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ABSTRACT

Direct-coupling analysis (DCA) for studying the
coevolution of residues in proteins has been
widely used to predict the three-dimensional struc-
ture of a protein from its sequence. We present
RADI/raDIMod, a variation of the original DCA al-
gorithm that groups chemically equivalent residues
combined with super-secondary structure motifs to
model protein structures. Interestingly, the simplifi-
cation produced by grouping amino acids into only
two groups (polar and non-polar) is still representa-
tive of the physicochemical nature that characterizes
the protein structure and it is in line with the role of
hydrophobic forces in protein-folding funneling. As
a result of a compressed alphabet, the number of
sequences required for the multiple sequence align-
ment is reduced. The number of long-range contacts
predicted is limited; therefore, our approach requires
the use of neighboring sequence-positions. We use
the prediction of secondary structure and motifs of
super-secondary structures to predict local contacts.
We use RADI and raDIMod, a fragment-based protein

structure modelling, achieving near native conforma-
tions when the number of super-secondary motifs
covers >30–50% of the sequence. Interestingly, al-
though different contacts are predicted with different
alphabets, they produce similar structures.

INTRODUCTION

Protein structure is conserved through evolution, as pro-
tein function is structure dependent (1). The reason for such
conservation is due to energetically favorable interactions
between specific protein residues, which implies that there
must be a certain degree of coevolution between the residues
responsible for both the function and fold of all the mem-
bers of a protein family (2). In the last decade, several au-
thors developed the mean field approximation for direct-
coupling analysis (DCA), either by solving an inverse co-
variance matrix (3) or by using a pseudo-likelihood-based
approach (4,5) to compute direct information (DI) values
(6) and detect correlated positions of the sequence (for a
review see (7)). The implementation of an L2-regularized
pseudo-likelihood to compute the DI between amino acid
positions of protein sequences has also implied a large re-
duction of the computational time (8). These correlations
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are reflected by co-evolution and are potentially due to the
spatial proximity of the residues, thereby helping to infer the
contact map of a protein family (9). This has been used to
improve protein models (10,11), predict the structure of pro-
teins (12,13) or predict the structure of homo-dimers (14).
The theory underlying DCA is based on the Potts model
(15) and recent studies have shown that the number of Potts
states can be compressed without affecting the quality of re-
construction (16). Furthermore, the compression of the al-
phabet has been used to include the three-body interaction
terms on the calculation of DCA, reducing not only the time
but also the amount of memory required (17,18). Here we
propose a modification of the DCA algorithm for proteins
using a compression that reduces the number of sequences
required for the multiple-sequence alignment (MSA) and it
is still useful to model the structure. Instead of analyzing ev-
ery mutation in the protein, we ignore the mutations occur-
ring within certain subsets of amino acids with equivalent
physicochemical properties. We transform the sequences of
an MSA of a protein family into a simplified alphabet of
equivalent residues, and if the information of the alignment
is still enough, we calculate the top-ranking pairs of posi-
tions with high values of DI. Pairs of positions of a protein
sequence with high values of DI are potential contacts of the
protein conformation and are used as restrictions to model
its structure. However, many contacts are necessary to pro-
duce an accurate model. Local contacts can be predicted
using the prediction of secondary structure, but the con-
nection and interaction between secondary structures is still
necessary. Previous works have shown that proteins can be
constructed on a modular fashion, using templates of frag-
ments of the sequence (19,20). Furthermore, distance re-
straints can be extracted from experimental data (i.e. NMR)
to finally construct a model using short templates formed
by super-secondary structures (21). In this work we will
use ArchDB14 (22), a dataset of classified super-secondary
structures formed by two regular structures (sMotifs). The
structure of a protein will be constructed using the predicted
contacts calculated with different alphabets, the prediction
of secondary structure and the structures of sMotifs from
ArchDB14 used as templates.

MATERIALS AND METHODS

DI values are computed using a modification of the DCA
algorithm, which we have named reduced alphabet DI
(RADI). We denote by q the number of different symbols
(i.e. alphabet) in the MSA.

Multiple-sequence alignments

MSAs are created using the script ‘buildmsa.py’ included
in the RADI Git repository. First, the script builds a profile
of the query searching for similar sequences in the uniref50
database with MMseqs2 (23). Next, it uses the query profile
to find more sequence relatives in the uniref100 database.
Then, the script builds a MSA of the query and the identi-
fied sequences (up to 100 000) with FAMSA (24). Finally,
it removes the columns of the MSA with gaps in the query.
Note that MMseqs2 is executed with options ‘-s 7.5’ and
‘–max-seq-id 1.0’ for a more sensitive search.

Reduced alphabet

RADI simplifies the computation of DI values by trans-
forming the entire alphabet of q = 21 symbols (i.e. the 20
different amino acids plus the gap) into a reduced alpha-
bet. For instance, using an alphabet of q = 21 (henceforth
named RA0) in RADI is equivalent to using the original
DCA algorithm. We create three reduced alphabets (hence-
forth named RA1, RA2, and RA3) by grouping amino acids
based on different physicochemical properties (Table 1). We
also define the number of effective sequences as the num-
ber of sufficiently different sequences (i.e. <80% of sequence
identity) after removing the columns with more gaps than
a threshold, which varies between 15% and 75% of the to-
tal number of sequences. Specifically, this threshold is set
to the smallest percentage that would result in either 1000
or the maximum number of effective sequences. The limit
at 1000 sequences is selected following Morcos et al. sen-
sitivity analysis of the performance of DCA (9), as larger
alignments would not significantly change the results. Fi-
nally, we calculate the frequencies of symbols and weight
them by the corresponding number of effective sequences at
each position to calculate the mutual or direct information
(9), correcting the entropic effects with the Average Product
Correlation (APC) (25).

Analysis

Two residues are in contact if: (i) at least two atoms, one
of each residue, are at a distance <5Å; (ii) the distance be-
tween their C� atoms is <15Å or (iii) the distance between
their C� atoms is <8Å. We define the contact-map of a
protein as the set of pairs of residues in contact. We only
analyze the top DI pairs where the residues belong to two
different secondary structures. We consider that two pairs,
say (i,j) and (n,m), are equivalent if one of them is in the
vicinity of the other defined by a [9 × 9] square (i.e. (i,j) is
in the set of pairs [n - 4, n + 4] × [m - 4, m + 4]). Then,
true positive contacts are top DI pairs equivalent to pairs
of residues in the contact map. Top DI pairs using one of
the RADI approaches (RA1, RA2, RA3) are similar to the
original DCA method if they are equivalent to a pair pre-
dicted in RA0. We have used a similar definition for the
comparison of equivalent pairs between RADI approaches
(RA0,RA1,RA2,RA3) and the top DI pairs obtained us-
ing an L2-regularized pseudo-likelihood approach with the
program CCMPred (8).

Fragment-based modeling of protein structure using DI infor-
mation

We use the following approach to model the structures
of protein based on DI contact prediction and sMotifs
(22). Firstly, we map the secondary structure predicted with
SABLE (26) on the sequence of the target and predict
the type of super-secondary structures (i.e. two consecu-
tive secondary structures) defined as sMotifs and classi-
fied in ArchDB14 (22). ArchDB is a structural classifica-
tion of sMotifs, formed by clusters of similar structures.
The similarity between sMotifs is based on the alignment
of (�,�) angles of the backbones of the loop regions (i.e.
between two secondary structures) and the 3D orientation
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Table 1. Classification of amino acids into groups for the three reduced alphabets RA1, RA2 and RA3. The second column shows the number of q symbols
of the corresponding reduced alphabet

Type Q Amino acid groups

RA1 9 Positively charged: {Arg, His, Lys}. Negatively charged: {Asp, Glu}. Polars: {Ser, Thr, Asn, Gln}. Aliphatics: {Ala,
Ile, Leu, Met, Val}. Aromatics: {Phe, Trp, Tyr}. Single groups: {Cys}, {Gly}, {Pro} and the gap

RA2 5 Polar: {Arg, His, Lys, Asp, Glu, Ser, Thr, Asn, Gln, Cys}. Non-polar: {Ala, Ile, Leu, Met, Val, Phe, Trp, Tyr}. Single
groups: {Gly}, {Pro} and the gap

RA3 3 Polar: {Arg, His, Lys, Asp, Glu, Ser, Thr, Asn, Gln, Cys, Gly}. Non-polar: {Ala, Ile, Leu, Met, Val, Phe, Trp, Tyr,
Pro}. Single groups: gap

of the secondary structures. Interestingly, specific residues
are often preserved in certain positions of the sMotifs in a
class/cluster (often in the loop or in its regions at the stems
with regular secondary structure). These sequence-profiles
are used to detect and align the target sequence with the
sMotif structural templates.

The sequence of the proteins is used to compute the DI
and select for each alphabet the top 40 pairs of residues with
the higher correlation. The structures of sMotifs aligned
to the target sequence are used as templates for homol-
ogy modelling with MODELLER (27). We add distance re-
straints between the pairs of amino acids selected, constrain
the secondary structure predicted with SABLE and gen-
erate 10000 structural models that are subsequently clus-
tered and scored. The protocol to run MODELLER is as
follows: (i) we use as templates the structures of the pre-
dicted sMotifs; (ii) apply constrains at 8Å using a Gaus-
sian potential on the C�-C� atoms of the selected residue-
pairs with highest correlation; and (iii) we force the type
of secondary structure as mapped by the prediction of sec-
ondary structure. Finally, we rank the models with DOPE
(28) and cluster them by similar structure, evaluate the qual-
ity of the models with Prosa2003 (29) and select the best
scored structures. The scripts to automate the search of
sMotif templates and construct the inputs for fragment-
based modelling with MODELLER are accessible in https:
//github.com/structuralbioinformatics/raDIMod.

Hardware

To enable the benchmarking, RADI has been tested on the
queues of a cluster with the same CPU: 2 AMD Opteron
4226 hexacore of 2.9 Ghz CPU with 64 GB RAM. The same
CPU has been used for the comparison with CCMPred.

RESULTS

The modification of the alphabet results in different ma-
trices of DI values. Nevertheless, we show that regardless
of the alphabet, the top 40 pairs similarly hit equivalent
residueñresidue contacts with all three alphabets, while re-
ducing the number of symbols (q) reduces the execution
time and reduces the number of sequences of the MSA (af-
ter reducing the alphabet many sequences become redun-
dant and are removed from the alignment). We selected a
limit of 40 top pairs as in the work of Morcos et al. (9),
although for the comparison with CCMPred (8) often no
>30 pairs are automatically selected (i.e. the maximum by
default).

Comparison of top DI and MI pairs with respect the contact
map

We compare both RADI and the original DCA algorithm
on the same set of 509 different proteins from (3), hereafter
defined as benchmark. The benchmark contains 78 different
protein families from 50 different folds in SCOP (30). Pro-
tein sequences and three-dimensional structures are down-
loaded from the RCSB Protein Data Bank (PDB) (31). As
an example, Figure 1A shows the contact map for molyb-
date binding protein (PDB code 1ATG), compared with the
top 40 DI (and MI) values using the original DCA algo-
rithm (i.e. RA0) and the reduced alphabets RA1 and RA3.

For the whole benchmark (see details in Supplementary
Data), we compare the distribution of the number of true
positive contacts (Figure 1B). The average of true positives
across the 509 proteins varies between 29 (for RA3) and 35
(for RA0) and, although all distributions are significantly
different, alphabets with RA0 and RA1 classifications are
only slightly better than RA2 and RA3. Furthermore, the
average number of similar top pairs of classifications RA1,
RA2 and RA3 with respect to RA0 varies between 19 and
29, with >20 equivalent pairs between RA1 and RA0 for
most proteins of the benchmark (Figure 1C).

In Figure 2 we compare the success of contact predictions
using MI with alphabets RA0, RA1, RA2 and RA3 (Figure
2A) and the number of residue-residue pairs among the top
40 MI values using RA1, RA2 and RA3 equivalent to the
pairs among the top 40 MI results when using RA0 (Fig-
ure 2B). We conclude that the number of correct contact
predictions using MI is similar for all alphabets (the aver-
age is around 30 correct pairs) but lower than the number
obtained with DI and RA0, while the distributions of equiv-
alent pairs between the entire alphabet RA0 and any of the
alphabets RA1, RA2, RA3 are similar to those obtained
with DI. Interestingly, the success of MI contact predictions
with RA2 and RA3 is higher than using DI for the same
alphabet. However, the distribution of pairs ranked at the
top of MI along the sequence of each protein are clustered
in in local regions, i.e. short range restraints, which is not
as helpful as long-range restraints for structural modelling
purposes (see supplementary contact maps provided in the
GitHub repository and models in the supplementary files of
the manuscript).

Protein structure model building

One important applications of the calculation of co-
evolving residues is using the highly correlated pairs to de-
fine contact constraints and thereby model the structure of
a protein. As a proof of concept, we use the 40 top pairs of
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Figure 1. (A) Example of residue-residue contact predictions for Molybdate binding protein (PDB code: 1ATG). Real contacts are shown in grey (or pink
if not sufficiently covered by the MSA). Red crosses show the top 40 pairs sorted by MI values using RA0. Under the diagonal are shown the top 40 pairs
sorted by DI values using different amino acid alphabets: RA0 (black stars); RA1 (unfilled blue squares); and RA3 (green squares). (B) Boxplots of the
distribution of the number of true positive contacts within pairs of positions with top 40 DI values. The boxplots show the distributions obtained by RADI
with alphabets RA0, RA1, RA2 and RA3. (C) Boxplots of distribution of the number of residue-residue pairs in the top 40 DI values (for RA1, RA2 and
RA3) equivalent to ones among the top 40 DI values with RA0.

Figure 2. (A) Boxplot of the distribution of the number of true positive contacts within pairs of positions with the 40 top MI values. (B) Boxplots of the
distribution of the number of residue–residue pairs in the 40 top MI values (for RA1, RA2 and RA3) equivalent to ones among the top 40 DI values with
RA0.

residues with higher DI values using alphabets RA0, RA1,
RA2, RA3 to model the structures of Molybdate binding
protein (with PDB code: 1ATG). We use a total of 26 tem-
plate sMotifs covering 68% of the total sequence (see de-
tails in Supplementary Material). The structural superpo-
sition of the models of Molybdate binding protein and the
crystallographic structure show the quality of the models,
which can be quantified per residue by the RMSD of C�
atoms (see Figure 3). We note that all models are signif-
icantly good and similar to the crystallographic structure
(TM-score around 0.5), although they are generated with
different distance restrictions obtained using either RA0,
RA1 or RA3 alphabets (see Supplementary Table S1 in Sup-
plementary Material). The total RMSD with TM-align (32)
also quantifies the structural similarity, proving deviations

of around 5Å for the three models. The RMSD of C� atoms
is also below 5Å in a core region of the three models.

Encouraged by the positive outcome, we apply the same
approach on a much larger set composed of proteins from
50 different folds of the benchmark and analyzed the qual-
ity of the models (see details in Supplementary Table S1
and the set of models in the Supplementary Material). The
RMSD of 10 selected models from the benchmark (5 best
and 5 worst out of 50 examples) obtained with restraints
derived by RA0, RA1 or RA3 alphabets are shown in Ta-
ble 2. We also indicate the number of sMotif-templates, the
percentage of the target sequence covered by them and the
Z-score calculated with ProSa2003.

As expected, Table 2 shows that the best results are ob-
tained with a large coverage of the sequence by sMotifs.
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Figure 3. (A) RMSD of C� atoms between the modelled structures of Molybdate binding protein on the crystal structure using distance restraints obtained
with alphabets RA0 (blue), RA1 (orange) and RA3 (green). (B) Superimposition of the modelled structures of Molybdate binding protein obtained with
different alphabets RA0 (blue) on the crystal structure (sand color).

Table 2. Comparison of selected models with the crystallographic structures: five best (in green background) and five worst (in red background) models
out of 50 different folds from the benchmark (the remaining set is shown in Supplementary Table S1). Columns 2–7 show the ProSa2003 Z-score of each
model, the RMSD and the TM-score between the model and the crystallographic structure, calculated with TM-align (32). Models are built with spatial
restraints derived from the 40 top DI values using RA0 and RA3 alphabets. The last three columns show the length (L) and percentage (C) of the target
sequence covered by templates from the classification of sMotifs and the total number of sMotifs used (M)

RA0 RA3

PDB TM RMSD TM Scr Prosa Z-scr TM RMSD TM Scr Prosa Z-scr L C M

1N9L 1.4 0.9 -6.3 1.7 0.9 -5.8 109 0.95 61
1H98 1.6 0.8 -7.0 1.8 0.8 -6.5 77 0.88 15
1FR3 2.1 0.8 -4.4 2.1 0.7 -5.0 67 0.70 5
1LSS 2.6 0.8 -7.6 2.3 0.9 -7.8 132 0.96 25
1C02 3.0 0.7 -6.0 3.6 0.4 -4.0 166 0.53 4
1G60 5.8 0.2 -1.6 5.6 0.2 -0.3 238 0.37 8
1FEP 7.8 0.2 -1.6 8.4 0.2 -2.4 669 0.52 45
1B7E 7.1 0.2 0.9 7.0 0.3 -1.1 372 0.45 12
1A0P 5.2 0.2 2.4 7.3 0.2 0.0 271 0.16 4
1QKS 6.9 0.2 -2.3 7.5 0.2 -2.5 559 0.05 3

There is a small but significant correlation between the qual-
ity of the models and the coverage of the sequence by sMo-
tifs. This is expected because it follows from the classical
approach of homology modelling based on templates, even
if they are only applied to local fragments. Nevertheless,
this correlation is <0.5 for alphabets RA0 and RA3 (see
Supplementary Figure S1). Some examples show that we
achieved a reliable model with only around 50% of the tar-
get sequence covered by sMotifs thanks to the distance re-
straints derived by DI. As shown in detail in Supplemen-
tary Table S1, for 16 out of 50 folds the approach achieves
good quality models deviating<5Å and with a TM-score
>0.5 (32). Only 4 models present a TM-score <0.2, which is
considered a random solution. Many wrong models are also
detected by ProSa2003, being able to select the best model
for each target. In the Supplementary Material, we include
the models obtained with all other restraints (40 top cor-
related pairs of residues for each alphabet) and the results
for all targets selected covering the total set of different 50
folds of the benchmark. It is also noteworthy that models
produced with distance restraints obtained with alphabets

RA3 and RA1 were of similar quality to those obtained
with RA0. TM-scores of the structures modelled using the
entire alphabet, RA0, ranged mostly between 0.2 and 0.9,
while models with alphabets RA3 or RA1 were in the same
range. As expected, good quality models obtained with al-
phabet RA0 correspond to good quality models obtained
with RA3 or RA1. We conclude that the relationship be-
tween the quality of the models and the coverage of sMo-
tifs is almost independent of the alphabet (the Least Square
fitting lines in Supplementary Figure S1 are very similar for
models obtained using restraints derived by RA0 and RA3
alphabets).

Figure 4 compares the quality of the folds between mod-
els obtained using restraints derived with the RA0 alphabet
and with RA3. Interestingly, some models obtained with
distances derived with alphabet RA3 have better quality
than using RA0 (e.g. the comparison with the crystallo-
graphic structure of the model for 1QSA produces a TM
score of 0.59 with alphabet RA3, while this is 0.49 with
RA0). This is also observed in Figure 4, some models ob-
tained with alphabet RA3 have TM-score >0.5, while the
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Figure 4. Correlation between TM-scores of models obtained using restraints derived with alphabets RA0 (horizontal axis) and RA3 (vertical axis). The
R factor and parameters of a fitting line are shown in the upper left corner.

model obtained with alphabet RA0 have lower scores. The
fitting line shown in Figure 4 has slope close to 1 (approx-
imately 0.84), proving that the quality of the models, using
restrains obtained with either RA0 or RA3 alphabets is very
similar. Similar correlation is obtained in the comparison
of Z-scores calculated with Prosa2003 (see Supplementary
Figure S2). Nevertheless, although some models obtained
with restraints using alphabet RA3 have better quality than
using the whole alphabet (RA0), this is within the range of
variability expected by the method. The distribution of the
differences of TM scores (�TM) between models obtained
with different distance-restraints (i.e. using RA0 and RA3
alphabets) shows a standard deviation of 0.09 around an av-
erage of 0.02 (see Supplementary Figure S3). The distribu-
tion of TM scores of models obtained with restraints using
alphabets RA0 and RA3 are practically the same (both are
non-significantly different in a paired Student’s T test, with
P-value > 0.1, see Supplementary Figure S4). Furthermore,
there is no correlation between the quality of the models
and the number of effective sequences, neither for models
obtained with full (RA0) nor reduced (RA3) alphabets (see
Supplementary Figure S5).

One of the advantages of reducing the alphabet is that the
number of effective sequences is reduced, increasing the ap-
plicability to MSAs with <50 non-redundant sequences in a
highly compressed alphabet (RA3). Figure 5 compares the
number of effective sequences with the original number of
sequences obtained with MMseq2. The number of effective
sequences for each target studied is also available in Sup-
plementary Table S1. Furthermore, due to the compression
of the alphabet, the time of computation is also reduced,
although this is not significant in comparison with other
new and recent approaches (8). The calculation of the pseu-
doinverse of a matrix is a computationally expensive step of
DCA, whose dimensions depend on the length of the pro-
tein (L) and the number of symbols (q) in the MSA alpha-
bet. Reducing the alphabet from RA0 to RA1 speeds 32-
fold the computation time of our approach for a protein of
L ≈ 900, while the computation time is reduced ∼2500-fold
when reducing the alphabet from RA0 to RA3 (see Sup-

Figure 5. Number of effective sequences in the MSA using the entire al-
phabet RA0 (in black), or any of the compressed alphabets RA1 (blue),
RA2 (green) and RA3 (red) with respect to the original number of similar
sequences in the MSA. The least-square fitting lines help to compare the
reduction on the number of effective sequences produced by the compres-
sion of the alphabet. The yellow line shows the diagonal with exactly the
number of sequences in the MSA.

plementary Figure S6 and the comparison with CCMPred).
Details of the computational times to calculate DI by RADI
and CCMpred for the different folds used for modelling are
shown in Supplementary Table S1. A good example is the
calculation of DI for chain A of 1QSA, with a length of
>600 residues and >3000 sequences in the MSA (>1000
effective): CCMPred reduces the computational time from
3.1e4 s (with RADI using alphabet RA0) to 4.5e3 s, like al-
phabet RA1 (3.5e3 s), while alphabets RA2 and RA3 reduce
the time to 4 s. However, we note that CCMPred is prepared
to run with several GPU cores, thus surpassing the speed of
RADI.

We have compared the residue-residue pairs with top DI
obtained by RADI and by CCMPred of the modelled folds
of the benchmark (details of the results are provided in the
Supplementary Files). The maximum number of pairs se-
lected by CCMPred is 30, and 15 to 20 out of them are
equivalent to those selected by RADI with alphabet RA0
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(see Supplementary Figure S7). The number of equivalent
pairs drops to <10 with alphabets RA2 and RA3. The num-
ber of equivalent pairs detected by RADI and CCMPred
that correspond to real contacts in the structures is around
5 (using alphabets RA2 and RA3) and 15–20 (using alpha-
bets RA1 and RA0, respectively). However, we noticed that
RADI with alphabets RA0 and RA1 detected real contacts
different than those found with CCMPred. Figure 6 shows
in detail the intersection of different approaches with real
contacts (Supplementary Figure S8 shows the Venn dia-
gram of these intersections). The UpSet plot (33) shows
that there is a relevant number of false predictions by in-
dependent or combined methods that needs to be further
analyzed. However, the combination of RADI, using sev-
eral alphabets, and CCMpred produces a relevant number
of correct predictions and their difference is small (i.e. 105
with CCMpred and 102 with all alphabets of RADI). The
ratio of true-positive and coverage of the predictions for the
combination of approaches can be obtained from the Up-
Set plot (Figure 6) and the Venn diagram (Supplementary
Figure S8). Table 3 shows the average of true-positive and
coverage ratios obtained per protein and the ratios of the
accumulated predictions. Although the accuracy of CCM-
pred is higher than RADI, the coverage of RADI with most
alphabets is better than CCMPred.

These results are interesting because they proof the ad-
vantages of using RADI with different alphabets: (i) it helps
to predict other potential contacts different than CCMPred
(or RADI with the standard RA0 alphabet) and increase
the coverage, and (ii) it reinforces the prediction of contacts
of those pairs detected by CCMPred and RADI because
the largest percentage of these equivalent pairs correspond
to real contacts.

Sources of errors

Morcos et al. showed that a potential source of error was
caused by the homodimerization of a protein (9): when a
protein dimerizes with itself and two residues from differ-
ent chains of the dimer are in contact with each other, this
results in a high correlation (or high value of DI) which
does not correspond to an intrachain but an interchain in-
teraction. Constraining the distance between both residues
within the same chain results in a deformation of the struc-
ture of the model, and thereby gives rise to an erroneous
prediction.

To illustrate this issue we have modelled the structure of a
transcriptional regulator of the MerR family from Bacillus
cereus (code 3HH0 of PDB), a homo-tetramer, using the re-
straints obtained with alphabets RA0, RA1 and RA3, and
the sMotif of templates covering 100% of the sequence (see
details in Supplementary Material). This is an interesting
example because although the structure of a single chain is
a single domain, the region at the N-tail is structured as a
bundle of helices far from the C-tail, which is formed by a
single helix, and both are connected through a large helix.
Consequently, distance restraints between N-tail and C-tail
are unexpected and still necessary to properly orient both
regions. Figure 7 shows the tetramer quaternary structure
of 3HH0, the contact map of a single chain sequence and
the top 40 pairs with highest DI for various alphabets.

As shown in the contact map highlighted by circles, there
are two pairs of residues with high DI obtained with alpha-
bet RA3 that do not correspond to intrachain contacts but
to interchain ones. The correlation between residues 116–
118 and 73–75, also encircled in Figure 7, is similarly as-
sociated with interchain contacts. This is consistent with
the fact that in the quaternary structure of the protein, the
two amino acids of both pairs are facing each other but
from different protein chains (or monomers). The contact
is produced between the side-chains of the residues in dif-
ferent chains (the correspondence is shown in Figure 7). The
contacts predicted by DI are wrong if they are considered
as part of a pair of residues within a single chain, but are
correct when taking into account the complete quaternary
structure. Interestingly, the contacts between residues 116–
118 and 73–75 of two different chains are detected by CCM-
Pred and RADI (with all alphabets), while the interchain
contacts between positions 51–123 and 24–88 are only de-
tected with RADI using alphabet RA3. This example shows
how different alphabets help to detect correlations associ-
ated with structural contacts that were unnoticed by the
standard alphabet.

Thus, when modeling the conformation of 3HH0, the re-
straints between residues that only occur in the quaternary
structure may deform the model. In addition, it is not possi-
ble to define as constraints large distances between the last
helix at C-tail and the bundle of helices in the N-tail. There-
fore, the orientation of the C-tail helix is wrong, and this
cannot be detected neither by the restraints derived with DI
nor from the analysis of the energy of the final models with
Prosa2003. Figure 8 compares the model of a single chain
with the crystallographic structure and the RMSD profile of
the C� atoms along the sequence after forcing the superpo-
sition on the first 90 residues, highlighting the deviation at
the C-tail. The TM-score is 0.66 and the RMSD with TM-
align is 3.33 Å for the comparison between the model ob-
tained with restraints of RA0 and the crystal structure. In-
terestingly the Z-score with Prosa2003 is not good (about
-2.65), mostly due to the addition of the surface scores of
Prosa2003, which is already an indication of the potential
oligomerization of the protein.

DISCUSSION

Pairs of residues with top DI values can be used to pre-
dict the contact map of a protein structure, regardless of
the alphabet. In addition, pairs ranked at the top of MI
values give rise to similar number of successful contacts in-
dependent of the alphabet, but the time saved by reducing
the size of the alphabet is not as significant as that for DI
calculation. We must note two additional relevant conclu-
sions: First, the simplification of the system produced by
the reduction in the number of symbols is still represen-
tative of the physicochemical nature that characterizes the
protein structure. This holds for the calculation of both DI
and MI. Second, the number of sequences required to cal-
culate the MSA is reduced, as many sequences become re-
dundant after simplifying the alphabet from RA0 to RA3,
helping to apply the approach on proteins that appeared late
in evolution if enough sequences described by polar/non-
polar symbols are still available. We notice that the mini-
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Figure 6. UpSet plot of the intersection of residue-residue pairs of real and predicted contacts obtained with Intervene tool (33). The number of coincident
and non-coincident contacts, either real or predicted by one or more methods, are calculated using interval-squares of 9 × 9 positions of the two-dimensional
contact-map centered around each pair with a real or a predicted contact. The number of 1 × 1 squares predicted by one or more approaches, or obtained
by real contacts, are accumulated for all folds of the benchmark and the final number is normalized by 81 (i.e. the total number of squares around each
position in the 2D map). The UpSet plot shows only individual or combined sets with >14 contacts. Contacts predicted with RADI use the original
alphabet (RA0), or other alphabets (RA1, RA2 and RA3).

Table 3. Coverage and true positive ratio of predictions. The coverage and true-positive ratios of CCMPred and RADI with alphabets RA0, RA1, RA2 and
RA3 are calculated for the proteins of the benchmark used in Table 2 (a total of 50 different folds). The first two rows contain the average and standard
deviation (in parenthesis) of coverage and true-positive ratios. The last two rows contain the ratios of the total of accumulated predictions. Note: Details
per protein are in Supplementary Table S2

CCMPred RA0 RA1 RA2 RA3

Average TPR 0.91 (0.13) 0.84 (0.12) 0.80 (0.13) 0.67 (0.12) 0.61 (0.11)
COV 0.006 (0.0057) 0.0072 (0.0068) 0.0068 (0.0067) 0.0058 (0.0059) 0.0055 (0.0060)

Cumulative TPR 0.91 0.84 0.80 0.67 0.61
COV 0.003 0.004 0.004 0.003 0.003

mum number of sequences of the MSA in our study was 49.
Although certainly the reduction of sequences of the MSA
decreases the computational time, it is more important to
notice that it helps to widen the applicability because if the
variability of sequences allows for alignments with a small
number of sequences after the reduction, then we can ap-
ply the approach to many more proteins (i.e. those that ap-
peared late in evolution, which are important for human).
Also, correlated pairs after changing the alphabet will high-
light correlated physicochemical features. Finally, the con-
tact predictions with a reduced alphabet (RA3) are as valu-
able for the prediction of protein structure as with the en-
tire alphabet (RA0). We have shown that the quality of the
models obtained with restraints derived from amino acid
covariations is similar when using either the full list or any
of the reduced alphabets, if they are combined with a signif-
icant information of the local structures. Local conforma-
tions are modelled with short templates covering fragments

of the protein sequence. These fragments are identified as
regular super-secondary structure motifs (sMotifs) in the
classification of ArchDB14 (22). The coverage of the pro-
tein sequence by sMotifs is important, but not critical. We
achieve near native structures with the combination of long-
distance restraints obtained by the coupling analysis and
short/medium-distance restraints from local templates of
sMotifs, even when the coverage of these templates is <50%.
Still, the quality of each model is better when the cover-
age of the sequence by sMotifs is larger. Interestingly, the
compression of the amino acid sequence into a sequence of
polar/non-polar or polar/hydrophobic residues had been
applied since the early studies of the mechanisms of protein-
folding (34) and in Lattice-model examples (35). The ap-
proach followed by us operates in a similar manner, by mod-
eling mini-folded super-secondary structures and then ap-
plying spatial restraints derived from amino acid covaria-
tion. Finally, we hypothesize that recent advances achieved
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Figure 7. Residue-residue contact predictions for a single domain of the transcription regulator of the MerR family with code 3HH0 in the PDB is shown
in the left: real contacts and 40 top pairs with higher MI and DI values are shown as in legend of Figure 1, adding in yellow circles the top pairs detected
by CCMPred. The quaternary structure of the tetramer complex of 3HH0 is shown in the right: chain A in red, chain B in light blue, D in blue and C in
magenta at the rear. Side-chains of the pair of residues with high DI (encircled in the contact map) are shown in spheres (light blue in chain B, blue in chain
D and red in chain A) and the correspondence is identified by arrows and by the sequence positions of pairs labelled in the ribbon plot of the structure.
The group of contacts between residues 116–118 of chain B and 73–75 of chain D were found by RADI using all alphabets and by CCMPred.

Figure 8. (A) RMSD of C� atoms between the modelled structures of the transcription regulator of the MerR family with code 3HH0 in the PDB and
the crystal structure of a single chain. Color labels are as in Figure 4. (B) Superimposition of the modelled structures of 3HH0 obtained with different
alphabets (RA0 blue, RA1 orange and RA3 green) on the crystal structure (sand color).

in ab initio fold prediction (36,37) could also benefit from
the use of a simplified alphabet, not only on the speed of
some of the steps, but by reinforcing or adding new pre-
dictions with the use of multiple sequence alignments pro-
cessed by self-attention (38).

Note: The program and results for the se-
quences of the benchmark are available at https:
//github.com/structuralbioinformatics/RADI. For the
construction of structural models, it is necessary to
align the sequence of the query target with struc-
tural fragments (sMotifs). The script is available at
https://github.com/structuralbioinformatics/archdbmap.
For the construction of the models, we use the program
MODELLER. The scripts to combine the fragment-based
modeling and distance restraints from RADI are available
at https://github.com/structuralbioinformatics/raDIMod.
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