
ABSTRACT: Structural Health Monitoring (SHM) systems have been heavily studied worldwide in the past decades. In this 

field, extensive research has been carried out on vibration-based damage detection (VBDD) techniques in civil structures, 

especially in bridges. Dynamic responses of a structure manifest a certain degree of sensitivity not only to structural damage but 

also to any change in operational and environmental conditions, these last factors can mask structural damages. In this sense, the 

main objective of this paper is to separate structural damage conditions from the changes caused by the environmental effects in 

a numerical benchmark bridge structure. Temperature is chosen as a global environmental parameter for its significant impact on 

the waveform, and the Instantaneous Phase Difference (IPD) obtained from an analysis of the Hilbert spectral is studied as the 

vibration damage feature. Principal Component Analysis (PCA) is applied mainly to the IPD in order to eliminate the 

environmental influence. Due to the lack of experimental data including the temperature effects, the effectiveness and robustness 

of the proposed procedure is applied to a numerical benchmark bridge structure generated as part of COST Action TU1402 on 

quantifying the value of information (VoI) in SHM. The benchmark model consisted of a two-span steel bridge under 

operational (vehicular traffic) and environmental variability, in which two levels of damage were introduced. The dynamic 

responses in both healthy and structural damage conditions were obtained from a nonlinear time-history analysis using an open 

access Python code. As the main concluding remark, the suitability of Hilbert-Huang Transform combined with a PCA-based 

approach and the instantaneous phase difference to achieve a more robust damage assessment algorithm is verified for the 

numerical benchmark bridge. 

KEY WORDS: Damage detection; Instantaneous Phase Difference (IPD); Hilbert-Huang Transform (HHT); Temperature effect; 

Principal Component Analysis (PCA). 

1 INTRODUCTION 

Nowadays, the use of damage identification methods based on 

structural dynamic parameters, such as natural frequencies, 

mode shapes, and curvatures are being widely studied [1-3]. 

However, there is limited information about studies of 

instantaneous frequencies and phase as a dynamic parameter 

for damage identification on bridges [4-7]. In addition, for 

civil structures like bridges, dynamic parameters are always 

influenced by the environmental variability (e.g. ambient 

temperature) and operational factors, these conditions may 

disguise the changes caused by structural damages [8]. 

In the literature, generally the bridge structures are 

influenced by the environmental variability, especially the 

temperature plays a major role in the variation of vibration 

properties. Yan et al. [9] used a two-step procedure, namely a 

clustering of the data space into several subregions and the 

application of local PCA-based damage detection method for 

the structural health monitoring in a real bridge called Z-24. 

This method presents two advantages (i) the anomaly of some 

analyzed days disappears as the non-linearity is taken into 

account by the local PCA-based method (ii) the novelty index 

(NI) values increase slightly for damage states with respect to 

those in the reference state, it means that the local PCA-based 

method is more sensitive to the damage. Many bridges were 

studied in the evaluation of model-based methods, which 

consists in get a correlation between the effects of 

environmental parameters (such as temperature, humidity) and 

the dynamic features (such as frequencies, modal shapes). In 

this context, the effects of environmental conditions on 

dynamic characteristics can be removed and quantified. For 

instance, the Z-24 bridge was studied with an AutoRegressive 

model with eXogenous input [10], a linear filter method was 

used for the Alamosa Canyon bridge [11], the Ting Kau 

bridge with a support vector machine algorithm [12]. Besides, 

others techniques like polynomial regression model [13], 

polynomial chaos expansion technique [14] and neural 

network model [15] were used for modelling dynamic 

parameters under environmental effects. 

On the other hand, another approach that is increasing more 

frequently is the non-model-based methods, which consists of 

extracting a relevant feature from the structural response, 

being this feature sensitive to damage but insensitive to 

operational and environmental factors [16]. Figueiredo et al. 

[17] used four machine learning algorithms such as factor 

analysis, Mahalanobis distance, auto-associative neural 

network and singular value decomposition to separate the 

damages caused by structural changes from those caused by 

environmental and operational conditions. Soo et al. [18] 

proposed a damage detection method based on principal 

component analysis capable of distinguishing between the 

effects of structural damages and the damages masked by 

environmental conditions. This method is tested in a two-

dimensional truss structure and in the Z-24 bridge, the results 

demonstrate the ability to distinguish damage effects from 
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environmental conditions that affect the damage sensitivity 

parameters. Hu et al. [19] used the principal component 

analysis to eliminate environmental effects in a dynamic 

monitoring system of a footbridge. In addition, a novelty 

analysis on the residual errors of the PCA model was 

proposed to provide a statistical indication of damage. Santos 

et al. [20] proposed four kernel-based algorithms for damage 

detection under varying environmental and operational 

conditions, one of which is the nonlinear extension of the 

linear PCA called kernel principal component analysis 

(KPCA). The KPCA showed a better performance than the 

linear PCA and others in an experimental study of three-story 

frame aluminum structure and shaker. More recently, the 

linear and nonlinear principal component analysis was used to 

distinguish between damage effects and environmental factors 

which affect the damage sensitivity features [17-18]. Hu et al. 

[21] developed a multiple linear regression (MLR) method to 

characterize the nonlinear relationship between natural 

frequencies and temperatures of a prestressed-concrete box 

girder bridge. The authors demonstrate the ability of the 

method to identify the gradually realistic deterioration for 

aging infrastructures using statistical pattern recognition 

methods. 

Recent studies [22-24] showed that the Hilbert-Huang 

Transform (HHT) and improvements of empirical mode 

decomposition (EMD) like ICEEMDAN, are widely used 

methods for analysis of non-linear and non-stationary signals 

in biomedical and civil engineering, and can be applied for 

damage identification in bridges [5-6]. The HHT [25] in 

conjunction with ICEEMDAN [22] method has been used in 

some scientific and engineering disciplines considering 

nonstationary and nonlinear physical phenomena. Besides, the 

researchers have used different sensible dynamic variables for 

damage identification such as Marginal Hilbert spectrum 

[4,6,26], phase difference [4,6], instantaneous frequency 

[5,27], instantaneous amplitude [5,27], a combination of 

instantaneous frequency and amplitude [27]. Additionally, 

Dragomiretskiy and Zosso [28] developed the Variational 

Mode Decomposition (VMD), which is an adaptative and 

non-recursive decomposition technique. Xin et al. [29] used 

VMD approach for structural damage identification in 

nonlinear building model through the decomposition of the 

dynamic responses. They used as damage sensitive features 

the instantaneous frequencies obtained from the HT in order 

to determine the location and severity of the damages. In 

general, there is little research in bridge applications that use 

these instantaneous parameters as indicators of damage and 

even more so including the study of the variation of 

environmental factors such as temperature that masks 

structural damage. Therefore, this article presents a new 

method based on Hilbert-Huang approach and Principal 

Component Analysis (PCA) in order to remove environmental 

effects from non-stationary and non-linear signals coming 

from the traffic effect, and subsequently to identify damages 

on bridges. 

The paper is structured as follows. In section 2, the basic 

concepts of Hilbert-Huang, Variational Mode Decomposition 

(VMD) and principal component analysis are introduced. 

Numerical benchmark model of a bridge is presented in 

Section 3. In section 4, the proposed approach is applied to 

this benchmark bridge to verify its effectiveness, two damage 

cases subject to environmental conditions (changes of 

temperature) are successfully identified. Finally, Section 5 

concludes the paper. 

2 FUNDAMENTALS OF METHODS FOR DAMAGE 

IDENTIFICATION 

2.1 Hilbert transform (HT) 

In the last decade, the Hilbert transform (HT) [25] has been 

widely used in many fields of engineering, it has been applied 

in conjunction with improvements of empirical mode 

decomposition like ICEEMDAN and VMD in solving static 

and dynamic, linear and nonlinear problems of damage 

detection in structures [5,6,27-29]. 

In this paper, the Hilbert transform and VMD are applied to 

a given signal of a benchmark numerical bridge to provide 

enhanced instantaneous phase difference (IPD) information 

and this IPD will be used for damage detection. Generally 

speaking, the Hilbert-Huang method aimed for decomposing a 

non-linear and non-stationary signal into a set of mono-

component signals and extracting the corresponding intrinsic 

mode functions (IMF). Having obtained the IMF components 

from time history x(t), the second step of the HHT method is 

implemented by performing the HT to each IMF component 

cn(t). The Hilbert transform of a real-valued time domain 

signal c(t) is another real-valued time domain signal, it can be 

denoted by (t)c , such that (t) c(t) i (t)z c= +  is an analytic 

signal. The subscript in cn(t) is dropped for simplicity, so that 

the following equation 1 can be written: 
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The VMD technique transforms a mode decomposition 

problem onto a variational solution problem and was used to 

overcome certain drawbacks found in the EEMD method. 

VMD can decompose a multicomponent signal into an 

ensemble of quasi-orthogonal band-limited IMFs with specific 

sparsity properties in the spectral domain. Mathematically, the 

constrained variational problem can be expressed as: 
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Where uk is the k-th IMF and ωk = center pulsation around 

which the k-th IMF is mostly compact, δ is the Dirac 

distribution and f is the original signal. The bandwidth of each 

mode is estimated by the squared H1 Gaussian norm of its 

shifted signal with only positive frequencies. Then, a 

quadratic penalty and Lagrangian multipliers λ are introduced 

to transformed into an unconstrained optimization problem. 

The remaining parameters are explained in detail by [28,30]. 

On the other hand, Kunwar et al. [4] and Salvino et al. [31] 

focused attention on the physical meaning of θ(t) (the 

instantaneous phase obtained with the HHT) to represent the 

phase of travelling structural waves of a dynamically 



measurable quantity, such as the acceleration, strain, or 

displacement. θp(t) denotes the instantaneous phase at a 

particular location p on the bridge structure. If a point o on the 

bridge is chosen as a reference point, then the phase function 

relative to this reference point o can be expressed by the 

following formula: 

 (t) (t) (t)p p o  = −  (4) 

Where φp shows the relative phase relationship of a 

travelling structural wave for a given state of a bridge at the 

point p. Furthermore, due the changes in the dynamic 

conditions of the bridge that are caused by potential damages, 

the θp(t) will reflect this behavior as a change on the speed at 

which energy travels through the bridge. Therefore, in the 

present study, the instantaneous relative phase φp(t) is referred 

to as the Instantaneous Phase Difference (IPD), that 

demonstrated its good performance for damage identification 

and localization in many references [4,6,30,31]. 

2.2 Principal component analysis (PCA) 

PCA is a well-known linear method for data analysis, which is 

used for mapping multidimensional data and as a dimensional 

reduction tool [32]. In this regard, a large number of 

interrelated variables can be represented into low-dimensional 

uncorrelated variables by an orthogonal projection with 

minimal redundancy, in which the new reduced coordinates 

are known as principal components. Besides, damage 

sensitivity features collected from bridge structures subjected 

to environmental conditions can be processed by PCA to 

extract the main factors driving the variances in the data set 

[18]. In the present paper, PCA is used to extract the 

differences and similarities in the original data set rather than 

reducing the dimensions of the original data set. 

Firstly, Z denotes a nxp data set of n damage sensitivity 

features collected from p observations with n<p. In this study, 

one damage sensitive parameter such as instantaneous phase 

is chosen as the feature, this damage parameter is represented 

by n and p represents the amount of time the instantaneous 

phase is collected. Mathematically it can be shown as: 
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As mentioned [18], PCA transforms the data set X into a 

new mxp data set Y with smaller dimensions which 

characterizes most of the variances in the original data set. In 

this regard, a transform matrix T is used to relation the Y and 

X, which has dimensions mxn as shown in equation 6. 

 Y TX=  (6) 

Where Y is the score matrix and it represents a new set of 

data which combines the scores of each observation obtained 

for the factors affecting the original data set. The factors 

which represent the environmental effects are called principal 

components, these damage sensitivity features are affected by 

damage of structural components. Besides, the first principal 

components are represented by who present most of the 

variances in the original data set, and the second component 

accounts for the second most variance, and so on [18]. 

T is called loading matrix and its rows correspond to the 

eigenvectors of the covariance matrix of X. The singular value 

decomposition can be applied to obtain the eigenvectors of the 

covariance matrix X. This relationship can be expressed as 
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Where U = orthonormal matrix (UUT = I) whose columns 

represent the eigenvector of the covariance matrix of X (hence 

T = UT), and the summary is obtained by 
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Where the singular values are represented by 

1 1 2( , ,..., )mdiag    =  and 
2 1 2( , ,..., )m m ndiag   + + = . 

The 
1  and 

2  are organized in descending order  

1 2 1( ... ... 0)m m n    +      → . Finally, the 

damage detection can be obtained considering the analysis of 

the only first few row of the score matrix (first few principal 

components in PCA method). Therefore, the number of 

principal components should be chosen carefully in order to 

avoid the false detections [18]. 

3 APLICATION TO THE NUMERICAL BENCHMARK 

BRIDGE 

In this section, a benchmark bridge was studied, which 

represents the superstructure component of a two-span 

continuous steel beam bridge. This benchmark numerical 

model was developed by [33] via open-source Python scripts 

which are made available through GitHub. This bridge was 

developed as a part the scientific networking project COST 

Action TU1402 on Quantifying the Value of SHM. 

This numerical model has a total length L = 20m as sketches 

in Figure 1. The bridge superstructure presents two-span 

continuous beam with equal span lengths (L1= L2=10m). This 

beam model has a rectangular cross section with constant 

width b = 0.1m and height h = 0.6m. The material of the beam 

is low carbon structural steel (Grade S235) and the 

mechanical properties are Young’s modulus E = 215 GPa, 

Poisson’s ratio ν = 0.3 and material density ρ = 7850 kg/m3 at 

ambient temperature of T = 20ºC. The three supports present 

106kN/m and 1015kN/m for the horizontal and vertical 

stiffness respectively. Finally, the study of the finite element 

analysis, mesh refinement and other considerations are 

reported in detail in [30]. The bridge is crossed by a punctual 

load at a specified speed representing the effects of the 

vehicular traffic. The passage of a vehicle is modeled as a 

moving load F with constant speed v, as plotted in Figure 1. 

 

Figure 1. Geometry of the benchmark numerical bridge. 



On the other hand, several damage scenarios that represent 

“cracks” on the beam surface were imposed to the numerical 

bridge, which are modelled by reducing Young’s modulus at 

the Gauss points on particular finite elements. Furthermore, 

six sensing points called “sensors” are considered to provide 

information about the nodal variables in both x (horizontal) 

and y (vertical) directions. Six damage scenarios grouped in 

two damage regions are imposed and the sensors (green 

points) are shown in Figure 1. Their exact location is 

presented in Table 1. 

 

 

Figure 2. Location of sensors and damage scenarios in 

benchmark numerical bridge. 

Table 1. Location of sensors along the beam. 

Sensors Description Location along the neutral 

axis of the beam (y=0.3m) 

S-01 at ¼L1 left-hand x = 2.5 m- 

S-02 at ½L1 left-hand x = 5.0 m 

S-03 at ¾L1 left-hand  x = 7.5 m 

S-04 at ¾L2 right-hand x = 12.5 m 

S-05 at ½L2 right-hand x = 15.0 m 

S-06 at ¼L2 right-hand x = 17.5 m 

 

In order to simulate the extent of damage, each damage 

differs from each other in the number of damaged mesh 

elements, as presented in Table 2. For example, the damage 1 

and 4 involve an area of two damaged elements, the damage 2 

and damage 5 consider an area of four damaged elements, and 

finally the damage 3 and damage 6, a zone of six damaged 

elements. In addition, the damaged elements have a width of 

0.05 m and the height ranges from 0.1 to 0.3 m. 

Table 2. Description of damage states performed on the 

numerical steel beam. 

Damage scenarios Mesh  

elements 

Damage location 

Undamaged (UND) 0  

Damaged 1 (DMG1) 2 at ½ L1 from the left-hand 

Damaged 2 (DMG2) 4 support, starting from the 

Damaged 3 (DMG3) 6 bottommost edge 

Damaged 4 (DMG4) 2 at ½ L2 from the right-hand 

Damaged 5 (DMG5) 4 support, starting from the 

Damaged 6 (DMG6) 6 uppermost edge 

 

Additionally, the six damage scenarios are classified in two 

groups (GPD1 and GPD2) in order to study the influence of 

damage severity corresponding to the percentage of stiffness 

reduction (SR). The effects of damage extension are 

represented by the number of damaged elements.  For the 

group of damage 1 (GPD1), the damage is located at the mid-

left span (x=5m). The effects of damage severity are taken 

into account by reducing the stiffness by 50%, 70% and 90%. 

While for group of damage 2 (GPD2), the damage extension 

above the intermediate support was studied, for a 70% of 

stiffness reduction (SR=70%). 

4 RESULTS 

The time-varying parameter instantaneous phase difference 

(IPD) is defined as a local measurement recorded by sensors 

placed in several locations of the bridge, as shown in previous 

section. Considering a particular point in the bridge, the 

measurement of accelerations under transient loads may be 

treated as a local measurement since it represents the forced 

vibration behavior of this particular point (or mesh node in 

finite element modelling). Furthermore, this point is different 

from the vibration behavior at any other analyzed point in the 

bridge. 

 The number of the IMFs m considered in the analysis, 

varies from sensor to sensor. For instance, m=6 for sensors S-

01, S-03, S-04 and S-06, and m=5 for sensors S-02 and S-05. 

The instantaneous modal parameters were obtained during 2 

seconds and an output time-step size of Δt = 0.0025 seconds 

(equivalent to a sampling frequency of 400 Hz) was selected 

to obtain the first three bending modes of vibration. 

The results for the healthy condition (undamaged) and the 

damage cases corresponding to GPD1 and GPD2 at 

temperatures of -10°C, 0°C, 20°C, 40°C are considered in the 

analysis to take into account the influence of the temperature 

effects.  In addition, three extreme cases at low temperatures 

around -30°C (blue lines) and other three extreme cases at 

high temperatures around 70°C (red lines) for the undamaged 

state were considered to create the baseline. From here on, 

both the undamaged cases and the damaged scenarios will be 

represented by the colors as shown in Figure 1. 

4.1 Instantaneous phase difference (IPD) 

In the whole analysis, the IPD has been calculated taking 

sensor 01 as the reference sensor. The IPD obtained from each 

IMF of sensor S-01 for the baseline (red and blue curves) and 

the other monitored cases at different temperatures (colorful 

curves) are shown in Figure 1. In particular, the monitored 

cases are found within the baseline limits. Moreover, the 

boundary condition effect is present at the end of the study 

time interval, particularly, in the high-frequency modes (IMF1 

and IMF2). 

 

 



 

 

Figure 3. Instantaneous phase difference for different damage 

scenarios and temperature conditions corresponding to each 

IMF obtained from sensor S-01. 

The six modes (IMFs) shown in Figure 3 are taken into 

account for the application of PCA using data from 0.1 to 1.5 

seconds, which are equivalent to 560-time samples. In order to 

satisfy the ability for damage detection, the baseline should 

show a clear separation (gap) between the coldest and hottest 

limits. Furthermore, if the number of time samples meeting 

this condition is noted as S, then the percentage of these 

samples with respect the total number of samples studied will 

be expressed as Pgap = S/560x100. Considering the first 

principal component, the percentage of monitored samples 

lying inside (Sin) the temperature limits with respect to S can 

be computed as Pin = Sin/S. Likewise, in the case of the second 

PC, the percentage of time samples lying outside (Sout) the 

temperature limits with respect to S is expressed as Pout = Sout 

/S. 

In this sense, Figure 1 depicts the first two principal 

components for four undamaged cases at -10ºC, 0ºC, 20ºC and 

40ºC (from top to bottom). The monitored values are 

represented by black dots in all plots. For all cases, the two 

extreme conditions used as baseline have a clear separation 

between them, thus only the first component is used for 

analysis and the others are disregarded. Moreover, in the four 

cases, the magnitude of the observations in the PC1 is much 

larger than that in the PC2 for all four undamaged cases since 

the PC1 indicates nearly 100% of the information of the 

original data, while the PC2 merely represents any 

information. In addition, the percentage of gap, Pgap, in the 

PC1 is 100% for the four cases and all the monitored 

conditions are found inside the limits Pin = 100%. Afterwards, 

with respect to PC1, the evolution of temperature is plotted 

from the undamaged case at -10ºC to the undamaged case at 

40ºC. The monitored cases (black dots) displace from the 

coldest temperature limit (blue dots) to the hottest temperature 

limit (red dots) when increasing temperature. 

 

 

 

Figure 4. First and second PCs regarding the IPD obtained 

from sensor S-01 for four undamaged cases, from 0.1 to 1.5 s. 

and 4 temperature values 

Likewise, the T-scores of the principal components was 

normalized for a better representation considering all damage 

cases. The T-scores corresponding to the baseline are 

standardized within 0 and 1, where 0 represents the limit of 

the highest temperatures (shown as red dots), and 1 represents 

the upper limit of the lowest temperatures (blue dots). Then, 

the normalized T-scores corresponding to the monitored cases 

are computed by a linear interpolation of the normalized T-

scores for the baseline. Finally, taking into account the fact 

that a gap (separation) should exist between the two extreme 

temperatures conditions, only the monitored cases at each 

time sample meeting this condition will be shown in the 

following plots. 

Figure 1 gives the first and second principal components for 

the damaged cases of the GPD1. Figure 1 reflect that all 

points meet the condition for damage identification purposes 

in PC1 (Pgap=100%), likewise, all the monitored cases lie 

inside the temperature limits (Pin=100%). The behavior of the 

monitored case tends to move to the hottest limit when the 

severity of damage increase, suggesting a rise in temperature 

when in fact there is not such a change. Besides, the influence 

of the highest and lowest-frequency modes in data set when 

the damage is severe make cause part of the damage to be 

interpreted as an increase in temperature. On the other hand, 

Figure 1 depict the damage evolution of the PC2. In this case, 

Pgap increases when the severity of damage grows from 42% 

to 100%, while all the monitored cases lie outside the baseline 

limits (Pout =100%) for all cases, giving rise to damage alerts. 

It should be pointed out that, when damage increases, the 

monitored cases are no longer dispersed and become more 

constant over time. This is consequence that the T-scores 

corresponding to the three extreme cases with close 

temperature are very similar. 

 

 



 

Figure 5. First and second PCs regarding the IPD obtained 

from sensor S-01 for the damage cases of the GPD1. 

In conclusion, it can be noticed that as damage increases, 

more time samples between 0.2 and 0.8 seconds, 

approximately, meet the condition for damage detection. 

Therefore, it may suggest that the structural damage is located 

within this range, equivalent to 2 to 8 meters. 

Figure 1 gives the first and second principal components for 

the damaged cases of the GPD2. Figure 1 confirm that all the 

points meet the condition for damage identification purposes 

in PC1 (Pgap=100%), likewise, all the monitored cases lie 

inside the temperature limits (Pin=100%). Thus, the 

temperature condition is found at the temperature average of 

the two extreme conditions, which is 20ºC. Figure 1 depict the 

damage evolution of the PC2. In this case, Pgap increases when 

the severity of damage grows (from 2 to 4 damaged elements), 

except for the last case in which Pgap has been reduced with 

respect to the other damaged cases. This may be related to the 

influence of symmetric bending modes over the other. Finally, 

the percentage of monitored cases lying outside the baseline 

limits, Pout, is always 100% for all cases, giving rise to 

damage alerts. 

Additionally, with respect to the location of damage, a 

slight variation occurs around 1 second in the PC1 for all 

damage scenarios, right after the load passes over the damage 

zone. This may give a rough estimate of the location of 

damage and this change around 1 second can also be seen in 

the PC2, where the variance of the monitored cases increases, 

thus producing two clusters: one from 1 – 1.5 seconds above 

another from 0.2 to 1 second (Figure 1). 

 

 

 

Figure 6. First and second PCs regarding the IPD from sensor 

S-01 for damage cases of the GPD2, from 0.1 to 1.5 s. 

On the other hand, because the overall data set is very large, 

the results studied in the present investigation are only 

presented for three sensors. Figure 1 show the instantaneous 

phase (IPD) for each IMF under temperature variations for 

both sensor 4 and 6 respectively.  The monitored cases are 

found within the baseline limits and the boundary effects 

problem is present at the end of the study time interval both 

for sensor 4 and 6, especially in the high-frequency modes 

(IMF1 and IMF2). 

 

 

 

Figure 7. Instantaneous phase difference for the baseline and 

monitored cases obtained from sensor S-04. 

 

 

 

Figure 8. Instantaneous phase difference for the baseline and 

monitored cases obtained from sensor S-06. 

 An in-depth study was done for sensors 4 and 6 and the 

results are plotted in Figures 9 to 12. Figures 9 and 10 show 

the results for GPD1 and GPD2 in sensor 4 respectively, and 

the Figures 11 and 12 depict same cases in sensor 6.  The 

results for sensors S-04 and S-06 show that for a low level of 

damage (SR50%), no damage is detected and for a stiffness 

reduction of 70%, the number of samples meeting the damage 

condition increases between 20 to 80 % as in S-01. 

Furthermore, in the sensors S-04 and S-06 for a SR over 70%, 

there is more dispersion of the monitored cases from 1 to 1.5 



seconds, while from 0.2 to 1 seconds a clear cluster is 

identified. 

In conclusion, the proposed methodology is efficient to 

distinguish structural damage from temperature effects. 

Regarding the undamaged cases, the temperature condition of 

the structure can be estimated without the need of a direct 

temperature measurement. Regarding the damaged cases, 

generally when the damage increases, the number of time 

samples meeting the damage condition increases. Therefore, 

both the damage severity and the damage extension is 

reflected in the results. 

 

 

 

Figure 9. PC1 and PC2 obtained from sensor S-04 

corresponding to the GPD1. 

 

 

 

Figure 10. PC1 and PC2 obtained from sensor S-04 

corresponding to the GPD2. 

 

 

 

Figure 11. PC1 and PC2 obtained from sensor S-06 

corresponding to the GPD1. 

 

 

 

Figure 12. PC1 and PC2 obtained from sensor S-06 

corresponding to the GPD2. 

5 CONCLUSIONS 

The paper demonstrates the potential of the proposed 

methodology in assessing and monitoring the structural 

condition of the benchmark numerical bridge under changing 

operational and environmental conditions. The major 

advantage of this method is that damages are detected, 

localized and quantified using bridge response under 

operational conditions while considering the environmental 

variability like temperature. 

The results presented in this investigation show good 

performance of the damage-sensitive feature like 

instantaneous phase difference (IPD). In this sense, this time-

varying parameter was obtained using HHT-based method for 

each intrinsic mode function (IMF) under different 

temperature conditions. The principal component analysis 

(PCA) is adopted for data processing, and the first two 

principal components of each data set was analyzed, and the 

damage effects were distinguished from the effects of the 



environmental variability. The IPD of each IMF linearly 

decreases along time with no fluctuations, and this damage 

feature can be a good parameter to separate the temperature 

effects from structural damages, as well as to detect the 

severity of damage.  

To conclude, this mixed combined method of HHT and 

PCA not only detect the presence of damage in the bridge, but 

also quantify the severity or extent of the damage by 

recognition of patterns in the original data set. 
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