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Abstract— The conventional scattering analysis of perfectly 
conducting plates neglects the scattering contribution of the 
rim in the discretization of the Electric-Field Integral 
Equation. This so-called thin-plate scheme manages many less 
unknowns than the full approach, arising from modelling the 
whole plate, with acceptable accuracy in many practical 
applications. A recent approach, so-called thick-plate, has 
proved to show similar accuracy as the full scheme, also in 
those cases where the thin-surface fails; namely, the scattering 
analysis of thick enough plates, especially under oblique 
incidences, with low grazing angles. In this paper, we reveal 
how the thick-plate scheme shows improved computational 
times, especially in large scale computations, as compared to 
the full approach. Also, we discuss how the thick-plate analysis 
is amenable to parallelization, thereby leading to 
computational times comparable with the thin-surface 
approach.  
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I. INTRODUCTION  

The electromagnetic scattering analysis of perfectly 
conducting (PEC) plates with very small thickness is 
normally undertaken through the thin-plate approximation 
[1]. This scheme derives from the definition of the Electric-
Field Integral Equation (EFIE) as the plate thickness tends to 
zero. In the limit, this Integral Equation degenerates into a 
problem where the unknowns involve the sum of the currents 
over the top and bottom faces of the plate [2]. The plate is 
then modelled as an open surface, thereby discarding the 
scattering contributions due to the rims. The thin-plate 
approximation becomes very advantageous because of the 
drastic reduction of unknowns with respect to the full 
modelling of the plate as a closed surface. In general, the 
thin-plate approximation can be adopted in many practical 
applications, with little sacrifice of accuracy. However, in 
cases where the effect of the plate rim on the scattering 
pattern becomes critical, such as the scattering analysis of 
thick enough plates,  with low-angle grazing incidences, the 
thin-plate approximation becomes inaccurate. Recently, a 
new so-called thick-surface scheme has proved to show 
accurate results, also for those cases where the thin-plate 
scheme fails [3],[4]. In this paper, we discuss on the 
computational efficiency of the thick-plate scheme as 
compared with the full method-of-moment (MoM) approach.  
We reason the suitability of the thick-plate scheme in the 
concurrent analysis of plates with large electrical 
dimensions.  

II. THICK PLATE 

Consider the scattering analysis of  a free-standing square 
PEC plate with nonzero thickness. The faces and rim of the 
plate are discretized with rectangular facets, thereby giving 
rise to a mesh with NE edges. The current is expanded with 
the divergence-conforming constant-normal linear-tangential 
rooftop basis functions,  nt  [3], defined over pairs of 

adjacent rectangles.    

The approximated electric-field boundary condition over 
the surface boundary S of the plate yields  
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where 
incE and 

sE denote, respectively, the incident field 
and the approximated scattered field, which is defined as   

     

   

1

tan,

1
tan,

' '

' ' '

E

n

E

n

N

n n
n Qs

NS

n n
n Q S

jk c G , ' dS

j c G , ' dS
k












 
 

      
    
  

 

 


r

r

r r t r

E

r r t r

      (2)  

where  nc stand for the set of unknowns, whereas G , k 

and η denote the free-space Green’s function, wavenumber 
and impedance. The matrix system results from the rooftop 
testing over the rectangular tessellation over S of the 
condition in (1). 

Our thick-plate scheme applies the condition in (1) only 
over the NR duplets of rectangles sharing mesh edges that lie 
inside the plate rim or that match the outer boundary line of 

the rim (see Fig. 1-(a)). The subset of functions  1,..., RNt t    

(  1,..., EN t t )  are required for testing purposes over the 

rim mesh. The thick-plate scheme does not make use of the 
field condition (1) as such over the edges arising in the top- 
or bottom-face meshes of the plate. Instead, two different 
electric-field conditions are established over the so-called 
mid-surface SM, located inside the plate (see Fig. 1 (a)),    
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where the variable z evolves normally with respect to SM 
(z=0). The field conditions in (3) and (4) are tested with a set 
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of rooftop basis functions  1 ...
M

M M
Nt t  straddling the NM 

interior edges arising from the rectangular tessellation of SM.      

The thick-plate MoM-system then yields 
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where M
mQ  represents the pair of rectangular facets that 

share the m-th interior edge at the mesh over SM . 

Furthermore, our thick-plate scheme relies on the 
rearrangement of the rooftop-expanded current contributions 
in terms of their z-even or z-odd mid-surface symmetric 
contributions [6]. Namely; the “sum” and “dif” contributions, 
as we call them, arise from summing or subtracting, 
respectively, pairs of mirror contributions over the upper and 
lower halves of the rectangular mesh around the plate (see 
Fig. 2) [3]. This allows the transformation of the matrix 
system in (5) , (6) and (7) into two decoupled systems with 
roughly half the unknowns of the original full problem. The 
z-even / z-odd matrix systems arise from the application of 
the field conditions in (6) / (7) and the summation / 
subtraction of the NB mirror pairs of rim-tested conditions in 
(5) [3].  The self-symmetric NS rim-tested contributions in 
(5) straddling the top and bottom halves are appended to the 
corresponding matrix system, with shared symmetry. 
Therefore; whereas the full MoM-system handles NE 
unknowns (2xNM+2xNB+NS), the uncoupled systems manage 
either NM+NB or NM+NB+NS unknowns.  This is 
computationally more efficient, especially for a big amount 
of unknowns, and can be easily parallelized. 

 
Fig. 1.  Rectangular meshes adopted for the following MoM-schemes:                       

(a) Thick-plate; (b) Full.  

III. COMPUTATIONAL EFFORT 

We have shown the accuracy of our thick-surface 
approach in the scattering analysis of flat or slightly curved 
surfaces with nonzero thickness [3],[4]. Our thick-plate 
scheme reaches very similar accuracy as the full MoM-
scheme in cases, with big enough thickness or under small-
angle grazing incidences, where the thin-surface fails 
completely. As regards the computational effort, the thick-

plate scheme clearly outperforms the full MoM-scheme in 
the following aspects: 

 Mesh generation: A symmetric rearrangement for the 
full MoM-scheme, where the whole structure is 
meshed (see Fig. 1 (b)), involves grouping top-bottom 
pairs of mirror facets over the whole mesh. In 
contrast, the thick-plate approach may be constructed 
from a simpler mesh, with separate meshes for the 
rims and the mid-surface (see Fig. 1 (a)). The search 
of the top-bottom symmetric facets then needs to be 
carried out only over the rim mesh. This becomes 
advantageous for big electrical dimensions of the 
thick plates, since the amount of face-contributions 
becomes bulky. With the thick-surface approach, 
though, the search of these symmetric contributions 
over the top and bottom face meshes is circumvented 
because one single mesh, over the mid-surface, is 
adopted.  

 Computation of the solution: the sequential solution 
of the two matrix systems arising in the thick-surface 
scheme, with roughly half the number of unknowns, 
is less time-consuming than the solution of the single 
matrix of the full MoM-approach. This is more so in 
large scale computation, for electrically big plates 
with nonzero thickness.  If the solution of the systems 
arising in the thick-surface approach is undertaken 
concurrently, the computational time becomes even 
comparable to the thin-surface approach.  

IV. RESULTS 

   In Fig. 2, we show the direct solving times for the full 
and thick-plate schemes in the scattering analysis of a PEC 
square plate with thickness 0.1 m and several sides (1m; 2m; 
3m; 4m; 5m) and λ=1m. This corresponds with the direct 
solution of matrix systems handling, respectively, 864, 2080, 
4320, 7360 and 11200 unknowns if the full MoM-scheme is 
adopted. Congruently, the number of unknowns managed by 
the two subsystems in the thick-surface approach are 
456+408 (1λ); 1080+1000 (2λ); 2220+2100 (3λ); 3760+3600 
(4λ); 5700+5500 (5λ). Clearly, the serial solution of the 
thick-plate scheme is less time-consuming than the full 
scheme. Moreover, an estimate for the parallel solution will 
produce about half solve-time.      

 
Fig. 2.  Direct solving times for several square PEC-plates (1λx1λ; 2λx2λ; 

3λx3λ; 4λx4λ; 5λx5λ) and thickness of 0.1m 
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The thin-surface approach for the same plates in Fig. 2 
makes use of 264 (1λ); 760 (2λ) ; 1740 (3λ); 3120 (4λ); 
4900 (5λ) unknowns, which translates into direct solving 
times from 0.0185 s (1λ) and 0.139 s (3λ) up to 2.25 s (5λ).  
These, as expected, are smaller than the computational times 
shown in Fig. 2, but compare well with the direct solving-
time estimates required in the concurrent solution with the 
thick-plate approach. Nonetheless, the thin-strip scheme 
shows great inaccuracies in the scattering analysis of such 
plates under low-angle grazing incidences. See for example 
Fig. 3, where the full and thick-plate schemes show very 
similar RCS-accuracy in the analysis of the plate with side 
4λ, thickness 0.1m and 2º grazing incidence.  

 

Fig. 3.  E-plane RCS for the full, thick-strip and thin-strip schemes for a 
plate with side 4 m and thickness 0.1m under a 2º-angle incidence. 
The discretization defines 7360 edges and λ=1m. 

V. CONCLUSION 

The thick-plate approach excels as a MoM-scheme well-
suited for the scattering analysis of plates with nonzero 
thickness because it provides very similar accuracy as the 
full-MoM approach and with lower solving times in cases 
where the thin-plate approximation fails.  
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