all the necessary elements to formu-
late the model for minimising the total average cost
per epidemic cycle. The proposed notation, previously
introduced together with the adopted assumptions, is
summarised in the following list:

T Duration of the epidemic outbreak
D(t)0 ≤ t ≤ T Accumulated demand of PPE at t
d(t) = D′(t)0 ≤ t ≤ T Instantaneous rate of PPE demand
h Average holding cost per unit of PPE in

the shield stock during an epidemic
cycle

s Units of PPE in the shield stock
r Available domestic production rate
ϕ(r) Average cost, per epidemic cycle, of

having available a production rate
equal to r

τ Time, from the onset of the outbreak,
at which domestic production can
begin

c Price of domestically produced PPE
p Number of units of domestically

produced PPE

(continued).
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T̂ Time, from the onset of the outbreak, at
which the shield stock level should
be restored

P(r) = (T̂ − τ) · r Potential capacity of domestic
production through [τ , T̂]

δ(r) = max(D(T) − P(r), 0) Difference between the total demand
of PPE during the outbreak and
the potential capacity of domestic
production through [τ , T̂]

ρP = D(T)/(T̂ − τ) Minimum production rate to
manufacture D(T) units of PPE
through [τ , T̂]

š(r) Lower bound of the shield stock, which
depends on r.

τ̃ Time, from the onset of the outbreak,
at which the arrival of imported
units can begin

c̃ Price of an imported unit of PPE
ρτ̃ = (D(τ̃ ) − D(τ ))/(τ̃ − τ) Minimum production rate to meet

the demand in [τ , τ̃ ] with domestic
units when s = D(τ )

q Total number of imported units
�(r) = max

τ≤t≤T
(D(t) − r · (t − τ)) Maximum difference between the

accumulated values of demand and
domestic production

�̂(r) = D(T) − p Maximum difference between the total
demand and domestic production
when r ≤ ρτ̃ and nothing is
produced throughout [τ̃ , T̂]

ρD Production rate necessary to have
�(r) = D(τ )

ρ̂ = max(ρD , ρP) Upper bound on r
qs Imported units used, together with

those of the shield stock, to cover
the difference�(r)

qa Imported units used, together with qs ,
to cover the difference δ(r)

ρa Production rate for which, when qs
takes its maximum feasible value,
qa = 0

�(r; s, p, qs , qa) Average cost, per epidemic cycle, of
producing domestic units, importing
and maintaining the shield stock

γ (r) = min
s,p,qs ,qa

�(r; s, p, qs , qa) Minimum of � function for a given
value of r

�(r) = ϕ(r) + γ (r) Total average cost per epidemic cycle

Additionally, the notation for an optimal value of a
variable, x, is x∗.

Therefore, the optimisation model, bearing (1), (11)–
(14) and (16)–(18) in mind, can be formulated as follows
(in fact, this model can be separated into two: one for c̃ ≥
c and another for c̃ < c):

OPTM-1 minimise �(r) = ϕ(r) + �(r; s, p, qs, qa) =
ϕ(r) + c · p + h · s + c̃ · (qs + qa)

s.t.

p + qs + qa = D(T)

s + qs = �(r) c̃ ≥ c

s + qs = �̂(r) c̃ < c

s ≥ š(r)

p ≤ (T̂ − τ) · r c̃ ≥ c

p ≤ (τ̃ − τ) · r c̃ < c

r ≤ ρ̂

r, s, p, qs, qa ≥ 0

Although the model involves few variables, it is diffi-
cult to solve directly because of the non-linearity of the
objective function and the constraints s + qs = �(r) and
s + qs = �̂(r). Moreover, the constraint s ≥ š(r)must be
developed, since its formulation is different ((17) or (18)),
depending on the value of r. Note, however, thatOPTM-1
is equivalent to

OPTM-2 minimise �(r) = ϕ(r) + γ (r)

s.t. 0 ≤ r ≤ ρ̂

where γ (r) = min
s,p,qs,qa

�(r; s, p, qs, qa), subject to the app-

ropiate constraints. This way, the problem basically
involves finding the relevant expressions for γ (r), as then
the objective function depends on a single variable and its
optimisation does not present any special difficulty.

To determine γ (r), the following optimisation prob-
lem has to be solved:

OPTM-3 minimise �(r; s, p, qs, qa)

= c · p + h · s + c̃ · (qs + qa)

s.t.

p + qs + qa = D(T)

s + qs = �(r) c̃ ≥ c

s + qs = �̂(r) c̃ < c

s ≥ š(r)

p ≤ (T̂ − τ) · r c̃ ≥ c

p ≤ (τ̃ − τ) · r c̃ < c

s, p, qs, qa ≥ 0

where γ is not a variable, but a parameter. Using p + qs +
qa = D(T), p can be replaced with D(T) − qs − qa in
the objective function; on the other hand, using s + qs =
�(r) or s + qs = �̂(r), s can be replaced, respectively,
with �̂(r) − qs or �(r) − qs. After these replacements,
the following optimisation model is obtained:

OPTM-4 minimise c · D(T) + h · �(r)

+ (c̃ − c − h) · qs + (c̃ − c) · qa
s.t.

qs ≤ Δ(r) − š(r)

p ≤ (T̂ − τ) · r c̃ ≥ c

p ≤ (τ̃ − τ) · r c̃ < c
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p + qs + qa = D(T)

p, qs, qa ≥ 0

where the term h · �(r) in the objective function should
be replaced with h · Δ̂(r) when c̃ < c.

4. Cost optimisation for given values of r

As indicated in the previous section, to solve the prob-
lem the γ (r) function must be specified. This will come
from solving OPTM-4, whose objective function shows
that the structure of the optimal solution (i.e. the one that
minimises�(r) for a given value of r) depends essentially
on the relationship between the values of c, c̃ and h.

There are two main cases concerning the costs rela-
tionship, namely: c̃ < c and c ≤ c̃. Moreover, the char-
acteristics of the optimal solutions also depend on the
relationship of the value of r with those of ρτ̃ , ρqa , ρP
and ρP.

As only the two variables concerning imports, qs and
qa, are involved in the objective function of OPTM-4,
in order to find the optimal solutions each one of these
variables must take their maximum or minimum value
compatible with the constraints, whether its coefficient in
the objective function is negative or positive. The values
of the other decision variables, s and p, are easily deduced
from those of qs and qa.

4.1. Case c̃ < c

As pointed out above, production can be ruled out when
importing is cheaper than producing, except perhaps
in the interval [τ , τ̃ ], since domestic production in this
interval may contribute to reducing the level of the shield
stock and, therefore, the corresponding holding cost.
Moreover, since the maximum reduction of the shield
due to produced units isD(τ̃ ) − D(τ ) andϕ(r) is increas-
ing, it is not necessary to consider values of r greater than
ρτ̃ . Then, we have:

OPTM-5 minimise c · D(T) + h · �̂(r)

+ (c̃ − c − h) · qs + (c̃ − c) · qa
s.t.

qs ≤ �̂(r) − D(τ̃ ) + p

0 ≤ p ≤ (τ̃ − τ) · r
p + qs + qa = D(T)

p, qs, qa ≥ 0

where according to (12) �̂(r) = D(T) − p, giving qs ≤
D(T) − D(τ̃ ). Since the coefficients of qs and qa in the
objective function are negative, these variables must

take their maximum feasible values, i.e. qs = D(T) −
D(τ̃ ), qa = D(τ̃ ) − p, giving

�(r) = c̃ · D(T) + h · D(τ̃ ) + (c − h − c̃) · p (23)

To minimise this expression we must make p = 0 or
p = (τ̃ − τ) · r, depending on whether the sign of the
coefficient (c − h − c̃) is positive or negative, respectively
(if c − h − c̃ = 0, p can take any value between 0 and
(τ̃ − τ) · r). Hence:

For c̃ ≤ c − h:

qs = D(T) − D(τ̃ ) (24)

qa = D(τ̃ ) (25)

γ (r) = c̃ · D(T) + h · D(τ̃ ) (26)

Which is independent from r and,with respect toD(t),
depends only on the total demand, D(T), and on the
accumulated demand up to the instant τ̃ , D(τ̃ ).

For c − h ≤ c̃ < c:

qs = D(T) − D(τ̃ ) (27)

qa = D(τ̃ ) − (τ̃ − τ) · r (28)

γ (r) = c̃ · D(T) + h · D(τ̃ ) − (c̃ + h − c) · (τ̃ − τ) · r
(29)

which, with respect to D(t), as in the previous equation,
depends only on D(T) and D(τ̃ ).

4.2. Case c ≤ c̃

In this case OPTM-4 comes to

OPTM-6 minimise c · D(T) + h · �(r)

+ (c̃ − c − h) · qs + (c̃ − c) · qa
s.t.

qs ≤ �(r) − š(r)

p ≤ (T̂ − τ) · r
p + qs + qa = D(T)

p, qs, qa ≥ 0

The coefficient of qa is non-negative. However, that
of qs may be negative or non-negative, depending on
whether c̃ < c + h or c + h ≤ c̃.

Subcase c ≤ c̃ < c + h
Since the coefficients of qs and qa in the objective func-

tion are negative and non-negative, respectively, qs must
take the highest possible value, qs = �(r) − š(r), and qa
the lowest.

For 0 ≤ r ≤ ρτ̃ (š(r) = D(τ̃ ) − (τ̃ − τ) · r):
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0 ≤ r ≤ ρτ̃ and r ≤ ρa:

qs = �(r) − D(τ̃ ) + (τ̃ − τ) · r (30)

qa = D(T) − (T̂ − τ) · r − qs (31)

γ (r) = c̃ · D(T) + h · D(τ̃ )

− (h · (τ̃ − τ) + (c̃ − c)(T̂ − τ)) · r (32)

0 ≤ r ≤ ρτ̃ and r ≥ ρa:

qs = �(r) − D(τ̃ ) + (τ̃ − τ) · r (33)

qa = 0 (34)

γ (r) = c · D(T) + (h + c − c̃) · D(τ̃ )+
(c − c̃) · �(r) − (h + c − c̃) · (τ̃ − τ) · r (35)

For ρτ̃ ≤ r ≤ ρ̂ (š(r) = D(τ )):

ρτ̃ ≤ r ≤ ρ̂ and r ≤ ρa

qs = �(r) − D(τ ) (36)

qa = D(T) − (T̂ − τ) · r − qs (37)

γ (r) = c̃ · D(T) + h · D(τ ) + (c − c̃) · (T̂ − τ) · r (38)

ρτ̃ ≤ r ≤ ρ̂ and r ≥ ρa

qs = �(r) − D(τ ) (39)

qa = 0 (40)

γ (r) = c · D(T) + (h + c − c̃) · D(τ ) + (c̃ − c) · �(r)
(41)

Subcase c + h ≤ c̃
With the coefficients of qs and qa being non-negative in
the objective function, the sum of both variables must
have its minimum feasible value, i.e. qs + qa = δ(r); if
δ(r)>0, as the coefficient of qs is less than that of qa, the
former can take the maximum value compatible with the
constraints.

For 0 ≤ r ≤ ρτ̃ and r ≤ ρa:

qs = �(r) − D(τ̃ ) + (τ̃ − τ) · r (42)

qa = D(T) − (T̂ − τ) · r − qs (43)

γ (r) = c̃ · D(T) + h · D(τ̃ ) − (h · (τ̃ − τ)

+ (c̃ − c) · (T̂ − τ)) · r (44)

For ρτ̃ ≤ r ≤ ρ̂ and r ≤ ρa:

qs = �(r) − D(τ ) (45)

qa = D(T) − (T̂ − τ) · r − qs (46)

γ (r) = c̃ · D(T) + h · D(τ ) − (c̃ − c) · (T̂ − τ) · r (47)

ρqa ≤ r ≤ ρP:

qs = D(T) − (T̂ − τ) · r (48)

qa = 0 (49)

γ (r) = (c̃ − h) · D(T) + h · �(r)

− (c̃ − c − h) · (T̂ − τ) · r (50)

r ≥ ρP:

qs = qa = 0 (51)

γ (r) = c · D(T) + h · �(r) (52)

4.3. Summary of the cost optimisation procedure

In all the cases and subcases studied in 4.1 and 4.2, we
have deduced formulas giving, for each value of r, the
optimum values of the decision variables and of γ (r).
Note that the data and the functions involved in the
formulas are different, depending on the relationships
between the unit costs.

Therefore, given ϕ(r), the objective function �(r) =
ϕ(r) + γ (r) is also defined for any value of the parame-
ters (note that it is reasonable to suppose that the function
ϕ, corresponding to having a production rate available in
[τ , T̂],is different from that for availability in [τ , τ̃ ]).

The optimisation of �(r) does not present any major
difficulty, because it depends on a single variable and can
be computed for any of its values. Given the unit costs and
under the adopted assumptions γ (r), which is decreas-
ing, is derivable in each of the relevant subintervals of
[0, ρ̂]. If ϕ(r), which is increasing, is also derivable then
�(r) is derivable in each subinterval; the necessary con-
dition for a point to be optimal is when the derivative is
zero, or is a point with a discontinuity in the derivative
going from negative (left) to positive (right). However, it
is generally not possible to find a closed form expression
for the optimal value, r∗, of the available rate of domestic
production.

Once the optimal value of the available production
rate is obtained, finding the optimal values of the other
variables is straightforward, using the appropriate formu-
las from those we have seen in 4.1 and 4.2.

The optimisation procedure can be schematised as
follows:

Given the h, c, c̃,τ , τ̃ ,T and the function d(t):

• c̃ ≤ c − h: Find D(τ )and D(T), apply (24)-(26).
• c − h ≤ c̃ < c: Given ϕ(r), find D(τ̃ )and D(T), apply

(29) and (4), find r∗and apply (27)–(28) with r = r∗.
• c ≤ c̃ < c + h: Given ϕ(r), find D(τ ),D(τ̃ ), D(T),

�(r), ρP, ρD, ρ̂, ρτ̃ , and ρa.
0 ≤ r ≤ ρτ̃ and r ≤ ρa (CON1): apply (32) and (4).
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0 ≤ r ≤ ρτ̃ and r ≥ ρa (CON2): apply (35) and (4).
ρτ̃ ≤ r ≤ ρ̂ and r ≤ ρa (CON3): apply (38) and (4).
ρτ̃ ≤ r ≤ ρ̂ and r ≥ ρa (CON4): apply (41) and (4).
Find r∗ and apply (30)–(31), (33)–(34), (36)–(37) or

(39)–(40), according to whether r∗ fulfils, respec-
tively, CON1, CON2, CON3 or CON 4.

• c + h ≤ c̃: Given ϕ(r), find D(τ ),D(τ̃ ), D(T), �(r),
ρP, ρD, ρ̂, ρτ̃ , and ρa.
0 ≤ r ≤ ρτ̃ and r ≤ ρa (CON1): apply (44) and (4).
ρτ̃ ≤ r ≤ ρ̂ and r ≤ ρa (CON3): apply (47) and (4).
ρa ≤ r ≤ ρP (CON5) apply (50) and (4).
r ≥ ρP (CON6) apply (52) and (4).
Find r∗ and apply (41)–(42), (45)–(46), (48)–(49) or

(51), according to whether r∗ fulfils, respectively,
CON1, CON3, CON5 or CON 6.

Once the optimal solution has been found, the corre-
sponding objective function can be used to analyse the
sensitivity of the optimal values of the cost and vari-
ables with respect to variations of the data. Take, for
instance, Equation (35), and suppose that there is a delay,
ε, in detecting the onset of the outbreak, small enough
not to change the structure of the optimal solution. This
means an increase of �(r) equal to D(τ + ε) − D(τ )

and that the values τ and τ̃ have to be replaced, respec-
tively, with τ + ε and τ̃ + ε. From this observation it
can be deduced that the increase in the total cost due
to delay is equal to (h + c − c̃) · (D(τ̃ + ε) − D(τ̃ )) +
(c − c̃) · (D(τ + ε) − D(τ )), with, therefore, a local rate
of increase equal to (h + c − c̃) · d(τ̃ ) + (c − c̃) · d(t).
Similarly, a sensitivity analysis can be performed in

relation to other parameters, such as T̂ or to variations
in the ordinates of the function d(t).

5. Application to the case of triangular
propagation

In this section we use a triangular pattern of epidemic’s
spread (Figure 3) to illustrate the application of the above
results. It is not claimed, however, that the expansion of
a pandemic like COVID-19 fits this pattern. The mere
visual examination of the infection curves as a function
of time shows that a triangle that is never below the
observed curve can differ significantly from it especially
at the beginning and end of the epidemic, since initially
its growth is relatively slow and at the end,when the infec-
tion rate is already very low, the relative decrease also is.
However, the calculations to be made if a different pat-
tern is adopted are similar, though perhaps a little more
laborious, to those presented in this section.

Regarding the triangular spreading pattern, the nota-
tion and numeric values used are as follows:

d(t) = α · t(0 ≤ t ≤ t̂),

d(t) = β · (T − t) (t̂ ≤ t ≤ T) (53)

α · t̂ = β · (T − t̂ ) (54)

and therefore:

t̂ = β/(α + β) · T (55)

Figure 3. Triangular pattern of the epidemic spread.
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If, as usual, the descent of the epidemic lasts longer
than the rise, we will have β < α.

So:

D(t) = α

2
· t2 0 ≤ t ≤ t̂ (56)

D(t) = −β

2
· t2 + β · T · t − β

2
· T · t̂ t̂ ≤ t ≤ T

(57)

D(T) = α · β

2 · (α + β)
· T2 = α

2
· T · t̂ (58)

We also present numerical results for four values of c̃,
corresponding to the values:

h = 2, c = 5, α = 60, β = 15, T = 100,

τ = 5, τ̃ = 10, T̂ = 150

And, therefore:

t̂ = 20,D(τ ) = 750,D(τ̃ ) = 3, 000,

D(T) = 60, 000, ρτ̃ = 450, ρP = 413.79

It is also assumed that ϕ(r) = 60 · r.
Given that in this section we consider the four pos-

sible relevant relationships between h, c and c̃, there are
elements (values and functions) involved in more than
one of these cases; we will determine all of these elements
before presenting the solution for the four values of c̃
considered.

Equations (6) and (7)must be used to determine�(r).
Themaximumdifference between demand and domestic
production, ∀r ∈ [0, ρD], is reached at t|d(t) = r = β ·
(T − t), i.e. θ(r) = T − r/β (for r > ρD,�(r) = D(τ )).
Then:

�(r) = r2

2 · β
− (T − τ) · r + D(T) ∀r ∈ [0, ρD];

�(r) = D(τ ) ∀r > ρD (59)

From (45) we can determine ρD with the Equation
(10):

�(r) = r2

2 · β
− (T − τ) · r + D(T) = D(τ ) (60)

Which in the triangular case is, therefore, a second
degree equation.

d�(r)
dr

= r
β

− (T − τ) (≤ 0∀r ∈ [0,β · (T − τ)])

(61)

d2�(r)
dr2

= 1
β

> 0 (62)

Therefore �(r), as shown in Section 3, is convex and
non-increasing in the whole set of valid values of r (since
ρD ≤ β · (T − t̂) ≤ β · (T − τ)).

For the numerical example,

�(r) = r2

30
− 95 · r + 60.000 ∀r ∈ [0, ρD] (63)

And the solution of (46) �(r) = D(τ ) = 750 gives
ρD = 921.88 and ρ̂ = max(ρP, ρD) = 921.88.

On the other hand, solving (22), i.e. D(T) − (T̂ − τ) ·
r − �(r) + š(r) = 0, which is also a second degree
equation, gives for š(r) = D(τ̃ ) − (τ̃ − τ) · r = 3,000 −
5 · r, ρa = 52.85.

We now have all the elements to find the optimal
solution in any case for the value of c̃.
c̃ < c − h; example: c̃ = 2.

�∗ = 2 · 60, 000 + 2 · 3, 000 = 126, 000MU

r∗ = 0; s∗ = 3, 000; q∗
s = 57, 000; q∗

a = 3, 000; p∗ = 0

c − h ≤ c̃ < c; example: c̃ = 4.

�(r) = 60 · r + 246, 000 − 5 · r = 246, 000

+ 55 · r(0 ≤ r ≤ 450)

r∗ = 0; s∗ = 3, 000; q∗
s = 57, 000; q∗

a = 3, 000;

p∗ = 0;�∗ = 246, 000

c ≤ c̃ ≤ c + h; example: c̃ = 6.

0 ≤ r ≤ ρa = 52.85 γ (r) = 366, 000 − 155 · r
52.85 = ρa ≤ r ≤ ρτ̃ = 450

γ (r) = 363, 000 − 100 · r + r2

30
450 = ρτ̃ ≤ r ≤ ρ̂ = 921.88

γ (r) = 360, 750 − 95 · r + r2

30
�(r) = ϕ(r) + γ (r) = 60 · r + γ (r)

There are no sign changes of the derivative at the
points separating the intervals and �(r) has zero deriva-
tive at r = 525:

r∗ = 525;�(r∗) = 19, 312.50; s∗ = 750;

q∗
s = 18, 562.50; q∗

a = 0; p∗ = 41, 437.50;

�∗ = 351, 562.50

c + h ≤ c̃; example: c̃ = 8.

0 ≤ r ≤ ρa = 52.85 γ (r) = 486, 000 − 445 · r
52.85 = ρa ≤ r ≤ ρP = 413.79
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γ (r) = 480, 000 − 335 · r + r2

15
413.79 = ρP ≤ r ≤ ρ̂ = 921.88

γ (r) = 420, 000 − 190 · r + r2

15
�(r) = ϕ(r) + γ (r) = 60 · r + γ (r)

There are no sign changes of the derivative at the
points separating the intervals and the derivative of �(r)
is negative ∀r ∈ [0, ρ̂], so:

r∗ = 921.88;�(r∗) = 750; s∗ = 750; q∗
s = q∗

a = 0;

p∗ = 60, 000;�∗ = 356, 812.80

In the case that domestic production capacity has a
fixed cost, K, it is necessary to add it to the optimal
cost obtained by considering only the variable costs and
to compare the total cost with that corresponding to
r = 0. For example, for c̃=6 the cost would be K +
351, 562.50, which should be compared to the cost of hav-
ing a shield stock equal to 3,000 and buying D(T) units,
i.e. 2 · 3, 000 + 6 · 60, 000 = 366, 000.

6. Conclusions and possible extensions

The recent intense universal epidemic of COVID-19 has
emphasised the need to have robust systems for supply-
ing essential protection, diagnostic and treatment prod-
ucts, which experience a sudden and intense increase in
demand for a limited time when an epidemic or similar
incident occurs.

This paper describes the relevant decisions for deter-
mining the basic dimensions of a procurement and
inventory system for these products. It presents a model
to optimise the aforementioned decisions, in which the
key variable is the available rate of domestic produc-
tion, from which the level of the permanently available
shield stock and the quantity that must be imported
are derived. The analysis of the model shows that there
are four basic situations, depending on the relationship
between the purchase price of the product in the mar-
ket and the production and holding costs. Equations are
shown for each of the possible situations, under very
general assumptions; when adapted to the specific propa-
gation curve in each case, they allow the total cost (which
includes holding, production and purchasing costs) to
be determined in terms of the available rate of produc-
tion. The objective function results from adding this
function (which obviously decreases strictly in the range
of permitted values for the available rate of produc-
tion) to the increasing function, which gives the cost

corresponding to the availability of capacity. The prop-
erties of the objective function depend on those of the
two functions that compose it, but ultimately it is a
function of a single variable defined in a finite inter-
val, so its optimisation does not present any special
difficulty.

The use of the model is illustrated by its application to
a triangular-type epidemic spread and some numerical
examples.

Summing up, concerning the quantitative aspects of
the decisions involved, the model shows that the main
dimensions of the system can be specified, under very
general assumptions, with very little computation effort.

From the point of view of public health management,
the proposed model highlights some of the most rele-
vant decisions to protect citizens against an epidemic (the
logistics systems for the supply and distribution of the
product are outside the frame of the model). On the one
hand, it is necessary to size and set up a system of stor-
age and permanent conservation of shield stock. On the
other hand, there must be current contracts with domes-
tic industries that will guarantee the rapid availability of
productive capacity. Finally, it is necessary to establish the
commercial relations that will allow essential products to
be imported in the short term.

The model also illustrates the fact that the imported
units, in addition to being necessary in many cases to
complement domestic production in order to restore the
shield stock before the next outbreak of the epidemic, can
be useful for reducing costs. Even though theymight cost
more than domestically produced units, they allow the
size of the shield stock to be reduced and therefore save
the corresponding holding costs.

The limitations of this work derive from the assump-
tions adopted for the optimisation model approach. As
indicated in Section 3, these assumptions are reason-
ably realistic but might not reflect all the scenarios that
may actually arise. In some cases (unlimited imports,
positions in the outbreak of τ and τ̃ and the relation-
ship between both moments) it has already been indi-
cated that if these assumptions are modified the changes
required in the model are slight and may even sim-
plify the formulation and calculations. In others, they
require substantial modifications and, therefore, may be
proposed as future lines of research, such as: the consid-
eration of risk (in demand forecasts, the start, volume and
price of domestic production and imports), prices depen-
dent on quantity, the possible nonlinearity of the shield
stock holding costs, the existence of several supplierswith
limited capacities and different prices and, in the case of
items having a short life relative to the duration of the out-
breaks, the repercussions of product deterioration with
the passing of time.
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