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Abstract

Streaming processing has given rise to new computation paradigms to provide effective and efficient
data stream processing. The most important features of these new paradigms are the exploitation of
parallelism, the capacity to adapt execution schedulers, reconfigure computational structures, adjust
the use of resources according to the characteristics of the input stream and produce incremental
results. The Dynamic Pipeline Paradigm (DPP) is a naturally functional approach to deal with
stream processing. This fact encourages us to use a purely functional programming language for
DPP. In this work, we tackle the problem of assessing the suitability of using (parallel) Haskell
to implement a Dynamic Pipeline Framework (DPF). The justification of this choice is twofold.
From a formal point of view, Haskell has solid theoretical foundations, providing the possibility of
manipulating computations as primary entities. From a practical perspective, it has a robust set
of tools for writing multithreading and parallel computations with optimal performance. As proof
of concept, we present an implementation of a dynamic pipeline to compute the weakly connected
components of a graph (WCC) in Haskell (a.k.a. DPWCC). The DPWCC behavior is empirically
evaluated and compared with a solution provided by a Haskell library. The evaluation is assessed
in three networks of different sizes and topology. Performance is measured in terms of the time of
the first result, continuous generation of results, total time, and consumed memory. The results
suggest that DPWCC, even naive, is competitive with the baseline solution available in a Haskell
library. DPWCC exhibits a higher continuous behavior and can produce the first result faster than
the baseline. Albeit initial, these results put in perspective the suitability of Haskell’s abstractions
for the implementation of DPF. Built on them, we will develop a general and parametric DPF in
the future.
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1. Introduction

Effective streaming processing of large amounts of data has been studied for several years [2, 3, 5] as a
key factor providing fast and incremental results in big data algorithmic problems. One of the most
explored techniques, regardless of the approach, is the exploitation of parallel techniques to take
advantage of the available computational power as much as possible. In that regard, the Dynamic
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Pipeline Paradigm (DPP) [14] has lately emerged as one of the models that exploit data streaming
processing using a dynamic pipeline parallelism approach [5]. This computational model has been
designed with a functional focus, where the main components of the paradigm are functional stages
or pipes which dynamically enlarge and shrink depending on incoming data.

One of the biggest challenges of implementing a Dynamic Pipeline Framework (DPF) is to find a
proper set of tools and programming language which can take advantage of both of its primary
aspects: i) fast parallel processing and ii) strong theoretical foundations that manage computations
as first-class citizens. Haskell Programming Language (Haskell) is a statically typed pure functional
language which has been designed and evolved from its birth in 1987, on strong theoretical foundations
where computations are primary entities, and at the same time has been providing a powerful set
of tools for writing multithreading and parallel programs with optimal performance [7, 8].

Problem Research and Objective: The main objective of this work is to explore the feasibility
of using a Functional Programming (FP) language to implement a DPF. In particular, we tackle
the problem of establishing the basis of an implementation of a DPF in Haskell, a pure functional
language. This is, our aim is to determine the particular features (i.e., versions and libraries) of
this language that will allow for an efficient implementation of the DPF. To be concrete, through
a particular and very relevant problem as the computation of the Weak Connected Components
(WCC) of a graph, we study the critical features required in Haskell for a DPF implementation.

Approach: In Section 3 we define a first approach for DPP Framework in Haskell. In section 4
we present an algorithm for enumerating WCC using DPP and its implementation using Haskell.
Finally, sections 5 and 6 report a set of experiments conducted to support our hypothesis, as well
as the analysis of the results obtained from those experiments.

Contributions: A proof of concept of the implementation of a DP for WCC using Haskell; the
results of the empirical study suggests that Haskell is a suitable language for implementing DPP. This
work also contributes to building the first abstraction approximation of a future framework/library
of this computational model in that language.

2. Dynamic Pipeline Paradigm

The Dynamic Pipeline Paradigm (DPP) [14] is a data-driven computational model based on a one-
dimensional and unidirectional chain of stages connected by means of channels synchronized by data
availability. This chain of stages is a computational structure called Dynamic Pipeline (DP). A DP
stretches and shrinks depending on the spawning and the lifetime of its stages, respectively. Modeling
an algorithmic solution as a DP corresponds to define a dynamic computational structure in terms of
four kinds of stages: Source (Sr), Generator (G), Sink (Sk) and Filter (F) stages. To be concrete, the
specific behaviour of each stage to solve a particular problem must be defined as well as the number
and the type of the I/O channels connecting them. Channels are unidirectional according to the flow
of the data. The Generator stage is in charge of spawning Filter stage instances. This particular
behavior of the Generator gives the elastic capacity to DPs. Filter stage instances are stateful
operators in the sense described in [12]. This is, Filter instances have a state. The deployment
of a DP consists in setting up the initial configuration depicted in Figure 1a. The activation of a
DP starts when a stream of data items arrives to the initial configuration of the DP. In particular,
when a stream data items arrives to the Source stage. During the execution, the Generator stage
spawns Filter stage instances according to incoming data and the Generator defined behavior. This
evolution is illustrated in Figure 1b. If the stream data is bounded, the computation finish when the
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lifetime of all the stages of the active DP have finished. Otherwise, if the stream data is unbounded,
the DP remains active and incremental results are output.

Sr G Sk

F

(a) Initial configuration of a Dynamic Pipeline. An
initial DP consists of three stages: Sr, G together its
filter parameter F, and Sk. These stages are connected
through its channels –represented by right arrows– as
shown in this figure.

Sr F F G

F

Sk

(b) Evolution of a DP. After creating some filter
instances (shadow Filter squares) of the filter
parameter (light Filter square) in the Generator,
the DP has stretched.

Figure 1: Dynamic Pipeline configuration

A Dynamic Pipeline Framework (DPF) is a software system that allows to implement and activate
their DPs. In particular, a DPF provides a way to specify dynamic pipelines and an interpreter to run
triggered DPs that ensures, among others, proper resource utilization, safeness, and failure recovery.

Figure 2: Dynamic Pipeline Framework Architecture

DPF is implemented in some Host Language
(HL)1 and comprises three main modules:
i) Domain-specific Language (DSL), which is
representing DP in an Embedded Domain-
specific Language (EDSL) to allow defining the
different components of a DP as well as their
connections, ii) Interpreter of DSL (IDL) which
has all the functions needed to set up a DP, and
iii) Runtime System (RS) to trigger and execute
a DP. Figure 2 depicts the DPF architecture.

As we can appreciate in Figure 2, a user with
DP and HL knowledge (called Developer here),
interacts with the DSL module. Through this
module, the user defines the behaviors and
connections of the four stages of a DP, i.e., the
channels between stages and their types, input
data, and the Filter template. Indeed, IDL
sets up the initial configuration as described
in Figure 1a and, interprets and translates
user definitions to specific HL constructs and
implementation. This means that the user
needs to write the algorithms that each stage
should perform, interacting with the available
channels declared for those stages. Considering
a particular DP, the RS module contains an
entry point function to allow the user to run it.
The execution of the DP takes place as depicted
in Figure 1b.

1A Host Language means the Programming Language that is used to implement DPF, i.e. Haskell, Go, Rust, etc.
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The DPF requirements are defined based on stream processing systems described by Röger and
Mayer [12]. A DP spans a network of stages, hence to guarantee a good performance, it is needed to
ensure low latency and high throughput when a DP is activated. To achieve this goal, it is necessary
a high level of parallelization. Besides, to increase the parallelization level, it is required a mechanism
that supports the deployment of the DP stateful stages in a multi-core server. In particular, this
mechanism must support the DP elasticity, i.e., the spawn/kill of filter instances. Additionally, the
realization of channels must be supported and in-order computation ensured.

3. A Dynamic Pipeline Framework: First Approach

In this section, we focus on the design and implementation of IDL and RS in parallel Haskell. IDL
and RS can be considered the core of the DPF since, according to the architecture shown in Figure 2,
these components of the DPF are in charge of setting up and executing a DP.

IDL implementation requires certain characteristics that chosen language and tools should provide to
reach the desired objective. Regarding this, and according to what has been described on section 2,
we detail the tools and mechanisms selected for each component of a DP2.

DP Monad. A functional programming language like Haskell, it is a proper host for representing
those dynamic computations, not only due to its FP nature, but also for it is strong type system which
ensure safeness on the data representation pipeline and the computational sequence. Therefore,
there is no need to select any other additional library rather than using Monads [13] to represent the
chain of computations and the dependency between those computations in the implementation of a
pipeline. In this sense, representing a DP as a Monad, Monad Laws [11] are ensured. In particular,
the Monad associativity law, i.e., ((m >>= f) >>= g = m >>= (λx.fx >>= g)), guarantees the
execution flows of Sr, G and Sk.

Filter / Stage. Abstractions like Recursive Schemes [9] has been deeply explored and used in Haskell.
They allow for the representation, in a formal and simple way, of dynamic functional structures like
anamorphisms and catamorphisms [9]. This abstraction is already provided in the base library in
fold and unfold combinators. In this first solution, we have chosen to implement these simplest
abstractions. However, we hypothesize if more Recursive Scheme combinators are implemented, the
proposed approach can take advantage of other properties and laws, e.g., the ones supported by
algebra and coalgebra structures [9].

Parallelization. One of the most important components of the implementation is the selection of a
concurrency library to support an intensive parallelization workload. Parallelization techniques and
tools have been intensively studied and implemented in Haskell [8]. Indeed, it is well known that
green or light threads and spark allow for spawning thousands to millions of parallel computations.
These parallel computations do not penalize performance when compare with Operative System
(OS) level threading [7]. A straightforward assumption to achieve this could be to use monad-par

library [26, 8]. Nevertheless, in this experimental work, we have discarded the use of sparks [32]
because we can achieve the level of required parallelism spawning green threads only. This is
caused by the nature of DPP, where pipeline parallelism and not data parallelism is a structural
processing mechanism. The next obvious choice is to use forkIO :: IO () -> IO ThreadId from
base library [24]. However, that would imply handling all the threads lifecycle, terminations, and

2All the Source Code of this work can be found in this Github Repository
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errors programmatically without major combinators or abstractions to deal with them. Therefore,
we choose async library [15] which enables to spawn asynchronous computations [7] on Haskell and
at the same time, it provides useful combinators to managing thread terminations and errors.

Channels. We have several techniques to our disposal to communicate between threads or sparks
in Haskell like MVar or concurrent safe mechanisms like Software Transactional Memory (STM) [4].
Moreover, we have at our disposal Channels abstractions based on both mentioned communication
techniques. In that sense, for conducting the communication between dynamic stages and data
flowing in a DP, we have selected unagi-chan library [37] which provides the following advantages
to our solution: Firstly, MVar channel without using STM. This allows avoiding internal locking for
concurrent access. In this case, we can use this advantage because in a DP, one specific stage which
is running in a separated thread, can only access to its I/O channels for reading/writing accordingly
and those operations are not concurrently shared by other threads (stages) for the same channels.
Second, non-blocking channels. unagi-chan library contains blocking and non-blocking channels for
reading. This aspect is key to gain speed up on the implementation. Third, the library is optimized
for x86 architectures with use of low-level fetch-and-add instructions. Finally, unagi-chan is 100x
faster on Benchmarking compare with STM and default base Chan implementations.

1 runParallelDP :: Handle -> IO ()

2 runParallelDP h = source h >>= generator >>= sink

3

4 source :: Handle -> IO (DP.Stream MySource MySink)

5 source h = fromFile h >>= (|>> parseSource)

6

7 sink :: MySink -> IO ()

8 sink = DP.mapM (R.putStrLn . show)

9

10 fromFile :: Handle -> IO (DP.Stream ByteString MySource)

11 fromFile h = DP.unfoldM (B.hGetLine h) (R.hIsEOF h)

Listing 3.1: An overview of a generic DP source code in Haskell

As we said in section 2, to implement a DPF the development tool must provide a high level of
parallelization and a mechanism that supports the deployment of DPs in multi-core servers allowing
the elasticity and channels. As explained above, Haskell meets these requirements. In listing 3.1 we
can see a source code corresponding to the implementation of a generic DP in Haskell.

4. Computing (Weak) Connected Components

Let us consider the problem of computing the (weak) connected components of a graph G using
DPP. A connected component of a graph is a subgraph in which any two vertices are connected
by paths. Thus, finding connected components of a directed graph implies obtaining the minimal
partition of the set of nodes induced by the relationship connected, i.e., there is a path between each
pair of nodes. The input of the Dynamic Pipeline for computing the WCC of a graph, DPWCC, is
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a sequence of edges ending with eof3. The connected components are output as soon as they are
computed, i.e., they are produced incrementally.

4.1. DPWCC Definition

DPWCC is defined in terms of the behavior of its four kinds stages: Source (SrWCC), Generator (GWCC),
Sink (SkWCC), and Filter(FWCC) stages. Additionally, the channels connecting these stages must be
defined. In DPWCC, stages are connected linearly and unidirectionally through the channels ICE and
ICset(V). Channel ICE carries edges while channel ICset(V) conveys sets of connected vertices. Both
channels end by the eof mark. The initial configuration of DPWCC is SrWCC ⇒ GWCC → SkWCC,
where ⇒ represents channels ICE and ICset(V) while → represents the channel ICset(V).

Once activated the initial DPWCC, the stream of edges is fed into SrWCC and SkWCC produces the
resulting connected components. GWCC has as parameter the template of the stage FWCC. When an
edge (v, w) arrives to GWCC, it spawns a new instance of FWCC before GWCC. For example, the first
time a filter instance is spawned, the DPWCC evolves to this one: SrWCC ⇒ FWCC ⇒ GWCC → SkWCC.
The state of this new filter instance is initialized with the vertices {v, w}. When eof arrives to GWCC,
it connects previous filter instance to SkWCC through ICset(V); then, GWCC dies and the DPWCC evolves
as follows: SrWCC ⇒ FWCC ⇒ · · ·FWCC ⇒ SkWCC. The behavior of FWCC is given by a sequence
of two actors (scripts). In what follows we denote these actors by actor1 and actor2, respectively.
The script actor1 keeps a set of connected vertices (CV ) in the state of the FWCC instance. When an
edge e arrives, if an endpoint of e is present in the state, then the other endpoint of e added to CV .
Edges without incident endpoints are passed to the next stage. When eof arrives at channel ICE, it
is passed to the next stage and the script actor2 starts its execution. If script actor2 receives a set of
connected vertices CV in ICset(V), it determines if the intersection between CV and the nodes in its
state is not empty. If so, it adds the nodes in CV to its state. Otherwise, the CV is passed to the
next stage. Whenever eof is received, actor2 passes–through ICset(V)– the set of vertices in its state
and the eof mark to the next stage; then, it dies. The behavior of SrWCC corresponds to the identity
transformation over the data stream of edges. As edges arrive, they are passed through ICE to the
next stage. When receiving eof on ICE, this mark is put on both channels. Then, SrWCC dies.

4.2. DPWCC Implementation

As we said before, the DPWCC implementation has been made as a proof of concept to understand
and explore the limitations and challenges that we could find in the development of a future DPF
in Haskell. In Section 3 we emphasize that the focus of DPF in Haskell is on the IDL component.
Hence, the development of the DPWCC is as general as possible using most of the constructs and
abstractions require by the IDL.

As we have seen on section 3 in listing 3.1, all the Stages Source (SrWCC), Generator (GWCC) and
Sink (SkWCC) are represented as monadic computations composed in runParallelDP function. As
we can appreciate, runParallelDP is running in the context of a Handle descriptor which is the
stream input file that is feeding SrWCC. That input is injected incrementally in ICE as we can see
in this anamorphism unfoldM with the help of the lazy ByteString reader. As long as a new edge
(v, w) is received by generator from ICE , a new Filter(FWCC) (monadic computation) is interposed
in the execution chain. This can be seen with the use of foldrS here. Channel connection and
disconnection are implicit by function parameters and recursion since the new FWCC is receiving as
actual parameters, ICE, and ICset(V) belonging to GWCC. In the next execution loop, GWCC is pulling

3Note that there are neither isolated vertices nor loops in the source graph G.
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edges from ICE provided by previously FWCC created instance. It is important to remark that all
these monadic computations are spawned in parallel through the use of async combinator [15]. That
means different threads continue reading and writing from channels without blocking progress if data
is available. Actors (scripts) are described as computation as well as the rest of the stages but, in this
particular case, they are not spawned in different threads because they must run sequentially in the
same FWCC thread according to the definition. Script actor1 and actor2 are represented by functions
actor1 and actor2 respectively. actor1 is reading all the edges (v, w) pulled from ICE and keeping in
the filter state a list with all the vertices that are pairwise connected (see repository for more details),
If the edge is not connecting to any vertex of the list it passes through the next computational stage
as can be seen here. In all channels eof is represented using Maybe type, meaning that when someone
pushes a Nothing value to the channel the next reader can detect eof. This is why we are folding
the channel with maybe combinator as it can be appreciated here. Once actor1 finishes actor2 starts
its computation as it is described in these lines. In this case actor2 is reading from ICset(V) channel
that could contain the previous calculated ConnectedComp. Using union and intersect combinators
allows to merge the calculated list of vertices that are connected with previously calculated connected
components by other FWCC. In this implementation ConnectedComp is a newtype over IntSet to
speed up computation for intersection and union [19]. Moreover, doActor which is an inner function
of actor2, is pushing to ICset(V) channel all ConnectedComp as they are treated. GWCC computation
passes to SkWCC computation the reference to ICset(V) channel which is going to pull ConnectedComp
as long as it is available, and printing that information in the standard output incrementally. Once
SkWCC receives a Nothing (eof) value from ICset(V) the whole computation ends.

5. Empirical Evaluation

The empirical study aims at evaluating the performance of DPWCC when implemented in Haskell.
Our goal is to answer the following research questions:

RQ1) Does DPWCC in Haskell support the dynamic parallelization level that DPWCC requires?
RQ2) Is DPWCC in Haskell competitive compared with default implementations on base libraries for
the same problem? RQ3) Does DPWCC in Haskell handle memory efficiently?

We have conducted different kinds of experiments to test our assumptions and verify the correctness
of the implementation. First, we have performed an Implementation Analysis in which we have
selected some graphs from Stanford Network Data Set Collection (SNAP) [34] and analyze how
the implementation behaves under real-world graphs if it timeouts or not and if it is producing
correct results in terms of the amount of WCC that we know beforehand. We have also tested the
implementation doing a Benchmark Analysis where we focus on two different types of benchmarks.
On the one hand, using criterion library [20], we have evaluated a benchmark between our solution
and WCC algorithm implemented in containers Haskell library [19] using Data.Graph. On the
other hand, we have compared if the results are being generated incrementally in both cases and
how that is done during the pipeline execution time. This last analysis has been conducted using
diefpy tool [1, 21]. Finally, we have executed a Performance Analysis in which we have to gather
profiling data from Glasgow Haskell Compiler (GHC) for one of the real-world graphs, to measure
how the program performs regarding multithreading and memory allocation.

5.1. Running Architecture

All the experiments have been executed in a x86 64 bits architecture with a 6-Core Intel Core i7
processor of 2, 2 GHz which can emulate up to 12 virtual cores. This processor has hyper-threading
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enable. Regarding memory, the machine has 32GB DDR4 of RAM, 256 KB of L2 cache memory,
and 9 MB of L3 cache.

5.2. Haskell Setup

Regarding specific libraries and compilations flags used on Haskell, we have used GHC version 8.10.4.
We have also used the following set of libraries: bytestring 0.10.12.0 [17], containers 0.6.2.1

[19], relude 1.0.0.1 [31] and unagi-chan 0.4.1.3 [37]. The use of relude library is because we
disabled Prelude from the project with the language extension NoImplicitPrelude [23]. Regarding
compilation flags (GHC options) we have compiled our program with -threaded, -O3, -rtsopts,
-with-rtsopts=-N. Since we have used stack version 2.5.1 [33] as a building tool on top of GHC
the compilation command is stack build4.

5.3. DataSets

For all the experiments, we have used the following networks taken from SNAP [34]. In this particular
experiment setup, we have selected the following specific data sets that can be found here [28, 27, 29]

Network Nodes Edges Diameter #WCC #Nodes Largest WCC
Enron Emails 36692 183831 11 1065 33696 (0.918)
Astro Physics
Collaboration Net

18772 198110 14 290 17903 (0.954)

Google Web Graph 875713 5105039 21 2746 855802 (0.977)

Table 1: DataSet of Graphs Selected

The criteria for selecting the networks have been followed the idea or testing the solution in more
complex graphs, in which all of them are undirected but with different sizes concerning its number
of nodes as we can see in Table 1.

5.4. Experiments Definition

E1: Implementation Analysis. In this experiment, we measure GHC statistics running time enabling
+RTS -s flags. The metrics that we measure are MUT Time which is the amount of time in seconds
GHC is running computations and GC Time which is the number of seconds that GHC is running
garbage collector. Total execution time is the sum of both in seconds. At the same time, we are going
to check the correctness of the output counting the number of WCC generated by the algorithm
against the already known topology of it in subsection 5.3. The experiment’s primary goal is to help
answer the research question [RQ2].

E2: Benchmark Analysis. In this experiment, we conduct two benchmark analysis over execution
time comparing DP-Haskell with Haskell containers default implementation. In the first benchmark
analysis, we use criterion [20] tool in Haskell which runs over four iterations of each of the
algorithms to get a mean execution time in seconds and compare the results in a plot. In the
second benchmark, we use Diefficency Metrics (Dm) Tool diefpy [21] in order to measure with the
ability of DPP model to generate results incrementally [1]. This is one of the strongest feature of

4For more information about package.yaml or cabal file please check https://github.com/jproyo/upc-miri-
tfm/tree/main/connected-comp
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DPP Paradigm since it allows process and generate results without no need of waiting for processing
until the last element of the data source. This kind of aspect is essential not only for big data inputs
where perhaps the requirements allow for processing until some point of the time having partial
results but at the same time is important to process unbounded streams. The experiment’s primary
goal is to help answer the research question [RQ2] as well.

E3: Performance Analysis. In this experiment, we measure internal parallelism in GHC and memory
usage during the execution of one of the example networks. The motivation of this is to verify
empirically how DP-Haskell is handling parallelization and memory usage. This experiment is
conducted using two tools, ThreadScope [36] for conducting multithreading analysis and eventlog2html
[22] to conduct memory usage analysis. Regarding multithreading analysis the metrics that we
measure are the distribution of threads among processors over execution time which is how many
processors are executing running threads over the whole execution; and the mean number of running
threads per time slot which is calculated by zooming in 8 time slots and taking the mean number
of threads per processor to see if it is equally distributed among them. In regards to memory
management, the metric that we measure is the amount of memory in MB consumed per data type
during the whole execution time. The experiment helps to answer the research questions [RQ1,RQ3].

6. Discussion of Observed Results

6.1. Experiment: E1

The following represents the execution for running these graphs on our DPP implementation.

Network Exec Param MUT Time GC Time Total Time
Enron Emails +RTS -N4 -s 2.797s 0.942s 3.746s
Astro Physics Coll Net +RTS -N4 -s 2.607s 1.392s 4.014s
Google Web Graph +RTS -N8 -s 137.127s 218.913s 356.058s

Table 2: Execution times

It is important to point out that since the first two networks are smaller in the number of edges
compared with web-Google, executing those with 8 cores as the -N parameters indicates, does not
affect the final speed-up since GHC is not distributing threads on extra cores because it handles the
load with 4 cores only.

As we can see in Table 2, we are obtaining remarkable execution times for the first two graphs and it
seems not to be the case for web-Google. Doing a deeper analysis on the topology of this last graph,
we can see according to Table 1 that the number of Nodes in the largest WCC is the highest one.
This means that there is a WCC which contains 97.7% of the nodes. Moreover, we can confirm that
if we analyze even deeper how is the structure of that WCC with the output of the algorithm, we can
notice that the largest WCC is the last one on being processed. Having that into consideration we
can state that due to the nature of our algorithm which needs to wait for collecting all the vertices
in the actor2 filter stage it penalizes our execution time for that particular case. A more elaborated
technique for implementing the actors is required to speed up execution.

Regarding the correctness of the output, we have verified with the outputs that the number of
connected components is the same as the metrics already gathered in Table 1.
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6.2. Experiment: E2

Criterion Benchmark. In Figure 3, orange bars report the time taken by Data.Graph in Haskell
containers library [19]. Blue light bars represent the time taken by DP-Haskell.

Figure 3: Benchmark 1 - DP in Haskell vs. Data.Graph Haskell

Figure 3 shows that DP-Haskell solution is 1.3 faster compare with Haskell containers library.
Despite this, if we zoom in Figure 3, it can be observed that DP-Haskell solution is slower compared
with Haskell containers; the reasons behind this have been explained in subsection 6.1.

Regarding mean execution times for each implementation on each case measure by criterion library
[20], we can display the following results:

Network DP-Haskell Haskell containers Speed-up
Enron Emails 4.68s 6.46s 1.38
Astro Physics Coll Net 4.98s 6.95s 1.39
Google Web Graph 386s 106s -3.64

Table 3: Mean Execution times

These results allow for answering Question [Q2]. We already had a partial answer with the previous
experiment E1 about [Q2] (section 5) where we have seen that the graph topology is affecting
the performance and the parallelization, penalizing DP-Haskell for this particular case. In this
benchmark, the solution against a non-parallel containers Data.Graph confirms the hypothesis.

Diefficency Metrics. Some considerations are needed before starting to analyze the data gathered
with Dm tool. Firstly, the tool is plotting the results according to the traces generated by the
implementation, both DP-Haskell and Haskell containers. By the nature of DPP model, we can
gather or register that timestamps as long as the model is generating results. In the case of Haskell
containers, this is not possible since it calculates WCC at once. This is not an issue and we still
can check at what point in time all WCC in Haskell containers are generated. In those cases, we
are going to see a straight vertical line.

It is important to remark that we needed to scale the timestamps because we have taken the time
in nanoseconds. After all, the incremental generation between one WCC and the other is very
small but significant enough to be taken into consideration. Thus, if we left the time scale in
integer milliseconds, microseconds, or nanoseconds integer part it cannot be appreciated. In case
of escalation, we are discounting the nanosecond integer of the first generated results resulting in a
time scale that starts close to 0. This does not mean that the first result is generated at 0 time, but
we are discarding the previous time to focus on how the results are incrementally generated.

Having said that, we can see the results of Dm which are presented in two types of plots. The
first one is regular line graphs in where the x axis shows the time escalated when the result was
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generated and the y axis is showing the component number that was generated at that time. The
second type of plot is a radar plot in which shows how the solution is behaving on the dimensions
of Time for the first tuple (TFFT), Execution Time (ET), Throughput (T), Completeness (Comp)
and Diefficiency first t time units (dief@t) and how are the tension between them; all these metrics
are higher is better. All the details about these metrics are explained here [1].

Figure 4: email-Enron Dm Figure 5: ca-AstroPh Dm Figure 6: web-Google Dm

Based on the results shown in all the figures above, all the solutions in DP-Haskell are being generated
incrementally, but there is some difference that we would like to remark. In the case of email-Enron
and ca-AstroPh graphs as we can see in Figure 4 and Figure 5, there seems to be a more incremental
generation of results. This is behavior is measured with the values of Diefficiency first t time units
(dief@t). ca-AstroPh as it can be seen in Figure 5, is even more incremental showing a clear
separation between some results and others. The web-Google network which is shown in Figure 6, is
a little more linear and that is because all the results are being generated with very little difference
in time between them. This is due to the fact of the explained reasons in subsection 6.1. Having
the biggest WCC at the end of web-Google DPP algorithm it is retaining results until the biggest
WCC can be solved, which takes longer.

Figure 7: email-Enron Dm Figure 8: ca-AstroPh Dm Figure 9: web-Google Dm

As we can appreciate in the above radar plots our previous analysis can be confirmed. We can see
for example that the Throughput of web-Google in Figure 9, in the case of DP-Haskell is worse than
Haskell containers, which is not happening for the others.

In conclusion, we can say that regarding [Q2] (section 5) although DP-Haskell is faster than the
traditional approach, the speed-up dimension execution factor is not always the most interest analysis
that we can have, because as we have seen even when in the case of web-Google Graph DP-Haskell
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is slower at execution, it is at least generating incremental results without the need to wait for the
rest of the computations.

6.3. Experiment: E3

For this type of analysis, our experiment focuses on email-Enron network [28] only because profiling
data generated by GHC is big enough to conduct the analysis and on the other, and enabling profiling
penalize execution time.

Multithreading. For analyzing parallelization and multithreading we have used ThreadScope [36]
which allows us to see how the parallelization is taking place on GHC at a fine grained level and
how the threads are distributed throughout the different cores requested with the -N execution
ghc-option flag.

Figure 10: Threadscope Image of General Execution

In Figure 10, we can see that the parallelization is being distributed evenly among the 4 Cores that
we have set for this execution. The distribution of the load is more intensive at the end of the
execution, where actor2 filter stage of the algorithm is taking place and different filters are reaching
execution of that second actor.

Figure 11: Threadscope Image of Zoomed Fraction

Another important aspect shown in Figure 10, is
that this work is not so significant for GHC and
the threads and distribution of the work keeps
between 1 or 2 cores during the execution time
of the actor1. However, the usages increase on
the second actor as pointed out before. In this
regard, we can answer research questions [Q1]
and [Q3] (section 5), verifying that Haskell not
only supports the required parallelization level
but is evenly distributed across the program
execution too.

Finally, it can also be appreciated that there
is no sequential execution on any part of the
program because the 4 cores have CPU activity
during the whole execution time. This is
because as long the program start, and because
of the nature of the DPP model, it is spawning
the Source stage in a separated thread. This is a clear advantage for the model and the processing
of the data since the program does not need to wait to do some sequential processing like reading a
file, before start computing the rest of the stages.
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Figure 11 zooms in on ThreadScope output in a particular moment, approximately in the middle
of the execution. We can appreciate how many threads are being spawned and by the tool and
if they are evenly distributed among cores. The numbers inside green bars represent the number
of threads that are being executed on that particular core (horizontal line) at that execution slot.
Thus, the number of threads varies among slot execution times because as it is already known, GHC
implements Preemptive Scheduling [6].

Having said that, it can be appreciated in Figure 11 our first assumption that the load is evenly
distributed because the mean number of executing threads per core is 571.

Memory allocation. Another important aspect in our case is how the memory is being managed
to avoid memory leaks or other non-desired behavior that increases memory allocation during the
execution time. This is even more important in the particular implementation of WCC using DPP
model because it requires to maintain the set of connected components in memory throughout the
execution of the program or at least until we can output the calculated WCC if we reach to the last
Filter and we know that this WCC cannot be enlarged anymore.

In order to verify this, we measure memory allocation with eventlog2html [22] which converts
generated profiling memory eventlog files into graphical HTML representation.

Figure 12: Memory Allocation

As we can see in Figure 12, DP-Haskell does an
efficient work on allocating memory since we are
not using more than 57 MB of memory during
the whole execution of the program.

On the other hand, if we analyze how the
memory is allocated during the execution of the
program, it can also be appreciated that most
of the memory is allocated at the beginning of
the program and steadily decrease over time
with a small peak at the end that does not
overpass even half of the initial peak of 57
MB. The explanation for this behavior is quite
straightforward because at the beginning we
are reading from the file and transforming a
ByteString buffer to (Int, Int) edges. This
is seen in the image in which the dark blue that
is on top of the area is ByteString allocation.
Light blue is allocation of Maybe a type which
is the type that is returned by the Channels because it can contain a value or not. Data value
Nothing is indicating end of the Channel.

Another important aspect is the green area which represents IntSet allocation, which in the case
of our program is the data structure that we use to gather the set of vertices that represents a
WCC. This means that the amount of memory used for gathering the WCC itself is minimum and
it is decreasing over time, which is another empirical indication that we are incrementally releasing
results to the user. It can be seen as well that as long the green area reduces the lighter blue
(MUT_ARR_PTRS_CLEAN [25]) increases at the same time indicating that the computations for the
output (releasing results) is taking place.

Finally, according to what we have stated above, we can answer the question [Q3] (section 5) showing
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that not only memory management was efficient, but at the same time, the memory was not leaking
or increasing across the running execution program.

7. Related Work

Several implementations for streaming processing models [18, 30, 35] in Haskell have arisen over
the years. All these libraries have their abstractions and can do data streaming processing in a
fast way with different performance according to recent benchmarks [16]. Although they seem to
be suitable for implementing a DP, it is required to know pipeline stages disposition beforehand,
and it is hard to achieve a succinct and expressive implementation of a DPF. Moreover, since they
have been conceived as a data parallel streaming model [12] by design instead of pipeline parallel
streaming, implementing DP using these tools becomes counter-intuitive and hard to achieve.

Another kind of streaming implementation in Haskell is described in [7]. In that work, the author
describes how to encode pipeline parallelism with Par Monad. Although this could have been a
suitable alternative for implementing DP, the parallelization level used by Par Monad is sparks [32].
As we have explained in section section 3, we do not require to reach that level of parallelization in
our current model.

In regards to other DP language implementations, a significant contribution on [10] has been done,
where a DP implementation in Go Programming Language (Go) for counting triangles of graphs is
compared against MapReduce. Those experiment results have shown how DP in Go improves the
performance in terms of execution time and memory depending on the graph topology. It would
be interesting and a matter of future work, to compare different language implementations of DPs,
taking into consideration those promising results and the ones presented in this article.

8. Conclusions and Ongoing Work

The empirical evaluation of the DP-Haskell implementation to compute weakly connected components
of a graph, evidence suitability, and robustness to provide a Dynamic Pipeline Framework in that
language. Measuring using dief@t metrics in section 6.2 reveals some advantageous capability of
DPWCC implementation to deliver incremental results compared with default containers library
implementation. Regarding the main aspects where DPP is strong, i.e. pipeline parallelism and
time processing, the DPWCC performance shows that Haskell can deal with the requirements for
the WCC problem without penalizing neither execution time nor memory allocation. In particular,
the DPWCC implementation outperforms in those cases where the topology of the graph is more
sparse and where the number of vertices in the largest WCC is not big enough. We think this
work has gathered enough evidence to show that the implementation of Dynamic Pipeline in Haskell
Programming Language is feasible. This fact opens a wide range of algorithms to be explored using
the Dynamic Pipeline Paradigm, supported by purely functional programming language. As we
mentioned in section section 3, we are addressing the design and the definition of the DSL in Haskell,
taking into account the knowledge obtained in this work. The complete DPF’s implementation will
contain the Type-Level DSL allowing the user to define algorithms in terms of DP and the Interpreter
of DSL (IDL) that will be mainly based on what has been presented here.
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