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Abstract: The phenomena related to charge trapping are among the most relevant open issues that
affect the long-term stability of perovskite-based devices. According to this, the objective of this paper
is to report experimental results in which a charge control strategy is used for the first time in a solar
cell structure that has a high trap density perovskite absorber. This device has also noticeable J-V
hysteresis, produced by non-capacitive effects. The control strategy proposed, based on sigma-delta
modulation, applies to the device an appropriate sequence of voltage waveforms determined after
periodical current measurements made at a constant voltage. The experimental results obtained and
the fittings made with a phenomenological model indicate that this approach allows controlling
several charge-related effects. As a consequence, the J-V characteristic of the device is successfully
shifted and stabilized to predetermined positions.

Keywords: perovskites; sigma-delta; charge control

1. Introduction

In recent years, the use of perovskite materials in photovoltaic, optical and supercon-
ductor applications has experienced considerable growing interest. For instance, perovskite
solar cells combine good performance with a relatively cheap manufacturing process. To
obtain high efficiency and stability in single-junction perovskite solar cells, it is necessary
to fabricate efficient charge transport and low charge recombination layers that improve
the diffusion length of the charge carriers. In this way, very high power conversion efficien-
cies around 21% have been obtained [1,2], reaching recently a certified 25.2% for a single
perovskite cell [3] and a 28% for a Perovskite-Silicon tandem cell [4].

However, serious reliability problems slow down the rise of this technology, being the
biggest the performance degradation of the perovskite material [5–10]. There is a broad
consensus in identifying environmental conditions, illumination, heat and electrical stress
as factors that produce or exacerbate this degradation. Furthermore, several recent works
indicate that the main cause of degradation in perovskite solar cells is the existence of
charge trapping due to defects and vacancies in the material [10–14]. It can be said that
trapped charge is among the most relevant open issues that affect the long-term stability of
perovskite-based devices.

Trapped charge due to ionic vacancies is able to move through the perovskite layer
and can also affect the interfaces with the electron and hole transport layers. Depending
on the species involved, ionic vacancies can exhibit dynamics with different activation
energies and time constants [15,16]. Additionally, electrostatic charges generated by light
irradiation are trapped at grain boundaries producing irreversible degradation [12].
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Most works try to improve perovskite stability by varying the fabrication process or
the composition of the materials. For instance, a very comprehensive review of the progress
made in the recent years to improve the stability and the photovoltaic performance of
perovskite solar cells, based on improving materials and fabrication processes, can be
found in [17].

However, a radical new approach is proposed here for the first time. It consists in
using a sigma–delta loop to control the charge trapped in the perovskite layer, allowing
one to place the J-V of the device at a previously desired and stable position. This strategy,
inspired in one used to successfully controlling dielectric charge trapping effects in MOS
capacitors in [18], may open a new way to mitigate perovskite degradation. Accordingly, in
this work, a charge trapping control is applied to perovskite solar cell structures that suffer
noticeable degradation effects. Specifically, this work investigates the feasibility of using a
charge control to stabilize the J-V of the device even for this high ion density perovskite
material.

To the best knowledge of the authors, this is the first time that the long-term drifts of
the J-V characteristic of a solar cell have been controlled. The proposed control strategy
can cope with the fast hysteretic transients due to non-capacitive effects in the device.
The control capability depends on the J-V displacements and drifts generated by the bias
voltages, which is a phenomenon that typically appears in perovskite or organic solar
cells. By applying sigma–delta-like intelligent bias switching, the J-V characteristic is
controlled around the desired point. The usual approach to stabilize the J-V characteristic
is to improve the fabrication process of the device. In this regard, the proposed control is
a new mitigation tool, not previously explored in the literature. Let us remark that other
more application-specific objectives, such as mitigating the degradation of the relevant
photovoltaic parameters, will be the objective of future work.

The paper is organized as follows: Section 2 describes the fabrication process of the
solar cells, their structure, their J-V characteristics. These characteristics are fitted with an
analytical model to determine the more relevant physical mechanisms present under both
dark and illumination conditions. Section 2 also introduces the control method used in this
work to control the displacement of the J-V curves. Finally, experimental results in which
the control is applied in different conditions are presented and discussed in Section 3.

2. Materials and Methods
2.1. Device Fabrication and Characterization

The perovskite solar cells used in this work have been fabricated in the facilities of
the Institute of Photonic Science, ICFO. The fabrication process was as follows: patterned
ITO substrates were first covered with a 2.5% wt in methanol TiO2 nanoparticle precur-
sor (20% wt in water). As in [19,20], the precursor was previously mixed with 2.5% wt
of Ti diisopropoxide bis(acetylacetonate). Then, the perovskite was deposited as in [21],
without adding the triiodide solution. Figure 1 shows a Field Emission Scanning Elec-
tron Microscopy (FESEM) image of the surface of the perovskite layer, obtained after its
crystallization on top of the TiO2 layer.

In the next step, a 72.3 mg/mL 2,2′,7,7′-Tetrakis [N, N-di(4-methoxyphenyl) amino]-
9,9′-spirobifluorene (Spiro-OMeTAD) solution in chlorobenzene with 17 µL of a 520 mg/mL
bis (trifluoromethylsulfonyl) amine Li salt solution in acetonitrile and 29 µL of
4-tertbutylpyridine was spin-coated on top of the perovskite.

Finally, thermally evaporated gold was used as top electrode using a mask on the
device to form an active area of 0.06 cm2. The resulting stack of layers that make up the
device is, from bottom to top: ITO (140 nm), TiO2 (40 nm), perovskite (500 nm), Spiro-
OMeTAD (200 nm) and Au (60 nm).
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Figure 1. Field Emission Scanning Electron Microscopy (FESEM) image of the surface of the per-
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material and the grain sizes and boundaries can be distinguished clearly. 

Moreover, the hysteresis observed in Figure 2 can be explained by accumulation of 

mobile ions near the electrodes, which alters the local charge status, then the J-V curves. 

For this shape of curves, trap density values in the perovskite absorber around 3.6 1010 

cm−2 have been obtained in [26]. Besides, non-capacitive effects such as chemical interac-

tions at contacts and corrosion can also produce noticeable J-V distortion even at fast scan 

rates [27]. Additionally, photo-generated carriers interplay with ionic species at contacts 

and enhance hysteresis-like responses under illumination. 

 

Figure 2. J-V characteristics of a device in dark (a) and under 100 mW/cm2 illumination (b). The 

voltage scan rate used in these measurements is 440 mV/s. Due to limitations of the setup, the so-

called dark results reported in this work have not been obtained in perfect darkness and, there-

fore, a very small photogenerated current is always present. 
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Figure 1. Field Emission Scanning Electron Microscopy (FESEM) image of the surface of the per-
ovskite layer, obtained after its crystallization on top of the TiO2 layer. The morphology of the
material and the grain sizes and boundaries can be distinguished clearly.

Figure 2 shows the J-V curves measured in a device when a voltage scan rate of
440 mV/s is applied. The hysteresis-like distortion observed between the forward and
reverse scans is typical of this type of devices [22–25], and it is basically due to ion diffusion
through high density concentration of trap states at grain boundaries of the perovskite
layer, which act as recombination centers.
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Figure 2. J-V characteristics of a device in dark (a) and under 100 mW/cm2 illumination (b). The
voltage scan rate used in these measurements is 440 mV/s. Due to limitations of the setup, the
so-called dark results reported in this work have not been obtained in perfect darkness and, therefore,
a very small photogenerated current is always present.

Moreover, the hysteresis observed in Figure 2 can be explained by accumulation of
mobile ions near the electrodes, which alters the local charge status, then the J-V curves. For
this shape of curves, trap density values in the perovskite absorber around 3.6 1010 cm−2

have been obtained in [26]. Besides, non-capacitive effects such as chemical interactions at
contacts and corrosion can also produce noticeable J-V distortion even at fast scan rates [27].
Additionally, photo-generated carriers interplay with ionic species at contacts and enhance
hysteresis-like responses under illumination.
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In order to study the relevance of these effects in our case, let us use the general model
for current in perovskite devices taken from [28]. This model includes terms accounting for
hysteresis contributions, together with the usual solar cell operation, as follows:

J = Jd + Jcap + Jnon_cap (1)

where Jd is the current for a diode working as a solar cell:

Jd = J0

(
e

V−RS Jd
nVt − 1

)
+

V − RS Jd
Rsh

− Jph (2)

where J0 is the reverse saturation current, V the voltage applied, RS the series resistance,
Rsh the shunt resistance, Vt the thermal voltage, Jph the photo-generated current and n the
ideality factor. This last value indicates the charge carrier recombination process that domi-
nates solar cell operation. When n is close to 1, it indicates band to band recombination in
the quasi-neutral region, whereas n close to 2 indicates Shockley–Read–Hall recombination
through mid-gap trap centers in the depletion region.

In Equation (1), the hysteresis effect is modeled as two current contributions, Jcap
and Jnon_cap. The first one is a capacitive current that accounts for the charge/discharge
dynamics associated to ionic polarization at electrodes and electronic accumulation at
surface layers. It can be written as:

Jcap = C(V)·s (3)

where C is the device capacitance, which typically depends on the voltage applied, and s
the voltage scan rate used in the measurement. It must be noted that the capacitance also
depends on the frequency, when sinusoidal excitations are applied.

On the other hand, Jnon_cap is related to non-capacitive currents and it is usually
adjusted with an empirical equation using the Nernst–Monod model [29], as follows:

Jnon_cap =
Jmax

1 + e
V−VA

nVt

(4)

where the characteristic voltage VA is associated to reaction potential and establishes the
current onset for these currents, modeled as Jmax.

By fitting the experimental J-V curves of Figure 2 with the parameters of Equations (1)
to (4), it is possible to evaluate the three current contributions and obtain information about
the relevance of the mechanisms involved. Figure 3 shows the very good match obtained
between the fittings and the measured J-V curves. The values of the parameters used in the
fittings are summarized in Table 1.

Table 1. Values of the fitting parameters used in Figure 3.

Dark,
Forward

Dark,
Reverse Light, Forward Light, Reverse

n 2 2 4.2 1.6
J0 [pA/cm2] 2 1.67 1.67 2.5

RS [Ω] 73 170 80 112
Rsh [MΩ] 1 2 0.01 0.04

C [µF/cm2] 7.6 7.6 380 380
Jph [mA/cm2] 0.057 0.057 22 22

Jmax [mA/cm2] 0.067 83 83 1.7 × 10−9

VA [V] 0.8 1.2 1.02 1.02
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Figure 3. Measured and adjusted J-V characteristics in dark and under illumination. Dots correspond
to experimental data, whereas blue-dashed lines correspond to values fitted with Equations (1) to (4).

For the dark J-V curves in, ideality factors around 2 are obtained. This agrees with
typical P-I-N diode operation, where recombination is produced within the bulk-intrinsic
layer [28]. Additionally, the measured J-V curves at forward and reverse scans separate
from each other around 0.7 V. It is reported in [30] that this type of distortion is due to non-
capacitive currents affecting the J-V at high voltages. Accordingly, a very good adjustment
with the experimental data is obtained using Equation (4). On the other hand, in [30] it is
also demonstrated that the capacitive currents produce hysteresis distortion around 0 V,
but this type of effect is not observed in the experimental J-V curves of Figure 2.

For the J-V curves under illumination, ideality factors start from 4.2 for forward
scan and decrease down to 1.5 for reverse scan. This evolution indicates a redistribution
of mobile ions immediately following illumination that reduce the Shockley–Read–Hall
recombination via shallow traps. Therefore, band to band recombination dominates current-
voltage behavior in this case. This is probably due to huge accumulation of photo-generated
carriers, which chemically interact near the interfaces, and also to interfacial recombination
at the intrinsic layer [31]. Finally, between 0.5 V and 1 V the same hysteresis behavior
seen in the dark case is observed, therefore indicating that non-capacitive effects are also
dominant under illumination for relatively high voltages.

2.2. The Control Method

As commented above, the closed-loop control proposed in this work is a variant of
that applied for controlling the effect of the charge trapped in dielectrics of MOS capacitors.
The method uses the complementary effects on such charge that the application of different
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voltages produces, and its objective is to set and maintain a certain level of charge, thus
helping to stabilize the J-V characteristic of the device in the long term.

The control is implemented with a first-order sigma–delta loop, as described in
Figure 4. The loop applies to the device the voltage waveforms BIT0 and BIT1, also shown
in the figure. Note that in BIT0(BIT1), a voltage V0(V1) is applied for a time (1 − δ)TS,
while VC is applied for a shorter time δTS, with 0 < δ < 1.
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application.

As will be shown later, in the devices used, the continuous application of V0, and
therefore of BIT0 waveforms, produces slow displacements to the right of the J-V curve.
On the other hand, applying only V1, or BIT1s, produces left displacements of the J-V.
Then, taking advantage of this complementary behavior, the control measures periodically
the displacement of the J-V and applies the appropriate sequence of BIT0s and BIT1s (bit
stream) to keep it around a previously given, or target, position. The J-V position is inferred
from a current measurement performed at the end of each BIT0(BIT1) waveform. To ensure
that the measured results are comparable, this measurement is always made at a unique
test voltage, VC.

According to all this, the sigma–delta loop works as follows: depending on whether
the current measured at the end of each BIT0(BIT1), J(VC)n, is above or below a previously
given threshold value, Jth, either a BIT0 or a BIT1 is applied in the next time (n+1)TS,
following this decision law:

BITn+1 =

{
BIT1 when J(VC)n < Jth

BIT0 otherwise
. (5)

In the experiments, a Keysight 2912A Source and Measurement Unit has been used
to both generate the voltage waveforms and perform the current measurements. The
timing parameters TS and δ are chosen such that the voltage switching at the end of each
BIT0(BIT1) waveform, necessary to measure J(VC)n, has little effect on the state of the
device. On the other hand, the value of the test voltage VC is chosen to ensure sufficient
current sensibility.

3. Results and Discussion

The first experiment performed investigates how the application of BIT0 or BIT1
waveforms results in opposite shifts of the J-V. To this effect, the evolution of J(VC) at
VC = 1.1 V was monitored while an open-loop stress, consisting in applying either only
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BIT0 or only BIT1 waveforms, was applied to the device in dark. The results obtained are
shown in Figure 5. The parameters used in the BIT0 and BIT1 waveforms are: V0 = 0.3 V,
V1 = 0.7 V, TS = 400 ms and δ = 1/3. To set comparable initial conditions, the device was at
0 V bias for 15 min before each BIT0(BIT1) stress application.
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Figure 5. (a) Evolution of the dark current at VC = 1.1 V when only BIT0 waveforms are applied to
the device. (b) Same as previous, but when only BIT1 waveforms are applied. The BITx parameters
used are: TS = 400 ms, δ = 1/3, V0 = 0.3 V, V1 = 0.7 V.

As seen in the results shown in Figure 5a, a BIT0 stress produces an initial-short
increase of the current, then it slowly decreases. Then, the continuous application of BIT0s
produces right J-V shifts. On the other hand, applying BIT1s produces left shifts of the J-V,
as shown in Figure 5b.

3.1. Experiment Set 1: J-V Control in Dark

In the next experiment, a sequence of eight 5-h control steps, with a different Jth each,
was applied to the device under dark conditions. The evolution of J(VC) and the bit stream
provided by the control loop were continuously monitored, and a fast J-V measurement
was made at each step end. BIT0 and BIT1 parameters are: V0 = 0.25 V, V1 = 0.75 V,
VC = 1.1 V, TS = 400 ms and δ = 1/3.

The Jth values and the evolution of J(VC) during the experiment are shown in Figure 6a.
Note that all targets are achieved successfully: at each step, the current reaches very fast the
desired level, then the control loop keeps the current around Jth by applying an appropriate
sequence of BIT0s and BIT1s.

Besides, Figure 6b shows a zoom of the evolution of J(VC) during the fourth step,
where Jth = 2 mA/cm2. Each time J(VC) is below Jth, the feedback loop applies BIT1s
until the current goes above Jth. Once this happens, a BIT0 is then applied to decrease the
current below Jth, and then BIT1s are again applied, etc. Let us note that this behavior is
typical of 1st-order sigma–delta controllers [32,33]. Furthermore, this type of result closely
resembles those obtained in previous works where sigma–delta loops were used to control
trapped charge in dielectrics of other devices, such as MEMS switches [34,35] and MOS
capacitors [18].
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Figure 6. (a) Evolution of J(VC) in dark while control is applied with the sequence of Jth values listed
in the table (also green line); (b) Zoom of J(VC) for a short time interval within step 4; (c) Average
bit stream provided by the control loop during the experiment. The BITx parameters used are:
V0 = 0.25 V, V1 = 0.75 V, VC = 1.1 V, TS = 400 ms, δ = 1/3.

The average bit stream generated by the control loop during the experiment is plotted
in Figure 6c. It can be seen that the higher the level of Jth is, the higher the injection of BIT1s
becomes; and that the bit stream exhibits slow time evolution once the control targets are
reached. The fall to zero distortions of Figure 6c are due to the J-V measurements made at
each step end, which produce short discontinuities in the experimental data.

The J-V curves obtained, plotted in Figure 7, show that the control allows to set
and maintain successfully their positions around the desired thresholds. Note that the
instantaneous current has a small deviation from the desired value that is mainly due to
the voltage sweep applied to perform the J-V measurement.



Electronics 2021, 10, 121 9 of 14
Electronics 2021, 10, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 7. J-V curves obtained at each step end in the experiment of Figure 6. 

Figure 8 shows the good adjustment between the experimental J-V characteristics and 

the fittings performed using Equations (1) to (4). The changes of the curves at different 

steps are mainly due to small changes of the characteristic voltage VA used in the Nernst–

Monod model for non-capacitive currents, which in this case varies between 1.2 and 1.35 

V (step 1: 1.35 V; step 2: 1.25 V; step 3: 1.23 V; step 4: 1.28 V; step 5: 1.26 V; step 6: 1.21 V; 

step 7: 1.27 V; step 8: 1.20 V). This parameter is usually related to chemical ionic interac-

tions at the perovskite–interlayer interfaces, which may cause accumulation of charge or 

defects in these interfaces and even in the contacts. All this, in the long term, produces a 

degradation of the overall performance of the solar cell. However, in our case the material 

used in the contacts is gold and, therefore, contact degradation can be ruled out. It is then 

concluded that setting adequate values of the threshold Jth can allow to control perovskite-

interlayer interface ionic interactions and, consequently, help to mitigate their effect on 

device degradation. 

 

Figure 8. Measured and adjusted J-V characteristics in dark after each control step in the experi-

ment of Figures 5 and 6. Dots correspond to experimental data, whereas lines correspond to values 

fitted with Equations (1) to (4). 

Fig.7 (Word) / IVs_dark_control_density (MatLab) / IVs-ctrl-dark

#1

#2

#3

#4

#5

#6

#7

#8

step #     1      2      3      4     5     6      7     8

Jth (mA/cm2) 1.8   2.6   3.2    2     3    3.8   2.5   4

0.8 0.9 1 1.1 1.2

Voltage [V]

100

101

10–1

10–2

10–3

J
 [

m
A

/c
m

2
]

#1

#2
#3

#4

#5
#6

#7

#8

Figure 7. J-V curves obtained at each step end in the experiment of Figure 6.

Figure 8 shows the good adjustment between the experimental J-V characteristics and
the fittings performed using Equations (1) to (4). The changes of the curves at different
steps are mainly due to small changes of the characteristic voltage VA used in the Nernst–
Monod model for non-capacitive currents, which in this case varies between 1.2 and
1.35 V (step 1: 1.35 V; step 2: 1.25 V; step 3: 1.23 V; step 4: 1.28 V; step 5: 1.26 V; step 6:
1.21 V; step 7: 1.27 V; step 8: 1.20 V). This parameter is usually related to chemical ionic
interactions at the perovskite–interlayer interfaces, which may cause accumulation of
charge or defects in these interfaces and even in the contacts. All this, in the long term,
produces a degradation of the overall performance of the solar cell. However, in our case
the material used in the contacts is gold and, therefore, contact degradation can be ruled
out. It is then concluded that setting adequate values of the threshold Jth can allow to
control perovskite-interlayer interface ionic interactions and, consequently, help to mitigate
their effect on device degradation.
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Figure 8. Measured and adjusted J-V characteristics in dark after each control step in the experiment
of Figures 5 and 6. Dots correspond to experimental data, whereas lines correspond to values fitted
with Equations (1) to (4).
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The objective of the next experiment is to investigate the influence of the sampling
time, TS, in the effectiveness of the control. To this effect, the control was applied in
two consecutive 4-h steps, with the same threshold Jth = 3 mA/cm2 and two values of
TS. The other BIT0 and BIT1 parameters are the same as in the experiment reported in
Figures 5 and 6.

Figure 9 shows the evolution of J(VC) and the average bit stream obtained. A plateau-
like behavior is clearly observed for TS = 1 s: the bit stream is stacked at zero—which
means same average number of BIT0s and BIT1s—while J(VC) is varying and, therefore,
no control is obtained. In perfect agreement with sigma-delta theory [32,33], reducing TS
mitigates this undesired effect, as seen in the next 4 h step for TS = 400 ms, where plateaus
or their effects are no longer observed.
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Figure 9. Evolution of J(VC) (a) and of the average bit stream (b) in dark, while control is being applied with Jth = 3 mA/cm2

(green line) and two values of TS. The other BITx parameters used are: V0 = 0.25 V, V1 = 0.75 V, VC = 1.1 V.

3.2. Experiment Set 2: J-V Control under Illumination

In order to investigate the effectiveness of the control for devices under illumination,
the following experiment was performed: a sequence of twelve different values of Jth were
applied to the device in consecutive 1-h steps. A fast J-V measurement was performed at
each step end. The BIT0 and BIT1 parameters used are: V0 = 0.25 V, V1 = 0.75 V, VC = 1.2 V,
TS = 400 ms and δ = 1/3.

Figure 10 shows the evolution of J(VC) and of the average bit stream. Each time Jth
changes, the control loop has been successful in reaching and maintaining the new desired
level. For example, it can be observed that in order to achieve the lower current levels,
more BIT0 waveforms need to be injected, resulting in lower average bit stream values. It
is also seen that the control is lost due to a plateau-related episode for some time in step 7.
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Figure 10. (a) Evolution of J(VC) under illumination while control is being applied with the Jth values
listed in the table (also green line). The green line represents the Jth levels. (b) Average bit stream
provided by the control loop during the experiment. The BITx parameters used are: V0 = 0.25 V,
V1 = 0.75 V, VC = 1.2 V, TS = 400 ms, δ = 1/3.

Figure 11 shows the sequence of J-V curves measured at each step end. The same
complementary behavior seen when applying BIT0s or BIT1s in dark is observed under
illumination, therefore enabling the control to successfully place the J-V to the desired
positions.
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Figure 11. J-V curves measured at each step-end in the experiment of Figure 10.

As it was done in the case of control in dark, fittings of the results of this control
experiment under illumination with the analytical model provided by Equations (1) to (4)
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have also been carried out. Figure 12 shows the good adjustment between the experimental
J-V characteristics and the fittings for the odd steps of the experiment.
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Figure 12. Measured and adjusted J-V characteristics under illumination after some of the control
steps in the experiment of Figures 9 and 10. Dots correspond to experimental data, whereas lines
correspond to values fitted with Equations (1) to (4).

In contrast with the dark case of Figure 8, here no noticeable variation of the activation
voltage VA is detected and the effect of the control applied is a variation of the series
resistance, RS. Specifically, the values found for steps #1 to #12 of the experiment are 46,
45, 44, 40, 39.5, 38, 35.5, 34.5, 32, 29, 31 and 33 Ω, respectively. Since the ideality factor n
is constant to 4.2, it could be concluded that, under illumination, huge photo-generated
carriers produce mobile ions that recombine via shallow traps, which affect the series
resistance [28,31,36]. Then, the BIT waveforms applied by the loop allow to control this
charge-related phenomenon and therefore stabilize the J-V characteristic.

It must be noted that the hysteresis and the long-term stability of the perovskite solar
cells are phenomena generally not related. On the other hand, both aspects manifest
themselves in the control plots presented in Figures 6, 9 and 10. The fast switching applied
by the control generates fast current variations at the test voltage. This phenomenon can be
linked to the hysteretic behavior observed in Figures 2 and 3, which has fast dynamics, as
compared with long term drifts. Additionally, the controls also show long-term variations
in their average values (see for example the time evolution in the first 5-h segment of the
average bit stream in Figure 6). This slow time evolution can be associated with trapped
charge, which is a phenomenon typically linked to the long-term reliability of the device.
In any case, the possible reliability improvement that this type of controls might generate
will be the subject of further research.

4. Conclusions

An intelligent control method, based on sigma-delta modulation, has been applied
successfully to a solar cell structure that has a high trap density perovskite absorber. The J-V
curves of the device exhibit noticeable hysteresis behavior at high voltages, which is mostly
due to non-capacitive currents. The control capability relies on the complementary J-V
shifting produced by the voltages applied. The experimental results obtained demonstrate
that the control allows to displace and maintain the J-V of the device to a desired point,
both under dark and illumination conditions.
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To the knowledge of the authors, this is the first time that charge control has been
applied to a perovskite solar cell. This may be seen as a new way to improve the stability
of perovskite-based devices.
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