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Abstract

In this work we demonstrate the first realization of a comagnetormeter in the
ultracold regime. In comparison to regular magnetometers, which are designed
to maximize their magnetic field sensitivity, a comagnetometer uses paired mag-
netometers in a differential configuration to cancel the effects of the magnetic
field and resolve weak dynamics that differently affect its constituents. Here, we
implement a comagnetometer within the f � 1 and f � 2 ground state hyper-
fine manifolds of a 87Rb spinor Bose-Einstein condensate (SBEC). The hyperfine
manifolds feature nearly opposite gyromagnetic ratios and thus the sum of their
precession angles is only weakly coupled to external magnetic fields, while being
highly sensitive to any effect that rotates both manifolds in the same way.
A fundamental limitation of the comagnetometer is f � 2 Ñ f � 1 hyperfine

relaxing collisions, where the liberated kinetic energy expels colliding atoms from
the optical trap. These collisions are state-dependent and can be avoided by pre-
serving the f � 2 spin state in a stretched configuration. We show how this can be
achieved at low magnetic fields, where the spin-dependent contact interaction is
the dominant energy contribution and stabilizes the spin orientation of the SBEC.
Under these conditions, the comagnetometer coherence time can be extended to
� 1 s and the observed common magnetic field suppression is 44.0p8q dB. The
technique is applied to precision measurement of the interhyperfine interaction
in 87Rb. The uncertainty in the obtained interhyperfine scattering lengths is
reduced by more than a factor three with respect to previously reported values.
We also present preliminary studies on phase-resolved parametric amplification
within a SBEC comagnetometer. In this case, the f � 2 manifold undergoes
parametric amplification, while the f � 1 manifold keeps track of the rotating
reference frame induced by the applied external magnetic field.
We describe technical improvements to the experimental system in two areas:

magnetic control and manipulation, and optical trapping and probing. The first
group of improvements includes the implementation of radiofrequency (rf) and
microwave (mw) driving and the development of a real-time rf source. The second
group of improvements includes a pulsed optical trapping technique, a digital
implementation of the laser locking scheme, and a hyperfine-selective Faraday
probing method.
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Resum

Aquesta tesi demostra el primer comagnetòmetre implementat en un sistema
d’àtoms ultrafreds. Els magnetòmetres són altament sensibles a canvis en el
camp magnètic. Els comagnetòmetres, en canvi, utlitzen magnetòmetres aparel-
lats diferencialment per a cancel.lar la dependència del camp magnètic extern i
discernir camps o interaccions que afecten de forma diferent als seus constituents.
En aquest treball, s’implementa un comagnetòmetre mitjançant una superposi-
ció coherent dels estats hiperfins f � 1 i f � 2 d’un condensat spinorial de
Bose-Einstein de 87Rb. Aquests estats tenen fraccions giromagnètiques gairebé
oposades, de manera que la suma dels seus angles de precessió no depèn del camp
magnètic però es veu doblement afectada per interaccions que roten els dos estats
en la mateixa direcció.
Les col.lisions de relaxació hiperfina f � 2 Ñ f � 1 limiten el temps de

coherència del comagnetòmetre. En concret, els àtoms que hi participen són
expulsats de la trampa òptica degut a l’energia cinètica alliberada en la col.lisó.
Aquest tipus de col.lisó depenen de l’estat de spin i es cancel.len per a estats que
maximitzen el spin a f � 2. En aquesta tesis demostrem la cancel.lació de col-
lisions de relaxació hiperfina a camps magenètics baixos, on la interacció de spin
és la contribució energètica dominant i estabilitza l’estat a f � 2. Sota aquestes
condicions, el temps de coherència del comagnetòmetre s’exten fins a � 1 s i el
soroll de camp magnètic es veu atenuat per 44.0p8q dB. El comagnetòmetre s’ha
usat per caracteritzar la interacció hiperfina en àtoms de 87Rb. En compracació
a estudis experimentals anteriors, s’ha aconseguit reduir en un factor tres la
incertesa en les longituds de dispersió entre estats hiperfins. També presentem
experiments preliminars d’amplificació paramètrica amb resolució de phase, on
l’amplificació paramètrica té lloc a f � 2 i les rotacions magnètiques del sistema
de referència són mesurades de forma simultània a f � 1.

Els avenços tècnics es divideixen en millores del control i de la manipulació
magnètica, així com en millores del confinament i de la detecció òptica. Els
primers inclouen els sistemes de manipulació atòmica mitjançant radiofreqüència
i microones, com també el desenvolupament d’una font de radiofreqüència amb
control en temps real. Els segons inclouen una tècnica de confinament polsat,
la digitalització del sistema d’estabilització làser i la detecció òptica d’ambdós
estats hiperfins.
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1
Introduction

The research on Bose-Einstein Condensation (BEC) in ultracold quantum gases
has undergone an explosive evolution since its first realisations in 1995 [1, 2, 3].
While the early publications were centred around the smoking-gun signatures
of BECs and distinct magnetic trapping techniques [1, 2, 3, 4, 5, 6], the ex-
perimental research rapidly moved to explore low-energy excitations [7, 8, 9],
superfluidity and vortices [10, 11], interference between BECs [12, 13], non-linear
interactions and soliton oscillations [14, 15]... In fact, reference text books and
review articles that address the full research on BECs in ultracold atomic gases
(e.g. [16, 17, 18, 19]) date back to the early 2000s, beyond which the explo-
rations branched into different subfields. This work belongs to the subfield of
Spinor Bose-Einstein Condensates (SBECs), i.e. BECs with multiple internal
spin states. The experimental realisation of SBECs required the simultaneous
trapping of multiple spin states, which was initially achieved by magnetically
trapping spin states with similar gyromagnetic ratios [13, 20] and by the intro-
duction of optical trapping techniques [21, 22]. The latter method became the
workhorse for future SBEC studies in ultracold atoms, including all-optical for-
mation of SBECs [23]. A thorough review on the theoretical and experimental
advances in SBEC can be found in [24] and [25], respectively. Relevant to this
thesis are SBEC magnetometry, studies on intra- and interhyperfine interaction
parameters and parametric spin amplification. Advances in these fields are out-
lined in the following.
Magnetometry. Spinor Bose-Einstein Condensates feature Á 1 s long coherence

times and typical spin domains below À 10 µm, which result in spin dynamics
that are highly sensitive to the magnitude and spatial distribution of the applied
magnetic field. These unique properties are leveraged by SBEC magnetometers.
Based on the underlying spin readout technique, we distinguish between SBEC
magnetometers using absorption imaging and those using dispersive light-atom
interaction. While absorption imaging is a destructive technique, dispersive imag-
ing reveals the in-situ atomic spin dynamics without hindering the evolution of
the SBEC. Magnetometers based on absorption imaging have been used to ex-
plore magnetic field structures in the vicinity of atomic chip traps [26, 27], to
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1. Introduction

investigate local magnetic fields induced by dipole-dipole interactions [28] and to
characterize AC magnetic fields [29]. On the other hand, polarization-dependent
phase-contrast imaging [30] has been used for high precision magnetometry [31]
and for revealing helical spin structures in presence of external magnetic field
gradients [32]. Another dispersive imaging technique is collective Faraday prob-
ing, which has been applied to magnetometers implemented on single-domain
SBECs [33]. Magnetometers operating in this regime offer unprecedented volume-
adjusted sensitivity [34].
Characterisation of intra- and interhyperfine interaction parameters. The spin

dynamics and ground state properties of SBECs not only depend on the external
magnetic field, they are also strongly influenced by the interactions among the
different spin components [24]. These are typically parametrized through intra-
and interhyperfine s-wave scattering lengths, which describe the two-body col-
lisional interaction between spin states within the same and distinct hyperfine
manifolds. The scattering lengths can be estimated by comparing the measured
SBEC spin dynamics to their theoretical model. In the case of intrahypefine
scattering lengths this has been done for spin changing collisions and collision-
ally induced Rabi oscillations between two-particle Zeeman states in an optical
lattice [35], spin mixing dynamics [36, 37] and by studying spin domain bound-
aries [22]. Further examples are the work by Harber et al. [38], where the 87Rb
intrahyperfine scattering lengths were characterised by resolving meanfield shifts
through spectroscopy, and the work by Knoop et al. [39], where 23Na Feshbach
resonances were experimentally determined, yielding a better estimation of the
underlying collision potentials and the s-wave intrahyperfine scattering lengths.
Intrahyperfine scattering lengths have gathered less attention. In the particular
case of 87Rb the immiscibility between states |f � 1,mf � �1y and |2, 1y has
been quantitatively studied via ring excitations [40] and collective trap oscilla-
tions [41]. These measurements reported a single scattering length to characterise
the interaction between hyperfine manifolds. The full set of spin-dependent in-
trahyperfine scattering lengths and the corresponding ground state diagram were
recently characterised by Eto et al. [42, 43].
Parametric amplification. One of the unique assets of SBECs is the non-linear

interaction among spin components which, in analogy to an optical medium ex-
hibiting a χp2q non-linearity, can lead to degenerate parametric amplification and
sub-Poissonian statistics, a.k.a. squeezing [44]. The process is intuitively un-
derstood for a f � 1 SBEC initially prepared in |f � 1,mf � 0y. Spin mixing
couples the spin pair configurations |1, 0yb|1, 0y and |1,�1yb|1,�1y. When both
configuration have similar energies, the coupling becomes resonant and results in
a phase-sensitive amplification of the atomic populations in |1,�1y and |1,�1y.
At the same time, the pair-wise creation of atoms in |1,�1y and |1,�1y yields
correlations and squeezing in their relative atom numbers. The first experimen-
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tal realization of a SBEC parametric amplifier was reported by Leslie et al. [45],
demonstrating up to 30 dB amplification in the initial spin fluctuations across the
condensate. These initial spin fluctuations or seeds can be of classical or quan-
tum nature. Classical seeds are typically originated by radio frequency noise and
share the same spatial wavefunction as the original SBEC field. On the other
hand, quantum seeds arise from vacuum fluctuations and contribute equally to
all spatial modes. Klempt et al. [46] reported parametric amplification seeded
by vacuum fluctuations and the attendant spontaneous breaking of spatial and
spin symmetry [47]. Parametric amplification also finds application in precision
metrology and quantum-enhanced SU(1,1) interferometers, which use non-linear
beam splitters to reach sensitivities close to the Heisenberg limit [48]. This has
been experimentally demonstrated for SBECs initially prepared in the unstable
|2, 0y state of 87Rb [49, 50] and more recently for single mode BECs of 23Na in
the |1, 0y state [51]. In these works, the dynamics were sensitive to seedings in
the |f,�1y states with relative atom numbers as low as 0.6{400 � 0.15% and
35{p3� 104q � 0.12%, respectively.

About this thesis
In this thesis we extend the single-mode SBEC magnetometer reported by Pala-
cios et al. [33] to create a SBEC comagnetometer, i.e. a pair of co-placed magne-
tometers implemented within a single SBEC. While magnetometers feature high
magnetic field sensitivities, in a comagnetometer the common magnetic field con-
tributions are strongly suppressed through a differential measurement. A comag-
netometer retains sensitivity to effects that couple to its internal constituents
differently than does the magnetic field. These contributions are typically weak
and buried under the magnetic field noise of regular magnetometers. Comagne-
tometers have been used since the late 1960s for searches of new type of physics
including anomalous spin interactions, spin-gravity couplings, Lorentz invariance
and CPT violation, as well as for gyroscopy (see Chapter 6 for relevant references).
Our SBEC comagnetometer is implemented on a coherent superposition of the
f � 1 and f � 2 hyperfine manifolds, which operate as independent magnetic
sensors but share the same spatial wavefunction. The development of the SBEC
comagnetometer was reported in [52] and yielded a magnetic field suppression of
44.0p8q dB and coherence times of � 1 s.

Motivated by the the work of Eto et al. [42], we have applied the SBEC
comagnetometer strategy for precision measurements of the interhyperfine scat-
tering lengths of 87Rb. The work was reported in [53] and additionally tackles
a recurrent systematic uncertainty in cold atom experiments: the uncertainty in
the trap conditions and mean density. The interhyperfine interaction parameters
as well as for the calibration of the trap conditions are obtained as best estimates
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1. Introduction

from single-mode meanfield simulations fitted to the observed SBEC dynamics.
One of the original goals of this work was the development of a phase-resolving

parametric spin amplifier. In fact, although we only present preliminary results
on this topic, it was the driving force for developing our SBEC comagnetome-
ter. The here presented spin amplifier uses a coherent superposition of the 87Rb
groundstate hyperfine manifolds, where f � 2 undergoes parametric amplifica-
tion of the modes in |2,�1y, while f � 1 keeps track of the rotating reference
frame and allows to retrieve the phase of the original seeds. We observe de-
terministic amplification of the |2,�1y populations with relative seeds as low
as � 5{105 � 0.005%, close to an order of magnitude smaller than the values
reported in [49, 50, 51].
The thesis is organized as follows. Chapter 2 provides the theoretical back-

ground for a SBEC that spans the f � 1 and f � 2 manifolds of 87Rb. Chap-
ter 3 describes the dispersive light-atom interaction and provides the theoretical
background for Faraday rotation probing. Chapter 4 introduces coherent spin
manipulations, applicable to radiofrequency drivings of Zeeman substates within
f � 1 and f � 2 as well as to microwave drivings between manifolds. Chapter 5
presents the technical developments of this thesis. The key contributions are the
development of a real-time radiofrequency source, the digitization of the laser
locking scheme and the implementation of hyperfine-selective Faraday probing.
Chapter 6 and Chapter 7 cover the SBEC comagnetometer and its application to
the estimation of the interhyperfine scattering lengths in 87Rb, closely following
the discussions in [52, 53]. Chapter 8 is devoted to the conclusions and outlook.
The discussion is complemented with details on the calculations for the effec-

tive volume (Appendix A), code examples for the real-time rf source and digital
PLL laser locks (Appendices B and C), preliminary results on phase-resolving
parametric amplification (Appendix D) and supplementary information on the
experimental sequences (Appendix E).
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2
Description of a Spinor

Bose-Einstein condensate

Although the pioneering Bose-Einstein experiments [1, 2, 3] were realized in spin-
1 and spin-2 systems, with 3 and 5 respective Zeeman substates, the magnetic
trapping limited the dynamics to the most low-field seeking Zeeman substate.
These realizations fall into the category of scalar Bose-Einstein condensates and
are described by a scalar order parameter. A spinor Bose Einstein (SBEC) ex-
tends the concept of macroscopic matterwaves to systems that are allowed to
explore their spin degree of freedom, which became accessible through the devel-
opment of spin-insensitive optical trapping techniques [22, 54].
In this section we revisit the frameworks for describing a spinor Bose-Einstein

condensate in mean-field theory and under the single-mode approximation. Un-
der these simplifications the state of the system is given by a complex (CN )
vector and many spin dynamics are intuitively mapped to a Bloch sphere. We
will define the single-particle, intrahyperfine and interhyperfine contributions to
the mean-field energy and how to compute from them the dynamics of the system.

2.1. Mean-field formalism

A SBEC is generaly described by a vectorial field operator Ψ̂prq that fulfils the
canonical commutation relation rΨ̂pfq

m prq, Ψ̂pf 1q
m1 pr1q:s � δm,m1δf,f 1δpr� r1q, where

δi,j and δprq are the Kronecker delta function and the Dirac delta distribution,
respectively [17, 55, 56]. The components of the vector order parameter are la-
beled by superindex f and subindex m � �f, ...f , which represent the total spin
and its projection along the z axis. The vectorial order parameter is suited to ex-
press the Hamiltonian of ultracold many-body system. Including one-body (non-
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2. Description of a Spinor Bose-Einstein condensate

interacting) and two-body (interacting) contributions, the Hamiltonian reads

Ĥ � Ĥno-int � Ĥint ,

Ĥno-int �
»
dr
� ¸
f,m

Ψ̂pfq
m prq:

�
� ~2

2M∇
2
�

Ψ̂pfq
m prq �

¸
f ,m

V pfq
m prq Ψ̂pf1q

m1
prq: Ψ̂pf2q

m2
prq

�
,

Ĥint �
¼

dr dr1
¸

F,M
U
pFq
M pr, r1q Ψ̂pf1q

m1
prq: Ψ̂pf2q

m2
pr1q: Ψ̂pf3q

m3
prq Ψ̂pf4q

m4
pr1q ,

(2.1)
where M is the atomic mass and ~ the reduced Planck constant. We write the
one-body (non-interacting) potential as V pfq

m prq, where f � pf1, f2q and m �
pm1,m2q. Similarly, we write the two-body interaction terms as U pFqM pr, r1q and
their indices as F � pf1, f2, f3, f4q and M � pm1,m2,m3,m4q.
We follow [16, 24, 25] and introduce the mean-field approximation where the

operators Ψ̂pfq
m prq forming the vectorial order parameter are substituted by C

functions representing their locally evaluated expectation (mean) values with
respect to the many-body ground state. Under this simplification, the vectorial
order parameter and Hamiltonian in Eq. (2.1) transform into

Ψ̂pfq
m prq ÝÑ Ψpfq

m prq � xΨ̂pfq
m prqy , (2.2a)

Ĥ ÝÑ E � xĤy . (2.2b)

We refer to Ψpfq
m and E as the mean-field order parameter and the mean-field

energy, respectively. Under this simplification, the density of atoms nprq and the
total number of atoms NA become:

nprq �
¸
f,m

|Ψpfq
m prq|2 , (2.3a)

NA �
»
dr nprq . (2.3b)

Applying the prescriptions in Eqs. (2.2) to the Hamiltonian in Eqs. ( 2.1) yields:

E � Eno-int � Eint ,

Eno-int �
»
dr
� ¸
f,m

Ψpfq
m prq�

�
� ~2

2M∇
2
�

Ψpfq
m prq �

¸
f ,m

V pfq
m prq Ψpfq

m prq� Ψpfq
m1 prq

�
,

Eint �
¼

dr dr1
¸

F,M
U
pFq
M pr, r1q Ψpf1q

m1
prq� Ψpf2q

m2
pr1q� Ψpf3q

m3
prq Ψpf4q

m4
pr1q .

(2.4)
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2.1. Mean-field formalism

Note that the terms Eno-int and Eint, which are the one-body (non-interacting)
and two-body (interacting) mean-field energies, scale differently with respect the
atom number NA. In fact, their energy contributions are of order OpNAq1 and
OpNAq2, respectively.
While the above Eqs. (2.4) are written in a very general form, we use them to

illustrate the effect of a further simplification of the mean-field treatment in case
the spatial and spin part of the order parameter factorize. This simplification
is known as the single mode approximation (SMA) and applies to systems in
which the spin-dependent interaction energy is much weaker than the kinetic
energy contribution such that it is energetically costly to develop spin textures
[24]. Under the SMA, the mean-field order parameter becomes

Ψpfq
m pr, tq � ΨSMAprq ξpfqm ptq , (2.5)

where ΨSMAprq describes the spatial distribution of the condensate and ξ
pfq
m ptq

the time-dependent spin amplitudes. They are normalized as follows:»
dr|ΨSMAprq|2 � 1 , (2.6a)¸
m

|ξpfqm |2 � N
pfq
A , (2.6b)

¸
f

N
pfq
A � NA . (2.6c)

Within the SMA and for a conserved atom number NA, the kinetic energy
becomes a constant energy contribution. Similarly, when the partial populations
N
pfq
A are independently conserved, there is a particular subset of potentials and

two-body interactions terms that reduce to either a global or a f -dependent (but
m-independent) constant energy contribution. We list them in Table 2.1.
These contributions result in a global or f -dependent (but m-independent)

phase evolution, which are not resolved in the experiments of this work. We
henceforth neglect them by explicitly removing the kinetic energy term from the
mean-field energy and implicitly excluding contributions arising from terms listed
in Table 2.1. This yields:

E � Eno-int �Eint �
¸
f ,m
Vpfqm ξpf1q

m1

�
ξpf2q
m2

�
¸

F,M

U pFqM
Veff

ξpf1q
m1

�
ξpf2q
m2

�
ξpf3q
m3

ξpf4q
m4

. (2.7)

In Eq. (2.7), the spatial dependence has been integrated out and the exter-
nal potential and two-body interaction are now captured by the terms Vpfqm �³
dr|ΨSMAprq|2V pfq

m prq and U pFqM � ´
dr dr1|ΨSMAprq|2|ΨSMApr1q|2U pFqM pr, r1q. In
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2. Description of a Spinor Bose-Einstein condensate

Form Description
V f

mprq9δf δm Spin-independent potential.
V f

mprq9δf ,fδm Spin-f potential, m-independent.
U
pFq
M pr, r1q9δFδM Spin-independent interaction.

U
pFq
M pr, r1q9δF,fδm1,m3δm2,m4 Spin-f interaction, m-independent.

U
pFq
M pr, r1q9δf1,f3,fδf2,f4,f 1δm1,m3δm2,m4 Spin-f, f 1 interaction, m-independent.

Table 2.1.: Constant energy contributions to manifold f (within SMA and as-
suming independently conserved N

pfq
A ). Concatenated Kronecker

deltas are written as δi,j,k,l,... � δi,jδi,kδi,l..., which yields 1 when
i � j � k � l � ... and 0 otherwise. The vectors indices are
defined as f � pf1, f2q, m � pm1,m2q, F � pf1, f2, f3, f4q and
M � pm1,m2,m3,m4q.

the case of a two-body interaction described by a pseudopotential U pFqM pr, r1q �
U
pFq
M δpr � r1q, the latter integral becomes U pFqM � U

pFq
M {Veff, where the effective

volume is Veff � p³ dr3|ΨSMAprq|4q�1. The calculation of Veff under the Thomas-
Fermi approximation is described in Appendix A.
Eq. (2.7) also demonstrates that, within the SMA, the spin state of a SBEC

as well as its energy are fully described by a complex vector, whose entries are
the spin amplitudes ξpfqm . Here and throughout this thesis we will restrict the
description to a spinor BEC in the 52S1{2 ground state of 87Rb, which features a
hyperfine levels doublet: f � 1 and f � 2. The corresponding Zeeman sublevels
span an 8-dimensional basis set in terms of which the spin order parameter is
written:

ξ � ξp1q ` ξp2q �

�
����
ξ
p1q
�1

ξ
p1q
0

ξ
p1q
�1

�
���`

�
����������

ξ
p2q
�2

ξ
p2q
�1

ξ
p2q
0

ξ
p2q
�1

ξ
p2q
�2

�
���������

(2.8)

In the following, the main contributions to Eno-int and Eint (i.e. energy terms
of the form Vpfqm and U pFqM ) are discussed. These are the quadratic and linear
Zeeman shifts and the intra- and interhyperfine interaction, respectively.
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2.2. Linear and quadratic Zeeman shifts

2.2. Linear and quadratic Zeeman shifts
The one-body Hamiltonian describing the hyperfine structure and the coupling
to the an external magnetic field in the 52S1{2 groundstate of 87Rb is [57]:

Ĥhfs � ĤB � Ahfs î � ĵ� µB

�
gsŝ� gl l̂� gi î

	
�B , (2.9)

where µB is the Bohr magneton and B the external applied magnetic field. The
operators l̂,̂i,ŝ denote the orbital angular momentum, the nuclear spin and the
electronic spin, respectively. The magnetic dipole constant Ahfs, the Landé fac-
tors gs, gl, gi and the corresponding quantum numbers for the operators above are
given in Table 2.2. The total electron angular momentum is written as ĵ � l̂� ŝ,
while for the ground state l � 0, so that j � 1{2.

Parameter Symbol Value Ref.

Magnetic dipole constant Ahfs h� 3.417 341 305 452 15p5qGHz [58]
Spin Landé factor gs 2.00231930436256p35q [59]

Orbital Landé factor gl 0.9999936p9q [57]
Nuclear Landé factor gi 0.0009951414p10q [60]

Electron spin s 1{2
Orbital ang. moment l 0

Nuclear spin i 3{2

Table 2.2.: Constants and quantum numbers describing the hyperfine structure
and coupling to external magnetic fields in the 52S1{2 groundstate of
87Rb. We denote by h the Planck constant.

We write the hyperfine angular momentum operator as f̂ � ĵ� î, where i � 3{2
and f P t1, 2u. The hyperfine basis elements t|f,myu are the eigenstates of f̂2

and f̂z (quantization axis along z). In this basis set, the Hamiltonian becomes:

xf 1,m1| Ĥhfs � ĤB |f,my �Ahfs

2 rfpf � 1q � sps� 1q � ipi� 1qs δf 1,fδm1,m

�µBBz
¸

ms,mi

pgsms � gimiq Cf
1,m1

s,ms,i,mi
Cf,ms,ms,i,mi ,

(2.10)

where Cf,ms,ms,i,mi are the Clebsch-Gordan coefficients, which under the Condon-
Shortley phase convention are real valued, i.e. Cf,ms,ms,i,mi � xs,ms, i,mi|f,my �
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2. Description of a Spinor Bose-Einstein condensate

xf,m|s,ms, i,miy. The running indices ms and mi, are the eigenvalues of ŝz and
ŝi, respectively and are constrained to ms P r�s, ss and mi P r�i, is.

The Ahfs term is the strongest energy contribution of Eq. (2.10), yielding a
h� 6.8 GHz energy splitting between f � 1 and f � 2 states. For the magnetic
fields of this work (Bz � 120 mG), the µBBz term can be treated as a week
perturbation (µBBz{Ahfs � 5 � 10�5), which breaks the degeneracy between
distinct Zeeman sublevels. The resulting energy splitting is approximated into a
linear (9B) and a quadratic (9B2) term1, which are the main contributions to
the non-interacting Hamiltonian:

Ĥno-int � Ĥ
p1q
no-int ` Ĥ

p2q
no-int , (2.11a)

Ĥ
pfq
no-int � ppfqf̂ pfqz � qpfqf̂2pfq

z , (2.11b)

where ppfq and qpfq are the coefficients defining the linear (LZS) and quadratic
(QZS) Zeeman shifts. By numerically diagonalizing Eq. (2.10) we find that pp1q
and pp2q differ slightly in magnitude but are reversed in sign, while, for the pre-
cision of this work, qp1q and qp2q are simply reversed. Hence, we write the LZS
and QZS as:

pp1q � ~Bγp1q ÝÑ γp1q � �γ0 � γs , (2.12a)
pp2q � ~Bγp2q ÝÑ γp2q � �γ0 � γs , (2.12b)
qp1q � ~B2βp1q ÝÑ βp1q � �β0 , (2.12c)
qp2q � ~B2βp2q ÝÑ βp2q � �β0 . (2.12d)

The LZS is expressed in terms of the gyromagnetic ratios γp1q and γp2q and the
linear coupling constants γ0 � 2π � 700.27 kHz{G and γs � 2π � 1.39 kHz{G.
For the QZS we have introduced the quadratic coupling constant β0 � 2π �
71.74 Hz{G2.
The single particle Hamiltonian in Eqs. 2.11 is explicitly written in a hyperfine-

dependent notation, where f̂ pfqi are the spin operators along direction i P tx, y, zu
for f � 1 and f � 2. Of particular convenience are their matrix representation
rf̂ pfqi smn � xf,m|f̂ pfqi |f, ny, through which the evaluation of observables and
energy contributions reduce to linear operations involving spin-f matrices and
the vectorial order parameter ξ � ξp1q ` ξp2q. The corresponding spin-1 and

1We omit the h � 6.8 GHz energy splitting between f � 1 and f � 2 since it is part of the
constant energy contributions listed in Table 2.1.
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2.2. Linear and quadratic Zeeman shifts

spin-2 matrices are:

f̂ p1qx � 1?
2

�
�0 1 0

1 0 1
0 1 0

�
 f̂ p2qx � 1

2

�
�����

0 2 0 0 0
2 0

?
6 0 0

0
?

6 0
?

6 0
0 0

?
6 0 2

0 0 0 2 0

�
���� (2.13a)

f̂ p1qy � i?
2

�
�0 �1 0

1 0 �1
0 1 0

�
 f̂ p2qy � i

2

�
�����

0 �2 0 0 0
2 0 �?6 0 0
0

?
6 0 �?6 0

0 0
?

6 0 �2
0 0 0 2 0

�
���� (2.13b)

f̂ p1qz �
�
�1 0 0

0 0 0
0 0 �1

�
 f̂ p2qz �

�
�����

2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 �1 0
0 0 0 0 �2

�
���� (2.13c)

We use the spin matrices to compute the mean values of the spin operators
F
pfq
i � xf̂ pfqi y and F 2pfq

i � xf̂2pfq
i y:

F
pfq
i � ξpfq

:

f̂
pfq
i ξpfq �

¸
m,n

ξpfq
�

m ξpfqn rf̂ pfqi smn , (2.14a)

F
2pfq
i � ξpfq

:

f̂
2pfq
i ξpfq �

¸
m,n,k

ξpfq
�

m ξpfqn rf̂ pfqi smkrf̂ pfqi skn . (2.14b)

In terms of these we write the non-interacting energy resulting from Eqs. 2.11
as

E
pfq
no-int � ppfqF pfqz � qpfqF 2pfq

z . (2.15)
Eq. (2.15) only depends on the mean spin projection along the magnetic field. The
other spin projections are of importance for the spin interaction and the Faraday
probing scheme, which make use of the total spin magnitude, the transverse spin
magnitude and the azimuthal spin pointing angle. They are defined as

F pfq �
b
F

2pfq
x � F

2pfq
y � F

2pfq
z , (2.16a)

F
pfq
K �

b
F

2pfq
x � F

2pfq
y , (2.16b)

θpfq � arctan2
�
F pfqy , F pfqx

	
. (2.16c)

The total mean spin magnitude F pfq should not be confused with fNA, where f is
the spin quantum number. They only coincide for f � 1

2 , when t1̂pfq, f̂
pfq
x , f̂

pfq
y , f̂

pfq
z u

25



2. Description of a Spinor Bose-Einstein condensate

is a complete generator set of the underlying SUp2f � 1q space. For larger spins
f ¡ 1

2 , the total spin magnitude is within the range 0 ¤ F pfq ¤ fN
pfq
A .

In the latter case, the upper and lower bounds of F pfq define two subsets of
spin states. These are oriented states, describing ensembles where the total spin
magnitude is maximal F pfq � fN

pfq
A , and aligned states, describing ensembles

where the total spin magnitude vanishes F pfq � 0. While oriented stated can be
visualized on a Bloch sphere, the representation of aligned states is more involved
[25, 61]. Besides a distinct theoretical representation, aligned states also require
one to use distinct observable for their experimental study. We generally denote
these as alignment operators [62], where the relevant ones for this work are:

̂pfqx �f̂2pfq
x � f̂2pfq

y , (2.17a)
̂pfqy �f̂ pfqx f̂ pfqy � f̂ pfqy f̂ pfqx , (2.17b)

̂
pfq
k �f̂ pfqx f̂ pfqz � f̂ pfqz f̂ pfqx , (2.17c)

̂
pfq
l �f̂ pfqy f̂ pfqz � f̂ pfqz f̂ pfqy , (2.17d)

̂pfqm � 1?
3

�
2f̂2pfq
z � f̂2pfq

x � f̂2pfq
y

	
. (2.17e)

The corresponding matrix expressions can be obtained by combining Eqs. (2.13)
and Eqs. (2.17). Similar to the mean-field expressions for the spin operators,
we write the mean-field values of the alignment operators as J pfqi � x̂pfqi y �
ξpfq

:

̂
pfq
i ξpfq, where i P tx, y, k, l,mu.

The classification into oriented and aligned states is of interest for studying
the dynamical effect of the QZS and LZS. For this purpose, we assume an initial
state perpendicularly stretched F pfq � F

pfq
K � fN

pfq
A to the external magnetic

field B � Bzz. The system is driven by the Hamiltonian described in Eq. (2.11),
which results in the following evolution for the spin projections:

F pfqx rts � fN
pfq
A cos

�
qpfqt{~

	2f�1
cos

�
ppfqt{~� θ

pfq
0

	
, (2.18a)

F pfqy rts � fN
pfq
A cos

�
qpfqt{~

	2f�1
sin
�
ppfqt{~� θ

pfq
0

	
, (2.18b)

F pfqz rts � 0 , (2.18c)

F
pfq
K rts � fN

pfq
A

���cos
�
qpfqt{~

	���2f�1
, (2.18d)

where the azimuthal angle θpfq0 describes an arbitrary initial spin orientation.
For typical magnetic field values of B � 120 mG, the LZS and QZS energy con-
tributions differ by several orders of magnitude and have distinct effects on the
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2.2. Linear and quadratic Zeeman shifts

Figure 2.1.: Evolution of the spin components along x in f � 1 (left, blue) and
f � 2 (right, red). The spin states are initially oriented along x
(θpfq � 0) and their evolution follows Eqs. 2.18. Thin lines show the
spin evolution in the laboratory frame (rF p1qx slab and rF p2qx slab) and
thick lines are their equivalent in the rotating frame (rF p1qx srot and
rF p2qx srot). The carrier frequency is defined by the LZS (ppfq) and its
modulation by the QZS (qpfq ! ppfq ).

spin. The LZS introduces rapid Larmor precessions |ppfq{h| � 84 kHz around
the external magnetic field but leaves unchanged the transverse spin magnitude
F
pfq
K . The QZS modulates of the transverse spin magnitude at a much slower

frequency |qpfq{h| � 1 Hz that drives the system from oriented to aligned states
(and vice-versa). The above described dynamics are illustrated in Fig. 2.1.
It is convenient to define a rotating frame, which accounts for the rapid Larmor

precessions introduced by the applied magnetic field. Since the f � 1 and f � 2
manifolds feature opposite LZS, it requires a dual rotating frame, under which
the spin amplitudes transform:�

ξpfqm ptq
�
lab

� e�ip
pfqt{~

�
ξpfqm ptq

�
rot

. (2.19)

While the spin state in the laboratory frame rξpfqm ptqslab is governed by the Hamil-
tonian in Eq. (2.11) and has mean energy given in Eq. (2.15), the spin state in
the rotating frame rξpfqm ptqsrot uses analogous expressions with ppfq � 0. For
observables which are invariant under z rotations, i.e. commute with f̂

pfq
z , the

reference frame is omitted in the notation. This applies to the mean values F pfq,
F
pfq
K , F pfqz and F 2pfq

z . In Fig. 2.1 we can see the difference between spin observ-
ables represented in the laboratory and in the rotating frame.
We note, that although the above description of the LZS and QZS applies to
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2. Description of a Spinor Bose-Einstein condensate

non-interacting spin-1 and spin-2 systems, they also provide an intuitive under-
standing of certain spin-dependent contact interactions. In fact, the following
section demonstrates how the interhyperfine interaction between the f � 1 and
f � 2 manifolds is equivalent to an effective LZS and QZS (see Eq. (2.28) and
Eq. (2.29)).

2.3. Spin-dependent contact interaction
The contact interaction of a spin-f manifold is characterized by a set of f � 1
scattering lengths [24, 25]. We label these scattering lengths as apFqC , where C
specifies scattering channel, i.e. the total spin quantum number of the colliding
atoms, and F P t1, 2, 12u indicates intrahyperfine (1 � 1, 2 � 2) or interhyperfine
(1 � 2) scattering, respectively. In terms of these are defined the spin contact
interaction coefficients [43]:

g
p1q
0 �4π~2

M

a
p1q
0 � 2ap1q2

3 , (2.20a)

g
p1q
1 �4π~2

M

a
p1q
2 � a

p1q
0

3 , (2.20b)

g
p2q
0 �4π~2

M

4ap2q2 � 3ap2q4
7 , (2.20c)

g
p2q
1 �4π~2

M

a
p2q
4 � a

p2q
2

7 , (2.20d)

g
p2q
2 �4π~2

M

7ap2q0 � 10ap2q2 � 3ap2q4
7 , (2.20e)

g
p12q
0 �4π~2

M

2ap12q
2 � a

p12q
3

3 , (2.20f)

g
p12q
1 �4π~2

M

a
p12q
3 � a

p12q
2

3 , (2.20g)

g
p12q
2 �4π~2

M

3ap12q
1 � 5ap12q

2 � 2ap12q
3

3 . (2.20h)

The values of the intra- and interhyperfine scattering lengths used for this work
are given in Table 2.3.
The f � 1 spin contact interaction contributes an energy

E
p1q
int �

1
2Veff

g
p1q
1 Fp1q � Fp1q . (2.21)
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2.3. Spin-dependent contact interaction

Scattering parameter Mean Value Uncertainty Ref

a
p1q
0 {a0 101.8 0.2 [63]
pap1q2 � a

p1q
0 q{a0 -1.07 0.09 [35]

a
p2q
0 {a0 87.4 1 [64]
pap2q2 � a

p2q
0 q{a0 3.51 0.54 [35]

pap2q4 � a
p2q
2 q{a0 6.95 0.35 [35]

pap12q
1 � a

p12q
2 q{pap1q2 � a

p1q
0 q -1.31 0.13 [53]

pap12q
3 � a

p12q
2 q{pap1q2 � a

p1q
0 q -1.27 0.15 [53]

Table 2.3.: Mean values and associated uncertainties of the intrahyperfine scat-
tering lengths (ap1qC , ap2qC ) in terms of the Bohr radius a0. The mea-
surements for the interhyperfine scattering lengths (ap12q

C ) are detailed
in Chapter 7.

Similarly, the f � 2 manifold contributes an interaction energy energy

E
p2q
int �

1
2Veff

�
g
p2q
1 Fp2q � Fp2q � g

p2q
2

∣∣∣Ap2q0

∣∣∣2
 , (2.22)

where Ap2q0 is the spin-singlet scalar

A
p2q
0 � 1?

5

�
2ξp2q2 ξ

p2q
�2 � 2ξp2q1 ξ

p2q
�1 � ξ

p2q
0 ξ

p2q
0

	
. (2.23)

Note that the interaction terms of the form pgpfq1 {VeffqFpfq � Fpfq introduce a
energy splitting between aligned (F pfq � 0) and oriented (F pfq � fN

pfq
A ) spin

states. In Chapter 6 and Chapter 7 we will see how this energy opposes the QZS
and can be used to characterize the interaction strength and infer the experimen-
tal trap conditions.

The inter-hyperfine scattering contribution has been recently described [43]
and can be written as

E
p12q
int � 1

Veff

�
g
p12q
0 N

p1q
A N

p2q
A � g

p12q
1 rFp1qslab � rFp2qslab � g

p12q
2 rP p12q

1 slab
	
, (2.24)
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where P p12q
1 results from interhyperfine scattering via the total-spin C � 1:

P
p12q
1 �

�����
c

1
10ξ

p1q
1 ξ

p2q
0 �

c
3
10ξ

p1q
0 ξ

p2q
1 �

c
3
5ξ

p1q
�1ξ

p2q
2

�����
2

�
�����
c

3
10ξ

p1q
1 ξ

p2q
�1 �

c
2
5ξ

p1q
0 ξ

p2q
0 �

c
3
10ξ

p1q
�1ξ

p2q
1

�����
2

�
�����
c

3
5ξ

p1q
1 ξ

p2q
�2 �

c
3
10ξ

p1q
0 ξ

p2q
�1 �

c
1
10ξ

p1q
�1ξ

p2q
0

�����
2

(2.25)

While the intrahyperfine energy (Eq. (2.21) and Eq. (2.22)) is invariant under
z rotations of the f � 1 and f � 2 manifolds, this is not the case of the inter-
hyperfine interaction, which is the reason why the reference frame is specified
in Eq. (2.24). The rapid relative Larmor precessions introduce oscillating en-
ergy contribution to the interhyperfine energy. These oscillating energy terms
(� p0{h � 84 kHz) are several orders of magnitudes faster than the typical
timescales associated with spin dynamics driven by the two-body collisional inter-
actions. This motivates the rotating wave approximation (RWA), i.e. dropping
the rapidly oscillating terms.
The interaction gp12q

0 N
p1q
A N

p2q
A is a constant contribution and can be excluded

(see Table 2.1 and discussion around it). Under this simplification and applying
the RWA, the mean interhyperfine energy becomes:

E
p12q
int � 1

Veff

�
g
p12q
1 F p1qz F p2qz � g

p12q
2 P

p12q
1



, (2.26)

where

P
p12q
1 � 1

10

���ξp1q1 ξ
p2q
0

���2 � 3
10

���ξp1q0 ξ
p2q
1

���2 � 3
5

���ξp1q�1ξ
p2q
2

���2
� 3

10

���ξp1q1 ξ
p2q
�1

���2 � 2
5

���ξp1q0 ξ
p2q
0

���2 � 3
10

���ξp1q�1ξ
p2q
1

���2
� 3

5

���ξp1q1 ξ
p2q
�2

���2 � 3
10

���ξp1q0 ξ
p2q
�1

���2 � 1
10

���ξp1q�1ξ
p2q
0

���2 . (2.27)

Note that the RWA resolves the coexistence of distinct reference frames in Eq. (2.24).
In fact, Eq. (2.26) is invariant under z rotations and is equally suited for describ-
ing the energy in the laboratory and in the rotating reference frame.
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2.4. Spin dynamics

Intuition on the interhyperfine interaction
At first sight, the interhyperfine interaction results in a frightening combination
of f � 1 and f � 2 spin amplitudes. However it can be often disentangled into
an effective LZS and QZS. We write the effective changes in the LZS and QZS as
∆ppfqX and ∆qpfqX , where f is the hyperfine manifold and X � 1 or X � 2 indicates
the contribution arising from the gp12q

1 or gp12q
2 term, respectively.

The interaction due to pgp12q
1 {VeffqF p1qz F

p2q
z describes an effective LZS of the

f � 1 levels, with a strength proportional to F p2qz . The f � 1 magnetization
similarly produces an effective LZS in the f � 2 manifold. This reads:

∆pp1q1 �g
p12q
1
Veff

F p2qz ,

∆pp2q1 �g
p12q
1
Veff

F p1qz . (2.28)

The interaction term pgp12q
2 {VeffqP12 greatly simplifies when f � 2 is in a

stretched state along or against the external magnetic field. This results in an
effective LZS and QZS acting on the f � 1 manifold:

∆pp1q2 �	 g
p12q
2
Veff

3
10N

p2q
A ,

∆qp1q2 �g
p12q
2
Veff

3
10N

p2q
A , (2.29)

where � and � correspond to f � 2 states stretched along (ξp2qm �
b
N
p2q
A δm,2)

and against (ξp2qm �
b
N
p2q
A δm,�2) the external magnetic field.

2.4. Spin dynamics
Once the intra- and interhyperfine contributions have been obtained, the dynam-
ical evolution of the spin amplitudes ξpfqm are computed by differentiating the
total energy:

i~
Bξpfqm

Bt � BE
Bξpfq�m

, (2.30)

where E � E
p1q
no-int�Ep2q

no-int�Ep1qint �Ep2qint �Ep12q
int . The right-hand side of Eq. (2.30)

is computed analytically but the resulting set of eight non-linear ODEs is typically
solved through numerical techniques. In this work we use numerical integration
via the ODEPACK routine LSODA [65].
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2. Description of a Spinor Bose-Einstein condensate

2.5. Inclusion of atom loss mechanisms
The lifetime of ultracold atomic ensembles is generally limited by collision pro-
cesses that not only affect the internal spin state but couple to the kinetic energy
of the cooled atoms. The liberated kinetic energy is typically several orders of
magnitude greater that the trap depth, such that the colliding atoms are ex-
pelled from the confining potential. Depending on the number of trapped atoms
involved in each type of collision, we distinguish between one-, two- and three-
body losses. Examples are background gas collisions, hyperfine relaxing collisions
and three-body recombination and molecule formation, respectively. In this sec-
tion we will focus on one- and two-body losses which are captured by the inclusion
of imaginary terms in the expression for the non-interaction energy, as well as in
the expressions for the intra- and interhyperfine interaction energies.
One-body losses are primarily caused by collision with the background 87Rb

atoms of the vacuum chamber. While a higher background gas pressure favors
the loading of the atomic ensemble and reduces the temporal overhead of state
preparation, it also diminishes the lifetime of cooled atomic ensembles. For com-
pact experiments operating in a single vacuum chamber, this results in a optimal
background pressure which is a compromise between a short cycling time and a
long lifetime time, both being of metrological relevance. On the other hand, ex-
periments using separate loading and science vacuum chambers circumvent this
issue by connecting them via a differential pumping section that decouples the
pressures of the two regions.
We denote the typical one-body lifetime of the ensemble as τ , which is defined

by dNA{dt � �τ�1NA. We can include one-body losses into Eq. (2.15) as

E
pfq
no-int � � i~2τ N

pfq
A � ppfqF pfqz � qpfqrF pfqz s2 (2.31)

Two-body losses are primarily caused by hyperfine relaxing collisions, be-
tween f � 2 and f � 2 or f � 1 and f � 2 atoms. The rates of these collisions
not only depend on the density of the atomic cloud but also on its spin state.
We follow the formalism introduced in [66] and describe hyperfine relaxing col-
lisions by including imaginary components in the scattering amplitudes. Under
this prescription, the scattering amplitudes apFqC and the interaction coefficients
g
pFq
X defined in Eqs. (2.20) transform:

a
pFq
C Ñ a

pFq
C � iã

pFq
C , (2.32)

g
pFq
X Ñ g

pFq
X � ig̃

pFq
X , (2.33)

The imaginary components ãpFqC and g̃
pFq
X are non-zero for F P t2, 12u but

vanish for the absolute hyperfine ground state, i.e. F � 1. Hence, the inclusion

32



2.5. Inclusion of atom loss mechanisms

of hyperfine relaxation leaves the f � 1 interaction energy unchanged but for
f � 2 we get

E
p2q
int �

1
2V eff

�
�ig̃p1q0 N

p1q
A N

p2q
A � pgp2q1 � ig̃

p2q
1 qFp2q � Fp2q � pgp2q2 � ig̃

p2q
2 q

∣∣∣Ap2q0

∣∣∣2
 .

(2.34)
Similarly, the interhyperfine interaction energy becomes

E
p12q
int � 1

Veff

�
�ig̃p12q

0 N
p1q
A N

p2q
A � pgp12q

1 � g̃
p12q
1 qF p1qz F p2qz � pgp12q

2 � g̃
p12q
2 qP p12q

1



.

(2.35)
Note that the terms N p2q

A N
p2q
A and N p1q

A N
p2q
A in Eq. (2.34) and Eq. (2.35) only

include imaginary scatting components. Their real counterparts are neglected
since they belong to the energy contributions listed in Table 2.1
For dynamical simulations in the presence of incoherent (imaginary) en-

ergy contributions, the numerical integration introduced in Section 2.4 has to be
performed under the following prescriptions:

(i) The atom numbers N p1q
A , N p2q

A , NA as well as the effective volume Veff (see
Appendix A) are evolving quantities and have to be evaluated in each time
step of the numerical integration.

(ii) The effective volume, which is a prefactor of the two-body interaction energy
Eint91{Veff, should be excluded from the differentiation in Eq. (2.30). That
is, spin dynamics are evaluated through:

i~
Bξpfqm

Bt �
B
�
E
p1q
no-int � E

p2q
no-int

�
Bξpfq �m

� 1
Veff

B
�
Veff

�
E
p1q
int � E

p2q
int � E

p12q
int

	�
Bξpfq �m

.

(2.36)
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3
Dispersive light-atom interaction

The off-resonant light-atom interaction is at the heart of any optical quantum
nondemolition (QND) measurement. Prominent examples are found in cavity
QED experiments [67] as well as in cold [68] and ultracold atomic ensembles [69].
In this chapter we will follow the latter examples, where the atomic magnetization
is transferred to the probe polarization via the vector light-atom interaction.

We start by introducing the ground and excited spin states of the D2-line in
87Rb. The light field and its polarization are expressed through the Stokes op-
erators in second quantization. We describe the dispersive light-atom coupling
via the scattering Hamiltonian, featuring a scalar, vectorial and tensorial con-
tribution. We will comment on the absorptive counterpart, which sets an upper
bound on the sensitivity of QND spin readouts.

3.1. Energy structure of the D2-line transition
While Chapter 2 is devoted to the f � 1 and f � 2 ground state manifolds,
the light-atom interaction requires to introduce the optically accessible excited
energy levels. For the purpose of this work, we will focus on the states belonging
to the D2 line, which are the 52S1{2 (ground states) and 52P3{2 levels (optically
excited states).
The D2 line is shown in Fig. 3.1, which highlights the very distinct transi-

tion energies (frequencies) between rotational states, hyperfine levels and Zee-
man sublevels. The first are in the � 1014 Hz range, located in the NIR part of
the electromagnetic spectrum. The hyperfine interaction introduces energy split-
ting of � 108 � 1010 Hz, and their manipulation require microwave (mw) driving
techniques. For the magnetic fields of this work, the LZS introduces shifts of
� 105 Hz, allowing to couple distinct Zeeman sublevels by means of radio fre-
quency (rf) radiation. Besides separate driving techniques, these transitions also
feature distinct decay rates (Γ). This is illustrated by Fermi’s Golden Rule [44],
showing a dependence of the form ΓjÑi9pωpijq0 q3, where ωpijq0 is the resonant
transition frequency between state i and a higher energy state j. As a result,
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3. Dispersive light-atom interaction

Figure 3.1.: Energy levels of the 87Rb D2 line [57, 71, 58]. The strongest magnetic
contribution is introduced by the LZS, represented by the step-like
shifts among the different Zeeman sublevels within each hyperfine
manifold. For the 52S1{2 levels, this has been calculated in Section 2.2
and neglecting the differential LZS results in �0.7 MHz{G. For the
52S1{2 levels the LZS is 0.9 MHz{G. Level spacings are not to scale.

rf and mw transitions have negligible spontaneous emission decay rates but the
optical D2 line transitions exhibit a natural line width of Γ � 2π� 6.065p9qMHz
[70].

We will refer again to the level splitting of the D2 in the description of the ap-
paratus and the laser systems (Chapter 5). In particular, we will label as cooler1
the laser operating close to the f � 2 Ø f 1 � t1, 2, 3u transitions. Similarly,
we denote as repumper2 the laser operating close to the f � 1 Ø f 1 � t0, 1, 2u
transitions.

1In reference to the cooling light field of the Magneto Optical Trap, which is red detuned to
the f � 2 Ø f 1 � 3 cycling transition.

2In reference to the repump light field of the Magneto Optical Trap, which is resonant to the
f � 1 Ø f 1 � 2 transition.
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3.2. Quantum description of light

3.2. Quantum description of light
The quantization of the light field can be intuitively motivated by decompos-
ing a classical field in terms of its frequency components, where the radiation
field amplitudes are substituted with suitable creation and annihilation opera-
tors [72, 73]. For a monochromatic electric field at frequency ω, wavenumber k
and propagation direction along z this reads:

Ê�pr, tq �
a
~Q

¸
ν

uν âνe�iωt�ikz , (3.1a)

Ê�pr, tq �
a
~Q

¸
ν

u�ν â:νeiωt�ikz , (3.1b)

with +(-) indexing the positive (negative) component of the electric field and
Q � ω{2ε0V being the form factor, expressed in terms of the vacuum per-
mittivity ε0 and the quantization volume V . The summation is taken over
complementary polarization components ν. Depending on the chosen polariza-
tion basis we have ν P tH,V u for horizontal and vertical linear polarizations,
ν P t�45,�45u for �45� and �45� linear polarizations, or ν P t�,�u for σ�
and σ� circular polarizations. More precisely, in terms of the x and y unitary
vectors we have tuH ,uV u � tx,yu, tu�45,u�45u � tpx � yq{?2, px � yq{?2u
and tu�,u�u � tpx� iyq{?2, px� iyq{?2u.
The annihilation âν and creation â:ν operators, which annihilate or create a

photon with polarization ν, obey the commutation relations:

râν , â:ν1s � δν,ν1 . (3.2)

In Chapter 2 we have discussed the representation of spin systems and we have
highlighted that two level systems (spin f � 1

2 ) can always be mapped on a Bloch
sphere. This provides an intuitive representation of amplitudes and coherences of
a quantum state. Similarly, polarizations can be mapped on the Poincaré sphere,
showing the expectation values of the Stokes operators. They measure the photon
imbalance between H{V , �45�{ � 45�, or �{� polarization components and we
write them as:

ŝx � 1
2

�
â:H âH � â:V âV

	
, (3.3a)

ŝy � 1
2

�
â:�45â�45 � â:�45â�45

	
, (3.3b)

ŝz � 1
2

�
â:�â� � â:�â�

	
. (3.3c)
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3. Dispersive light-atom interaction

The Stokes operator associated to the total number of photons can be expressed
independently of the chosen polarization basis as:

ŝ0 � 1
2

�
â:ν âν � â:ν1 âν1

	
, (3.4)

where ν and ν1 are orthogonal basis elements. Here and throughout the rest of
this manuscript, our preferred choice is the circular polarization basis ν P t�,�u.
In this basis, the Stokes operators in Eq. (3.3) become

ŝi �1
2 â:σiâ , (3.5a)

where â � pâ�, â�qT and σi are the corresponding Pauli matrix for i P tx, y, zu
and the 2� 2 identity matrix for i � 0.
In analogy to the spin orientation and alignment operators, the Stokes oper-

ators have equivalent mean-field expressions which are well suited to describe
coherent photon states [72] with mean photon numbers NL " 1. We write the
mean-field Stokes values as Si � xŝiy, where i P tx, y, z, 0u and the average is
taken over the coherent photon state.

3.3. Off-resonant light-atom interaction
The rapidly oscillating electromagnetic field and the atomic spin degrees of free-
dom are coupled through the electric-dipole interaction. This section is devoted to
the dispersive regime, where the light field is far detuned from the atomic transi-
tions and their coupling can be approximated through first order time-dependent
perturbation theory. As a result, the atomic populations are considered to re-
main in the ground state hyperfine manifolds and the light fields are only weakly
perturbed. We follow the formalism introduced in [73] and provide the light-atom
scattering Hamiltonians in second quantization. The corresponding mean-field
dynamics are introduced in Section 3.5.
The energy shifts experienced by the atomic spins and the light field have spin-

dependent as well as spin-independent contributions. Similarly, these shifts may
depend only on the mean number of photons or on the particular polarization
mode they are in. To disentangle the contributions, the light-atom interaction
Hamiltonian is preferably represented in terms of its irreducible spherical ten-
sor components, where each tensor components features a characteristic interac-
tion strength and interaction dynamics. In this form, the off-resonant scattering
Hamiltonian reads:

Ĥs � Ĥs,0 � Ĥs,1 � Ĥs,2 . (3.6)
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3.3. Off-resonant light-atom interaction

The subscripts in Eq. (3.6) label the rank of the irreducible contributions. Hence,
Ĥs,0 is the scalar Hamiltonian, while Ĥs,1 and Ĥs,2 are the vector and tensor
Hamiltonian, respectively. In a their most general form, we have [73]

Ĥs,j �
¸
f,f 1

Ê� α̂
pff 1q
j

~∆pff 1q Ê
� , (3.7)

where α̂pff
1q

j is the irreducible representation of the atomic polarizability tensor.
The detuning between the light frequency ω and the transition frequency ωpff

1q
0

is defined as ∆pff 1q � ω � ω
pff 1q
0 . We follow the notation introduced in Fig. 3.1

and label the ground state hyperfine manifolds as f P t1, 2u and the excited ones
as f 1 P t0, 1, 2, 3u.

3.3.1. Cross-sectional interaction area
Eq. (3.7) inherits the form factor Q, which was introduced for the quantized
electric operators and depends on the mode volume V (see below Eqs. 3.1).
For the light-matter interaction, the mode volume relates to the spatial overlap
between the light field and the atomic ensemble. We can define a characteristic
cross-sectional area A, which yields the observed interaction when both the light
intensity and the atomic column density are homogeneously distributed across
A. As a result, for a light pulse of duration τ and wavelength λ the mode volume
and form factor become V � A � cτ and Q � π{ε0λAτ .
We can more generally define the effective cross-sectional interaction area A as

A �
³
dxdy Ipx, yq ³ dxdy ncpx, yq³

dxdy Ipx, yqncpx, yq , (3.8)

where the column density is obtained by integrating out the z direction, i.e.
ncpx, yq �

³
dz npx, y, zq. The transverse intensity distribution Ipx, yq is explicitly

independent of z as happens in the vicinity of the beam waist of a Gaussian laser
beam propagating along that direction. We write a general Gaussian intensity
profile as [74]:

Ipx, y, zq � 2P
πw2pzqe

�2px2�y2q{w2pzq , (3.9a)

wpzq � w0
a

1� pz{zRq2 , (3.9b)

zR � πw2
0

λ
, (3.9c)

where P is total optical power, wpzq the beam radius, w0 the beam waist and
zR the Rayleigh range. In the vicinity of the beam waist z ! zR, the Gaussian
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3. Dispersive light-atom interaction

beam is collimated and the intensity profile is independent of z: wpzq Ñ w0 and
Ipx, y, zq Ñ Ipx, yq. Under this condition and a spherical atomic cloud with a
Thomas Fermi radius rTF (see Appendix A) we have:

Ipx, yq � 2P
πw2

0
e�2px2�y2q{w2

0 , (3.10)

npx, yq � NA
5pr2

TF � x2 � y2q3{2
2πr5

TF
, (3.11)

A � πr2
TF

16{5
8� 6κ2 � 3

?
2κ3Fp?2κ�1q , (3.12)

where F is the Dawson integral and κ � w0{rTF.
In Fig. 3.2 we show the cross-sectional area for distinct ratios between the

spatial extents of the Gaussian and the atomic cloud. When the beam waist
is much smaller than the atomic ensemble (κ ! 1), the photons only interact
with the central column density such that AÑ 2{5� πr2

TF. On the other hand,
when κ " 1, the atoms only interact with central part of the Gaussian beam and
AÑ πw2

0{2 � κ2{2� πr2
TF.

3.3.2. Scalar scattering Hamiltonian
The scalar scattering Hamiltonian reads [73]

Ĥ
pfq
s,0 �

~
τ
G
pfq
0 ŝ01̂

pfq , (3.13)

(3.14)

where 1̂pfq is the identity operator of hyperfine manifold f . We compute the
scalar light-atom coupling Gpfq0 factor for f � 1 and f � 2, yielding

G
p1q
0 � λ3

0
πλA

� 3Γ
72

�
2

∆p101q �
5

∆p111q �
5

∆p121q



, (3.15a)

G
p2q
0 � λ3

0
πλA

� 3Γ
120

�
1

∆p211q �
5

∆p221q �
14

∆p231q



. (3.15b)

where λ is the light wavelength and Γ and λ0 are the resonant linewidth and
wavelength given in Section 3.1. For detunings much larger than the excited
state hyperfine splitting the scalar light-atom coupling factor converges to Gpfq0 Ñ
pλ3

0{πλAq � pΓ{2∆pfqq.
The scalar scattering interaction is independent of the atomic spin and light

polarization. This results in a density dependent change in the refractive index,
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3.3. Off-resonant light-atom interaction

Figure 3.2.: Cross-sectional interaction area as a function of the ratio between
beam waist and Thomas-Fermi radius κ � w0{rTF. The area is
expressed in terms of the SBEC cross section πr2

TF. Dashed lines
indicate the limits for κ ! 1 and κ " 1 where A Ñ 2{5 � πr2

TF and
AÑ πw2

0{2 � κ2{2� πr2
TF, respectively.

which has been observed in cavity QED experiments with single atoms [67] as
well as trapped BECs [75]. From the perspective of the atomic ensemble it is
more convenient to express the Stokes parameter through its classical limit as
p2~ω{Aτqŝ0 Ñ Ipx, yq. Including this into Eq. (3.13) we obtain an energy shift
depending on the local light intensity, which in the vicinity of the beam waist
(|z| ! w0 ! zr) corresponds to a harmonic potential. In the limit of large
detunigs and trapping beams that exceed the size of the SBEC, i.e. G

pfq
0 Ñ

pλ3
0{πλAq � pΓ{2∆pfqq and AÑ πw2

0{2, we have:

Ĥ
pfq
s,0 � �V pfq

0 � 1
2m

¸
i

rωpfqi is2 , (3.16a)

V
pfq
0 � � Γλ3

0
8π2c

Ipx, y, zq
∆pfq

����
px,y,zq�0

, (3.16b)

ω
pfq
i �

d
1
m

B2

Bi2
�

Γλ3
0

8π2c

Ipx, y, zq
∆pfq

�����
px,y,zq�0

(3.16c)
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where V pfq
0 is the trap depth and the spatial coordinates are indexed as i P

tx, y, zu. For the particular case of a gaussian beam with an intensity profile as
described in Eqs. (3.9) we get

V
pfq
0 � � Γλ3

0
4π3cw2

0

P
∆pfq . (3.17a)

ωpfqx,y �
d
� Γλ3

0
mcπ3w4

0

P
∆pfq , (3.17b)

ωpfqz �
c

1
2π2

λ

w0
ωpfqx,y . (3.17c)

For typical dipole traps λ � 1 µm and w0 � 10 � 100µm, which results in 10
to 100 times weaker trapping frequencies along the propagation direction than
along the tightly confined transverse directions.

3.3.3. Vector scattering Hamiltonian
The vector scattering Hamiltonian is of the form [73]

Ĥ
pfq
s,1 �

~
τ
G
pfq
1 ŝz f̂

pfq
z (3.18)

where the vector light-atom coupling constants are

G
p1q
1 � λ3

0
πλA

� Γ
32

�
� 4

∆p101q �
5

∆p111q �
5

∆p121q



, (3.19a)

G
p2q
1 � λ3

0
πλA

� Γ
160

�
� 3

∆p211q �
5

∆p221q �
28

∆p231q



. (3.19b)

In the limit of large detunings we have Gp1q1 Ñ �pλ3
0{πλAq � pΓ{8∆p1qq and

G
p2q
1 Ñ �pλ3

0{πλAq � pΓ{8∆p2qq.
The physical interpretation of the vector-light coupling is twofold. On the

light polarization side, it induces circular birefringence proportional to the spin
orientation along the light propagation axis. This effect has a strong analogy
to magneticaly induced Faraday rotation [76], describing the difference in phase
shifts for σ� and σ� polarizations traveling through an atomic medium under
an external magnetic field. In this case, the linear Zeeman splitting differently
detunes the allowed σ� and σ� optical transitions which results in a distinct
phase shift for each polarization. For the interaction described in Eq. (3.18)
the rotation depends on the atomic population of the distinct Zeeman sublevels
and can be used for quantum nondemolition (QND) measurements. We refer
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3.3. Off-resonant light-atom interaction

to this technique as Faraday rotation probing and it will be explained in
detail in Section 5.3.4. As regards the atomic ensemble, the vector scattering
Hamiltonian introduces an effective linear Zeeman splitting proportional to Ŝz,
which is proportional to the imbalance between the σ� and the σ� components
of the light field.
In Fig. 3.3 we show the vector coupling constants as a function of detuning.

Outside the central region, the f � 1 vector light-atom coupling is strongest
below the closed transition f � 1 Ø f 1 � 0. Similarly, for f � 2 the interaction
is significant above the closed transition f � 2 Ø f 1 � 3. The operational
detunings of the Faraday rotation probing were chosen within these ranges.

Figure 3.3.: Vector coupling constant Gpfq1 for f � 1p2q in blue (red) as a func-
tion of the detuning referenced to the f � 1p2q Ø f 1 � 0 transition.
Dashed lines indicate the position of the excited f 1 � t0, 1, 2, 3u
hyperfine levels. The full blue and red circles indicate the opera-
tional point for the Faraday rotation probing of f � 1 and f � 2:
∆p101q{2π P t�570 MHz,�270 MHzu and ∆p231q{2π � 360 MHz.

3.3.4. Tensor scattering Hamiltonian
We write the tensor scattering Hamiltonian as [73]

Ĥ
pfq
s,2 �

~
τ
G
pfq
2

�
ŝxĵ

pfq
x � ŝy ĵ

pfq
y � 1?

3
ŝ0ĵ

pfq
m



, (3.20)

43



3. Dispersive light-atom interaction

where the tensor coupling constants are

G
p1q
2 � λ3

0
πλA

� Γ
32

�
4

∆p101q �
5

∆p111q �
1

∆p121q



, (3.21a)

G
p2q
2 � λ3

0
πλA

� Γ
160

�
1

∆p211q �
5

∆p221q �
4

∆p231q



. (3.21b)

For large detunings, the tensor light shift scales asGp1q2 Ñ pλ3
0{πλAq�Γp�4ωp0

111q
0 �

ω
p1121q
0 q{32p∆p1qq2 and Gp2q2 Ñ pλ3

0{πλAq � Γp�ωp2111q0 � 4ωp3
121q

0 q{160p∆p2qq2.
The tensor scattering Hamiltonian couples the light polarization to the align-

ment spin components, introduced in Chapter 2. Similar to the QZS, the tensorial
light shift introduces orientation to alignment conversion that hinders Faraday
rotation measurements based on the vector light-atom interaction. This effect can
be avoided in two ways. First, in the presence of an external magnetic field, the
polarization can be adjusted such that the tensorial light shift averages out over
one Larmor precession period. For a linearly polarized light field this is achieved
at the magic angle, when the polarization is tilted by 54.7° with respect to the
applied magnetic field [77]. Second, the use of alternating probe polarizations
results in a dynamical decoupling that has shown to mitigate the contribution of
the tensorial light-atom interaction [78].
In Fig. 3.4 we represent the ratio between the tensor and vector coupling con-

stants for f � 1 and f � 2 as a function of detuning. We see that, for the
detunings of this work, the tensorial coupling is at least one order of magnitude
weaker than its vectorial counterpart.

3.4. Off-resonant photon absorption
Photon absorption and subsequent spontaneous emission events introduce loss of
coherence and depolarization, which reduce the visibility of coherent light-atom
interactions and ultimately limits the Faraday rotation readout. At the same
time, the associated recoil-kicks introduce a significant footprint on the tempera-
ture of the atomic cloud, prepared at temperatures below the recoil temperature
kBTrecoil � ~2ω2{2mc2, where kB is the Boltzmann constant.
In the limit of small absorptions, the number of decohered atoms δNA is [79]

δN
pfq
A � σNLN

pfq
A

A
, (3.22)

where σ is the scattering cross section and A is the light-atom interaction area
defined in Eq. (3.8). We note that δN pfq

A depends on the spatial overlap between
the light field and the atomic ensemble (described by A), but also on the light
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3.4. Off-resonant photon absorption

Figure 3.4.: Ratio between tensor and vector coupling constants Gpfq2 {Gpfq1 for
f � 1p2q in blue (red) as a function of the detuning referenced to
the f � 1p2q Ø f 1 � 0 transition. Dashed lines indicate the position
of the excited f 1 � t0, 1, 2, 3u hyperfine levels. The full blue and
red circles indicate the operational point for the Faraday rotation
probing of f � 1 and f � 2: ∆p101q{2π P t�570 MHz,�270 MHzu
and ∆p231q{2π � 360 MHz.

polarization, detuning, atomic polarizability and atomic spin state, which are
encoded in σ.
By decomposing the scattering cross section into its individual contributions,

the loss of coherence in each individual Zeeman sublevel can be found, as well
as the associated degradation of the macroscopic spin, aka depolarization. To
this purpose, we will compute the scattering cross section σ for a simple two
level atom and extend the formalism to capture the f � 1 and f � 2 hyperfine
manifolds and their Zeeman sublevels.
For a two level atom, the scattering cross section between ground state f and

excited state f 1 is equal to [57, 80]

σ � σ0

1� 4p∆{Γq2 � pI{Isatq , (3.23)

where ∆ � ω� ω0 is the detuning between the light frequency ω and the atomic
resonance frequency ω0. The resonant scattering cross section σ0, the saturation
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intensity Isat and the natural linewidth Γ satisfy:

σ0 � ~ω0Γ
2Isat

, (3.24)

Isat � cε0~2Γ2

4|xf |u � d̂|f 1y|2 , (3.25)

Γ � ω3
0

3πε0~c3
2j � 1
2j1 � 1 |xj||d̂||j

1y|2 . (3.26)

The unit vector u points along the polarization axis and projects onto it the dipole
operator d̂ � �er̂, where e is the electron charge. The quantum numbers for the
total electron angular momentum of the ground and excited states are given by
j and j1, respectively. They are used to compute xj||d̂||j1y, the reduced matrix
element of the dipole operator. We note that in the limit of weak intensities, the
power broadening introduced by the term I{Isat ! 1 is negligible. Under this
approximation and combining Eqs. 3.23-3.26 we get

σ � 3λ2

2π
2j1 � 1
2j � 1

|xf |u � d̂|f 1y|2
|xj||d̂||j1y|2

1
1� 4p∆{Γq2 , (3.27)

Eq. (3.27) can be extended to a multilevel atom by adding the contributions of
each allowed ground to excited state transition:

σ �
¸
f

σpfq , (3.28a)

σpfq �
¸
m

ρpfqm σpfqm , (3.28b)

σpfqm �
¸
f 1m1

σ
pff 1q
mm1 , (3.28c)

σ
pff 1q
mm1 � 3λ2

2π
2j1 � 1
2j � 1

|xf,m|u � d̂|f 1,m1y|2
|xj||d̂||j1y|2

1
1� 4p∆pff 1q{Γq2 . (3.28d)

Eqs. (3.28) have been constructed incrementally. The inner most terms is σpff
1q

mm1 ,
yielding the the scattering-cross section between the ground state |f,my and the
excited state |f 1,m1y. By summing over all excited states, σpfqm is obtained, which
represents the total cross-section for a givenground state |f,my. The hyperfine-
dependent and overall cross-sections, σpfq and σ, are obtained by a weighted
summation over the different σpfqm . The weighting coefficients are the relative
spin populations ρpfqm � |ξpfqm |2{NA.
Photon absorption and spontaneous emission events shuffle the atomic popu-

lations (diagonal terms in the density matrix) and reduce the coherences of the
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3.4. Off-resonant photon absorption

Figure 3.5.: Relative contribution of the scattering cross-section σpfqm for f � 1p2q
in blue (red). Dashed lines indicate the position of the excited f 1 �
t0, 1, 2, 3u hyperfine levels. The full blue and red circles indicate the
operational point for the Faraday rotation probing of f � 1 and f �
2: ∆p101q{2π P t�570 MHz,�270 MHzu and ∆p231q{2π � 360 MHz.

ensemble (off-diagonal terms in the density matrix). Only the latter terms are
relevant for the transverse magnetisation F pfqK and the loss of coherence can be
modelled by an effective attenuation of the spinor order parameter. This reads3

ξpfqm � ξ
pfq
m,0 e

�NLσpfqm {2A , (3.29)

where ξpfqm,0 are the initial spin amplitudes before the absorptive light-atom inter-
action.
The effective attenuation factor in Eq. (3.29) is proportional to σpfqm , which gen-

erally depends on the particular ground state |f,my, the light polarization and
its detuning. Fig. 3.5 shows the relative scattering cross-sections σpfqm {°m σ

pfq
m

for the distinct Zeeman sublevels in f � 1 and f � 2 and linear light polar-
ization (along z). We observe a large variability in the relative strength be-

3The effective attenuation in the mean-field parameter is only valid to compute expectation
values for off-diagonal observables, e.g F pfq

x , F pfq
y and F

pfq
K . But should not be used to

estimate the expectation values for observables that include diagonal terms, e.g F pfq
z and

N
pfq
A . For a general discussion on depolarization dynamics, we refer to [79].
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3. Dispersive light-atom interaction

tween the different σpfqm for detunings near the D2-line resonances. On the other
hand, for large detunigs, the contribution of each Zeeman substate tends to
σ
pfq
m Ñ λ2Γ2{4πp∆f q2. This implies σpfqm {°m σ

pfq
m Ñ 1{p2f � 1q, which through

Eq. (3.29) describes an equal effective attenuation factor within each hyperfine
level.
We use the effective attenuation of the spin order parameter to describe the

transverse depolarization, i.e. decay in F pfqK , during a dispersive Faraday rotation
probing. The effective exponential attenuation in the spin order parameter is
translated into an exponential attenuation of F pfqK . For weak depolarization, the
net effect can be captured by a depolarization constant N pfq

L,dep, such that

F
pfq
K � F

pfq
K,0 e

�NL{Npfq

L,dep , (3.30)

where F pfqK,0 is the transverse spin before the dispersive light-atom interaction.
It is important to remark that N pfq

L,dep depends on the particular atomic state
described by ξpfqm,0. In this thesis, a large variety of spin states are used, ranging
from states that only populate f � 1 or f � 2, to superpositions between both.
For this reason, we do not calibrate N pfq

L,dep, but include it into the Faraday
readout analysis as a free fit parameter (see Section 5.3.4).
Similar to the depolarization constant N pfq

L,dep, also the hyperfine-dependent
scattering lengths σpfq depend on the spin populations. We explicitly compute
σpfq for linearly polarized light, where

σp1q � 3λ2

π

��
ρ
p1q
0

1
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1� 4p∆p101q{Γq2
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�
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1� 4p∆p121q{Γq2
�
, (3.31a)

σp2q � 3λ2

π

��
ρ
p2q
�1

1
40 � ρ

p2q
0

1
30 � ρ

p2q
1

1
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1� 4p∆p211q{Γq2
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ρ
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6 � ρ
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1� 4p∆p221q{Γq2
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�
ρ
p2q
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1
6 � ρ

p2q
�1
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15 � ρ

p2q
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10 � ρ
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15 � ρ
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2
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1

1� 4p∆p231q{Γq2
�
.

(3.31b)
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3.5. Dynamical evolution

In Fig. 3.6 we evaluate Eqs. (3.31) for transversely oriented states in f � 1 and
f � 2. At the operational points of the Faraday probing, photon absorption is
reduced by a factor � 10�4 with respect to resonance.

Figure 3.6.: Scattering cross section σpfq in units of λ2 for f � 1p2q in blue (red)
as a function of the detuning referenced to the f � 1p2q Ø f 1 � 0
transition. We assume transversely oriented spin states in f � 1 or
f � 2 exclusively, i.e ρp1q � p 1

4 ,
1
2 ,

1
4 q and ρp2q � 05 for the blue curve,

while ρp1q � 03 and ρp2qm � p 1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16 q for the red one. Dashed

lines indicate the position of the excited f 1 � t0, 1, 2, 3u hyperfine
levels. The full blue and red circles indicate the operational point
for the QND Faraday probing of f � 1 and f � 2: ∆p101q{2π P
t�570 MHz,�270 MHzu and ∆p231q{2π � 360 MHz.

3.5. Dynamical evolution
We evaluate the dynamical evolution of the light polarization and the atomic
spin in the Heisenberg picture by computing the commutator of the observables
of interest and the total light-atom interaction Hamiltonian. In this work, we
neglect the coherent back-action onto the atomic ensemble. We assume that the
atomic spins are freely evolving and only suffer and exponential damping in the
spin amplitude due to off-resonant photon absorption as introduced in Eq. (3.30).
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3. Dispersive light-atom interaction

We justify this omission as follows:

(i) From the atomic perspective, the scalar coupling is only relevant for the in-
tense dipole trapping beams and included through the trapping frequencies
and attendant effective volume, defined in Eq. (3.17) and Eq. (A.3), respec-
tively. The power, detuning and geometry of the Faraday probe beam result
in characteristic transverse trapping frequencies of |ωx,y| � 2π�100 Hz dur-
ing the Fraday probing. We neglect this contribution because of its short
duration τ � 40 µs.

(ii) The vectorial light coupling onto the atomic ensemble is negligible because of
two reasons. First, we use linearly polarized Faraday probe beams and thus
we have Sz � 0. Second, the light propagation direction is perpendicular
to the externally applied magnetic field. Hence, the effective magnetic field
resulting from a residual circular polarization component is perpendicular
to the bias field and can be regarded as a second order perturbation to the
LZS.

(iii) We cancel the average contribution of the tensorial light shift on the atomic
ensemble by operating the system at the magic angle [77].

Under these assumptions we compute the dynamical evolution of the Stokes
operator in the mean-field picture. This is, we use Btŝi � pi~q�1rŝi,

°
n,f Ĥ

pfq
s,n s

but express the results in terms of the mean spin orientation F pfqi � xf̂ pfqi y and
Stokes vectors Spfqi � xŝpfqi y:

BtSx � 1
τ

¸
f

�
�Gpfq1 SyF

pfq
z �G

pfq
2 SzJ

pfq
y

�
, (3.32a)

BtSy � 1
τ

¸
f

�
G
pfq
1 SxF

pfq
z �G

pfq
2 SzJ

pfq
x

�
, (3.32b)

BtSz � 1
τ

¸
f

�
G
pfq
2

�
SyJ

pfq
x � SxJ

pfq
y

	�
. (3.32c)

It is important to remark that the axis convention of this section does not nec-
essarily coincide with Chapter 2, where the quantization axis of the atomic spin
state is set along the external magnetic field. In contrast, in the current section
the quantization axis is defined by the light propagation direction. Our particular
arrangement of bias fields and probing beams will be introduced in Chapter 5,
however we already present here a suitable expression for Eqs. (3.32) in accor-
dance with the chosen coordinate system. We use separate coordinate systems
for the atomic (A) and light (L) operators and their cartesian coordinates are
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3.5. Dynamical evolution

linked as follows:

xL � yA , (3.33a)
yL � zA , (3.33b)
zL � xA . (3.33c)

The time evolution of the Stokes vectors in Eqs. (3.32) is written exclusively in
the light reference frame. Combining Eqs. (3.33) and Eqs. (2.17), we can rewrite
the atomic spin operators in the atomic reference frame while keeping the Stokes
vectors in the light reference frame. This is Fi � rFisA, Ji � rJisA, Si � rSisL
and the time evolution of the Stokes vectors becomes:

BtSx � 1
τ

¸
f

�
�Gpfq1 SyF

pfq
x �G

pfq
2 SzJ

pfq
l

�
, (3.34a)

BtSy � 1
τ

¸
f

�
G
pfq
1 SxF

pfq
x �G

pfq
2 Sz

J
pfq
x �?3J pfqm

2

�
, (3.34b)

BtSz � 1
τ

¸
f

�
G
pfq
2

�
�Sy J

pfq
x �?3J pfqm

2 � SxJ
pfq
l

��
. (3.34c)

We will refer back to Eqs. (3.34) in Section 5.3.4, which describes the Faraday
rotation setup and the resulting input (output) relations between the Stokes
vectors describing the probe light polarization before (after) the light atom-
interaction.
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4
Coherent spin-state manipulation

Coherent manipulations of SBECs take advantage of multi-second coherence and
lifetimes [33]. Hence, single- as well as multi-pulse manipulations, with typical
timescales below   1 ms, are free of loss and decoherence mechanisms. This
greatly simplifies the theoretical framework and most mw and rf manipulations
are described through rotations or driving of a spin-f system.
This chapter reviews the theoretical framework for coherent spin-f rotations

and the dynamics arising from the magnetic dipole interaction between the atomic
spins and AC magnetic fields. The discussion is tailored to rf drivings within
f � 1 and f � 2 and to the microwave drivings between them. The highlighted
applications are single-pulse and composite-pulse resonant spin manipulations,
as well as adiabatic spin manipulations.

4.1. Ground state radiofrequency and microwave
transitions in 87Rb

The radiofrequency (rf) transitions within f � 1 and f � 2, as well as most of the
microwave (mw) transitions between hyperfine levels, are magnetically sensitive.
This results from the linear and quadratic Zeeman shifts, which affect all Zeeman
substates except those with m � 0. We write the energy of state |f,my as Epfqm

and the corresponding coupling resonance frequency between states as ωpff
1q

0,mm1 �
~�1pEpf 1q

m1 � E
pfq
m q. In Fig. 4.1 we show resonance frequencies of the rf and mw

transitions within and between f � 1 and f � 2. For simplicity, we have omitted
the QZS (�m2β0B

2) and the differential LZS between f � 1 and f � 2 (�mγsB),
which are both negligible for most of the coherent manipulations in this thesis.
Within this approximation, the energy splitting between neighbouring Zeeman
sublevels f � 1 and f � 2 are reversed, i.e. ωp1q0 � ω

p11q
0,mm�1 � �ω0 and ωp2q0 �

ω
p22q
0,mm�1 � �ω0, where ω0 � γ0B. As regards the interhyperfine transitions, the

resonances are spaced by multiples of ω0 and we use the clock transition ωp12q
0,00 �

2Ahfs{~ � 2π � 6834.6 MHz as reference. Fig. 4.1 also illustrates the required
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4. Coherent spin-state manipulation

Figure 4.1.: Energy splitting E
pfq
m and resonant frequencies for the rf coupling

(horizontal labels) and mw coupling (vertical labels). The rf res-
onance frequencies are ω

p1q
0 � �ω0 and ω

p2q
0 � �ω0 for f �

1 and f � 2, respectively. The mw resonance frequencies are
ω
p12q
0,mm1 � ω

p12q
0,00 � ω0pm � m1q. Based on Section 2.2, we have

ω0{B � 2π�700.27 kHzG�1 and ωp12q
0,00 � 2Ahfs{~ � 2π�6834.6 MHz.

Energy levels spacing are not to scale.

change in angular momentum for the distinct transitions. Rf transitions between
neighbouring Zeeman sublevels increase or decrease by one quantum the angular
momentum along the quantization axis and couple to the circular polarization
components of the driving fields. The situation is different for the mw driving,
where the polarization depends on the particular transition |1,my Ø |2,m1y. The
driving field has to include σ�, π or σ� polarization components for m1 � m� 1,
m1 � m or m1 � m� 1.

4.2. Magnetic rf drivings within hyperfine manifolds
In this section we study the magnetic coupling to transverse oscillating magnetic
fields within a single hyperfine manifold. By keeping the spin of the system as a
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4.2. Magnetic rf drivings within hyperfine manifolds

free parameter f the results equally apply to f � 1 and f � 2.
The linear magnetic interaction Hamiltonian for a spin-f system embedded in

a DC magnetic field (along z) and a transverse AC driving field (within x � y
plane) reads:

Ĥ
pfq
B � ~γpfqB � f̂ pfq , (4.1a)

B � �B̃x cospωt� φxq, B̃y cospωt� φyq, Bz
�T

, (4.1b)

where Bi, B̃i and φi are the DC field amplitude, AC field amplitude and phase off-
set along i P tx, y, zu. The gyromagnetic ratio γpfq has been defined in Eq. (2.12)
and the driving frequency is, for simplicity, positive defined ω ¡ 0.
The Hamiltonian above is more conveniently expressed when using a circu-

lar basis set for the transverse magnetic fields. To this end, we introduce the
subscripts � and � to label circular σ� and σ� field components and rewrite
Eqs. (4.1) as

Ĥ
pfq
B � ~γpfq

2

�
Bz f̂

pfq
z �

�
B̃�eip�ωt�φ�q

� B̃�eip�ωt�φ�q
	�
f̂ pfqx � if̂ pfqy

	�
� h.c. , (4.2a)�

�B̃�e�iφ�
B̃�e�iφ�

�
� � 1

2

�
�1 �i

1 �i

�
�
�
�B̃xeiφx
B̃ye

iφy

�
� . (4.2b)

We distinguish three separate contributions to the Hamiltonian in Eq. (4.2a).
First, the 9Bz term is responsible for rapid Larmor precession around the ap-
plied DC magnetic field at a frequency ωpfq0 � γpfqBz. This frequency is typically
known as the resonance frequency. Second and third, the 9B̃� and 9B̃� terms
describe circularly polarized transverse rf fields rotating at a frequency �ω (σ�
polarization) and �ω (σ� polarization), respectively. Near the resonance fre-
quency |pω � ω

pfq
0 q{ωpfq0 | ! 1, only the σ� (σ�) component contribute to the

dynamics for ωpfq0 ¡ 0 (ωpfq0   0), while the σ� (σ�) component is typically ne-
glected by means of the Rotating Wave Approximation (RWA) [44]. Under this
approximation, the time dependence in Eq. (4.2a) can be removed by introducing
a reference frame that co-rotates with the B̃� (B̃�) field. The Hamiltonian in
the rotating frame reads:�

Ĥ
pfq
B

�
rot

� ~Ωpfq
� upfq� � f̂ pfq , (4.3a)

Ωpfq
� �

b�
Ωpfq

0,�
�2 � �∆pfq

�
�2
, (4.3b)
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4. Coherent spin-state manipulation

Ωpfq
0,� � γpfqB̃� , (4.3c)

∆pfq
� � �ω � ω

pfq
0 , (4.3d)

upfq� � 1
Ωpfq
�

�
Ωpfq

0,� cospφ�q,Ωpfq
0,� sinpφ�q,�∆pfq

�
	T

, (4.3e)

where the � (�) subscript applies for ωpfq0 ¡ 0 (ωpfq0   0). The dynamics intro-
duced by Eq. (4.3a) corresponds to an effective rotation around the unit vector
upfq� at a rate given by the generalized Rabi frequency Ωpfq

� . The generalized
Rabi frequency is expressed in terms of the detuning ∆pfq

� and the resonant Rabi
frequency Ωpfq

0,�.

4.3. Magnetic mw drivings between hyperfine
manifolds

The interaction between the spin state and the external magnetic fields is cap-
tured by the hyperfine and magnetic Hamiltonian in Eq. (2.9). While for rf tran-
sitions within hyperfine manifolds it suffices to consider the LZS (see Eqs. (4.1)),
this simplification does not apply to mw transitions between manifold. For a gen-
eral magnetic field B, the matrix representation of the hyperfine and magnetic
Hamiltonian becomes:

xf,m| Ĥhfs � ĤB |f 1,m1y �Ahfs

�
fpf � 1q

2 � 2
�
δf,f 1δm,m1

�µB
¸

ms,mi
m1
s,m

1
i

x1{2,ms|B � σ̂ |1{2,m1
sy Cf

1,m1

s,ms,i,mi
Cf,ms,ms,i,mi ,

(4.4)

where σ̂ � pσ̂x, σ̂y, σ̂zqT is the Pauli vector and Cf,ms,ms,i,mi � xs,ms, i,mi|f,my �
xf,m|s,ms, i,miy are the real-valued Clebsch-Gordan coefficients. The summa-
tion is taken over ms,m

1
s P t�s, su and mi,m

1
i P t�i, ..., iu for s � 1{2 and

i � 3{2. Note, that we have shifted the overall energy to yield a symmetric hy-
perfine splitting between f � 1 and f � 2, and we have approximated gs � 2 and
gi � 0. This simplification results in a � 10�3 change in the matrix elements,
which is negligible for the purpose of this section.
A further simplification applies for interhyperfine transitions between f � 1

and f � 2, where Eq. (4.4) can be rewritten in terms of pseudo spin- 1
2 subsystems,

56



4.3. Magnetic mw drivings between hyperfine manifolds

spanned by the ground and excited states |gy � |1,my and |ey � |2,m1y. The
Hamiltonian of such a spin- 1

2 system reads:

Ĥ
p12q
mm1 � ~ωp12q

0,mm1 f̂
p 1

2 q
z � µB

¸
i

Bi

�
α
p12q
i,mm1 f̂

p 1
2 q

x � β
p12q
i,mm1 f̂

p 1
2 q

y

	
. (4.5)

The summation is taken over i P tx, y, zu and the terms αp12q
i,mm1 and β

p12q
i,mm1

scale the interaction to the magnetic field components. This representation
is particularly suited to obtain the couplings to the different magnetic field
polarizations and the corresponding resonant Rabi frequency Ωp12q

0,mm1 . When
α
p12q
i,mm1 � αδi,x and βp12q

i,mm1 � �αδi,y, the transition couples to transverse σ� driv-
ings and Ωp12q

0,mm1 � µBαB̃�{~. Similarly, when αp12q
i,mm1 � αδi,z while βp12q

i,mm1 � 0,
the transition couples to longitudinal π drivings and Ωp12q

0,mm1 � µBαB̃z{2~. The
magnetic couplings and resonant Rabi frequencies for the full set of f � 1 and
f � 2 hyperfine transitions are listed in Table 4.1.
In analogy to the rf drivings within f � 1 and f � 2, we can introduce a

rotating frame to describe mw drivings for every spin- 1
2 subsystem. In this case,

|gy |ey α
p12q
i,mm1 β

p12q
i,mm1 Pol. ~Ωp12q

mm1{µB
|1,�1y |2,�2y �?3δi,x �?3δi,y σ� �B̃�

?
3

|1, 0y |2,�1y �a3{2δi,x �a3{2δi,y σ� �B̃�
a

3{2
|1,�1y |2, 0y �a1{2δi,x �a1{2δi,y σ� �B̃�

a
1{2

|1,�1y |2, 0y �a1{2δi,x �a1{2δi,x σ� �B̃�
a

1{2
|1, 0y |2,�1y �a3{2δi,x �a3{2δi,y σ� �B̃�

a
3{2

|1,�1y |2,�2y �?3δi,x �?3δi,y σ� �B̃�
?

3
|1,�1y |2,�1y �?3δi,z 0 π �B̃z

?
3{2

|1, 0y |2, 0y �2δi,z 0 π �B̃z
|1,�1y |2,�1y �?3δi,z 0 π �B̃z

?
3{2

Table 4.1.: Microwave transitions and magnetic couplings between the f � 1 and
f � 2 hyperfine manifolds. The values for αp12q

i,mm1 and β
p12q
i,mm1 have

been obtained by casting Eq. (4.4) into effective spin- 1
2 subsystems

described by Eq. (4.5). Based on these, the resonant polarization
(σ�, σ� or π) and resonant Rabi frequency (Ωp12q

0,mm1) are obtained.
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4. Coherent spin-state manipulation

we get:�
Ĥ
p12q
mm1

�
rot

� ~Ωp12q
mm1up12q

mm1 � f̂ p 1
2 q , (4.6a)

Ωp12q
mm1 �

b�
Ωp12q

0,mm1

�2 � �∆p12q
mm1

�2
, (4.6b)

∆p12q
mm1 � ω � ω

p12q
mm1 , (4.6c)

up12q
mm1 � 1

Ωp12q
mm1

�
Ωp12q

0,mm1 cospφ�,zq,Ωp12q
0,mm1 sinpφ�,zq,�∆p12q

mm1

	T
, (4.6d)

where the applied magnetic field is of the form B � pB̃� cospωt�φ�q, B̃� sinpωt�
φ�q, BzqT , B � pB̃� cospωt � φ�q, B̃� sinp�ωt � φ�q, BzqT or B � p0, 0, Bz �
B̃z cospωt�φzqq for σ�, σ� or π drivings, respectively. The overall interpretation
and dynamics resulting from Eqs. (4.6) are equivalent to the rf drivings described
below Eqs. (4.3).

4.4. Resonant and off-resonant coherent
manipulations

We have seen that, within the rotating frame, the magnetic rf and mw interaction
have analogous Hamiltonians. For this reason, in the rest of this chapter we will
simplify the notation and write Eqs. (4.3) and Eqs. (4.6) as�

Ĥ
�
rot

� ~Ωu � f̂ , (4.7a)

Ω �
b

Ω2
0 �∆2 , (4.7b)

u � 1
Ω pΩ0 cospφq,Ω0 sinpφq,�∆qT , (4.7c)

where, f̂ is a spin f � 1, 2 operator for rf drivings and a spin f � 1
2 operator

for mw drivings. A more intuitive representation of the dynamics can obtained
for the normalized spin projections fi � F

pfq
i {fNA, which follow the equation of

motion of a classical rotor:

Bt rf srot � Ωu� rf srot , (4.8)

Contrary to the Hamiltonian in Eqs. (4.7), which is described in terms of p2f �
1q � p2f � 1q dimensional spin matrices, the normalized spin equation of motion
in Eq. (4.8) does not alter its structure for distinct f quantum numbers and
is suited to visualize coherent manipulations regardless of the underlying spin
manifold. For observables that are invariant under z rotations (see discussion
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4.4. Resonant and off-resonant coherent manipulations

below Eq. (2.19)) we omit the subscript indicating the reference frame, which in
this chapter applies to fz and fK.
The dynamics resulting from rf and mw couplings can be described through

an effective rotation, where both the rotation axis and the rotation speed are
influenced by the detuning ∆ � ω � ω0. While the stability of the driving
frequency ω and the resonant Rabi frequency Ω0 are inherited from the rf and mw
synthesizer of the experiment, the resonant frequency ω0 generally depend on the
applied magnetic field. Magnetic field fluctuation and the resulting fluctuations
in the detuning strongly affect the outcome of coherent spin manipulations.
In the following, we illustrate the effect of distinct detunings on the coherent

driving of spin ensembles. To this purpose, we assume all spins initially oriented
along fpt � 0q � p0, 0,�1qT and use Eq. (4.8) for the spin dynamics in fz:

fzptq � �1� 2
�

Ω
Ω0

sin
�

Ωt
2


�2
. (4.9)

For a resonant driving, Eq. (4.9) describes full oscillation cycles between fz � �1
at a frequency Ω � Ω0. On the other hand, for detunigs ∆ � 0, the oscillation
cycles decrease in amplitude but increase their frequency.
In Fig. 4.2 we evaluate the dependency on the detuning in fz and fK. Results

are shown for Ω0t � π and Ω0t � π{2, corresponding to a resonant π rad and
π{2 rad rotation of the initial spin. Rf and mw pulses with the above durations
are commonly known as π and π{2 pulses, respectively. We observe that the
stability order1 of fz for π pulses is Op∆{Ω0q2, while for fK and π{2 pulses the
stability order is Op∆{Ω0q4.

4.4.1. Composite spin manipulations
So far we have focused on single pulse manipulations and the attendant rotations
in the spin orientation. An extension are composite rotations [81], formed by
sequences of rf and mw pulse with distinct length and relative phase relations.
We target two applications of such pulse sequences.
The first one is the generation of effective rotations where a particular subset of

spin observables is stabilized against perturbations. In particular, they palliate
fluctuations and inhomogeneities in the driving field and its detuning [82, 83].
In Table 4.2 we show single pulses and composite pulses with an equivalent net
rotation of π and π{2 rad. We write individual rotations as Rαrβs, where β is
the rotation angle and α is the azimuth angle of the rotation axis. For a π and
π{2 rotation around x, we have R0rπs and R0rπ{2s, or equivalently R0r180s and
R0r90s when expressing the angles in degrees.

1Order of the first non-zero derivative Bnpfiq{Bp∆qn � 0 evaluated at ∆ � 0.
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4. Coherent spin-state manipulation

Figure 4.2.: Dependence of fz (left) and fK (right) on the detuning for a π (left)
and π{2 (right) pulses applied to a spin system initially oriented along
�z.

Deviations from ideal π and π{2 pulses are primarily caused by magnetic field
drifts that move the driving out of resonance ∆ � 0. We quantify this effect
by the deviation angle χ, which is the angle between the obtained f |∆�0 and
the ideal f |∆�0 spin orientations. In Table 4.2 we show the detuning range for
which χ ¤ 10 deg, which is our metric for the performance of the distinct pulse
sequences.
The performance of these composite pulse sequences is also given in Fig. 4.3,

where besides the spin projections fz and fK we shown the angular deviation χ.
For small detunings |∆{Ω0| ! 1 the composite pulse sequences show a reduced

Label Net rotation Sequence (Ð) Stability range (∆{Ω0)
Rπ π R0r180s �0.09
RI π R0r315sR180r225sR0r90s �0.23
RII π R180r59sR0r298sR180r59s �0.69
Rπ{2 π{2 R0r90s �0.17
RIII π{2 R0r25sR180r320sR0r385s �0.36

Table 4.2.: Single and composite π and π{2 pulses [81]. Individual rotations are
written as Rαrβs, where β is the rotation angle and α is the azimuth
angle of the rotation axis (in degrees). Composite pulse sequences are
read in inverse order, from right to left (Ð). The stability range is
defined as the interval of detunings for which the angle between f |∆�0
and f |∆�0 is χ ¤ 10 deg.
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4.4. Resonant and off-resonant coherent manipulations

Figure 4.3.: Dependence of fz and χ on detuning for the pulse sequences described
in Table 4.2. The upper charts show single and composite π pulses,
the lower charts are devoted to single and composite π{2 pulses. Note
that the composite pulses sequences relocate the instabilities in the
detuning from |∆{Ω0| ! 1 to |∆{Ω0| Á 1.

variance in the spin projections and angular deviations. On the other hand, when
|∆{Ω0| Á 1, the situation is reversed. More generally, the stabilization resulting
from composite pulses can be understood as a rearrangement in the sensitivity of
the system, where instabilities are transferred to minor spectral regions or minor
spin observables.
A second example of multi-pulse resonant rf and mw sequences is the manip-

ulation of the azimuthal spin pointing angle θ � arctan2pfx, fyq. A change in
the azimuthal spin pointing angle is equivalent to a rotation around the quanti-
zation axis (z). This is generally not possible through a single resonant driving
pulse but can be achieved via two resonant π pulses. We write these pulses as
RαAr180s and RαB r180s. The composite pulse sequence2 RαB rπsRαArπs results

2Composite pulse sequences are read in inverse order, from right to left (Ð).
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4. Coherent spin-state manipulation

Figure 4.4.: Bloch Sphere representation of the spin trajectory resulting from
two consecutive π pulses between states |1, 0y and |2, 0y (pseudo-
spin 1

2 system). The initial spin state is |1, 0y (opaque dot) and
the first rotation RαArπs is an ascending spin trajectory towards the
intermediate state |2, 0y (translucent dot). The second spin rotation
RαB rπs moves the state back to |1, 0y. The rotation axes have been
adjusted to αB �αA � π{2 and the enclosed solid angle (green area)
is S � π. The resulting transformation for the ξpfq0 component reads
ξ
p1q
0 Ñ ξ

p1q
0 � expr�iS{2s � �iξp1q0 .

in a rotation around z by an angle θ � 2pαB � αAq, where αB � αA is adjusted
through the phase difference between the two applied AC fields.
The same pulse sequence can be used to perform phase manipulations on in-

dividual spin components of f � 1 and f � 2. We will illustrate the process
for a SBEC in f � 1 and a phase manipulation of the ξp1q0 component. To
this end, the RαB rπsRαArπs pulse sequence is applied on the mw clock transi-
tion between |1, 0y and |2, 0y. The transformation of the ξp1q0 component reads3

ξ
p1q
0 Ñ ξ

p1q
0 � expriπ� ipαB �αAqs. An application of the phase manipulation of

the ξp1q0 component is the coherent driving between oriented (F p1q � N
p1q
A ) and

aligned states (F p1q � 0), e.g. between ξp1q{
b
N
p1q
A � p1{2,�1{?2, 1{2qT and

ξp1q{
b
N
p1q
A � p1{2,�i{?2, 1{2qT .

In Fig. 4.4 we show the spin trajectory for the phase manipulation of the ξp1q0
component. We note that it forms a closed path and that the transformation of
ξ
p1q
0 can be equally written in terms of a geometric phase given by the enclosed

3Note that we operate within a spin- 1
2 system, which yields a factor 1{2 between the evolution

of the azimuthal spin pointing angle θ � 2pαB � αAq and the evolution of the ground state
phase argpξp1q0 q � π � αB � αA , i.e. Bθ argpξp1q0 q � 1{2.
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4.4. Resonant and off-resonant coherent manipulations

solid angle S [84, 85, 86]. Using the geometric phase we have ξp1q0 Ñ ξ
p1q
0 �

expr�iS{2s, which applies to any arbitrary closed spin trajectory on a spin- 1
2

Bloch Sphere.

4.4.2. Adiabatic spin manipulations

In contrast to resonant spin manipulations, off-resonant spin manipulations en-
gineer variable detunings to achieve a robust spin population transfers through
adiabatic passages. The technique was first introduced in the pioneering NMR
experiments of Felix Bloch et al. [87] and is based on an adiabatic sweep in the
detuning which inverts the spin populations of the system [88].
In the limit of large detunings, the atomic spins and the oscillating field are un-

coupled and the Hamiltonian in Eqs. (4.7) becomes rĤsrot � �~∆f̂z. We write
the eigensates as |f,my and their associated eigenenergies as Epfq

m � �~∆m.
The list of sorted eigenenergies reads rEpfq�f , E

pfq
�f�1, ..., E

pfq
f s for ∆   0 and

rEpfq
f , E

pfq
f�1, ..., E

pfq
�f s for ∆ ¡ 0. More generally, the sorted eigenstates reverse

their order when going from negative to positive detunigs and vice-versa.
This feature is used in adiabatic passages [89, 90, 91] to achieve spin population

inversion. In an adiabatic passage from ∆{Ω0 ! 0 to ∆{Ω0 " 0 (or vice-versa)
the system remains in the instantaneous eigenestates of rĤsrot. The result is a
population inversion of type N pfq

m Ø N
pfq
�m, where N pfq

m is the spin population of
the state |f,my.
In Fig. 4.5 we show the eigenenergies of the coupling Hamiltonian as a func-

tion of detuning. The eigenenergies highlight the connection between |f,my to
the |f,�my states when an adiabatic change in the detuning is performed. We
also observe that the spacing between energy levels decrease as we approach reso-
nance. This is of particular importance in the design of adiabatic sweeps and for
setting an upper bound to the sweep rate. We make use of the work introduced
by Landau and Zener [92, 93], which evaluates the probability of an adiabatic
transition in a two-level system (f � 1

2 ) under a linear sweep in detuning. This
reads [88]:

Padb � 1� exp
� �2πp~Ω0{2q2
~|BtpEe � Egq|



, (4.10)

where Padb is the probability of an adiabatic transition between states |gy and
|ey, Ee � Eg the energy difference between them and ~Ω0{2 is the off-diagonal
element of the two-level system’s Hamiltonian. We can use Eqs. (4.7) to rewrite
the energy difference in the limit of large detunigs |Ee � Eg| � ~|∆|. Under this
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4. Coherent spin-state manipulation

Figure 4.5.: Eigenenergies Epfqm of the magnetic coupling Hamiltonian in the ro-
tating frame (Eq. (4.3a)) as a function of detuning ∆. In the limit of
large detunings |∆{Ω0| " 1 the eigenstates of the system correspond
to the bare states |f,my. We use gray scale coding to pictorially
represent the distinct bare states at the left and right side of the fig-
ure. Note that their orders are reversed and the populations inverted
N
pfq
m Ø N

pfq
�m when adiabatically driving the system from negative

to positive detunings and vice-versa.

approximation, an adiabatic transfer with Padb Á 1� ε is guaranteed for

2π p~Ω0{2q2
~2|Bt∆| Á � lnpεq Ñ |Bt∆| À �π pΩ0q2

2 lnpεq , (4.11)

where |Bt∆| is the detuning sweep rate. While the adiabatic transition probability
in Eq. (4.10) was originally computed for f � 1

2 , we can use Eq. (4.11) also in
higher spin system for choosing appropriate sweep rates and avoiding couplings
between neighbouring Zeeman substates. Furthermore, we can use this expression
to compare the adiabatic sweep time tadb and the duration of a resonant π pulse
tπ. For a linear sweep in detuning in the range ∆{Ω0 P r�η,�ηs we obtain:

tadb{tπ ¡ �4η lnpεq
π2 . (4.12)

For a typical sweep range η � 10 (as given in Fig. 4.5) and ε � 0.01 we get
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4.4. Resonant and off-resonant coherent manipulations

tadb{tπ Á 20. Hence, adiabatic transfers are significantly slower than the cor-
responding resonant manipulations, which is a fundamental drawback of this
technique. Additionally, spin superpositions undergoing an adiabatic sweep do
not mantain their original phase relation. The new phase relation depends on
the difference in the dynamical phase as well as on the Berry phase acquired by
each spin component [91, 94].
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5
Experimental setup

The experimental apparatus this work is based on was started in 2012. During
the subsequent 3 years, the former PhD students Silvana Palacios and Simon
Coop did an exceptional work and by the time I joined ICFO (late 2015) the
experiment was very close to achieve condensation. In fact, we observed the first
BEC signatures a few months later. From that point on, I had the priviledge to
work in the ultracold regime and develop hardware, firmware and software for
the control and manipulation of our spinor BEC.
This chapter starts with a general overview of the experimental setup but is

manly devoted to the improvements and new developments in the context of this
thesis. They are classified as improvements in the magnetic control of the atomic
ensemble and improvements in the optical manipulation and probing. The first
ones include an active magnetic field stabilization and the synthesis of radiofre-
quency (rf) and microwave (mw) fields. The second type of improvements include
a pulsed loading scheme for the optical dipole trap, a purification scheme for the
optical evaporation, the digitization of the laser locking scheme and the devel-
opment of a hyperfine-selective Faraday probing scheme. Detailed discussions on
the pre-existing setup and capabilities can be found in [95, 96].

5.1. General overview
In this section we review the basic capabilities of the experimental apparatus.
The core of every ultracold quantum gas experiment is its vacuum system, which
for this experimental work is shown in Fig. 5.1. The atomic ensembles are trapped
and cooled inside a I � 115.8 mm wide octagonal glass cell, offering an excep-
tional optical access. The pressure of the system is lowered to � 1� 10�11 mbar
by means of an ion pump. The strong magnetic field of the ion pump is con-
tained by a custom µ-metal shielding. The atoms are sourced from enriched
87Rb dispensers powered via electrical feedthroughs.

Magnetic pairs of coils along each spatial direction encapsulate the octagonal
glass cell and produce up to � 1 G for compensating the Earth’s magnetic field
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5. Experimental setup

Figure 5.1.: Full vacuum system (left) and detailed view of the octagonal glass
cell (right) including magnetic field coils. We label as txA,yA, zAu
and txL,yL, zLu the atomic and Faraday probing reference frames,
respectively. Images adapted from [95].

and defining the quantization axis of the experiment. Not shown here is an
additional pair of Helmholtz coils which are used to actively cancel magnetic field
fluctuations along the zA direction (Section 5.2.1). Superposed to the bias coils
along yA, a pair of coils connected in anti-Helmholtz configuration are used to
generate the quadrupole magnetic field (linear gradient) for the magneto-optical
trap (MOT) and Stern-Gerlach imaging. Additional rf (Section 5.2.2) and mw
(Section 5.2.3) driving allow to manipulate the atomic spin state.
The laser beams used for cooling, trapping and probing the atomic ensemble

are shown in Fig. 5.2. Based on their geometry, we distinguish between collimated
(w0 Á 5 mm) and focused (w0 À 50 µm) beams. The first corresponds to the three
counter-propagating pairs of beams for the MOT and the absorption imaging
beam, which propagates along p1, 1, 0qTA, i.e. p1, 0, 1qTL. On the other hand, the
focused light beams are coplanar within xA-zA, i.e. zL-yL. They are formed by
the three optical dipole traps (ODT 1,2,3), the optical pumping (OP) beam and
the dispersive Faraday probing beam. Relevant to this work are the beam waists
w0 of ODT 1,2,3 and the Faraday probing beam. They are respectively 46 µm,
63 µm, 65 µm (calibrated in [95]) and 38 µm (estimated from effective area and
comparison between theoretical and measured Gp1q1 in Section 5.3.4).
The above beams not only differ by their geometries, they also operate at

distinct wavelengths. We use a 1560 nm Erbium doped fiber amplifier (EDFA)
for the dipole trapping beams, where ODT 2 and ODT 3 recycle the power of
ODT 11. The maximum optical power in ODT1 is 10 W. The remaining beams

1In [95] two additional EDFA are described, operating at 1560 nm and 1529 nm These sources
are not used in this work and all dipole trapping beams are sourced from the same EDFA.
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5.1. General overview

Figure 5.2.: Laser beam configurations of the experimental setup. Left and right
subfigures show the collimated (w0 Á 5 mm) and the focused (w0 À
100 µm) beams, respectively. We use blue colors for cooling and
trapping beams and red colors for imaging and probing beams.

operate in the NIR regime at 780 nm. As described in Section 3.1, we use two laser
sources to drive the D2 line of 87Rb, namely the cooler (f � 2 Ø f 1 � t1, 2, 3u)
and repumper (f � 1 Ø f 1 � t0, 1, 2u) lasers. The MOT beams contain both
frequencies, the absorption imaging and optical pumping use the cooler light only,
and the Faraday probing alternates the cooler and repumper light to probe the
spin orientation in f � 2 or f � 1, respectively. In this thesis, the cooler and
repumper locking schemes have been updated to a fully digital control. This is
further described in Section 5.3.3.
The experimental control of the system is based on an adapted version of the

open source Cicero Word Generator developed at the group of W. Ketterle, MIT
[97, 98]. The Cicero Word Generator is a graphical user interface (GUI) for pro-
gramming hardware-clocked experimental sequences on PXI family products of
National Instruments. It makes composing, testing and debugging experimental
sequences easy and allows for external hold and retrigger for synchronizing the
experiment with external trigger signals. We use this feature during experimental
sequences that are sensitive to the magnetic field to synchronize their execution
with the 50 Hz power lines. The fundamental limitation of the control system
used in this work is its temporal resolution ¥20 µs, which is slower than the typ-
ical Larmor precession periods � 10 µs. Spin manipulation via rf and mw pulse
require much higher temporal resolution. For this purpose, a custom real time
rf source was developed (see Section 5.2.4), with a temporal resolution in the
range of 100 ns and capable of buffering and executing up to 1000 configuration
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instructions for a dual port Direct Digital Synthesizer (DDS).
We now describe a typical experimental sequence:

(i) 3D MOT loading. The magneto-optical trap (MOT) [99] is loaded from
the 87Rb background pressure in � 20 s. The cooling and repump light are
provided through the optical paths indicated in Fig. 5.2 and are �15 MHz
red detuned to the f � 2 Ø f 1 � 3 transition and on resonance to the
f � 1 Ø f 1 � 2 transition, respectively. The magnetic gradient field is
generated by the anti-Helmholtz coils with symmetry axis along yA. The
MOT traps about 2� 108 atoms cooled to a temperature of T � 400 µK.

(ii) Optical molasses. The magnetic gradient of the MOT is turned off and
the cooler detuning increased to�190 MHz for polarization gradient cooling,
a.k.a. Sisyphus cooling [100, 101]. After 20 ms this reduces the temperature
bellow T À 20 µK.

(iii) CMOT. The gradient fields are rapidly turned on forming a compressed
magneto-optical trap (CMOT) [102], which recovers the atomic density prior
to the loading of the ODT.

(iv) ODT loading. The loading of the optical dipole trap (ODT) [103] is typ-
ically accomplished by a slow ramp up of the dipole trapping power and a
successive lowering in the cooling and repump powers during the molasses
and CMOT stages. In the current experimental setup, the ODT operates at
1560 nm close to the excited states transitions at 1529 nm between energy
levels 5P3{2 Ø t4D3{2, 4D5{2u. As a result, the dipole trap exerts an intense
light shift on the excited f 1 P t0, 1, 2, 3u [104]. This introduces a spatial
dependency in the detuning of the molasses and CMOT, which strongly
reduces their cooling efficiency. We palliate this effect by introducing an
alternating trapping-cooling scheme (see Section 5.3.1) where the atoms ex-
perience the average trapping and cooling powers separately, i.e. without
any light shift. We typically load 6� 106 atoms into ODT 1. During load-
ing, ODT 2 is switched off and ODT 3 is used to compress the atomic cloud,
which otherwise would spread along the axial direction of ODT 1.

(v) Optical evaporation. The evaporation starts by lowering ODT 1 and
ODT 3, while ODT 2 is ramped up. After 1s, ODT 3 is fully turned off
and the atoms are pinned at the intersection of ODT 1 and ODT 2. The
power of these beams is further reduced for a total evaporation time of 4.5 s,
yielding a BEC of � 105 atoms with no visible thermal fraction.
During the evaporation phase, the spin state of the system is purified via
two mechanisms. The first one is optical pumping, which transfers the
atoms into the |1,�1y state. Optical pumping can only be applied at early
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stages of the evaporation, when the recoil photon energy is negligible in
comparison to the temperature of the cloud ~2k2{2m ! kBT . After optical
pumping, the populations in |1,�1y and |1, 0y are swapped by applying a
mw pulse sequence2. This results in an atomic ensemble in state |1, 0y. The
second purification mechanism is a combination of resonant mw pulses and
magnetic field gradients that are applied during the last 2.4 s of evaporation.
It removes any residual atomic populations outside |1, 0y and is further
explained in Section 5.3.2.

(vi) Spin manipulation. The spin state of the system is manipulated via
resonant rf and mw transitions. By tuning the frequency of the driving
fields we address the magnetic inter- and intrahyperfine transitions shown
in Fig. 4.1. In this work, the used spin manipulations range from simple π
and π{2 pulses to composite pulse sequences.

(vii) Variable hold time. During the hold time the SBEC undergoes coherent
evolution within the ODT. Spin decoherence is strongly suppressed in single-
mode SBECs and the current apparatus has reported coherence times τcoh �
7 s [33]. This is of fundamental advantage in precision measurements of
external fields and other type of energy shifts with sensitivities scaling as
91{τcoh.

(viii) Spin readout. We use two types of spin readout. The first technique
is Stern-Gerlach imaging [105, 106, 54] which uses absorption imaging
after releasing the atomic cloud from the ODT and in the presence of a
magnetic field gradient. The gradient separates the center of mass of each
hyperfine manifold and maps the spin populations into separated spatial
distributions. Because of the reversed gyromagnetic ratios in f � 1 and
f � 2, the Zeeman sublevels of the two manifolds separate in opposite
direction. Hence, Stern-Gerlach images typically show the reversed sum of
the spin populations N p1q

�m � N
p2q
�m for m P t�1, 0,�1u. If both f � 1 and

f � 2 are populated, additional spin manipulations might be required to
distinguish between each contribution3.

2The pulse sequence is as follows.:

Item Rotation Type Coupled levels ρp1q ρp2q

0 pa, b, cq p0, 0, 0, 0, 0q
1 Rπ mw |1, 0y Ø |2, 0y pa, 0, cq p0, 0, b, 0, 0q
2 Rπ mw |1,�1y Ø |2, 0y pa, 0, bq p0, 0, c, 0, 0q
3 Rπ mw |1, 0y Ø |2, 0y pa, c, bq p0, 0, 0, 0, 0q

Rotations are defined in Table 4.2 and the relative populations read ρpfqm � |ξ
pfq
m |2{NA.

3For example, in the case only |1, 0y and |2, 0y are populated, the atomic cloud does not
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A second technique is dispersive Faraday probing [73, 68] which uses
the vector light shift introduced in Section 3.3.3 to reveal the spin projec-
tion F

pfq
xA (F pfqzL in the light reference frame). Faraday probing is a non-

destructive imaging technique which allows for continuous or stroboscopic
probing over several Larmor precession periods. By recording the F pfqxA

(F pfqzL ) projections at distinct points over a Larmor precession cycle, the
full information of the spin projections in the transverse plane is recovered.
In this work, we extended the experimental setup to support hyperfine-
selective Faraday probing, which is further detailed in Section 5.3.4.

5.2. Magnetic control and manipulation

5.2.1. Magnetic control

The magnetic field control of the experiment is performed via two mechanisms.
First, a rough compensation (� 1 mG) of the Earth magnetic field and other
external magnetic field sources is achieved by a pair of magnetic coils along
each experimental axes. These coils are powered by stabilized current drivers
and their set-points are defined by the experimental control system. Second, we
use an actively controlled pair of coils along the bias field direction zA (yL) to
compensate for time-evolving magnetic fields caused by the 50 Hz cycles in the
power grid and the operation of electric equipments. The remaining directions
remain uncompensated, since magnetic fluctuations along these directions do not
contribute to the first order correction of the magnetic field modulus:

B � Bz ẑ� δB ÝÑ B � Bz � ẑ � δB�OpδB2q (5.1)

The development and testing of this scheme has been reported in [107]. The
resulting magnetic noise suppression is analyzed in terms of the peak-to-peak
fluctuations and averaged standard deviations over a 50 Hz power cycle. This
yields rBppsraw{rBppsfeedback � 4.5 and xδByraw{xδByfeedback � 8.6. In the latter
expression, the average is computed via xδBy � τ�1 ³τ

0 δBptq dt, where τ � 20 ms.

separate under a magnetic field gradient. In this case, we typically apply a mw π pulse that
swaps the populations between the initially empty |1,�1y state and the |2, 0y state. As shown
in Fig. 4.1, the mw driving between |1,�1y and |2, 0y has the same resonance frequency as
between |1, 0y and |2, 1y. Hence, the π pulse will fully transfer the state |2, 0y Ñ |1,�1y but
also partially transfer the state |1, 0y Ñ |2,�1y. After applying the π pulse, Stern-Gerlach
imaging fully separates the relevant spin populations and we can assign Np1q

�1 to the original
population in |2, 0y and Np1q

0 �N
p2q
�1 to the original population in |1, 0y.
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5.2.2. Rf manipulation
Rf manipulations couple spin states belonging to the same hyperfine manifold
with an energy splitting governed by the LZS (see Fig. 4.1). They require mag-
netic driving fields that are transverse to the external bias field (along zA). To
this end, we make use of the already existing transverse offset coils along xA and
incorporate a double bias-T configuration to combine the DC and AC driving for
the bias control and spin manipulations, respectively. We incorporate a 25 dB
amplifier (Minicircuits, ZHL-6A+) for the rf driving signal. The schematic of the
driving circuit is given in Fig. 5.3, where the DC driving is further described in
[95] and the rf driver is detailed later in this chapter.

rf	(~)	

bias	(+)	

bias	(-)	

gnd

L+X	

L-X

28uH

32uH 0.8uF

0.8uFZHL-6A+

Figure 5.3.: Double bias-T configuration for combining the bias and rf driving.
The pair of magnetic coils along xA are labeled as L�x.

The resulting rf driving field is linearly polarized and the total magnetic field
reads

B � �B̃x cospωt� φxq, 0, Bz
�T

, (5.2)

where Bz is the magnetic bias field, B̃x the rf field amplitude, ω its angular fre-
quency and φx the initial phase. The linear polarized rf field has projections onto
σ� and σ� components (see Eq. (4.2b)) and is therefore suited to simultaneously
manipulate the Zeeman sublevels in f � 1 and f � 2. Expressing the driving
field in Eq. (5.2) in terms of the coherent spin manipulation parameters described
in Chapter 4 yields

ω
p1q
0 � γp1qBz ω

p2q
0 � γp2qBz (5.3a)

∆p1q
� � �ω � ω

p1q
0 ∆p2q

� � ω � ω
p2q
0 (5.3b)

Ωp1q
0,� � �γp1qB̃x{2 Ωp2q

0,� � γp2qB̃x{2 (5.3c)
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φ� � φx � π φ� � φx (5.3d)

The gyromagnetic ratio γpfq is defined in Eq. (2.12) and is negative (positive) for
f � 1 (f � 2). We have chosen to use positive defined Ωpfq

0,� for both manifolds
and account for the negative gyromagnetic ration in f � 1 with a π phase shift
in φp1q.

The rf amplitude, frequency and phase are fundamental experimental param-
eters to be characterized or adjusted for coherent spin manipulations. Similarly,
the duration of the rf field has to be tuned depending on the required rotation
angle. In the following, we illustrate this process for f � 1:

• Amplitude. In general, strong driving amplitudes and short pulse du-
rations are preferable because of the resulting power broadening and en-
hanced robustness against magnetic field fluctuations. However, we limit
the value of B̃x based on the following considerations. First, it has to be
small enough such that we operate in the perturbative regime |B̃x{Bz| ! 1
(i.e. |Ωp1q

� {ωp1q0 | ! 1). Second, we shall not overcome the saturation power
of the rf amplifier, which is key for a linear amplification. While the first
condition is magnetic field dependent, the second is guaranteed even at
the maximum amplitude of the rf source, where we have proven a linear
amplification scaling4.

• Frequency. Resonant spin-1 manipulations require ∆p1q
� � �ω�ωp1q0 � 0,

where ωp1q0 � γp1qBz is stabilized by the earlier described active magnetic
field control. Although ωp1q0 is stabilized, its actual value has to be measured
using the atomic ensemble. To this end, we typically prepare the spin along
|1,�1y and apply a 65 µs long rf-pulse and measure F p1qz {NA for different
driving frequencies ω. Results are shown in Fig. 5.4 (i), where we use
Eq. (4.9) for fitting the experimental data. The free parameters are the
resonance frequency ωp1q0 and the resonant Rabi frequency Ωp1q

0,�.

• Phase offset. The phase offset of the rf driving field is given by the initial
phase of the rf driver as well as additional constant phase shifts introduced
by the propagation delay of the rf lines, amplifiers and the inductance of
the rf coils. Since for most application only the relative phase between con-
secutive rf pulses is relevant, these constant phase shifts are not explicitly
calibrated.

4To prove the linearity at a given nominal driving amplitude B̃x, we reduce the driving to one
half B̃x Ñ B̃x{2 and verify that Ωp1q

� Ñ Ωp1q
� {2
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Subfigure Fit parameter Best estimate

(i) ω
p1q
0 {2π �84.18p12q kHz

(i) Ωp1q
0,�{2π 5.93p11q kHz

(ii) Ωp1q
0,�{2π 5.952p31q kHz

Figure 5.4.: Rf driving field calibration for f � 1. Subfigure (i) evaluates the
population inversion vs. driving field frequency for a 65 µs long rf
pulse. The measured resonance frequency corresponds to an offset
field B � ω

p1q
0 {γp1q � 119.97p17qmG. Subfigure (ii) shows Rabi

oscillations for a resonant driving field ω � �ωp1q0 . Open circles and
error bars represent the experimental data and standard deviation,
respectively. Curves show the fitted results based on Eq. (4.9), where
the free fit parameters and their best estimates are summarized in
the table above. Used spin imaging technique: Stern-Gerlach.

• Duration. The rf field amplitude B̃x, or equivalently Ωp1q
0,� in Eq. (5.3c),

and its duration t determine the net rotation angle Ωp1q
0,�t. Thus, by per-

forming an accurate measurement of Ωp1q
0,�, the required t can be inferred

for any arbitrary rotation angle. In Fig. 5.4 (ii) we show a Rabi oscilla-
tion sequence, where starting from |1� 1y, we apply a resonant rf rotation
for various durations t. We fit the resulting dynamics to Eq. (4.9), with
∆pfq
� � 0 and Ωp1q

0,� as a free fit parameter. Note, that this sequence is
particularly suited for evaluating the resonant Rabi frequency, and that the
best estimate for Ωp1q

0,� is about 3 times more accurate in Fig. 5.4 (ii) than
in Fig. 5.4 (i).

An analogous calibration can be performed to find ωp2q0 and Ωp2q
� , but in practice

is rarely necessary because γp2q � �γp1q. For example, with ∆p1q
� � 0, i.e. on res-
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onance with the f � 1 resonance, the residual f � 2 detuning is ∆p2q
� {Ωp2q

� � 0.1.
This is negligible for most rf manipulations of this work5, which simultaneously
rotate f � 1 and f � 2 in reversed directions.

In order to individually address the f � 1 or f � 2 manifold, and additional
driving field along yA should be included. Amplitude and frequency have to
match the already existing driving along xA and the phase difference between
them ∆φ � φy � φx can be used to commute between a coupling to f � 1 or
f � 2. For a phase difference ∆φ � �π{2, the resulting magnetic field is σ�
polarized and only drives f � 1. In contrast, for ∆φ � �π{2 we obtain a σ�
polarized magnetic field, which exclusively drives f � 2.

5.2.3. Mw manipulation
The microwave manipulation is used to couple spin states belonging to different
hyperfine manifolds. In Fig. 4.1 and discussion below we saw that the distinct
pseudo f � 1

2 transitions have generally different resonance frequency but also
different resonant polarization components. While the driving field frequency is
easy to adjust by means of configuring a waveform synthesizer, its polarization
is more involved as it depends on the particular positioning of the mw antenna
with respect to the magnetic offset fields.
In this work, rather than producing a mw field for a particular polarization

component, we configure the mw antenna to result in a driving field that simul-
taneously has σ�, σ� and π polarization components. In particular, we use a
horn antenna along the p1,�1,�1qTA direction and feed it with a custom built
microwave chain, shown in Fig. 5.5. The latter is based on a two stage mixing
scheme, which combines a custom rf input (� 24 MHz) and two stable frequency
sources at 210 MHz and 6.6 GHz, respectively. The rf source is equivalent to the rf
driver used in Section 5.2.3, which will be described later. The fixed frequency ref-
erences are a digital synthesizer (National Instruments, PXIe-5650) and a voltage
controlled oscillator (VCO) stabilized by a phase-locked loop (PLL). The refer-
ence for the PLL is an externally provided 25 MHz clock. This design offers an
additional on/off trigger port that controls the state of an rf switch (Minicircuits,
ZX80-DR30-S+) prior to the input of the last mixing stage. The trigger port is
used to gate the mixed � 24 MHz and 210 MHz signals, such that for generat-
ing a mw pulse, the amplitude of the rf driver is held constant and the trigger
port is enabled for the required pulse duration. At the end of the microwave
chain, the spectrum is cleaned by means of a cavity filter. This reduces the
power in unwanted sidebands resulting from the two mixing stages and ensures

5The only exception is the hyperfine-dependent state preparation Appendix E, which is a
composite pulse sequence that explicitly uses the relative detuning between f � 1 and
f � 2 rf manipulations.
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that subsequent amplifications are fully devoted to the resonant sideband. The
filtered signal is further amplified to a power of � 30 dBm and sent to the horn
antenna. Note that a circulator is inserted to protect the high power amplifier
(Minicircuits, ZVE-3W-83+) from back reflections and impedance mismatches
at the antenna.

Similar to rf manipulations, we can adjust the following parameters of the mw
driving:

• Amplitude. The amplitude is adjusted by means of the rf-driver, which
is running at 1{4 of its full scale amplitude to ensure a linear amplification
across all amplifiers of the microwave chain.

• Frequency. The driving field has to match the particular resonance fre-

rf	(~)	

ref	clk	
(25	MHz)

horn	antenna

PLL	
ADF4108

VCO	(6.6	GHz)
	ZX95-6840C-S+

VBD=5.1	V

ZX10R-14-S+

LO	(210	MHz)
PXIe-5650

trigger

ZX05-1-S+ ZX80-DR30-S+

ZX10R-14-S+

ZX05-73L-S+

cavity	filter2x	(ZX60-8008E-S+)

ZFL-1000+

VAT-10+

circulator ZVE-3W-83+

Figure 5.5.: Microwave chain used to generate the resonant 6834 MHz interhy-
perfine driving field. We show the Analog Devices and National In-
struments part numbers for the phase-locked loop (PLL) and local
oscillator (LO), respectively. The remaining part numbers belong to
the Minicircuits catalogue.
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quency ω
p12q
0,mm1 between levels |1,my Ø |2,m1y. An example of this cali-

bration is given in Fig. 5.6 (i), where we we scan the population inversion
between |1,�1y Ø |2,�2y as a function of the driving frequency. The pulse
duration is set to 90 µs.

• Phase. The 210 MHz and 6.6 GHz run continuously and their phase is
not reset at start of the experimental sequence. Therefore, we only have
control on the relative phase between successive mw pulse within the same
experimental sequence.

• Duration. We control the duration of the mw pulses through the pulse
length of the gating (trigger) pulse. In Fig. 5.6 (ii) we scan the duration
of a resonant |1,�1y Ø |2,�2y driving and observe the expected Rabi os-
cillations. The system is initially prepared in |1,�1y and the resonance

Subfigure Fit parameter Best estimate

(i) ω
p12q
0,�1�2{2π 24 430.90p10q kHz� 210 MHz� 6.6 GHz

(i) Ωp12q
0,�1�2{2π 4.70p16q kHz

(ii) Ωp12q
0,�1�2{2π 4.955p12q kHz

Figure 5.6.: Mw driving field calibration for the pseudo-spin f � 1
2 transition

between sates |1,�1y Ø |2,�2y. Subfigure (i) evaluates the popu-
lation inversion vs. driving field frequency for a 90 µs long rf pulse
and a magnetic field of B � 120 mG. Subfigure (ii) shows Rabi os-
cillations for a resonant driving field ω � ω

p12q
0,�1�2. Open circles and

error bars represent the experimental data and standard deviation,
respectively. Curves show the fitted results based on Eq. (4.9). The
free fit parameters and their best estimates are summarized in the
table above. Used spin imaging technique: Stern-Gerlach.
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Attribute Value | Comment Unit
Operational modes1 Single tone, Modulation, Sweep
Number of channels1 2
Amplitude resolution1 10 bit
Frequency resolution1 32 bit
Phase resolution1 14 bit
DAC sampling rate1 500 MS/s
Max. instructions 1000
Trigger input resolution2 100 ns
Configurable delay2 62.5 | Step size ns

125 | Min. delay ns
Reconfiguration time2 100 | Update profile pins ns

4 | Update SPI register us

1 Reference values taken from the AD9958 data sheet [108].
2 Typical values observed during development and testing.

Table 5.1.: General features and timing specification of the real-time rf source.

frequency is taken from the fit results of Fig. 5.6 (i). As we saw in Sec-
tion 5.2.2, this sequence is particularly suited for estimating the resonant
Rabi frequency Ωp12q

0,�1�2 and its best estimate is above an order of magni-
tude more precise in Fig. 5.6 (ii) than in Fig. 5.6 (i).

5.2.4. Real-time rf source
The real-time rf source became a key development for this thesis. It is used to
generate the rf and gaiting (trigger) signals for rf and mw spin manipulations.
This extends the main experimental control system, which with a minimum tem-
poral resolution of 20 µs is not suited for rf synthesis. We summarize the main
capabilities of the device in Table 5.1.
The operation of the real-time rf source can be understood in terms of 3 effective

layers:

(i) AD9958. This is a dual channel Direct Digital Synthesizer (DDS) from
Analog Devices [108]. This is the lowermost layer, devoted to the gener-
ation of rf signals. At the core of the DDS sit two phase accumulators
and two phase-to-amplitude converters, which generate the corresponding
sine/cosine digital waveforms for each channel. The digital waveforms are
fed into fast digital-to-analog converters (DACs) that synthesize the actual
rf signals.
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There are three fundamental reason why this DDS has been chosen. First,
because its high clocking speed and sample rate (500 MS/s) is far above the
frequencies required for rf and mw manipulations, which respectively are
84 kHz and 24 MHz (rf input of the mw chain). Having a high ratio between
sampling rate and target rf frequencies minimizes the distortion due to the
discrete synthesis of the sine/cosine waveforms. Second, the internal phase
accumulator is continuously running and is independent of the amplitude
settings. This ensures phase coherence in a multi-pulse rf sequence. Third,
because of its fast programming interfaces: SPI for register setting and 4
profile pins for the up to 16-level direct modulation.

(ii) ChipKit Max 32. The intermediate layer is a PIC32 microcontroller from
Digilent [109], which operates as a sequencer, responsible for the hardware-
timed configuration of the AD9958 through SPI and the 4 profile pins.
It features an input trigger, used to synchronize its operation with the
experimental control system, as well as an output trigger, which we use for
monitoring purposes or for gating the mw chain. The C++ source code is
available on [110].
During operation, the microcontroller parses incoming serial commands and
populates the built-in function stack and variable stack. They are a 1000
item-long array of function pointers and a 1000 � 5 parameter array, re-
spectively. The functions include SPI register transfers, profile pin settings,
configurable delays and input/output trigger management. The parame-
ters are the particular arguments for each of these function calls. Once the
function and variable stack have been configured, the system is ready for
execution. During execution, the microcontroller mutes all interrupts and
sequentially steps through the function and variable stacks. At completion,
interrupts are enabled and the system is ready again to parse incoming
commands and to build new function and variable stacks.

(iii) Python API. This is the uppermost layer, which exposes to the user the
tools for sequentially configuring the rf source. It implements user friendly
methods such as setAmplitude(), waitForTimer(), waitForTriggerIn(), set-
TriggerOut()... where the corresponding hardware settings are handled in
the back end. This is, for each API method the required SPI transfers, pro-
file pin settings or trigger managements are automatically inferred. These
are then transferred as serial commands to the microcontroller, which con-
structs the function and variable stacks. After the rf sequence has been
programmed, the user calls the API method runStack(), which notifies the
microcontroller that the configuration has been finished and commands it
to initiate the execution of the function and variable stacks. Please refer
to [110] for the API source code, its documentation and working examples.
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Figure 5.7.: Connection between the DDS (AD9958 eval), the controller (chipKit
Max 32) and the Python API (running on the host PC). Please refer
to [111] for setting jumpers W0-W7 and W11, which configure the
AD9958 control mode and reference clock, respectively. The suitable
decoupling baluns are described in the text below. We label the chip-
Kit Max 32 ports via the corresponding board pins (30, 31, 32...).
For the complete pinout please see [109]. Note that the microcon-
troller operates at 3.3 V and that typical 5 V TTL triggering signals
have to be adapted.

In Appendix B we show a subset of these examples and the corresponding
waveform captures to illustrate the operational modes of the AD9958.

The schematic and wiring between the 3 parts of the real-time rf source is shown
in Fig. 5.7. We use the AD9958 Evaluation Board [111], which can be operated
in two ways. On one hand, using the on-board USB controller (not shown in
Fig. 5.7) and a ready-to-use GUI running on the host PC. This operational mode
is intended for evaluating the main capabilities of the DDS but is not adequate for
real-time control. On the other hand, the DDS can be controlled through the I/O
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pin headers, which expose the SPI interface and profile pins of the device. This
is suited for real-time control applications but requires a custom controller and a
suitable user interface. We use this second operational mode, where the controller
and user interface are the chipKit Max 32 and the Python API, respectively. To
this end, jumpers W0-W7 have to be configured as described in [111] and jumper
W11 is set to accept the external 25 MHz reference clock. A pair of 1:1 baluns is
used to decouple the AD9958 outputs and reference the rf signals to the provided
ground level. The board is shipped with two surface mounted baluns (ADTT1-
1, Minicircuits), with a typical frequency range of 0.3 MHz to 300 MHz. They
are only adequate for decoupling the rf signals of the mw chain (� 24 MHz).
For rf manipulations (� 84 kHz) we use instead two ADT1-6T+ baluns from
Minicircuits, with a frequency range of 0.03 MHz to 125 MHz.

5.3. Optical manipulation and probing
In the context of this thesis the optical manipulation and probing have been
upgraded in several forms. We describe these with different levels of detail in
function of their importance to the thesis. That is, for the pulsed ODT loading
scheme and the new spin state purification method, we will focus on presenting
their key concepts, such that future PhD generations can operate and further
improve the techniques. On the other hand, the digital laser locking scheme and
the hyperfine selective Faraday probing are key contributions of this work, for
which detailed descriptions will be provided.

5.3.1. Pulsed ODT loading scheme
The intense 1560 nm ODT beams provide the confinement potential for the
f P t1, 2u ground state manifolds (52S1{2). Earlier in this chapter, we introduced
the ODT geometry and their maximum power. Based on these parameters and
Eq. (3.17a) we can estimate the typical trap depth for the ground state manifold
V
pfq
0 � kB � 70 µK � h � 1.5 MHz. The situation is different for the excited

state manifolds f 1 P t0, 1, 2, 3u (52P3{2), which additionally experience a strong
light shift arising from the excited state transition between 52P3{2 Ø 4D3{2.
The excited state transition has a resonant wavelength of 1529 nm and is much
closer to the ODT wavelength than is the D2 line. The corresponding excited
states energy shift is above Á h � 100 MHz. This effect has been used for trap
tomography [96] and has triggered the development of a Floquet theory that
accurately describes excited states light shifts [104].
The strong excited state light shifts have a significant impact in resonant and

near-resonant optical manipulations. Most notably, it influences the loading of
the ODT, where the cooling and intense trapping light beams coexist. At this
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point, the ODT provides a conservative trapping potential and cooling is required
to accommodate the atoms at the center of the ODT. However, the detuning of the
cooling light is spatially dependent due to the strong excited state light shift and
this results in heating and inefficient atom loading [95]. We palliate this effect by
introducing a pulsed ODT loading scheme, where cooling and trapping lights are
rapidly alternated. In this case, the atoms alternately experience cooling (without
light shifts) and trapping. The atomic motion averages over these two effects to
produce a damped motion in the average dipole potential. In the following we
describe the development of a pulse-width modulation (PWM) scheme for the
controls, i.e. binary gating switches, of the cooling and trapping beams.
Two PWM implementations have been tested on a low cost Arduino Nano

(Arduino Srl) development board (source codes available in [112]). The first one
uses native (hardware) PWM counters for separate control of the cooling and
trapping light. It features a 8 bit resolution for the duty cycle and counter offset
but the frequency is only roughly adjustable to 16 MHz{p256 � Nq, where N P
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gate	TTL

monitor
4
3
9
8

GND	

megaAVR

serial	comm.	(USB)

Arduino	Nano

ODT	1	ctrl

repumper	ctrl

cooler	ctrlcooler	TTL

repumper	TTL

ODT	1	TTL

1
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3

4

1 PWM1_time	

2 PWM2_time	

3 PWM_period	

4 PWM_offset

Figure 5.8.: Left: hardware connections between the Arduino Nano and the TTL
control signals for cooling (cooler TTL and repumper TTL) and trap-
ping (ODT 1 TTL). The microcontroller operates at 5 V and is fully
compatible with standard TTL logic. Right: typical PWM wave-
forms. The parameters 1©, 2©, 3© and 4© are configured through the
serial interface.
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t1, 8, 64, 256, 1024u. The second implementation is based on a software PWM,
which typically operates with a lower phase and offset resolution but has a more
adjustable frequency. We have chosen this second method and show in Fig. 5.8
(left) the corresponding hardware connections. We use the gate TTL input to
enable the synthesis of the PWM signals and verify the operation of the device
through the monitor output. The synthesized PWM signals are combined via OR
gates with the TTL signals for regular control of the cooling and trapping beams.
These are the cooler TTL, repumper TTL and ODT 1 TTL signals. Note that
PWM of ODT 2 and ODT 3 are produced simultaneously with ODT1, since these
beams recycle the power of ODT 1. In Fig. 5.8 (right) we show the configurable
parameters of the PWM scheme. They define the duty cycle, relative offset and
overall frequency of the two PWM outputs. These parameters are configured
within the Cicero Word Generator and are forwarded to the microcontroller via
serial communication (USB).
The current configuration enables the cooling beams when the trapping and

repumping beams are disabled (and vice-versa) such that only repumping events
are affected by the strong excited state light shift. As a result, repumping is
strongly suppressed at the central region of the ODT, where cold atoms are
eventually collected in the f � 1 state (dark state for the cooling process).

5.3.2. Spin state purification
The efficiency of cooling a spin ensemble down to a SBEC strongly depends on the
particular spin state. Condensation is most easily achieved when only a single
spin state is populated. This is because of the following three reasons. First,
the phase space density and condensation temperature Tc drop when atoms are
distributed among different spin states. In the most extreme case, where the
atoms are in an incoherent mixture that equally populates all spin-f Zeeman
sublevels, Tc drops by a factor p2f � 1q2{3 [25]. Second, spin changing collision
during evaporation depletes the atomic populations from partially condensed
spin states to others where the thermal gas is not yet saturated [113]. Third,
the thermalization time diverges near the phase transition and the condensation
occurs within local spin domains. The latter effect is most relevant to atomic
ensembles populating multiple Zeeman sublevels and which can accommodate
distinct spin domains [114, 115].
In this work, we have implemented a new spin purification scheme that com-

bines, optical trapping, magnetic field gradient pulses and gravity. The spin state
we target is the polar f � 1 state |1, 0y (or equivalently ξ � p0, 1, 0qT ` 0T5 ). As
described in Section 5.1, right after the start of the optical evaporation, optical
pumping and mw manipulations are used to transfer close to 90% of the atomic
population into |1, 0y. The total evaporation time is 4.5 s and during the last 2.4 s
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we additionally apply a spin purification scheme to remove the residual atoms
in |1, 1y and |1,�1y. It is formed by 12 repetitions of the following 200 ms long
sequence:

(i) 0.0 ms to 4.9 ms. The magnetic field offset is set to point along zA and
allowed to stabilize around B � 120 mG. Magnetic field gradients are
switched off during this stage.

(ii) 4.9 ms to 5.0 ms. We apply a resonant mw π pulse, that transfers the pop-
ulation in |1,�1y into |2,�1y. This leaves the |1, 0y population unaffected
and locates any residual population in high field seeking states.

(iii) 5.0 ms to 200.0 ms. The magnetic field offset is set to point along�yA (along
gravity) and ramped up in magnitude to B � 500 mG. The high magnetic
field drives the atomic system far into the polar region of its phase diagram
[24], where the energy offset introduced by the QZS is much higher than
the ferromagnetic interaction. In this regime |1, 0y is the groundstate and
spin changing collisions are highly suppressed. During this time step we
operate the MOT coils driver at full current (� 20 A) to provide a gradient
field above 25 Gcm�1 along gravity. As a result, high field seeking states
(|1,�1y, |2,�1y, |2,�2y) experience an enhanced gravitational drag and are
forced to leave the optical trap.

The combination of the optical evaporation with the above described spin pu-
rification results in a pure SBEC in |1, 0y with neither visible thermal fraction
nor residual spin populations in the |1,�1y states.

5.3.3. Digital PLL laser lock
The current experimental setup builds upon a single spectroscopic element. That
is, all light sources are referenced to a master 1560 nm EDFA laser. The light
source is frequency doubled to 780 nm and features a linewidth as narrow as
4.75p6q kHz [95]. The 780 nm light is sent through a modulation transfer spec-
troscopy (MTS) setup [116] operating on the f � 2 Ø f 1 � 3 cycling transition of
the 87Rb D2 line. The MTS outputs a dispersive error signal that is fed back to
the EDFA current controller for frequency stabilization. We note that the MTS
stabilization technique is particularly robust against power fluctuations [117] and
that the system can be operated for several days without losing lock. The ac-
curacy and robustness of the master laser is leveraged by the remaining light
sources of the experiment. These are the ODT (1560 nm), which is seeded by the
master laser; and the cooler and repumper lasers (780 nm), which are stabilized
to the frequency doubled master light through a phase-locked loop (PLL). In this
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section we will discuss the latter two locking schemes, focusing on the developed
digital control of the PLL units.
The cooler and repumper are Toptica TApro and DLpro external cavity diode

lasers (ECDL). They feature external controls for the diode current and for the
voltage of the piezoelectric element attached to the internal diffraction grating.
We provide feedback on both controls as their bandwidth and tuning range are
inherently different. The current control has a typical bandwidth of 20 MHz and
is primarily used to stabilise the laser frequency against rapid perturbations. The
piezo control is significantly slower and has a bandwidth of À 1 kHz. Although
slow, the piezo has a large range, covering the whole mode-hop-free tuning range
� 2 GHz. Once the laser is locked, the feedback is predominantly provided by
the current controller and the piezo control is an idle state unless the required
feedback signal is outside the tuning range of the current controller. This happens
at several points of our experimental sequence that require a sudden change in the
absolute laser frequency set point above |∆f | Á 200 MHz. In these situations, the
piezo driver slowly moves the laser frequency until the set point is again within
the tuning range of the current controller and the laser lock is recovered.
The PLL offset locks are shown in Fig. 5.9. The cooler and repumper lasers

are combined with light from the stabilized and frequency doubled master laser.
Their beat note is captured by a commercial telecommunications PIN preamp re-
ceivers ( PT10GC 10Gb/s, Bookham). The beat note frequency is, depending on
the experimental sequence, within f coolerBN P r�200 MHz, 600 MHzs for the cooler
laser and between f repumper

BN P r6.0 GHz, 7.0 GHzs for the repumper laser.6 The
beat notes are fed into two digital PLLs (ADF4110 and ADF41020 from Ana-
log Devices) that use internal counter and scaling logic to compare the signals
against the provided reference clock (10 MHz and 100 MHz). The set-point for
the beat note frequency is controlled by configuring the counter and scaling logic
within the PLLs. If the beat note frequency exceeds the set-point, the charge
pump (cp) outputs a positive current and vice-versa if the beat note is below the
set point.7 The charge pump is connected to a resistor ladder that converts the
output current to a voltage level. Note that the the resistor ladder is referenced
to the charge pump source voltage (vp) and ground (gnd), and that the gener-
ated voltage levels will be centred around vp{2. We compensate this through a
separate offset control for the cooler and repumper laser locks. At their output
we obtain the error signal for each lock, which for small deviations is proportional
to the difference between set-point and actual laser frequency. The error signal is
sent through two cascaded integration stages. The output of the first integration

6We define the beat note frequencies such that for most of the experimental sequence they are
positively defined. This is fcooler

BN � fmaster � fcooler and f repumper
BN � f repumper � fmaster

7The ADF4110 and ADF41020 chipsets have configurable charge pump polarities. Hence, the
described frequency response can be inverted.
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cp output is connected to a resistor ladder and an offset correction.
The feedback electronics is based on a single (double) integrator con-
nected connected to the current (piezo) drivers of the ECDL lasers.
We use straight and dashed lines for electrical wires and optical fi-
bres, respectively.
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stage is the feedback signal for the laser current, while the second one has a much
slower response and is suited for providing feedback to the piezo driver. In order
to reduce the response time of the cooler lock, we introduce a feed-forward signal
that is added to the output of the second integrator.
A special feature of this locking scheme is that no analogue set-point is pro-

vided. Instead, the set-point is tuned by configuring the PLL registers in real-
time. To this end, the PPLs are connected to a chipKit uC32 microcontroller
(Digilent) which includes two first-in-first-out (FIFO) buffer that at the begin-
ning of each experimental sequence are programmed to hold the required cooler
and repumper frequency set-points. During the execution of the experimental
sequence, the FIFOs are sequentially emptied and the PLLs are reconfigured.
The reconfigurations are externally triggered and use the SPI interfaces of the
ADF4110 and ADF41020. Both devices share the same clock and data lines but
use separate latch-enable (le) and chip-enable (ce) lines.

In the following we list the advantages of the described digital laser locking
scheme with respect to the pre-existing setup, which was based on a static PLL
configuration and used voltage-controlled oscillators (VCOs) as reference inputs
[95].

• Stability. The stability of the frequency set-point is inherited from the
PLL reference (ref). In the current design we ensure a stable reference by
using constant frequency oscillators at 10 MHz and 100 MHz, for the cooler
and repumper PLLs, respectively. This was not the case in the previous
design, which used free-running VCOs as reference clocks. VCOs typically
feature temperature dependent and ageing drifts, and require a frequent
recalibration of their voltage-to-frequency response.

• Configurable lock polarity. This is a unique property of this locking
scheme that enables to operate the lock on positive as well as negative beat
note frequencies. The gain of the feedback reverses its sign when moving
form positive to negative beat note frequencies. As a result, the previous
lock design was adjusted to stabilize (i.e. have negative feedback) at either
positive or negative beat note frequencies. This is different in the current
design, where the frequency set point and PLL polarity can be adjusted
real-time. This is used in the dispersive Faraday probing of f � 2, which
operates the AD4110 PLL at a set-point of f coolerBN � �200 MHz, while the
rest of the experimental sequence operates it above f coolerBN Á 160 MHz.

The source code for the digital PLL laser lock can be found in [118], which
includes custom libraries for the ADF4110 and ADF41020, as well as a lightweight
SPI library. Please refer to Appendix C for a Pyhton code example that illustrates
the configuration and execution of the digital PLL locks.
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5.3.4. Hyperfine-selective Faraday probing
The extension of the already existing Faraday probe [95] to f � 1 and f � 2 made
it possible to simultaneously track the transverse magnetisation in both hyper-
fine manifolds. It is the cornerstone of the comagnetometery and interhyperfine
interaction studies in Chapter 6 and Chapter 7.
This section is arranged as follows. It first adapts the dynamical evolution

presented in Section 3.5 to input and output relations of the light polarization
Stokes parameters. Thereafter, the experimental arrangement is presented and
the Stokes parameters are put into context with the obtained readout signals.
The translation from readout signals (i.e. voltage levels) to Stokes parameters
require adequate signal post-processing and a calibration of the gain of the photo-
detection electronics, which are both discussed.8 The last part is devoted to the
calibration of the vector light-atom coupling constant Gpfq1 .

Discrete Stokes parameters and transfer relations

In Section 3.3.3 we discussed the vector light-atom interaction, which introduces
a circular birefringence dependent to the atomic spin projection along the light
propagation axis. This interaction results in a rotation φ of the light polarization
which can be detected via a calibrated polarimeter. In this work, the Faraday
rotation is a weak perturbation |φ| À 30 mrad and the light-atom interaction is
described by a set of input (before the light-atom interaction) and a set of output
(after the light-atom interaction) mean-field Stokes parameters. We write them
as Sin

i and Sout
i , with i P tx, y, z, 0u. For the input Stokes parameters we assume

a light field that is linearly polarized along the horizontal direction (yL||zA), such
that:

Sin
x �NL{2 , (5.4a)
Sin
y �0 , (5.4b)
Sin
z �0 , (5.4c)
Sin

0 �NL{2 , (5.4d)

where NL is the number of photons than are within an optical pulse of duration
τ . For the output meanfield Stokes parameter we use Eq. (3.34) with δtSi �
τ�1pSout

i � Sint
i q. Neglecting the tensorial light-atom interaction we get:

Sout
x �Sin

x , (5.5a)

8Additional calibrations such as the detection noise scaling and the verification of a shot-noise-
limited sensitivity are not discussed in this work. These investigations have been addressed
in [95].
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Sout
y �Gpfq1 Sin

x F
pfq
x , (5.5b)

Sout
z �Sin

z , (5.5c)
Sout

0 �Sin
0 . (5.5d)

We note that in Eq. (5.5b) the atomic spin projection F
pfq
x is assumed to be

constant over the entire pulse duration τ . This conditions is generally not met,
however it is possible to subdivide the optical pulse into smaller sub-pulses for
which the atomic spin evolution is negligible and Eq. (5.5b) still applies. We index
these virtual sub-pulses by n P r0, 1, 2...s and write their duration as τn ! τ . For
each of the sub-pulses we have:

Sout
y rtns � G

pfq
1 Sin

x rtnsF pfqx rtns , (5.6)

where tn �
°
n1¤n τn1 .

The rotation experienced by the light polarization φ can be directly inferred
from the output Stokes parameters. Moreover, in the weak interaction limit
|φ| ! 1 we obtain a linear relation between the polarization rotation angle and
the atomic spin projection. This connection is the working principle behind our
Faraday rotation probing and we write it as

2φrtns � Sout
y rtns{Sout

x rtns � G
pfq
1 F pfqx rtns . (5.7)

Hyperfine selective light-atom interaction

The hyperfine dependent Faraday interaction is achieved by using separate prob-
ing lights for f � 1 and f � 2. Their frequencies are adjusted such that |Gp1q1 /
G
p2q
1 | " 1 for the f � 1 probing light and |Gp1q1 / Gp2q1 | ! 1 for the f � 2 probing

light. As a result, the polarization of the f � 1 (f � 2) probe beam primarily
couples to the spin projection of f � 1 (f � 2). In Table 5.2 we compare the
coupling coefficients for distinct operational points of the f � 1 and f � 2 Fara-
day probe. The residual cross-coupling between the Faraday readouts of f � 1
(f � 2) and the spin projections in f � 2 (f � 1) are suppressed by more than
an order of magnitude.

Faraday probing setup and data post-processing

The experimental arrangement for the hyperfine selective Faraday probing setup
is shown in Fig. 5.10. The probing light is typically composed of two 40 µs long
optical pulses and separated by a 20 µs downtime. The first pulse corresponds to
the f � 1 Faraday probe and uses the repumper (r) laser source. The second pulse
probes the f � 2 manifold and uses the cooler (c) laser source. For a discussion
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Probe ∆p101q{2π ∆p231q{2π G
p1q
1
Lpλ3

0{πλAq G
p2q
1
Lpλ3

0{πλAq
f � 1 �270 MHz 6069 MHz 3.67 � 10�3 1.27� 10�4

f � 1 �570 MHz 5769 MHz 1.62 � 10�3 1.34� 10�4

f � 2 �5979 MHz 360 MHz 1.31� 10�4 2.50 � 10�3

Table 5.2.: Coupling coefficients Gpfq1 of the vector light-atom interaction for f �
1 and f � 2 evaluated at the operational points of the Faraday probe.
In this work the f � 1 Faraday probe is detuned below the closed
1 Ñ 01 transition ∆p101q{2π P t�570 MHz,�270 MHzu and the f � 2
Faraday probe frequency is located above the closed 2 Ñ 31 transition
∆p231q{2π � 360 MHz. We highlight the couplings between probe
f and hyperfine manifold f , the remaining couplings quantify the
residual crosstalks between Faraday readouts.

on the probe frequencies, i.e. detunings, please refer to the subsection above. The
optical pulses are combined through a fibre splitter and undergo a polarization
cleaning stage, formed by polarizing beam-splitters (PBS) as well as λ{2 and λ{4
waveplates, that ensure a linear polarization. At this point, the optical field is
split by a non-polarizing beam splitter (BS). One half of the light field is sent to
an auxiliary photodiode (PD) which measures the instantaneous optical power.
The other half interacts with the SBEC and its polarization gets rotated by
an angle φ � G

pfq
1 F

pfq
x {2. In order to measure φ, the light is sent through a

polarimeter, formed by a λ{2 waveplate, a PBS and a differential photo-detector
(diff PD), which is adjusted to measure the photon number difference between the
�45� polarization modes. The polarimeter operates in a balanced configuration,
such that both outputs of the PBS carry the same optical power when φ � 0.
When φ � 0, a power imbalance arises, which is measured by the differential
photodetector. The differential photodetector [119] is based on two photodiodes
in a differential arrangement and connected to a charge sensitive preamplifier that
integrates and amplifies the difference in the photodiode currents. The diff PD
1© and PD 2© signals are recorded on a STEMLab 125-14 (Red Pitaya) board,
which is triggered by the experiment control system and features an acquisition
rate of 125MS/s (8 ns sampling period). After completion of the experimental
sequence, the recorded traces are transferred to the host PC. There, the data
post-processing converts traces 1© and 2© into the Stokes parameters Sy and Sx,
from which the Faraday rotation angle φ is inferred. The post-processing of this
work is based on a virtual stroboscopic probing (sub-µs probing pulses). We
outline the process below:
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(i) Each data sample of trace 1© is considered a virtual sub-pulse of duration
τn � 8 ns. We compute the contribution of each sub-pulse to the mea-
sured differential signal by computing the increments: ∆V1rtns � V1rtns �
V1rtn�1s. The increments are multiplied by the calibrated gain of the dif-
ferential detector to obtain the Stokes parameter Sout

y rtns. Thereafter, we
apply a first order order low-pass filter, with a cut-off frequency fc � 1 MHz
that is far above the Larmor frequency atomic spins |ωpfq0 |{2π � 84 kHz.

(ii) The data samples of trace 2© are scaled by the calibrated gain of the aux-
iliary photodetector and undergo a similar low-pass filtering stage (fc �
1 MHz). The result is the Stokes parameter Sout

x rtns.
(iii) The resulting Sout

y rtns and Sout
x rtns arrays are divided to obtain φrtns, as

described in Eq. (5.7).

(iv) The Stokes parameter Sout
x is integrated to obtain the total number of pho-

tons NLrtns that have interacted with the atomic ensemble since the start

:
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Figure 5.10.: Schematic of the Faraday rotation probing setup. Signal 1© illus-
trates typical Faraday rotation signals for f � 1 and f � 2, interro-
gated with light sourced from the repumper (r) and cooler (c) lasers,
respectively. Oscillations are caused by the Larmor precession of
the atomic spins. Signal 2© shows the typical probing pulse shapes
captured by the auxiliary photodiode. The data post-processing is
detailed in the text below.
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of the Faraday probing pulse:

NLrtns �
¸
n1¤n

NLrtn1s � 2
¸
n1¤n

Sout
x rtn1s . (5.8)

Calibration of the auxiliary photodetector

The readout of the auxiliary photo detector is used to estimate the Stokes pa-
rameter Sout

x . Note that this Stokes parameter needs to be evaluated at the same
position where Sout

y is estimated, i.e. at the output of the optical chamber. As
a result, we require a calibration that relates photodetector voltage to the opti-
cal power at the output of the optical chamber. At this position, a powermeter
was placed and we recorded its readout and the auxiliary photo detector voltage
for different optical probing powers. The results are shown in Fig. 5.11, where
the obtained slope is the power calibration for the auxiliary PD. Using equation
Eqs. (5.4) and (5.5) for a pulse of duration τ and an auxiliary photodetector

Figure 5.11.: Power calibration of the auxiliary photodetector. V2 is the auxiliary
photodetector voltage as measured on input channel 2 of the STEM-
Lab 125-14 board. Optical power measurements are performed by
a powermeter placed at the output of the optical chamber. Calibra-
tion performed in absence of 87Rb atoms.
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voltage V2 we have:

Sout
x � NL

2 � τV2

2~ω �
1

3.04� 103 V{W , (5.9)

where NL is the total photon number and ω � 2πc{λ is the probe photon fre-
quency. We can rewrite Eq. (5.9) in terms of virtual sub-pulses with a duration
equal to our acquisition sampling period τ � 8 ns and a discrete time variable
defined as tn � n � τ . Doing so for the Faraday probing of the 87Rb D2 line
(λ � 780.2 nm) we obtain Sout

x rtns � V1rtns � p5.17� 106 V�1q.

Calibration of the differential photodetector

The calibration of the differential photodetector voltage V1 requires separate eval-
uation of the response of the two internal photodiodes that measure the light
intensity at the �45� and �45� arms of the PBS. To this end, we fully unbal-
ance the detector by rotating the λ{2 waveplate such that the incoming Faraday
probing light is exclusively propagating through the �45� (�45�) arm. Under
this configuration, optical pulses are sent to the differential photodetector, which
results in positive (negative) differential photodiode currents that are integrated
within the differential detector. For this calibration we use 20 µs long optical
pulses and perform a scan over the optical pulse power. The corresponding dif-
ferential photodector signal are 20 µs long positive (negative) voltage ramp, where
the slope is proportional to the optical pulse power. In Fig. 5.12 we show the
measured voltage slopes for the �45� (�45�) configuration as a function of the
optical power recorded on the auxiliary photodetector.
We can applying the result to a balanced configuration and a general pulse

duration τ , the photon number along the�45� (�45�) arm of the PBS areNL,�45�

(NL,�45�) and the Stokes parameter Sout
y reads.

Sout
y �1

2
�
Nout
L,�45� �Nout

L,�45�
�

� τBtV1

4~ω �
�

1
3.10� 1012 V{Ws �

1
�3.08� 1012 V{Ws



, (5.10)

Earlier in this section we have introduced the increment in the differential pho-
todetector signal ∆V1rtns � V1rtns � V1rtn�1s. The increment connects to the
time derivative ∇V1rtns � τBtV1, where τ � tn � tn�1 � 8 ns is the acquisition
sampling period. In terms of virtual sub-pulses and for the Faraday probing of
the 87Rb D2 line we rewrite Eq. (5.10) as Sout

y rtns � ∇V1rtns� p6.35� 105 V�1q.
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Figure 5.12.: Power calibration of the differential photodetector. V1 is the differ-
ential photodector voltage as measured on input channel 1 of the
Red Pitaya STEMLab 125-14 board. The auxiliary photodetector
is simultaneously sampled on channel 2 and is used to estimate the
optical power. We label as V1,�45� (V1,�45�) the differential photode-
tector voltage in an unbalanced configuration, where the incoming
Faraday probing light is exclusively propagating through the �45�
(�45�) arm of the PBS. Calibration performed in absence of 87Rb
atoms.

Faraday rotation measurements and estimation of Gpfq1

As previously explained, a typical Faraday rotation measurement consists of a
40 µs long f � 1 Faraday probing pulse, followed by 20 µs delay and a 40 µs long
f � 2 Faraday probing pulse. The resulting auxiliary and differential photo-
detector signals are combined in the data post-processing yielding the Stokes
parameters Sout

x , Sout
y , the polarization rotation φ and the integrated number

of photons NL (see Fig. 5.10 and discussion below it). We analyse the Faraday
rotation signals with a fit model that merges the atomic spin evolution and the
light-atom interaction. The first one is described in Eq. (2.18), where the LZS
introduces oscillations in the transverse spin projections F pfqx and F

pfq
y . The

second one connects the atomic atomic spin projection to the observed rotation
signal (Eq. (5.7)) and describes the depolarization due to off-resonant photon
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absorption events (Eq. (3.30)). Combining them we get:

φrtns � 1
2G

pfq
1 F pfqx rtns , (5.11a)

FxrtN s � F
pfq
K � exp

�
�NLrtns{N pfq

L,dep



� cos

�
ωpfqtn � θpfq

	
. (5.11b)

The highlighted free fit parameters are the spin orientation angle θpfq, the trans-
verse magnetisation F

pfq
K and the characteristic depolarization photon number

N
pfq
L,dep. The Larmor precession frequency ωpfq is a constant contribution since

the Faraday probe is typically operated under the same constant magnetic field.
It can be estimated by including it as a free fit parameter in Eq. (5.11) or from
a scan of the rf driving frequency as shown in Fig. 5.4. Also the light-atom
interaction constant Gpfq1 must be calibrated. We detail the processes in the
following.
The Gpfq1 calibration compares the obtained rotation signal for a known atomic

state. In particular, it uses a transversally oriented state F pfqK,0 � fNA in f � 1
(f � 2), which is prepared through the combination of mw and rf pulses shown
in Table 5.3. After state preparation, the Faraday probing pulses are applied and
the obtained traces are fit to Eq. (5.11). In this case, we include Gpfq1 as a free fit
parameter while constraining the initial transverse magnetisation to F pfqK � fNA,
where the atom number NA has been estimated through absorption imaging prior
to this calibration. Measurements for the calibration of Gp1q1 (Gp2q1 ) are shown at
the end of this section in Fig. 5.13 (Fig. 5.14). The upper charts show the readout
from the differential V1 and auxiliary photodetector V2, the lower charts show the
inferred rotation angle φ9BtV1 and integrated photon number NL9

³
V2dt. The

fits to the f � 1 (f � 2) rotation signals are shown in blue (red). Comparing
the amplitude of the fitted signals, we see that the f � 1 (f � 2) Faraday probe
primarily couples to F p1qK (F p2qK ) and that the residual crosstalk amplitudes are
suppressed by more than one order of magnitude. We collect the experimentally
inferred Gpfq1 in Table 5.4.
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Item Rotation Type Coupled levels ρp1q ρp2q

0 p0, 1, 0q p0, 0, 0, 0, 0q
1 Rπ mw |1, 0y Ø |2, 0y p0, 0, 0q p0, 0, 1, 0, 0q
2 Rπ mw |1,�1y Ø |2, 0y p0, 0, 1q p0, 0, 0, 0, 0q
3a Rπ{2 rf |f,my Ø |f,m� 1y p 1

4 ,
1
2 ,

1
4 q p0, 0, 0, 0, 0q

3b Rπ mw |1,�1y Ø |2,�1y p0, 0, 0q p0, 0, 0, 0, 1q
4b Rπ{2 rf |f,my Ø |f,m� 1y p0, 0, 0q p 1

16 ,
1
4 ,

3
8 ,

1
4 ,

1
16 q

Table 5.3.: Mw and rf pulse sequence for the generation of a transversally
stretched state in either f � 1 or f � 2. The sequence branches
into (a) for f � 1 or (b) for f � 2. Rotations are defined in Table 4.2
and the relative populations read ρpfqm � |ξpfqm |2{NA.

Probe ∆p101q{2π ∆p231q{2π G
p1q
1 rrad{spins G

p2q
1 rrad{spins

f � 1 �270 MHz 6069 MHz 3.15p25q � 10�7 1.61p32q � 10�8

f � 1 �570 MHz 5769 MHz 1.67p12q � 10�7 -
f � 2 �5979 MHz 360 MHz 9.46p45q � 10�9 1.78p14q � 10�7

Table 5.4.: Measured coupling coefficients Gpfq1 for the distinct f � 1 and f � 2
probe detunigs of this work. We highlight the couplings between
probe f and hyperfine manifold f , the remaining couplings quantify
the residual crosstalk between Faraday readouts. The first and last
row are obtained from the data set shown in Fig. 5.13 and Fig. 5.14.
The row in between corresponds to a separate data set, where the
cross-coupling was not estimated.
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Figure 5.13.: Faraday rotation measurement of a transversely oriented SBEC in
f � 1 (F p1qK � NA, F p2qK � 0). The upper subfigures show the raw
differential photodetector voltage V1 and the auxiliary photodetec-
tor voltage V2. Below them are the corresponding polarization rota-
tion φ9BtV1 and the integrated photon number NL9

³
V2dt. Blue

and red curves show the best fit estimates of the rotation signal
based on Eq. (5.11). The total atom number is NA � 8.64p14q�104

and the detunings of the f � 1 and f � 2 Faraday probes are
∆p101q{2π � �270 MHz and ∆p231q{2π � 360 MHz, respectively.
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Figure 5.14.: Faraday rotation measurement of a transversely oriented SBEC in
f � 2 (F p1qK � 0, F p2qK � 2NA). The upper subfigures show the raw
differential photodetector voltage V1 and the auxiliary photodetec-
tor voltage V2. Below them are the corresponding polarization rota-
tion φ9BtV1 and the integrated photon number NL9

³
V2dt. Blue

and red curves show the best fit estimates of the rotation signal
based on Eq. (5.11). The visible depolarization, i.e. exponential
damping in the polarization rotation, is caused by off-resonant pho-
ton absorption and is particularly visible for the f � 2 trace. Total
atom number and Faraday probe detunings are equal to Fig. 5.13.
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6
Bose-Einstein condensate

comagnetometer

The value of paired magnetic sensors was first demonstrated in the early days
of modern magnetism, when C. F. Gauss [120, 121] used paired compasses to
perform the first absolute geomagnetic field measurements. In contemporary
physics, paired magnetic sensors enable comagnetometer-based searches for new
physics [122, 123]. In a comagnetometer, colocated magnetometers respond in
the same way to a magnetic field, but have different sensitivities to other, weaker
influences. Differential readout then allows high-sensitivity detection of the weak
influences with greatly reduced sensitivity to magnetic noise. Comagnetometers
have been used to investigate anomalous spin interactions [124, 125, 126, 127, 128]
and spin-gravity couplings [129, 130, 131] and for stringent tests of Lorentz invari-
ance and CPT violation [132, 133, 134, 135, 136, 137]. Further applications are
found in inertial navigation and gyroscopes built upon atomic spin comagnetome-
ters [138, 139, 140, 141]. Implementations with miscible mixtures include atomic
vapors [142, 143] and liquid-state NMR with different nuclear spins [144, 145].
In this chapter we discuss the development of a comagnetometer implemented

on a SBEC in a superposition of f � 1 and f � 2, which has been reported in
[52]. A challenge for this strategy is the relatively short lifetime of the f � 2
manifold produced by exothermic 2 Ñ 1 hyperfine-relaxing collisions [66, 146].
We strongly suppress these collisions by using the spin-dependent interaction at
low magnetic fields to lock the spins in a stretched state. In this way we achieve
�1 s lifetimes in f � 1, 2 mixtures and demonstrate a field noise rejection of
44.0p8q dB in the comagnetometer readout.

6.1. State preparation and probing
The comagnetometer is implemented on a coherent superposition of the f � 1
and f � 2 hyperfine manifolds. After the all-optical evaporation the SBEC
is transferred from the polar state ξ{?NA � p0, 1, 0qT ` 0T5 into transversally
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stretched states in f � 1 and f � 2. The applied mw and rf pulse sequence is
shown in Table 6.1. First, a rf π{2 pulse rotates the polar state into ξ{?N �
p1{?2, 0, 1{?2qT`0T5 . A mw π pulse on the |f � �1,m � �1y Ø |f � 2,m � �2y
transition then produces the state ξ{?NA � p1{?2, 0, 0qT ` p0, 0, 0, 0, 1{?2qT ,
which describes a stretched state oriented along (against) the magnetic field for
the f � 1 (f � 2) manifold. Finally, both spins are simultaneously rotated into
the x-y plane by means of a second rf π{2 pulse.

Item Rotation Type Coupled levels ρp1q ρp2q

0 p0, 1, 0q p0, 0, 0, 0, 0q
1 Rπ{2 rf |f,my Ø |f,m� 1y p 1

2 , 0,
1
2 q p0, 0, 0, 0, 0q

2 Rπ mw |1,�1y Ø |2,�2y p 1
2 , 0, 0q p0, 0, 0, 0, 1

2 q
3 Rπ{2 rf |f,my Ø |f,m� 1y p 1

8 ,
1
4 ,

1
8 q p 1

32 ,
1
8 ,

3
16 ,

1
8 ,

1
32 q

Table 6.1.: Mw and rf pulse sequence for the generation of a transversally
stretched state in f � 1 and f � 2. Rotations are defined in Ta-
ble 4.2 and the relative populations read ρpfqm � |ξpfqm |2{NA.

To independently probe the spin ensembles in f � 1 and f � 2, we use the
hyperfine-selective Faraday probe introduced in Section 5.3.4. The Faraday read-
out yields the transverse spin amplitude F pfqK and its azimuthal angle θpfq.

6.2. Magnetic evolution
As discussed in Section 2.2 the magnetic field contribution to the spin dynamics
splits into LZS and QZS. In the following we describe how they influence the
dynamics of the f � 1, 2 spinor BEC comagnetometer.

6.2.1. Linear Zeeman splitting
In the transverse plane, the spin manifolds precess around the magnetic field in
opposite directions. Under the SMA, f � 1 and f � 2 experience exactly the
same external magnetic field and their angular evolutions read:

θpfqptq � θ
pfq
0 � γpfq

» t
0
dt1Bpt1q , (6.1)

where the azimuth spin orientation θpfq is defined in Eq. (2.16c) and θpfq0 is its
initial value right after the second rf rotation. The gyromagnetic ratio γpfq for
f � 1 and f � 2 is given in Eq. (2.12).

102



6.2. Magnetic evolution

The spin orientation angle θpfq directly relates to applied magnetic field. In
particular, we can use Eq. (6.1) to estimate the precision in the estimated DC
magnetic field δB as a function of the precision in the azimuth angle δθpfq and
the free evolution time t:

δB � 1
|γpfq|tδθ

pfq , (6.2)

We write the precision in the azimuth angle as δθpfq � δF
pfq
x {F pfqK , where δF pfqx

is the precision in the measured spin projection along x. Assuming an atomic
projection-noise limited measurement we get rδF pfqx sA � a

fNA{2. Similarly, if
the measurement is limited by the photon shot-noise of the Faraday probe we
have rδF pfqx sL � 1{pGpfq1

?
NLq. More generally, the atomic spin projection-noise

and photon shot-noise are independent contributions and they can be combined
into Eq. (6.2) as:

δB �
b
rδBs2A � rδBs2L , (6.3a)

rδBsA � 1
|γpfq|t

a
fNA{2
F
pfq
K

¥ 1
|γpfq|t

1?
2fNA

, (6.3b)

rδBsL � 1
|γpfq|t

1
F
pfq
K G

pfq
1
?
NL

¥ 1
|γpfq|t

1
fNAG

pfq
1
?
NL

. (6.3c)

The inequalities in Eq. (6.3b) and Eq. (6.3c) saturate for fully oriented states
F
pfq
K � fNA. The limited lifetime and coherence time can be included through a

single parameter τ , which scales the magnetic precisions as rδBsA9 exppt{2τq{t
and rδBsL9 exppt{τq{t. As a result, the optimal evolution time is t � 2τ for
atomic projection-noise limited measurements and t � τ for photon shot-noise
limited measurements.

6.2.2. Quadratic Zeeman splitting
The QZS modulates F pfqK and drives coherent orientation-to-alignment oscilla-
tions (see Fig. 2.1), e.g. from F

pfq
K � fN

pfq
A to F pfqK � 0 and back. For f � 1,

these oscillations are only a minor inconvenience; they allow full-signal measure-
ments but only at certain times.1 The situation is distinct for f � 2, where
non-oriented states F p2qK   2N p2q

A undergo f � 2 Ñ f � 1 hyperfine relaxing col-
lisions. In this case, the QZS directly impacts the lifetime of the ensemble since
it drives the system from stable (oriented) to lossy (aligned) spin states. This
process is described in the following section, together with a mitigation technique
based on the competition between QZS and the spin contact interaction.

1Alternatively, the orientation-to-alignment dynamics can be reversed by a mw manipulation
prior to the Faraday probe pulse. See Fig. 4.4 and discussion above it.
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6.3. Hyperfine relaxing collisions
In a hyperfine relaxing collision, the liberated energy is transferred to the mo-
tional degree of freedom, which expels the colliding atoms from the trap [66].
This process makes it difficult not only to achieve condensation in f � 2, but
also to observe coherent spinor dynamics in the f � 2 state and in f � 1, 2
mixtures.
We divide these collisions based on the hyperfine manifolds the colliding atoms

belong to. This is, when they belong to f � 1 and f � 2 we write the collision as
1 � 2. Similarly, when both atoms are in f � 2 we write the collisions as 2 � 2.
For the state preparation described in Section 6.1, where f � 1 and f � 2 precess
in opposite directions, hyperfine relaxing collisions of type 1 � 2 are unavoidable
and set an upper limit on the lifetime of the ensemble. In contrast, the stronger
2 � 2 collisions can be suppressed by preserving f � 2 in an oriented state.2
The stability of oriented spin states is determined by the QZS and the spin

interaction. While the QZS drives orientation-to-alignment conversion, the fer-
romagnetic (antiferromagnetic) spin interaction in f � 1 (f � 2) [24, 43] opposes
to it and can reestablish long f � 2 lifetimes. The competition of QZS and spin
interaction effects is parametrized by the ratio ηpfq � |Epfqq {Epfqspin|, where the
QZS and spin interaction energies of a transverse stretched state in hyperfine
manifold f are

Epfqq � p�1qf�1
�
~γpfqB

�2
~ωhfs

fN pfq

2 , (6.4a)

E
pfq
spin �

g
pfq
1

2Veff

�
fN pfq

	2
. (6.4b)

Here ωhfs � 2π�6.8 GHz is the f � 1, 2 hyperfine splitting frequency and the spin
interaction coefficients gpfq1 and effective volume Veff are defined in Chapter 2.

2The suppression of hyperfine relaxing collisions is easily understood in terms of angular
momentum conservation. We follow the notation for the scattering lengths aF

C and label by
C the total spin of the collision channel. In the case of pairs of f � 1, 1 atoms, the total spin
of the collision channel is within C P t0, 1, 2u. Similarly, for pairs of f � 1, 2 and f � 2, 2
atoms we have C P t1, 2, 3u and C P t0, 1, 2, 3, 4u, respectively. Collision channels with C ¡ 2
cannot relax into f � 1 and are preserved from hyperfine relaxation. Applying it to the
spin state prepared in Section 6.1 we see that:

• The f � 1 and f � 2 manifolds precess in opposite directions and they continuously
oscillate between parallel (C � 3) and anti-parallel spin configurations (C � 1). As a
result, we cannot avoid hyperfine relaxing collisions of type 1 � 2.

• The f � 2 manifold is initially prepared in an oriented states and C � 4. Hyperfine
relaxing collisions of type 2 � 2 can be suppressed if f � 2 is preserved in an oriented
state.
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When ηpfq Á 1, the system is driven by the QZS and transversely oriented
states undergo orientation-to-alignment oscillations and 2 � 2 hyperfine-relaxation
occur. On the other hand, when ηpfq ! 1, initially stretched f � 2 states
become stable and 2 � 2 hyperfine-relaxing collisions are suppressed. Exper-
imental results for the two distinct regimes are given in Fig. 6.1, where we
evaluate the orientation-to-alignment oscillations and hyperfine-relaxing relax-
ation for different applied magnetic fields. We show the transverse degree of
polarization F pfqK {pfNAq versus evolution time t, where the atom number NA �
2F p1qK pt � 0q is estimated from the first f � 1 Faraday rotation signal. The
state preparation (see Section 6.1) is performed at B � 282 mG, results in a
superposition of transversely oriented states ξ{?NA � R̂

p1q
π rπ{2sp1{?2, 0, 0qT `

R̂
p2q
0 rπ{2sp0, 0, 0, 0, 1{?2qT , where R̂pfqα rβs is the rotation operator3 for hyper-

fine manifold f . Thereafter, the magnetic field is ramped in 4 ms to a value
of B � t381 mG, 277 mG, 120 mGu for free evolution. For these magnetic fields,
the measured atom number are NA � t1.47p11q, 1.05p13q, 1.15p14qu � 105 and
the estimated ratios between QZS and spin interaction energies read ηp1q �
t5.62, 3.40, 0.62u and ηp2q � t1.01, 0.61, 0.11u, respectively. We note that in order
to have a consistent readout process, the field is ramped back to 282 mG in the
4 ms prior to Faraday readout.
We observe clear orientation-to-alignment conversion cycles in f � 1 at 381 mG

and 277 mG. The oscillatory process is less visible in f � 2 due to its stronger
spin interaction and rapid atom losses via 2 � 2 hyperfine relaxing collisions. At
120 mG, pηp1q, ηp2qq � p0.62, 0.11q ! 1 and the spin interaction dominates in both
hyperfine manifolds. As a result, 2 � 2 losses are suppressed and the τ � 1 s
lifetime is limited by 1 � 2 hyperfine relaxing collisions.
The experimental results are supported by SMA mean field simulations includ-

ing intra- and interhyperfine interactions (solid lines in Fig. 6.1). We follow the
prescription of Section 2.5 and model hyperfine relaxation by introducing imagi-
nary scattering amplitudes for 1 � 2 and 2 � 2 collisions, i.e. ap12q

C Ñ a
p12q
C �iãp12q

C
and ap2qC Ñ a

p2q
C � iã

p2q
C , where C is the total spin of a given collision channel. A

full set of scattering rates is not known, so for simplicity we take two imaginary
scattering amplitudes that describe hyperfine relaxation on all relevant 1 � 2 and
2 � 2 collisions channels. This is, ãp12q

C � ãp12q and ã
p2q
C � ãp2q for C ¤ 2, and

ã
p12q
C � ã

p2q
C � 0 for C ¡ 2.

The values for ãp12q and ãp2q are left as free fit parameters. We use the the data
for f � 2 at B � 381 mG, where 2 � 2 collisions are dominant, to obtain ãp2q �
0.692p34qaB while enforcing ãp12q � 0. Thereafter, we use the estimated ãp2q to

3We leverage the notation of the spin rotations in Section 4.4.1 and use β for the rotation
angle and α for the azimuth angle of the rotation axis. The corresponding spin-f rotation
operator reads R̂pfq

α rβs � expr�iβpcospαqf̂ pfqx � sinpαqf̂ pfqy qs.
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6. Bose-Einstein condensate comagnetometer

fit the experimental data for f � 1 at B � 120 mG, yielding ãp12q � 0.018p18q.

Figure 6.1.: Evolution of the transverse spin magnitude for f � 1 (blue circles)
and f � 2 (red triangles) for decreasing magnetic field strengths
B. The reduction in F

p2q
K results from hyperfine relaxing collisions

throughout the evolution time, which is constrained to t ¥ 4 ms�4 ms
by the magnetic ramps at the beginning and end of the experimental
sequence. Solid lines are SMA mean-field simulations as described
in the text. Error bars show the measured standard deviation in the
transverse spin magnitude over 12 experimental repetitions and black
vertical lines indicate the temporal extent of the graphs above. The
Faraday probe detunings are ∆p101q{2π � �270 MHz and ∆p231q{2π �
360 MHz (see Table 5.4).
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6.4. Magnetic background suppression

6.4. Magnetic background suppression
A largely B-independent signal is obtained by adding the azimuth estimates
defined in Eq. (6.1) to obtain our comagnetometer readout θp12q � θp1q � θp2q:

θp12qptq � θ
p12q
0 � 2γs

» t
0
dt1Bpt1q , (6.5)

where θp12q
0 � θ

p1q
0 � θp2q0 . The magnetic field dependency of the comagnetometer

readout is suppressed by the ratio |BBθpfq{BBθp12q| � γ0{2γs � 251 (in amplitude)
or 48.0 dB (in power). In contrast, any effect that influences θp1q and θp2q in the
same direction would doubly influence θp12q.
We proceed by evaluating the comagnetometer common-mode suppression at

low magnetic fields, where both hyperfine manifolds are long lived. To this end,
a constant bias magnetic field of 120 mG is applied for state preparation, hold
time and Faraday readout. This removes the temporal overhead of the previously
required magnetic ramps such that hold times down to 20 µs are accessible, limited
only by the hardware timing of the experiment.
We measure the spread in estimated azimuth angles θpfq and comagnetometer

signal θp12q as a function of hold time t, with results shown in Fig. 6.2. We employ
as a cyclic statistic the sharpness S � |xexpriθsy| [147], where x�y here indicates
the sample mean and θ is an angle variable, e.g. θpfq or θp12q. S2 � 1 indicates
no spread of θ while S2 near zero indicates a large spread.
We can relate the loss of sharpness with increasing t seen in Fig. 6.2 to the

magnetic noise as follows. First we note that the hold time t is always small
relative to the time between measurements and that by Eq. (6.1), θpfq is most
sensitive to the DC component of Bptq. This motivates a quasistatic model, where
the field B is constant during free evolution and normally distributed from shot
to shot, with variance σ2

B . Consequently θpfq and θp12q are normally distributed,
with rms deviations σθpfq � |γpfq|σBt � γ0σBt and σθp12q � 2γsσBt.
For normally distributed θ and sample size K, the expectation of S2 is

xS2y � 1
K
� K � 1

K
e�σ

2
θ . (6.6)

This form is fitted to the data of Fig. 6.2 to find σθp1q � 230p20q rad s�1t and
σθp12q � 1.45p5q rad s�1t.
The ratio between these indicates a common-mode rejection of B fluctuations

|BBθp1q{BBθp12q| � 159p15q in amplitude or 44.0p8q dB in power, in reasonable
agreement with the predicted 48 dB rejection. The discrepancy is plausibly due
to field drifts during the free evolution, which principally affect larger t and thus
σθp12q .
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6. Bose-Einstein condensate comagnetometer

Figure 6.2.: Magnetic noise rejection of the SBEC comagnetometer. Graph shows
evolution of S2, where S � |xexpriθsy| is the sharpness, as a function
of hold time t, for θ � θp1q and θ � θp12q. Averages are taken over
K � 12 samples. Sharpness of θp2q closely tracks that of θp1q and is
not shown. Dashed and solid lines show fits assuming a quasistatic
field noise model (see Eq. (6.6) and surrounding paragraph), yielding
rms deviations in the azimuth angles and comagnetometer readout
of σθp1q � 230p20q rad s�1t and σθp12q � 1.45p5q rad s�1t, respectively.
Shaded areas represent the numerically estimated plus and minus
one standard deviation in S2 for the above obtained fit results. The
Faraday probe detunings are ∆p101q{2π � �270 MHz and ∆p231q{2π �
360 MHz (see Table 5.4).

6.5. Sensitivity, extensions and applications
To estimate the sensitivity of the comagnetometer, we use the typical probe
photon numbers NL � 2.5� 107, the reported atom numbers NA � 105 and the
vector light-atom couplings in Table 5.4. The described state evolution yields
F
pfq
K � fN

pfq
A e�t{tcoh , where N pfq

A � NA{2 and τ � 1 s. The typical experimental
cycling time including atom loading, cooling, state initialisation, hold time and
probing is tcyc � 20 s.
We can inserted these quantities into Eqs. 6.3 with t � τ to obtain Table 6.2.

It compares the single-shot precision δB and sensitivity δB?tcyc for f � 1, f � 2
and the comagnetometer readout. We see that the current experimental setup is
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Units f � 1 readout f � 2 readout Comag. readout
rδBsA T 1.2� 10�13 8.4� 10�14 1.5� 10�13

rδBsL T 7.8� 10�13 6.9� 10�13 1.0� 10�12

δB T 7.9� 10�13 7.0� 10�13 1.1� 10�12

δB
?
tcyc T{?Hz 3.5� 10�12 3.1� 10�12 4.7� 10�12

Table 6.2.: Precision (rδBsA, rδBsL, δB) and sensitivity (δB?tcyc, bold) in
the magnetic field estimation for the f � 1, f � 2 and comagne-
tometer readout. The estimations for f � 1 and f � 2 are com-
puted via Eqs. 6.3, while for the comagnetometer we use δBp12q �?
δBp1q � δBp2q.

limited by probe photon shot-noise, and that it is close to an order of magnitude
above the atomic spin projection-noise.
In the following we highlight a few natural extensions of the presented comag-

netometer technique:4

(i) The remaining QZS can be cancelled using microwave dressing [149], to
allow free choice of Larmor frequency and zero hyperfine relaxing collisions
between f � 2 atoms.

(ii) A state-specific optical Zeeman shift can be applied to null γs and thus fully
cancel background field noise.

(iii) A softer confining potential could reduce the rate of 1 � 2 collisions. If
the mean trap frequency ω̄ gets reduced to 1{3 of its current value to give,
the lifetime due to background gas collisions and 1 � 2 collisions become
comparable τbkg � τ p12q � 8 s. The combined lifetime would be τ � pτbkg �
τ p12qq{pτbkg � τ p12qq � 4 s.

(iv) Cavity-assisted readout [150, 151, 152] could be used to reach the projection-
noise level δB � rδBsA, where the best precision is achieved for a hold time
t � 2τ .

(v) Faster loading could reduce the overhead between experimental cycles such
that tcyc � t.

4Beyond mean-field dynamics that influence the precision of the comagnetometer δB are not
captured in this list. Further investigations are required to quantify the interaction-based
squeezing (anti-squeezing) [148] of the f � 1 and f � 2 spin components.
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Combining these would give a sensitivity δBp12q?tcyc � 30 fT{?Hz or δE?tcyc{h �
210 µHz{?Hz, where δE?tcyc is the sensitivity on a hyperfine dependent energy
splitting. In one week of running time, the statistical uncertainty of such a sys-
tem would reach � 40 aT, comparable to state-of-the-art vapor- and gas-phase
comagnetometers used in searches for physics beyond the standard model. For
example, Lee et al. report 70 aT residual uncertainty after 1.5 week of acqui-
sition in a recent search for axion-like particles with a 3He-K comagnetometer
[128]. These pseudo particles are postualted to mediate the spin-mass interaction
between spin-polarized and unpolarized fermions. The interaction is described
through a Yukawa-type potential of the form [153]:

V prq � ~2gsgp
8πmp

r̂ � σ̂p
�

1
rλφ

� 1
r2



e�r{λφ , (6.7)

where gs and gp are the scalar and pseudoscalar coupling constants, mp the
fermionic mass, σ̂p the normalized spin expectation value and r̂ the unit vector
between both fermions. The interaction depends on the separation r between
particles and on the characteristic axion interaction range λφ � ~{mφc, where
mφ is the associated axion mass. A SBEC comagnetometer would be able to
probe length scales down to λφ � 10 µm, about four orders of magnitude shorter
than other comagnetometers and which corresponds to an axion mass of mφc

2 �
2� 10�3 eV. In searches for axion-like particles, these length scales are only
weakly constrained by astrophysical arguments [154] and prior laboratory tests
[155, 156].
Another potential application is phase-resolved spin amplification. Spin ampli-

fiers use coherent collision processes in a BEC to achieve high-gain, quantum-noise
limited amplification of small spin perturbations [45]. They are of particular in-
terest in studies of quantum dynamics and non-classical state generation [46], but
to date have not been able to resolve the magnetically sensitive azimuthal spin
degree of freedom. This issue can be circumvented in a SBEC comagnetometer in
which one hyperfine manifold tracks the magnetic field evolution while the other
experiences parametric spin amplification. Preliminary experimental results on
this topic are sown in Appendix D.
We close this chapter by mentioning the application to precision measure-

ments of interhyperfine interactions in ultracold gases. The presented comag-
netometer is highly sensitive to energy shifts between the f � 1 and f � 2
hyperfine manifolds, while suppressing any dependency on the external mag-
netic field. By leveraging this effective low magnetic noise environment, precision
measurements on the scattering lengths rations pap12q

1 � a
p12q
2 q{pap1q2 � a

p1q
0 q and

pap12q
3 �ap12q

2 q{pap1q2 �ap1q0 q have been performed [53]. The measurement technique
and obtained results are further discussed in Chapter 7.

110



7
Measurement of interhyperfine

scattering lengths in 87Rb

Studies on SBECs encompass a broad range of dynamics, from spin-mixing [146,
157, 36, 158] to spontaneous magnetic symmetry breaking [114, 159, 160], domain
formation [22, 114, 161] and exotic topological spin excitations [162, 163]. These
dynamics arise from the interplay between superfluidity and magnetism, which
for a single, spin-f species and s-wave binary contact interactions are described by
2f�1 parameters, the intrahyperfine scattering lengths. In the case of 87Rb, these
have been separately determined for the f � 1 and f � 2 ground-state manifolds
[63, 35, 36]. Interhyperfine interactions are less well studied, but nonetheless
play an important role in determining the miscibility of multiple BEC species
[164, 165, 166], and have been used to produce spin-squeezing with its attendant
entanglement, and Bell-type correlations [167, 168, 169, 170, 171]. For 87Rb, the
full set of inter-hyperfine spin interaction parameters has recently been measured
[42].
In this chapter we report precision measurements on the 87Rb interhyperfine

f � 1 Ø f � 2 scattering lengths, which have been published in [53]. We first
give a brief overview of the prior work by Eto et al. [42] and proceed with our
strategy and error estimation. Thereafter, we perform a calibration of the relevant
classical parameters: the atom number NA, the QZS qpfq and the mean trapping
frequency ω̄. The measurement of the interhyperfine parameters estimates the
interaction parameter ratios gp12q

2 {gp1q1 and gp12q
1 {gp1q1 , from which the scattering

lengths rations pap12q
1 � a

p12q
2 q{pap1q2 � a

p1q
0 q and pap12q

3 � a
p12q
2 q{pap1q2 � a

p1q
0 q are

estimated. We close this chapter by comparing the obtained results to [42] and
comment on possible extensions.
The following discussion references back to multiple sections of this thesis.

We use the theoretical framework of Chapter 2 to describe the intra- and inter-
hyperfine interaction in 87Rb and to compute the resulting dynamics. As the
experimental setup concerns, we leverage the hyperfine-selective Faraday probe
and the comagnetometer technique described respectively in Section 5.3.4 and
Chapter 6.
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7.1. Prior work
The recent work by Eto et al. [42] constitutes the first measurement of the
inter- hyperfine scattering lengths in 87Rb. The authors present an original state
preparation1, which employs the differential Zeeman splitting between hyperfine
manifolds to independently control the spin orientation in f � 1 and f � 2. It
results in a SBEC in a superposition of f � 1 in a transversally oriented state
F
p1q
K � N

p1q
A and f � 2 in a longitudinally oriented state F p2qz � �2N p2q

A .
For such a spin state, the interhyperfine interaction reduces to an effective

linear Zeeman shift plus an effective quadratic Zeeman shift on the f=1 state,
as described by Eq. (2.28) and Eq. (2.29). The corresponding phase shift of the
f � 1 spin components is measured via a combination of Ramsey and spin-echo
type sequence, from which the interhyperfine scattering lengths are obtained.
The SBEC ground state is significantly affected by the interhyperfine interac-

tion. In fact, the results of Eto et al. indicate that in an equal f � 1, f � 2
ground-state mixture, the f � 1 component manifests a polar ground state at
zero magnetic field [43] even though the f � 1 component alone is ferromagnetic
[157].

7.2. Strategy and error estimates
The dynamics of a SBEC in a coherent superposition of f � 1 and f � 2 are
driven by the distinct energy contributions in Eq. (2.30). For the purpose of
this chapter, we include the QZS, the f � 1 and f � 2 intrahyperfine inter-
action energy and the f � 1, 2 interhyperfine interaction (neglecting hyperfine
relaxation):

i~
Bξpfqm

Bt � B
Bξpfq�m

�¸
f

qpfqF 2pfq
z

� 1
2Veff

�
g
p1q
1 Fp1q � Fp1q

	

� 1
2Veff

�
g
p2q
1 Fp2q � Fp2q � g

p2q
2

∣∣∣Ap2q0

∣∣∣2

� 1
Veff

�
g
p12q
1 F p1qz F p2qz � g

p12q
2 P

p12q
1


�
. (7.1)

The classical parameters to calibrate in Eq. (7.1) are the QZS qpfq, the total
atom number NA and the mean trap frequency ω̄ . The latter two are part of

1We closely follow the presented state preparation in Section 7.4.1.
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the effective volume Veff (see Appendix A) and scale the intra- and interhyperfine
interaction dynamics. To derive this scaling we apply the B{Bξpfq�m derivative on
the right-hand side of Eq. (7.1) and inspect the order the atom numbers N pfq

A

appears:

i~
Bξpfqm

Bt �
#
qpfqOp1q � 1

Veff

�¸
X
g
pfq
X OpN pfq

A q

�
¸
X
g
p12q
X pOpN p2q

A qδf,1 �OpN p1q
A qδf,2q

�+
ξpfqm . (7.2)

Here, gpfqX and gp12q
X are generic parameter for the intra- and interhyperfine inter-

action. We use N p3�fq
A for the crossed dependency in atom numbers introduced

by the interhyperfine interaction, i.e N p2q
A for f � 1 and N

p1q
A for f � 2. If we

take OpN pfq
A q � OpNAq, we obtain that the mean density NA{Veff is a common

pre-factor for the interaction dynamics. Expanding it in terms of the atom num-
ber and mean trap frequency we derive the scaling NA{Veff9N2{5

A ω̄6{5, which we
will use in Section 7.3.
In the following we outline the strategy to perform the required classical cali-

brations and to estimate the interhyperfine interaction parameters :

(i) We calibrate qpfq, NA and ω̄ by comparing the dynamics of a f � 1 SBEC
to simulations based on the tabulated intrahyperfine interaction parameters
(see Table 2.3).

(ii) We estimate gp12q
2 by preparing the SBEC in a superposition of f � 1 and

f � 2 in which the transverse spin magnetisation of f � 1 is entirely driven
by the gp12q

2 term in Eq. (7.1). The dynamics are compared to simulations
results by using the tabulated intrahyperfine interaction parameters, the
previously calibrated classical parameters and gp12q

1 � 0. The only free fit
parameter is gp12q

2 .

(iii) We estimate gp12q
1 by preparing the SBEC in two different superpositions

of f � 1 and f � 2. The two superpositions differ by their spin projection
along the external magnetic field F pfqz , which leads to a slight shift in the
Larmor precession frequencies of f � 1 and f � 2. Our comagnetometer
technique resolves this tiny change in frequency and disentangles it from
the external magnetic field noise. The data analysis uses the tabulated
values for the intrahyperfine interaction, the estimated classical calibration
parameters and measured gp12q

2 , while gp12q
1 is left as a free fit parameter.
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(iv) Based on the obtained interhyperfine interaction parameters, the scattering
length differences ap12q

3 � a
p12q
2 and ap12q

1 � a
p12q
2 are obtained.

We use numerical error propagation to capture the different contributions to the
uncertainties in our results. To this end, we numerically compute the derivatives
of the form BEi{Bxj , where Ei are the best estimates of our least-square fits
(classical calibration values and interhyperfine couplings) and xj are the input
parameters of steps (i) to (iii) (atom numbers and intrahyperfine couplings). We
assume uncorrelated error sources, such that for a given best estimate Ei its
uncertainty reduces to δEi �

b
pδfiq2 �

°
jpBEi{Bxjq2pδxjq2, which depends on

δfi, the statistical uncertainty of the underlying least-squares fit, and δxj , the
uncertainties in the input parameters .
The relative magnitudes of the contributions pBEi{Bxjq2pδxjq2 reveal that the

uncertainty in the estimated interhyperfine couplings is predominantly inher-
ited from the intrahyperfine interaction term a

p1q
2 � a

p1q
0 , a quantity for which

theory and experiment are at present discrepant [63, 35, 36]. At the scale of
our experimental precision, the estimated interhyperfine couplings depend lin-
early on a

p1q
2 � a

p1q
0 . For this reason, we report the ratios gp12q

1 {gp1q1 , gp12q
2 {gp1q1 ,

pap12q
3 � ap12q

2 q{pap1q2 � ap1q0 q and pap12q
1 � ap12q

2 q{pap1q2 � ap1q0 q, where the numerator
is the fit result and the denominator is a fixed parameter. These ratios, unlike
the fit result itself, are insensitive to the value of ap1q2 � a

p1q
0 , again at the level

of precision of the experimental results. For the estimated trap frequency, we
report its bare value ω̄ as well as ω̄|ap1q2 � ap1q0 |5{6, which does not depend on the
intrahyperfine interaction.
While systematic errors in the atom number readout are calibrated, a remaining

uncertainty arises from experimental atom numbers fluctuations and drifts. Atom
numbers and their fluctuations were estimated by repeated trap loading, state
preparation, and destructive absorption imaging prior to acquiring data runs such
as the one reported in Fig. 7.1. Despite this, a significant uncertainty accrues due
to drifts in the 87Rb background pressure. We account for this with a systematic
uncertainty of �10% rms deviation around the measured atom numbers. The
value �10% describes the observed drifts from run to run, as well as the observed
fluctuations of f � 2 population shown in Fig. 7.2.

7.3. Calibration of trap conditions
For a precise determination of the inter-hyperfine scattering parameters, we re-
quire best-estimate values and uncertainties for the QZS qpfq, the mean trapping
frequency ω̄ and the atom number NA. Precise knowledge of the LZS is not re-
quired, because the signals are either insensitive to the Larmor precession angles
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7.3. Calibration of trap conditions

θp1q and θp2q, or are sensitive only to their sum, to which the net LZS contribution
is small. The LZS must, however, be large enough that the RWA is valid.
There are multiple sources for systematic uncertainties in the above mentioned

parameters. The QZS is potentially affected by tensorial light shifts caused by the
intense trapping beams [104]. The trapping frequency depends on power levels
and precise alignment of the crossed dipole traps, and is typically calibrated in
situ. The inferred atom number is sensitive to the magnification and polarization
of the absorption imaging light, as well as to the absorption cross section. For an
absolute calibration of the measured atom numbers, schemes based on projection
noise scaling in SBECs have been reported [68, 172].

We note that qpfq, ω̄ and NA enter into f � 1 spin dynamics and f � 1, 2
interhyperfine spin dynamics in the same way, which provides an opportunity to
calibrate the net effect of these variables with the intrahyperfine spin dynamics
as reference. In particular, the trapping frequency ω̄ and atom number NA only
contribute through the mean density N{Veff9N2{5ω̄6{5 (see Eq. (7.2) and below).
In this way, the above-described experimental sources of uncertainty in ω̄ and in
NA can be combined in a single parameter, which we choose to be the effective
trapping frequency ω̄eff. In the following calibration, we take NA to be the atom
number as measured by absorption imaging or Faraday rotation, and obtain qpfq
and the effective trap frequency ω̄eff from a fit to measured f � 1 intra-hyperfine
spin dynamics. This results in a calibration of the QZS and the mean density
N{Veff, now written in terms of measured NA and estimated ω̄eff.
To this end, we first create a f � 1 SBEC in the non-magnetic ξ{?NA �

p0, 1, 0qT ` 0T5 state, in the presence of a constant field B �119.6 mG, giving
NA � 79p4q � 103 atoms as measured by destructive absorption imaging. A rf
π{4 pulse rotates the spin state to ξp1q{?NA � p1{2, i{?2, 1{2qT . After a variable
hold time, Faraday rotation signals are acquired and fitted with Eqs. (5.11) to
find the transverse magnetization F pfqK . Results are shown in Fig. 7.1 and exhibit
the expected oscillation of F pfqK produced by competition between the QZS and
the ferromagnetic interaction. These F pfqK values are compared to SMA mean-
field simulations as per Section 2.4, with the qp1q and ω̄eff as free fit parameters.
We find ω̄eff � 2π � 90p9qHz and qp1q{h � 0.89p10qHz.
The ω̄eff value is consistent with independent measurements of trap sloshing

frequencies. The obtained value for qp1q{h is in agreement with the theoretically
expected ppp1q{hq2{νhfs � 1.03 Hz, where νhfs � 6.8 GHz is the f � 1, 2 hyperfine
splitting. We note that, to the precision of this work, the hyperfine manifolds
feature opposite QZS, so that qp2q{h � �0.89p10qHz.
The estimated value of ω̄eff depends on the ferromagnetic interaction coefficient

g
p1q
1 and thus on a

p1q
2 � a

p1q
0 . As mentioned in Section 7.2, this dependence is

undesirable and our preferred quantity to report is the rescaled mean trapping
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7. Measurement of interhyperfine scattering lengths in 87Rb

Figure 7.1.: Time evolution of the transverse magnetization in f � 1, starting
from a fully aligned (F p1qK � 0) state ξp1q{?NA � p1{2, i{?2, 1{2qT .
The dynamics are governed by the competition between the QZS and
the ferromagnetic interaction. Blue circles show the mean observed
transverse magnetization F

p1q
K after a variable hold time t. Error

bars are the standard deviation over 4 experimental repetitions. The
solid line and coloured area represent the median and 90% confidence
interval of the theoretical model. The Faraday probe detuning is
∆p101q{2π � �570 MHz (see Table 5.4).

frequency ω̄eff|ap1q2 � a
p1q
0 |5{6 � 1.63p12q � 10�6 s�1m5{6, which does not depend

on the intrahyperfine interaction.

7.4. Measurement of interhyperfine interaction
parameters

In this section we use the incremental strategy described in Section 7.2 to esti-
mate the interhyperfine interaction parameters gp12q

2 and gp12q
1 . For an intuitive

picture on the interhyperfine dynamics and the spin states used in the following
discussions, please refer to Section 2.3.
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7.4. Measurement of interhyperfine interaction parameters

7.4.1. Interaction parameter g
p12q
2

To measure gp12q
2 , we first prepare the state

ξ?
NA

�

�
���

1
2
?

2
i
2
1

2
?

2

�
��`

�
�����

0
0
0
0
1?
2

�
���� , (7.3)

which describes and equal superposition of f � 1 in an aligned (F p1qK � 0) state
and f � 2 in a �z oriented state. After a variable wait time the f � 1 transverse
magnetization F p1qK is measured by Faraday rotation. Note that the f � 2 state
is unchanged by the evolution and readout of f � 1. After measuring the f � 1
manifold, a rf π{2 pulse rotates the stretched f � 2 state into the transverse
plane and F p2qK is measured by Faraday rotation. This provides a measure of the
atom number N � 2N p2q � 101p9q � 103 atoms. The procedure is described in
detail in Appendix E.
In Fig. 7.2 the measured transverse magnetization in f � 1 and f � 2 are

shown as a function of the hold time in the trap. Note that the frequency and
amplitude of the modulation nearly double those in Fig. 7.1, where only the
f � 1 manifold is populated. This enhancement is caused by the effective QZS
induced by the gp12q

2 term of the interhyperfine interaction (see Eq. (2.29) and
surrounding discussion). By fitting the expected SMA mean-field evolution we
obtain g

p12q
2 {gp1q1 � �6.4p6q. For this fit, we used the calibrated values for qpfq

and ω̄eff and neglect the gp12q
1 term in Eq. (7.1), which does not contribute to the

modulation in F p1qK .

7.4.2. Interaction parameter g
p12q
1

We measure gp12q
1 by estimating the change in the effective LZS (see Eq. (2.28)

and surrounding discussion) for the following two states:

ξA?
NA

� R̂p1qπ rπ{6s
�
� 1?

2
0
0

�
` R̂

p2q
0 rπ{6s

�
�����

1?
2

0
0
0
0

�
���� , (7.4a)
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7. Measurement of interhyperfine scattering lengths in 87Rb

Figure 7.2.: Dynamical evolution for the initial state in Eq. (7.3) and under a
magnetic field of 119.6 mG. Blue circles and red diamonds, are the
mean experimental transverse magnetization in f � 1 and f � 2,
respectively. Error bars are the standard deviation over 4 experi-
mental repetitions. The solid lines are the median of the theoretical
mean-field evolution for gp12q

2 {gp1q1 � �6.4, while shaded areas repre-
sent the 90% confidence intervals. The Faraday probe detunings are
∆p101q{2π � �270 MHz and ∆p231q{2π � 360 MHz (see Table 5.4).

ξB?
NA

� R̂p1qπ rπ{6s
�
� 0

0
1?
2

�
` R̂

p2q
0 rπ{6s

�
�����

0
0
0
0
1?
2

�
���� , (7.4b)

where R̂p1qπ rπ{6s and R̂
p2q
0 rπ{6s rotate the f � 1 and f � 2 states by π{6 rad

around �x and �x, respectively. The rotation angle is a compromise between
a strong spin component parallel to the external magnetic field (required for a
g
p12q
1 F

p1q
z F

p2q
z contribution in Eq. (7.1)) and a significant transverse magnetization

(required for Faraday readout). After a variable wait time, the f � 1 and f � 2
precession angles are measured by Faraday rotation. A detailed description is
given in Appendix E.
For an initial state X P tA,Bu the comagnetometer signal θp12q

X � θ
p1q
X � θ

p2q
X

contains contributions from the �2γs � 2π � �334 Hz differential LZS between
f � 1 and f � 2, the QZS and the spin-dependent inter-hyperfine interaction,
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7.5. Comparison with prior work and extensions

Figure 7.3.: Phase evolution of the difference in the comagnetometer readouts
between state preparations A and B. Circles show the experimental
mean values and the error bars represent one standard deviation.
The solid line and shaded area are the mean and standard devi-
ation of the theoretical phase evolution for gp12q

2 {gp1q1 � �6.4 and
g
p12q
1 {gp1q1 � �1.27. Atom numbers are estimated by destructive ab-
sorption imaging before the first run of experimental sequence A
and B, yielding NA � 88p3q � 103 and NA � 96p3q � 103, respec-
tively. The Faraday probe detunings are ∆p101q{2π � �270 MHz and
∆p231q{2π � 360 MHz (see Table 5.4).

i.e., the gp12q
1 and gp12q

2 contributions. We analyze the difference in comagnetome-
ter readouts θp12q

A � θp12q
B , in which also the differential LZS contribution cancels.

The QZS is known from the calibration of Section 7.3. The results are shown in
Fig. 7.3, where the experimental data are fitted to SMA mean-field simulations
in which gp12q

1 is a free fit parameter whereas gp12q
2 is fixed at the value found in

Section 7.4.1. We obtain gp12q
1 {gp1q1 � �1.27p15q.

7.5. Comparison with prior work and extensions

Using Eq. (2.20g) and Eq. (2.20h) for the above values of gp12q
1 and g

p12q
2 , we

find pap12q
3 � a

p12q
2 q{pap1q2 � a

p1q
0 q � �1.27p15q and pap12q

1 � a
p12q
2 q{pap1q2 � a

p1q
0 q �

�1.31p13q, with relative uncertainties of 12% and 10%, respectively. As noted
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7. Measurement of interhyperfine scattering lengths in 87Rb

above, these ratios are insensitive to the exact value of ap1q2 � a
p1q
0 , which serves

as an input parameter in the modelling and fits. Applying the same scaling to
the values reported by Eto et al. [42] yields pap12q

3 �ap12q
2 q{pap1q2 �ap1q0 q � �1.8p5q

and pap12q
1 � a

p12q
2 q{pap1q2 � a

p1q
0 q � �2.2p4q. These differ by 1σ and 2σ combined

uncertainty from the result presented here.
Our results are complementary to Ramsey spectroscopy measurements used to

characterise mean-field shifts in the 87Rb clock transition [173, 174]. The SBEC
dynamics of this chapter resolve the spin-dependent interhyperfine couplings gp12q

1
and gp12q

2 but are insensitive to the spin-independent coupling gp12q
0 (see Table 2.1

and discussion above it). The situation is reversed in a 87Rb SBEC clock, which
is typically described through an effective two level system and three interaction
coefficients that describe the |1, 0y � |1, 0y and |2, 0y � |2, 0y intrahyperfine
interaction strengths, and the |1, 0y � |2, 0y interhyperfine interaction strength.
These coefficients are linear combinations of the gpFqC that appear in Eqs. (2.20).
The strongest contributions are from the spin-independent couplings gp1q0 , gp2q0
and gp12q

0 .
Our accuracy is presently limited by uncertainty in the SBEC atom numbers,

which reflect loading fluctuations and atom loss during the experiment. Active
control schemes can stabilize the atom numbers of cold atomic ensembles below
shot noise by using dispersive probing [175]. Applied to the current experiment,
such stabilization is foreseen to reduce the relative uncertainties in the results
below �0.3 %.
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8
Conclusions and outlook

This thesis demonstrates the first realization of a comagnetometer in the ultracold
regime. By engineering the spin state of a 87Rb spinor Bose-Einstein condensate
(SBEC) we achieve paired magnetometers implemented on separate hyperfine
manifolds but sharing the same spatial wavefunction. At low magnetic fields, the
spin-dependent contact interaction energy overcomes the quadratic Zeeman shift,
which suppresses exothermic hyperfine relaxing collisions and yields � 1 s long
coherence times. Under this configuration we demonstrate a 44.0p8q dB attenu-
ation in the common-mode magnetic field noise. Our comagnetometer operates
on � 10 µm length scales, about four order of magnitudes below competing tech-
niques, and is a promising platform for studying axion-mediated interactions at
those length scales.
We have applied our SBEC comagnetometer to estimate the interhyperfine

interaction in 87Rb, which is a weak influence in comparison to typical energy
fluctuations in the linear Zeeman splitting and magnetic field noise. Prior to
these measurements, a thorough calibration of the trap conditions and mean den-
sity was performed, based on the comparison between observed SBEC dynamics
and meanfield simulations. The uncertainty in the here-estimated interhyperfine
scattering lengths is reduced by more than a factor three with respect to prior
experimental works.
The enabling experimental developments can be separated into advances in

the magnetic control of the atomic ensembles and advances in the optical ma-
nipulation and readout. In the first case, we highlight the implementation of
radiofrequency and microwave driving techniques, as well as the development of
a real-time radiofrequency source. In the second case, we include the digitization
of the laser locks and the new hyperfine-selective Faraday probing.

The outlook of this thesis is twofold. On the physical side, we discuss a further
applications of the SBEC comagnetometer and next steps on the phase resolv-
ing parametric spin amplifier. As regards possible technical improvements, we
comment on a state preparation that cancels the differential Zeeman splitting be-
tween f � 1 and f � 2 manifolds and introduce a crosstalk mitigation technique
for their readout.
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8. Conclusions and outlook

Further applications on SBEC comagnetometry1

A potential application is atomic rf magnetometry. Recently reported rf magne-
tometers in cold atoms [176] are only sensitive to a single rf polarization. This
limitation is resolved within our dual-magnetometer configuration, where the op-
posite gyromagnetic ratios of f � 1 and f � 2 result in a sensitivity to both σ�
and σ� polarization components. Hence, the full information on the transverse
driving field can be retrieved.
Another application is an atomic gyroscope. Our SBEC comagnetometer can-

cels the common mode magnetic evolution, while rotations of the laboratory
reference frame doubly influence its readout θp12q � θp1q � θp12q. In fact, the
comagnetometer readout can be used to measure rotations of the laboratory ref-
erence frame and disentangle them from spin rotations caused by the external
magnetic fields.
Regarding phase-resolved parametric amplification, the preliminary results in

Appendix D did not explore the parameter space of the parametric amplifier.
Klempt et al. demonstrated that the instability, or equivalently gain of the am-
plifier, can be tuned via the QZS and the spin population in the pump field
ρ
p2q
0 NA. For instance, by increasing the relative population in the pump field to
ρ
p2q
0 � 0.75 and moving the magnetic field to Bz � 420 mG we expect an en-

hancement in the amplifier gain of a factor 2.5. A thorough calibration of these
parameters and the estimation of the linear amplification regime remain open.

Technical improvements
The SBEC comagnetometer is constrained to work at low magnetic fields and in
a fully oriented configuration (F pfqK � fNA) to avoid hyperfine relaxing collisions.
These limitation are not present for less dense and non-condensed ensembles. In
this case, more exotic spin configuration can be used, which significantly enhance
the performance of the comagnetometer. For example, the comagnetomer can
be prepared in state ξ � p0, 1

2 ,
1
2 qT ` p 1

2 ,
1
2 , 0, 0, 0qT , which has two fundamental

advantages. First, it does not suffer from orientation-to-alignment conversion
and has a constant transverse magnetisation. Second, the readout signal evolves
like θp12q � θ

p12q
0 �p�2γsB�4β0B

2qt (see definitions in Section 2.2) and features
a magnetically insensitive point at B � 4.84 G.
On behalf of the hyperfine-selective readout, a fundamental drawback is the

residual crosstalks between the f � 1 and f � 2 probes. The situation is analo-
gous to the crosstalks in multi-axis magnetic field and inertial sensors, which are

1The extensions to our SBEC comagnetometer for studying axion-like particles are detailed
in Section 6.5.
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typically compensated via a linear transformation [177]. We propose to follow
the same approach and introduce a linear description for our Faraday readout.
To this end, rather than directly reporting the transverse spin amplitude F pfqK
and azimuth angle θpfq0 (see fit model in Eqs. (5.11)), it is more convenient to use
the corresponding in-phase Ipfq and in-quadrature Qpfq components:

Ipfq � F
pfq
K cospθpfq0 q , (8.1a)

Qpfq � F
pfq
K sinpθpfq0 q . (8.1b)

In terms of these, the linear crosstalk compensation can be described via a
4� 4 matrix transformation:�

���
Ip1q
Qp1q
Ip2q
Qp2q

�
���

�
���
C11 C12 C13 C14
C21 C22 C23 C24
C31 C32 C33 C34
C41 C42 C43 C44

�
��
�
���
Ip1q

Qp1q

Ip2q

Qp2q

�
�� (8.2)

where Ĉ is the compensation matrix that connects the measured (Ipfq and Qpfq)
and compensated (Ipfq and Qpfq) components . The compensation matrix needs
to be calibrated but it is experimentally easier to determine its inverse Ĉ�1. To
this end, four separate state preparations and Faraday readouts are required. We
outline the process below:

(i) Prepare the SBEC in state ξ{?NA � R̂
p1q
0 rπ{2sp1, 0, 0qT ` 0T5 and perform

a Faraday measurement on both hyperfine manifolds. The measured com-
ponents is used to construct the first column of Ĉ�1:

�
���
C�1

11
C�1

12
C�1

13
C�1

14

�
��� 1a

rIp1qs2 � rQp1qs2

�
���
Ip1q

Qp2q

Ip2q

Qp2q

�
�� (8.3)

(ii) Prepare the SBEC in state ξ{?NA � R̂
p1q
π{2rπ{2sp1, 0, 0qT ` 0T5 and perform

a simultaneous Faraday measurement on both hyperfine manifolds. The
measured Ipfq andQpfq components are used to construct the second column
of Ĉ�1: �

���
C�1

21
C�1

22
C�1

23
C�1

24

�
��� 1a

rIp1qs2 � rQp1qs2

�
���
Ip1q

Qp2q

Ip2q

Qp2q

�
�� (8.4)
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(iii) Prepare the SBEC in state ξ{?NA � 0T3 ` R̂p2q0 rπ{2sp1, 0, 0, 0, 0qT and per-
form a simultaneous Faraday measurement on both hyperfine manifolds.
The measured Ipfq and Qpfq components are used to construct the third
column of Ĉ�1: �

���
C�1

31
C�1

32
C�1

33
C�1

34

�
��� 1a

rIp2qs2 � rQp2qs2

�
���
Ip1q

Qp2q

Ip2q

Qp2q

�
�� (8.5)

(iv) Prepare the SBEC in state ξ{?NA � 0T3 ` R̂
p2q
π{2rπ{2sp1, 0, 0, 0, 0qT and

perform a simultaneous Faraday measurement on both hyperfine manifolds.
The measured Ipfq and Qpfq components are used to construct the fourth
column of Ĉ�1: �

���
C�1

41
C�1

42
C�1

43
C�1

44

�
��� 1a

rIp2qs2 � rQp2qs2

�
���
Ip1q

Qp2q

Ip2q

Qp2q

�
�� (8.6)

After completing the measurements, Ĉ�1 is numerically inverted to obtain Ĉ,
which now can be applied to compensate the raw Faraday readouts as described in
Eq. (8.2). Note that the calibration matrix needs to be estimated again whenever
the Larmor precession frequencies or the delay between the f � 1 and f � 2
Faraday pulses are modified.
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A
Effective volume for a

Thomas-Fermi density distribution

In this thesis, the spatial dependence of the SBEC has been integrated out via the
Single Mode Approximation (SMA), as explained in Chapter 2. The resulting
vectorial order parameter is spatially independent, corresponding to a CN vector,
namely the spin amplitudes. However, the spatial density distribution is required
for computing the effective volume, which is a prefactor of the contact-interaction
energy under the SMA.
In the following we compute the density distribution and effective volume for a

harmonically trapped SBEC. To estimate the density distribution of the SBEC,
we solve the time-independent Gross-Pitaevskii equation [24]

�
�~2∇2

2M � V prq



ΨSMAprq � g0NA |ΨSMAprq|2 � µΨSMAprq , (A.1)

where the satisfying eigenvalues and eigenfunctions are the chemical potential
µ and the spatial wavefunction ΨSMAprq, respectively. The spin independent
contact interaction is g0, which we take to be gp1q0 (see Eq. (2.20a)). The time-
independent Gross-Pitaevskii equation simplifies for BECs significantly larger
than the density healing length, where the kinetic contribution to the total energy
is neglected. This is known as the Thomas-Fermi approximation [178, 179, 180]
and the resulting density reads:

NA|ΨSMAprq|2 �
#

µ�V prq
g
p1q
0

when V prq   µ

0 otherwise
(A.2)

where V prq is the underlying spin-independent trapping potential. The chemical
potential µ is obtained by normalizing the spatial wave function as defined in
Eq. (2.6a).

For the density profile in Eq. (A.2) and a harmonic trapping potential with
mean trapping frequency ω̄, the effective volume Veff � p³ dr3|ΨSMAprq|4q�1 be-
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A. Effective volume for a Thomas-Fermi density distribution

comes:

Veff � 14
15πr̄

3
TF , (A.3)

r̄TF �
�

15
4π

g
p1q
0 NA
Mω̄2

�1{5
, (A.4)

where r̄TF is the mean Thomas-Fermi radius.
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B
Real-time rf source (code examples)

In the following sections we describe a subset of the programming examples given
in the repository [110]. Please refer to the same repository for the documentation
and source code of the Python API.
We structure the discussion as follows. We first show a code snipped for the

initialization and execution commands which are common to all examples. After,
the code for the distinct examples are presented, including the corresponding
oscilloscope traces.

Initialization and execution
The code snippet B.1 is a general placeholder for the following examples. It
first loads the required libraries, sets up the serial communication and creates an
instance of the Python API. After, the example (i.e. sequence) is constructed
and executed.

1 from __future__ import division
2 import serial
3 import time
4 import sys
5 sys.path. append (’.. ’)
6 import AD9958
7 # #################################################
8 # Setting up serial communication
9 # #################################################

10 RF_COM_PORT ="COM7"
11 try:
12 serRF # Check if serial port is already open
13 except NameError :
14 serRF = serial . Serial ( RF_COM_PORT , 9600 , timeout =0.2)
15 print " Starting RF serial port."
16 time. sleep (5) # Waiting for microcontroller to start
17 # #################################################
18 # Initialization of AD9958 object & function stack
19 # #################################################
20 print " Initialize AD9958 object ."
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B. Real-time rf source (code examples)

21 RF= AD9958 . AD9958_class (ser=serRF , ref_clk =25e6 , PLL_multiplier =20 ,
chipkit_clk =80 e6)

22 RF. clearStack ()
23 # #################################################
24 # Start sequence ( function stack )
25 # #################################################
26 #
27 # Include code examples here
28 #
29 # #################################################
30 # End sequence ( function stack )
31 # #################################################
32 print RF. checkLenRequest ()
33 print RF. checkLenStack ()
34 RF. runStack ()

Code B.1: Common placeholder for the following code examples. It carries out
the initialization tasks and the execution of the programmed sequence.
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Single tone mode
In single tone mode, both channels of the AD9958 are configured to output a
sinusoidal waveform with a constant amplitude, frequency and phase offset.

Single tone mode in continuous operation
This example corresponds to a typical mw manipulation, where the rf source is
continuously operating and provides a gating (trigger) signal for the mw chain.
To this end, the synthesized rf field and the triggerOut signal are fed into the rf
and trigger ports described in Fig. 5.5.

In Code B.2 we program the rf source to operate in single tone mode. Both
channels (ch0 and ch1) operate at 1 MHz, their amplitudesare set to 11 and
the phase offset of ch0 and ch1 are set to 0° and 90°, respectively. Note that
ch0 and ch1 are configured separately and that the internal phase accumulator
of ch0 starts to run after the first call of setFreq(), while for ch1 this happens
later, at the second call of setFreq(). As a result, their relative phase differers
from the programmed 90°. For this reason, after configuring both channels we
call clearPhaseAccumulator(). This clears the internal phase accumulators, sets
them to the corresponding initial phase offset and simultaneously restarts their
operation. We include a triggered execution, where after receiving an external
triggerIn signal, triggerOut is enabled for 20 µs. The corresponding waveforms
are shown in Fig. B.1.

1 # #################################################
2 # Start sequence ( function stack )
3 # #################################################
4 print " Programming sequence ."
5 RF. reset ()
6 RF. resetTimer ()
7 RF. configureSysClock ()
8

9 # Channel 0 and 1
10 RF. setEnabledChannels (1 ,1) # Enables communication to ch0 and ch1
11 RF. setDACFullScale ()
12 RF. setSingleToneMode ()
13

14 # Channel 0
15 RF. setEnabledChannels (1 ,0) # Enables communication only to ch0
16 RF. setFreq (0 ,1 e6)
17 RF. setAmplitude (0 ,1)
18 RF. setPhase (0 ,0) #0 deg
19

20 # Channel 1

1The API uses relative units to for the amplitude, i.e. 1 corresponds to the full-scale output
of the AD9958.
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21 RF. setEnabledChannels (0 ,1) # Enables communication only to ch1
22 RF. setFreq (0 ,1 e6)
23 RF. setAmplitude (0 ,1)
24 RF. setPhase (0 ,90) #90 deg
25

26 # Clearing phase accumulator
27 RF. setEnabledChannels (1 ,1)
28 RF. clearPhaseAccumulator ()
29

30 # Triggered execution
31 RF. waitTriggerIn () # Waits for rising edge
32 RF. setTriggerOut (1)
33 RF. delayTimer (20e -6)
34 RF. setTriggerOut (0)
35 # #################################################
36 # End sequence ( function stack )
37 # #################################################

Code B.2: Single tone mode in continuous operation. The full example is available
in [110] under Examples/singleTone.py.

Figure B.1.: Oscilloscope screen capture for the rf driver sequence in Code B.2.
The traces are: triggerIn (yellow), triggerOut (green), ch0 (blue)
and ch1 (red).
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Single tone mode with automatic amplitude ramp-up and
ramp-down
This example corresponds to a typical rf manipulations, where the synthesized
waveform is directly fed into the rf port of Fig. 5.3

In Code B.3 we perform rf-pulse generation using the the automatic ramp-up
and ramp-down feature of the AD9958. This mode avoids abrupt changes in the
output of the DDS, typically related to switching the amplitude from 0 (OFF) to
its operational point (ON), and vice versa. To this end, the operational ampli-
tudes are configured in the corresponding internal registers but their actual states
(ON/OFF) are controlled separately via the profile pins P2 and P3, respectively.
When a change in a profile pin is detected, the AD9958 initiates an automatic
rising (falling) linear amplitude ramp until the ON (OFF) state is reached on
the corresponding channel. The step size and clocking rate of the automatic am-
plitude ramp are configurable through the enableAutomaticRURD() method of
the Python API. In this example, only ch0 is active and its full-scale automatic
amplitude ramp time is 4.1 µs. As before, the central part of this example uses
triggered execution. After a triggerIn signal has been received, the rf pulse gen-
eration is started by setting ch0 to the ON state. The pulse is set back to the
OFF state 20 µs later. In this case, the trigger out port is used for monitoring
purposes only. The corresponding waveforms are shown in Fig. B.2.

1 # ##################################
2 # Start sequence ( function stack )
3 # ##################################
4 print " Programming sequence ."
5 RF. reset ()
6 RF. resetTimer ()
7 RF. configureSysClock ()
8

9 # Channel 0 and 1
10 RF. setEnabledChannels (1 ,1)
11 RF. setDACFullScale ()
12 RF. setSingleToneMode ()
13 RF. setAmplitude (0 ,0)
14

15 # Channel 0
16 RF. setEnabledChannels (1 ,0)
17 RF. enableAutomaticRURD (0 ,1)
18 RF. setAmplitude (0 ,1)
19 RF. setFreq (0 ,1 e6)
20 RF. setPhase (0 ,0)
21

22 # Triggered execution
23 RF. waitTriggerIn () # Waits for rising edge
24 RF. setTriggerOut (1) # Outputs trigger for monitoring purposes
25 RF. setAutomaticRURDPins (1 ,0)
26 RF. delayTimer (20e -6)
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27 RF. setAutomaticRURDPins (0 ,0)
28 RF. setTriggerOut (0)
29 # ##################################
30 # End sequence ( function stack )
31 # ##################################

Code B.3: Single tone mode with automatic ramp-up and ramp-down
enabled. The full example is available in [110] under Examples/
singleToneAutomaticRURD.py.

Figure B.2.: Oscilloscope screen capture for the rf driver sequence in Code B.3.
The traces are: triggerIn (yellow), triggerOut (green), ch0 (blue)
and ch1 (red).
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Modulation mode
This functional mode is specially suited for application that require a fast re-
configuration of the waveform parameters. In Table 5.1 we have shown that a
direct modulation based on an update of the profile pins only takes 100 ns while
a reconfiguration of the AD9958 registers via SPI typically require 4 µs. The
example in Code B.4 compares both operations by reconfiguring the frequency in
ch0 via the profile pins and by performing the same operation on ch1 but using
SPI. The sequence starts by configuring the modulation mode, and configuring
the modulation levels for ch0 (0.5 MHz and 2 MHz). On the other hand, only
a single frequency value is initially configured for ch1 (0.5 MHz). The central
part of this example uses triggered execution. After a rising edge is detected
on triggerIn, the frequencies on both channels are commuted from 0.5 MHz to
2 MHz by using direct modulation on ch0 and SPI register access on ch1. 20 µs
later, the frequencies are commuted back to 2 MHz by the same means. Note,
that we do not use the delayTimer() method but use waitForTimer() instead,
which allows to synchronize the sequence based on the elapsed time since the
last resetTimer() call. The trigger out port is used for monitoring purposes only.
The corresponding waveforms are shown in Fig. B.3. We observe a 4 µs lag in
the frequency reconfiguration of ch1 due to the SPI communication overhead.

1 # ##################################
2 # Start sequence ( function stack )
3 # ##################################
4 print " Programming sequence ."
5 RF. reset ()
6 RF. resetTimer ()
7 RF. configureSysClock ()
8

9 # Channel 0 and 1
10 RF. setEnabledChannels (1 ,1)
11 RF. setDACFullScale ()
12 RF. setModulationMode (" frequency " ,2,0)
13 RF. setModulationRegister (0 ,0)
14

15 # Channel 0
16 RF. setEnabledChannels (1 ,0)
17 RF. setAmplitude (0 ,1)
18 RF. setFreq (0 ,0.5 e6) # Modulation level 0
19 RF. setFreq (1 ,2 e6) # Modulation level 1
20 RF. setPhase (0 ,0)
21

22 # Channel 1
23 RF. setEnabledChannels (0 ,1)
24 RF. setAmplitude (0 ,1)
25 RF. setFreq (0 ,0.5 e6)
26 RF. setPhase (0 ,0)
27
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28 RF. waitTriggerIn () # Waits for rising edge
29 t=0
30 RF. resetTimer ()
31 RF. setTriggerOut (1)
32 RF. setModulationRegister (1 ,0) # Direct modulation (ch 0)
33 RF. setFreq (0 ,2 e6) #SPI (ch1)
34

35 t+=20e -6
36 RF. waitForTimer (t)
37 RF. setTriggerOut (0)
38 RF. setModulationRegister (0 ,0) # Direct modulation (ch 0)
39 RF. setFreq (0 ,0.5 e6) #SPI (ch1)
40 # ##################################
41 # End sequence ( function stack )
42 # ##################################

Code B.4: Frequency modulation mode. This example is an adaptation of the
source code in [110] under Examples/frequencyModulation.py.

Figure B.3.: Oscilloscope screen capture for the rf driver sequence in Code B.4.
The traces are: trigger in (yellow), trigger out (green), ch0 (blue)
and ch1 (red).
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Sweep mode
In Code B.5 we illustrate the sweep mode of the AD9958. Similarly to the au-
tomatic ramp-up and ramp-down mode, the sweep direction is configured via
the profile P2 and P3 for ch0 and c1, respectively. We restrict this example to
amplitude sweeps. The AD9958 has 4 configurable sweep parameters: the ris-
ing/falling sweep ramp rate and the rising/falling delta word. The Python API
includes the findOptimalRamp() method which calculates these parameters based
on the sweep endpoints and the rising/falling sweep durations. In this example we
perform independent amplitude sweeps on ch0 and ch1. The start/end amplitude
endpoints are 0.25/0.8 and 0.1/0.8 for ch0 and ch1, respectively. Their rising/-
falling sweep durations are 10 µs/20 µs and 30 µs/10 µs. The sequence starts with
the configuration of the ramps and by setting both channels to the lower fre-
quency endpoint. After, the sequence is put on hold until an external trigger is
received. At this point, ch0 is instructed to start a rising ramp and 10 µs later
we do similarly for ch1. After an additional hold time of 10 µs, both channels
start simultaneously a falling frequency ramp. The triggerOut port is used for
monitoring purposes only. The corresponding waveforms are shown in Fig. B.4.

1 # ##################################
2 # Start sequence ( function stack )
3 # ##################################
4 print " Programming sequence ."
5 RF. reset ()
6 RF. resetTimer ()
7 RF. configureSysClock ()
8

9 # Channel 0 and 1
10 RF. setEnabledChannels (1 ,1)
11 RF. setDACFullScale ()
12 RF. setSweepMode (" amplitude ")
13 RF. setFreq (0 ,1 e6)
14 RF. setPhase (0 ,0)
15 RF. setModulationRegister (0 ,0)
16

17 # Channel 0
18 RF. setEnabledChannels (1 ,0)
19 RF. setSweepParameters (0.25 ,0.8 ,10e -6 ,20e -6)
20

21 # Channel 1
22 RF. setEnabledChannels (0 ,1)
23 RF. setSweepParameters (0.1 ,0.8 ,30e -6 ,10e -6)
24

25 # Triggered execution
26 RF. waitTriggerIn () # Waits for rising edge
27 RF. setTriggerOut (1)
28 RF. setModulationRegister (1 ,0)
29 RF. delayTimer (10e -6)
30 RF. setModulationRegister (1 ,1)
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31 RF. delayTimer (50e -6)
32 RF. setModulationRegister (0 ,0)
33 RF. setTriggerOut (0)
34 # ##################################
35 # End sequence ( function stack )
36 # ##################################

Code B.5: Amplitude seep mode. The full example is available in [110] under
Examples/amplitudeSweep.py.

Figure B.4.: Oscilloscope screen capture for the rf driver sequence in Code B.5.
The traces are: triggerIn (yellow), triggerOut (green), ch0 (blue)
and ch1 (red).
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C
Digital PLL laser lock (code

example)

This Appendix is devoted to illustrate a basic configuration and operation of
the digital PLL lock of the cooler and repumper laser. The source code for the
chipKit uC32 firmware can be found in [118].

Loading of the PLL configuration

Instruction Description
! Restart FIFO buffers.
? Return FIFO buffer contents.
c<setPoint># Queue jump to new cooler set-point.
r<setPoint># Queue jump to new repumper set-point.
c<sweepTime>;<setPoint># Queue sweep to new cooler set-point.
r<sweepTime>;<setPoint># Queue sweep to new repumper set-point.

Table C.1.: Serial instructions for the digital PLL laser locks. We write the new
beat note frequency set-point (MHz) as <setPoint> and the sweep
time (ms) as <sweepTime>. The first two instructions are issued
immediately, while the remaining ones are queued to either the cooler
or the repumper FIFO buffer.

Prior to running an experimental sequence, the required beat note frequency
set-points for the cooler and repumper laser are sent to the microcontroller. The
microcontroller features a pair of FIFO buffers, which hold up to 100 instructions
for the cooler and repumper laser locks. Instructions are sent over serial interface
(9600 baud) and have to be compliant with Table C.1. The instructions set
include commands for restart and inspection of the FIFO buffers and for queuing

139



C. Digital PLL laser lock (code example)

changes or sweeps in the beat note frequency set-points. In Code C.1 we give a
working example on how to use the above instructions set to configure the cooler
and repumper FIFO buffers.

1 import serial
2 import time
3 # #################################################
4 # Setting up serial communication
5 # #################################################
6 PLL_COM_PORT ="COM8"
7 INFO_MAX_LEN =1000 # Upper bound for serial read
8 try:
9 serPLL # Check if serial port is already open

10 except NameError :
11 serPLL = serial . Serial ( PLL_COM_PORT , 9600 , timeout =0.2)
12 print (" Starting PLL serial port.")
13 time. sleep (5) # Waiting for microcontroller to start
14 # #################################################
15 # Define set - points and sweep times
16 # #################################################
17 cSetPointList = [ 164 , 250 , -300, -100, 120]
18 cSweepTimeList = [ 0, 20, 0, 10, 0]
19 rSetPointList = [6600 , 7000 , 6500]
20 rSweepTimeList = [ 0, 50, 0]
21 # #################################################
22 # Load FIFO buffers
23 # #################################################
24 serPLL . write (b"!") # Restart
25 # Configure cooler FIFO buffer
26 for cSetPoint , cSweepTime in zip( cSetPointList , cSweepTimeList ):
27 serPLL . write (b"c {};{}# ". format (cSetPoint , cSweepTime ))
28 # Configure repumper FIFO buffer
29 for rSetPoint , rSweepTime in zip( rSetPointList , rSweepTimeList ):
30 serPLL . write (b"r {};{}# ". format (rSetPoint , rSweepTime ))
31 #Read out buffer contents ( OPTIONAL )
32 serPLL . write (b"?")
33 info=ser.read( INFO_MAX_LEN ) # Typically returns on timeout .
34 print (info)

Code C.1: Configuration of the PLL instructions buffers involving 5 (3) distinct
frequency set-points for the cooler (repumper) lock.

We note that positive as well as negative beat note frequency set-points can be
used and that the microcontroller automatically handles the polarity of the PLL
output. While set-points of the same sign can be appended without restrictions in
their frequencies and sweep times, this is not the case for set-points that feature
distinct signs. When a positive (negative) set-point is appended to a negative
(positive) one, the following restrictions apply:

(i) Increasing order. The absolute value of the set-points have to be re-
quested in increasing order. That is, |setPointListris|   |setPointListri�
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1s| results in a stable change while |setPointListris| ¥ |setPointListri�1s|
drives the system out of lock. Changes in the beat note frequency that
violate this conditions can still be achieved by adding an auxiliary set-point
in between. For example, the sequence setPointList � r..., 250,�100, ...s
can be achieved through setPointList � r..., 250,�300,�100, ...s, where we
have introduced the auxiliary value of -300 to perform the transition from
positive to negative set-points.

(ii) Zero sweep time. Changes in the beat note frequency set-point that
involve switching the lock polarity shall be done by queuing a frequency
jump (c<setPoint># and r<setPoint>#), or equivalently by queueing
a sweep with 0 sweep time (c0;<setPoint># and r0;<setPoint>#).

Execution of the instruction buffer

freq	set	point	cooler	
(MHz)

freq	set	point	repumper
(MHz)

trig	repumper	

trig	cooler

180

6564 6600

7000

6500

164

-300

250

-100
120

20	ms

10	ms

50	ms

Figure C.1.: Execution of the PLL intruction buffers which got previously config-
ured through Code C.1. After detecting a rising edge on the cooler
(rempumper) trigger line, the cooler (repumper) PLL is configured
based on the next entry of its instruction buffer.

Once the required beat note frequency set-points have been added to the in-
struction FIFO buffers, the device is ready to execute them upon trigger requests.
This is, the cooler (repumper) PLL lock are programmed with the next buffered
instruction whenever a rising edge is detected on the cooler (repumper) trigger
line.

In Fig. C.1 we illustrate a typical execution of the cooler and repumper in-
struction buffers. This example is based on Code C.1, which requires 5 trigger

141



C. Digital PLL laser lock (code example)

instructions for the cooler PLL and 3 trigger instructions for the repumper PLL.
Note that the initial set-points are not defined by the Python sequence. This is
because they are either automatically programmed to their default value when
powering up the chipKit uC32, or they got set by a previously executed instruc-
tion buffer. In this example, the initial set-points are 180 MHz and 6564 MHz,
which correspond to the default configuration of the cooler and repumper locks.
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D
Phase-resolved parametric

amplification

Optical parametric amplifiers use non-linear optical media to couple electric fields
that oscillate at different frequencies [44]. At their input, an intense pump field
is combined with a weak signal field, which respectively get attenuated and ex-
ponentially amplified within the non-linear medium. The excess energy and mo-
mentum are transferred to a third optical field, typically denoted as the idler
field. The coupling between fields in an optical parametric amplifier is analo-
gous to the spin mixing interaction within f � 1 SBECs, which couples the spin
pair configurations |1, 0y b |1, 0y and |1,�1y b |1,�1y. In this case, the atoms in
|1, 0y and |1,�1y take the role of pump and signal/idler fields. The exponential
amplification of the fields in |1,�1y is influenced by the non-linear interaction
strength as well as the QZS and trapping potential, which introduces an energy
offset between the spin mixing input configuration (|1, 0yb |1, 0y) and the output
configuration (|1,�1y b |1,�1y) [45, 46].
In this chapter, we demonstrate phase-resolved parametric amplification within

our SBEC comagnetometer. The parametric amplification takes place within the
t|2, 0y , |2,�1yu subspace of the f � 2 manifold, while the f � 1 manifold keeps
track of the rotating reference frame.

Theoretical framework
We build upon the work by Klempt et al. [46, 47] and describe the pair creation
in the |2,�1y states as spin excitations within a spherical potential well. The
spatial wavefunctions of the spin excitations are most conveniently written in
spherical coordinates:

Ψpr, θ, φq � Z�1{2jl

�
βn,l

r

rTF



Yl,mpθ, φq , (D.1a)
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Z �
» rTF

0

����jl
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βn,l

r

rTF


����
2

4πr2dr (D.1b)

where jl is the spherical Bessel function, βn,l its nth zero and rTF is the Thomas-
Fermi radius (see Appendix A). The angular dependency is given by the spherical
harmonic Yl,mpθ, φq. Regarding the indices we have n � 1, 2, 3, ..., l � 0, 1, 2, 3, ...
and m � �l, ... � l, where only the first two are relevant for the spin excitation
eigenenergy En,l:

En,l �
b
pεn,l � qq2 � Ω2 , (D.2a)

εn,l �
~2β2

n,l

2mr2
TF

, (D.2b)

Ω � NAρ
p2q
0

Veff

�
3gp2q1 � g

p2q
2
5

�
. (D.2c)

We refer to Eq. (2.20) for the definition of gp2q1 and g
p2q
2 , and to Appendix A

for the definition of Veff. When pεn,l � qq2   Ω2, the eigenenergy is imaginary
and the atom number within the corresponding spin excitation gets paramet-
rically (exponentially) amplified. Later in this chapter we will see that, for
our experimental conditions, only the lowest energy eigenstate (n � 1, l � 0,
m � 0) has an imaginary eigenenergy. In this case, the excitation wavefunction
is Ψ1,0,0prq9 sincpr{rTFq and has a high overlap with the Thomas-Fermi density
profile of the pump field ΨSMAprq9

a
1� pr{rTFq2. More precisely, the overlap

is quantified through the integral

xΨn,l,m|ΨSMAy � δl,0δm,0Z
�1{2

» rTF

0
jl

�
βn,l

r

rTF



ΨSMAprq 4πr2dr , (D.3)

which for the lowest energy eigenstate yields xΨ1,0,0|ΨSMAy � 0.94. Hence, for
our experimental conditions, the pump and signal/idler fields can be described
within the single-mode approximation by the spin amplitudes ξp2q0 and ξ

p2q
�1 . In

this case, parametric amplification corresponds to an exponential amplification
of the original spin amplitudes in ξp2q�1 .

Seeding mechanisms
We denote the original spin amplitudes in ξ

p2q
�1 as seeding fields. Depending on

their origin we distinguish between:
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• Coherent seeding. This results from the coherent transfer of atomic pop-
ulation into the ξp2q�1 fields. This type of seeding has a defined amplitude
and relative phase to the pump field ξp2q0 . As a result, the parametrically
amplified fields are equally deterministic in amplitude and phase.

• Classical noise seeding. Rf noise couples the ξ2
0 and ξ

p2q
�1 fields and can

provide and initial spin population in the latter ones. Since, both phase
and instantaneous amplitude of the driving field are unknown, the resulting
seeding fields are non-deterministic. This is reflected in a large variance in
phase and amplitude of the parametrically amplified fields.

• Quantum noise seeding. An unavoidable seeding mechanism is vacuum
fluctuations in the ξp2q�1 fields. Similarly to the method above, the resulting
amplified fields feature a large variance in amplitude and phase. The dif-
ference here is that the non-determinism is an inherent property of vacuum
fluctuations and does not result from a lack of control in the driving field.
For numerical calculations using the truncated Wigner method, vacuum
fluctuations can be included through a normal distribution in the ξp2q�1 fields
with a mean seeding population of x|ξp2q�1 |2y � 1{2 [181, 182].

The classical and quantum noise floor define the smallest resolvable coherent
seedings. Above that threshold, coherent seedings are deterministically mag-
nified by the gain of the parametric amplifier. We note that the parametric
amplification process is inherently phase-sensitive but for the typical experimen-
tal evolution times thold Á 20 ms [46, 47, 45] the phase information is washed out
due to the environmental magnetic field fluctuations. E.g. the pioneering work
by Sadler et al. [45] achieved a 30 dB amplification in their spin amplitudes but
did not demonstrate that the reported spin orientations (i.e. phase information)
stayed preserved during the process.

Magnetic noise cancellation and state preparation
In the following we prepare a f � 2 parametric spin amplifier within the SBEC
comagnetometer described in Chapter 6. More precisely, we produce a coherent
spin superposition where the parametric amplification occurs within f � 2, while
the f � 1 manifold keeps track of the rotating reference frame resulting from the
(fluctuating) external magnetic field.

The state preparation consists of a a set of resonant mw and rf pulses to obtain
60% of the atomic population within a magnetically sensitive superposition within
f � 1 and the remaining 40% within the f � 2 pump, signal and idler fields
tξp2q0 , ξ

p2q
�1u. The pulse sequence is described in Table D.1, which is parametrized in
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Item Rotation Type Coupled levels ρp1q ρp2q

0 p0, 1, 0q p0, 0, 0, 0, 0q
1 R0rβ1s rf |f,my Ø |f,m� 1y p 1�ρp2q

0
4 ,

1�ρp2q
0

2 ,
1�ρp2q

0
4 q p0, 0, 0, 0, 0q

2 R0rβ2s mw |1, 0y Ø |2, 0y p 1�ρp2q
0

4 ,
1�ρp2q

0
2 ,

1�ρp2q
0

4 q p0, 0, ρp2q0 , 0, 0q
3 R0rβ3s rf |f,my Ø |f,m� 1y p 1�ρp2q

0
4 ,

1�ρp2q
0

2 ,
1�ρp2q

0
4 q p0, δρ, ρp2q0 , δρ, 0q

Table D.1.: Rf and mw pulse sequence for the generation of parametric amplifier
in a SBEC comagnetometer. The required rotations are written as
Rαrβs, where β is the rotation angle and α is the azimuth angle of
the rotation axis. We assume small seeding populations δρ ! ρ

p2q
0 for

which the rotation angles are: β1 � arcsin
�
pp1� ρ

p2q
0 q{2q1{2

�
, β2 �

2 arcsin
�
p2ρp2q0 {p1� ρ

p2q
0 qq1{2

�
and β3 � 3�1{2 arcsin

�
p2δρ{ρp2q0 q1{2

�
.

terms of the relative atomic populations ρp2q0 � 0.4 and relative coherent seeding
δρ P r2� 10�6, 5� 10�4s. The absolute atom number is NA � 92p2q � 103, such
that the coherent seeding atom numbers are within δNA � δρNA P r0.2, 50s.

Resolution of the phase-resolved parametric amplifier
After state preparation, the system is allowed to freely evolve for 75 ms at a
magnetic field of 282 mG. In these conditions, only the lowest energy excitation
in Eqs. (D.2) becomes imaginary E1,0 � i7.5 Hz. The seedings in ξ

p2q
�1 are, as

a result, exponentially amplified. After amplification, the f � 2 manifold has
developed a transverse magnetisation, where the azimuth spin orientation angle
θp2q relates to the relative phase between the ξp2q0 and the ξp2q�1 fields. However,
a direct measurement of θp2q does not reveal the phase of the original seeding
because of the magnetic field fluctuations during the 75 ms long amplification
process. For this reason, we make use of the comagnetometer readout θp12q= θp1q

+ θp2q, which does not depend on the magnetic field evolution and is a direct
measurement of the phase of the original seeding fields.
In Fig. D.1 we show preliminary results on the resolution of our phase-resolving

parametric amplifier and estimate the smallest resolvable coherent seed below
which the non-deterministic contributions (rf noise and vacuum fluctuations) be-
come dominant. To this end, we compute the sharpness S (see Section 6.4) of the
comagnetometer readout as a function of the seeding atom number δNA. The
transition between non-deterministic (S � 0) and deterministic seeding (S � 1)
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Figure D.1.: Evolution of S2, where S � |xexpriθsy| is the sharpness, as a function
of the coherent seeding of the parametric amplifier δNA. Averages
are taken over K � 12 samples. Error bars are the statistical uncer-
tainty and the dashed line is the lower bound S2 � 1{K.

happens at δNA � 5 or equivalently δρ � 5�10�5. We note that the latter value
is above an order of magnitude smaller than the seedings reported for SU(1,1)
SBEC interferometers [49, 50, 51].
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E
Experimental sequences for

measuring the interhyperfine
interaction in 87Rb

Interaction parameter g
p12q
2

(See Fig. E.1 top) After all-optical evaporation, a SBEC is obtained in the
ξp1q{?N � p0, 1, 0qT state. The ensemble is coherently transferred into an equal
superposition ξ{?NA � p0, 1{?2, 0qT `p0, 0, 0, 0, 1{?2qT by means of a resonant
radio frequency (rf) π{2 rotation around the x-axis and a sequence of microwave
(mw) π pulses (I, II and III). Thereafter, the magnetic field is ramped up to
381.5 mG in order to raise the differential LZS to ppp1q � pp2qq{h ��1.06 kHz. A
Ramsey-like sequence, consisting of two rf π{8 pulses (rotating about x) sepa-
rated by 462 µs is used to produce a net π{4 rotation of the f � 1 manifold,
and zero net rotation of the f � 2 manifold. The resulting state is given in
Eq. (7.3). The magnetic field is rapidly ramped down to 119.6 mG, ensuring a
modest QZS during the subsequent many-body (MB) evolution. After a variable
hold time t, the magnetizations in f � 1 and f � 2 are detected by Faraday
rotation. A first pulse (∆p101q{2π � �270 MHz) probes the f � 1 transverse
magnetization. A rf π{2 pulse is then applied to rotate the f � 2 stretched state
ξp2q{?NA � p0, 0, 0, 0, 1{?2qT into the transverse plane for detection with a sec-
ond pulse (∆p231q{2π � 360 MHz). The damped oscillatory signals illustrate the
recorded Faraday signals described in Eqs. (5.11).

Interaction parameter g
p12q
1

(See Fig. E.1 bottom) The sequence starts with a SBEC in ξp1q{?N � p0, 1, 0qT
which is coherently split by a rf π{2 pulse into ξp1q{?N � p1{?2, 0, 1{?2qT .
Subsequently, either the initial state ξ0,A or ξ0,B is prepared via mw pulses (I,
II and III) and a rf π{6 rotation around the x axis. Hereafter, the many-body
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(MB) evolution begins. For the applied constant magnetic field of 119.6 mG the
LZS is pp2q{h � �p1p1q{h � 84 kHz with a differential frequency of pp1q{h �
pp2q{h � �334 Hz. The insets illustrate how the f � 1 and f � 2 transverse
spin orientations (θp1qA and θp2qA or θp1qB and θp2qB ) rapidly evolve due to the LZS.
The differential is represented by the green comagnetometer readouts, which
depending on the state preparation are labeled by θp12q

A and θp12q
B . After a variable

hold time of up to 200 ms, the transverse magnetization is interrogated . First
the Faraday probe of f � 1 is applied, from which, depending on the state
preparation, the spin orientation θp1qA or θp1qB is obtained. Next, and without any
additional rf pulse, the f � 2 manifold is probed, yielding θ

p2q
A or θp2qB . The

comagnetometer readout is obtained by θp12q
X � θ

p1q
X � θ

p2q
X , where X P tA,Bu.

Faraday probing frequencies and atom-light coupling factors are identical to the
previous section.
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Figure E.1.: Experimental sequences for the determination of the interhyperfine
interaction parameters gp12q

2 (top) and gp12q
1 (bottom). The relative

spin populations ρp1q and ρp2q are represented by the blue and red
circles. The oscillatory traces at the end of both sequences illustrate
the consecutive Faraday readouts of the transverse magnetization in
each hyperfine manifold. Note that the bottom sequence branches
into A or B for the many-body (MB) evolution of a SBEC initially
prepared in ξ0,A or ξ0,B , respectively. The insets of this latter se-
quence show the angular evolution of the transverse spins θpfqA and
θ
pfq
B , as well as the corresponding comagnetometer readouts (θp12q

A

and θp12q
B ).
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