
An open set of 4× 4 embeddable matrices whose principal

logarithm is not a Markov generator
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Abstract

A Markov matrix is embeddable if it can represent a homogeneous continuous-time
Markov process. It is well known that if a Markov matrix has real and pairwise-
different eigenvalues, then the embeddability can be determined by checking whether
its principal logarithm is a rate matrix or not. The same holds for Markov matrices
that are close enough to the identity matrix. In this paper we exhibit open sets of
Markov matrices that are embeddable and whose principal logarithm is not a rate ma-
trix, thus proving that the principal logarithm test above does not suffice generically.
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1 Introduction

The embedding problem [9] for Markov matrices consists on deciding whether a Markov
(or stochastic) matrix can be written as the exponential of a rate matrix (that is, a real
matrix whose rows sum to 0 and has non-negative off-diagonal entries). This is equivalent
to deciding whether the substitution process ruled by such Markov matrix can be modeled
as a homogeneous continuous-time process or not. We say that a Markov matrix M is
embeddable if there exists a rate matrix Q such that M = eQ.

Although the embedding problem is about eighty years old, it was only solved com-
pletely for 2× 2 and 3× 3 matrices until very recently [15, 8, 14, 1]. A recent manuscript
of the authors fully solves it for 4× 4 matrices and gives a solution for generic matrices of
any size [4]. Several partial results had been proved on the way (see [18, 15, 6, 7, 12] for
example).
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One of the most relevant and well known results is that the embeddability of a matrix
with real and different eigenvalues can be determined by checking whether the principal
logarithm is a rate matrix. Indeed, this is a consequence of Theorem 2 in [6] which states
that a real matrix with pairwise different real eigenvalues has only one real logarithm,
its principal logarithm. Moreover, the principal logarithm also characterizes the embed-
dability of Markov matrices that are “close” to the identity matrix or have a large enough
determinant ([8], [12], [4]) or transition matrices of certain particular random processes
(see [13], [17], for example). As a consequence, the principal logarithm has been used in
different settings as a tool to detect whether a Markov process may have a homogeneous
continuous-time realization or not (see [19, 10]). However, as pointed out above, a priori
this characterization could only be used under certain conditions.

The following question arises naturally: Is the embeddability of a generic Markov ma-
trix determined by the principal logarithm? In this paper, we give a negative answer to
this question. We provide non-empty open sets of Markov matrices that are embeddable
and whose principal logarithm is not a rate matrix. More precisely, we deform particular
examples in order to generate non-empty open sets of 4×4 Markov matrices (with different
eigenvalues) that are embeddable and have a unique Markov generator which, moreover,
is different from the principal logarithm (see Theorem 3.3 for the precise statement).

The organization of this paper is as follows. In section 2 we start by properly defining
the embedding problem and present some known results regarding matrix logarithms. In
section 3 we first provide examples of embeddable matrices with non-negative eigenvalues
whose principal logarithm is not a rate matrix and use these examples to obtain open
subsets in the space of 4 × 4 Markov matrices containing embeddable matrices with the
same property. Finally, in Section 4 we give an insight on how these examples were
obtained.

2 Preliminaries

In this section we introduce the notation and background needed for the sequel.
We say that a real square matrix M is a Markov matrix if its entries are non-negative

and all its rows sum to 1. A real square matrix Q is a rate matrix if its off-diagonal entries
are non-negative and its rows sum to 0. It is known that if Q is a rate matrix, then eQ

is a Markov matrix. A Markov matrix M is said to be embeddable if it can be written
as M = eQ for some rate matrix Q, which is then called a Markov generator for M . If
Q is a rate matrix, then every matrix M(t) := eQt is a Markov matrix for any t ≥ 0,
so that M = eQ can be embedded into the multiplicative semigroup {eQt : t ≥ 0}. This
semigroup can be regarded in turn as the set of transition matrices of a homogeneous
continuous-time Markov process. Note that the space of n × n rate matrices and the
space of n×n Markov matrices have the same dimension (n2−n) and, as the exponential
map is a local diffeomorphism from rate matrices to embeddable matrices, the space of
embeddable Markov matrices has the same dimension, too.

We use the notation logk(λ) to denote the k-th determination of the logarithm of
λ ∈ C, that is, logk(λ) = log |λ|+ (Arg(λ) + 2πk)i where Arg(λ) ∈ (−π, π] is the principal
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argument of λ. The principal logarithm of λ, log0(λ), will be denoted as log(λ) for ease
of reading. If A is a square matrix (not necessarily Markov) we say that a matrix Q is
a logarithm of a A if eQ = A. From the exponential series of a matrix, eQ =

∑
n≥0

Qn

n! ,
we have that, if v is an eigenvector with eigenvalue λ of Q, then v is an eigenvector with
eigenvalue eλ of eQ. It is well known that if all the eigenvalues of a matrix A lie in C\R≤0
then there is a unique logarithm of A whose eigenvalues are the principal logarithm of the
eigenvalues of A [11, Thm. 1.31]. In this case, we refer to this logarithm as the principal
logarithm of A and denote it by Log(A).

Along this paper we work with 4 × 4 diagonalizable Markov matrices M with an
eigendecomposition M = P diag(1, λ, µ, µ) P−1 with λ ∈ (0, 1) and µ ∈ C \ R such that
Arg(µ) > 0. According to the results in [6], all real logarithms with rows summing to zero
of such matrices are of the form Logk(M) where

Logk(M) := P diag(0, log(λ), logk(µ), logk(µ)) P−1 (1)

does not depend on P .
The results of this paper are achieved by using Markov matrices with a very particular

structure: a b c d
e f g h
h g f e
d c b a

 . (2)

This structure defines the so-called strand symmetric model, which can be used to model
the evolution of nucleotide sequences (see [2]). We will refer to real matrices with this
structure as SS matrices. A straightforward computation shows that the product and sum
of SS matrices is closed within the model. Hence, the exponential of a rate SS matrix is
a Markov SS matrix. Moreover, according to Theorem 6.7 in [5] all the SS matrices can
be transformed into a 2-block-diagonal matrix via the same change of basis, which eases
their study and manipulation.

3 Main result

In this section we show that, for any k ∈ Z, there is a non-zero measure set of embeddable
4×4 Markov matrices whose unique Markov generator is the logarithm Logk (see Theorem
3.3). This is proved by deforming the particular examples below.

Example 3.1. We distinguish two cases depending on the sign of k.

� For k ∈ Z≥0, consider the matrix M = P+ D+ P−1+ where

P+ :=

1 6k + 2 1− i 1 + i
1 −2k − 1 −i i
1 −2k − 1 i −i
1 6k + 2 −1 + i −1− i

 and D+ := diag(1, e(1−8k)π, e−2π(1+2k)i,−e−2π(1+2k)i).
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A straightforward computation shows that M is a Markov matrix. Further compu-
tations show that, for any l ∈ Z,

Logl(M) =
π

4

−9− 20k − 4l 6 + 12k + 8l 2 + 12k − 8l 1− 4k + 4l
1 + 4k − 4l −5− 12k + 4l 1 + 4k − 4l 3 + 4k + 4l
3 + 4k + 4l 1 + 4k − 4l −5− 12k + 4l 1 + 4k − 4l
1− 4k + 4l 2 + 12k − 8l 6 + 12k + 8l −9− 20k − 4l

 .

Since l, k ∈ Z and k ≥ 0, the only possible choice for l so that off-diagonal entries
are non-negative is l = k (this can be easily seen by looking at the entries (2, 1) and
(4, 1) for instance). In this case we have:

Logk(M) =
π

4

−9− 24k 6 + 20k 2 + 4k 1
1 −5− 8k 1 3 + 8k

3 + 8k 1 −5− 8k 1
1 2 + 4k 6 + 20k −9− 24k

 .

In particular M is embeddable and Logk(M) is its unique Markov generator.

� For k ∈ Z<0, consider the matrix M = P− D− P
−1
− where

P− :=

1 6k + 1 1− i 1 + i
1 −2k −i i
1 −2k i −i
1 6k + 1 −1 + i −1− i

 , and D− := diag(1, e(1+8k)π, e4kπi,−e4kπi).

As above, M is a Markov matrix and, for any l ∈ Z,

Logl(M) =
π

4

3 + 20k + 4l −12k + 8l −4− 12k − 8l 1 + 4k − 4l
−1− 4k − 4l −1 + 12k − 4l 1− 4k + 4l 1− 4k + 4l
1− 4k + 4l 1− 4k + 4l −1 + 12k − 4l −1− 4k − 4l
1 + 4k − 4l −4− 12k − 8l −12k + 8l 3 + 20k + 4l

 .

Since l, k ∈ Z and k < 0, the only possible choice for l that produces only non-
negative off-diagonal entries is l = k. In this case we have

Logk(M) =
π

4

3 + 24k −4k −4− 20k 1
−1− 8k −1 + 8k 1 1

1 1 −1 + 8k −1− 8k
1 −4− 20k −4k 3 + 24k

 .

In particular, M is embeddable and Logk(M) is its unique Markov generator.

Note that for all values of k, the matrices M constructed in the previous example are
embeddable and their principal logarithm is defined. However, unless k = 0, this principal
logarithm is never a rate matrix. Up to our knowledge, these are the first examples of
embeddable matrices with different eigenvalues satisfying this property (see also Remark
3.5).
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Example 3.2. Rounding to the 10-th decimal and taking k = −1 the matrix M in the
previous example is:

M =

0.1428588867 0.3571393697 0.3571463443 0.1428553993
0.1428588866 0.3571411134 0.3571446008 0.1428553992
0.1428553992 0.3571446008 0.3571411134 0.1428588866
0.1428553993 0.3571463443 0.3571393697 0.1428588867

 . (3)

Further computations show that

Log(M) = π
4

−17 12 8 −3
3 −13 5 5
5 5 −13 3
−3 8 12 −17

 and Log−1(M) = π
4

−21 4 16 1
7 −9 1 1
1 1 −9 7
1 16 4 −21

.

Thus, M is an embeddable matrix whose principal logarithm is not a rate matrix.

The reader may note that the matrix M above is actually a SS matrix. In fact, this
happens for all the matrices M in Example 3.1. The next theorem proves that one can
perturb the entries of those matrices in order to obtain embeddable matrices with no
symmetry constrains whose only Markov generator is given by Logk(·).

Theorem 3.3. For any k ∈ Z, there is a non-empty Euclidean open set of embeddable
Markov matrices whose unique Markov generator is given by Logk(·). In particular, there
is a non-empty Euclidean open set of 4×4 Markov matrices that are embeddable and whose
principal logarithm is not a rate matrix.

Proof. Let us define the matrix

R =

1 0 0 0
0 1 0 0
0 0 1 1
0 0 i −i

 .

Given δ = (δ1, . . . , δ12) ∈ R12 consider the matrix

Aδ =

1 δ1 δ4 δ7
0 1 δ5 δ8
0 δ2 1 δ9
0 δ3 δ6 1

 .

Now, taking P+ and P− as in Example 3.1 we define the matrices S and Dδ depending
on the sign of k as follows:

� If k ∈ Z≥0, take S = P+ R−1 =

1 6k + 2 1 −1
1 −2k − 1 0 −1
1 −2k − 1 0 1
1 6k + 2 −1 1

,

Dδ = diag
(

1 , (1+δ10)e
(1−8k)π , δ11+i(1+δ12)e

−2π(1+2k) , δ11−i(1+δ12)e
−2π(1+2k)

)
.

Note that det(S) = 32k − 12 6= 0. In particular, S is invertible.
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� If k ∈ Z<0, take S = P− R
−1 =

1 6k + 1 1 −1
1 −2k 0 −1
1 −2k 0 1
1 6k + 1 −1 1

,

Dδ = diag
(

1 , (1 + δ10)e
(1+8k)π , δ11 + i(1 + δ12)e

−4kπ , δ11 − i(1 + δ12)e
−4kπ ).

Analogously to the previous case, det(S) = 32k − 4 6= 0 and S is invertible.

Set κ ∈ (0, 1) small enough so that the matrix Aδ is invertible if |δi| < κ, i = 1, . . . , 9.
For such δi, i = 1, . . . , 9, and δ10, δ11, δ12 ∈ R we can define Mδ := Pδ Dδ P

−1
δ where

Pδ := S Aδ R. Note that M0 is the Markov matrix M in Example 3.1. In particular,
Logk(M0) is a rate matrix (and hence M0 is embeddable) while, for l 6= k, Logl(M0) is
not.

By construction, the first column of Pδ is an eigenvector of Mδ of eigenvalue 1. A
simple computation shows that it is the vector (1, 1, 1, 1) and hence the rows of Mδ sum
to one. If we take δ in

X :=
{
δ = (δ1, . . . , δ12) : |δi| < κ for i = 1, . . . , 12

}
⊆ R12,

the second eigenvalue (1 + δ10)e
(1−8|k|)π of Mδ is positive. On the other hand, the third

and fourth eigenvalues and eigenvectors are a conjugated pair. Since S and Aδ are real
matrices and the third and fourth column-vector of R are a conjugated pair of vectors we
deduce that Mδ is a real matrix whose rows sum to one. By making κ smaller if necessary,
we can assume that for any δ ∈ X the matrix Mδ is Markov and non-singular (as M0 is
nonsingular).

Now, letM1 be the set of 4×4 real matrices with rows summing to one. Additionally
to the map f : X →M1, f(δ) = Mδ, let us define the maps

g, h, j : f(X) −→M4(R)

by
g(M) := Logk−1(M), h(M) := Logk(M), j(M) := Logk+1(M).

We write U ⊂ M4(R) for the open set of matrices with non-zero entries and at least
one negative entry outside the diagonal, and we write V ⊂ M4(R) for the open set of
matrices with non-zero entries and positive off-diagonal entries. As claimed earlier, a
straightforward computation shows that f(0) is indeed the matrix M in Example 3.1 and
hence g(f(0)), j(f(0)) ∈ U and h(f(0)) ∈ V .

Note that f , g, h and j are continuous on their respective domains, so g−1(U), h−1(V )
and j−1(U) are open sets in f(X) containing f(0). Therefore, W := g−1(U) ∩ h−1(V ) ∩
j−1(U) ⊆ f(X) is a non-empty open set in f(X) (it contains f(0)). Moreover, for any
M ∈ W we have M ∈ h−1(V ). Since exp ◦ h = id, this implies that M is the exponential
of a matrix in V , that is, M is the exponential of a rate matrix and hence it is a Markov
matrix whose Logk is a Markov generator. Furthermore, Logk−1(M) and Logk+1(M) are
not rate matrices, because M is included g−1(U) and M ∈ j−1(U) respectively. As the
entries of Logl(M) depend linearly on l, we get that any matrix in W is an embeddable
Markov matrix whose only Markov generator is Logk(M).

To conclude the proof we check that W contains a non-empty open subset of M1.

6



Claim 3.4. Consider the set Y = {δ ∈ X | δ6 + δ9 = 0}. Then, f is injective in X \ Y .

From the claim and the fact that f is continuous on its whole domain we have that
f |X\Y : X \ Y → M1 is a continuous injective map. Moreover, since X \ Y is open
in R12 ' M1 we can apply the invariance of domain theorem to infer that f |X\Y is a
homeomorphism between X \Y and its image. Therefore, f(X \Y ) is an open set ofM1.
In order to conclude, it is enough to show that the open set f(X \ Y ) ∩W is not empty.
Since f(Y ) is an (open set of an) affine algebraic variety of dimension ≤ 11, the interior
of f(Y ) is empty and we deduce that f(0) is adherent to f(X) \ f(Y ) ⊆ f(X \Y ). Hence,
f(X \ Y ) cuts the neighbourhood W of f(0), which finishes the proof.

Proof of Claim 3.4. Since the eigenvalues of anyMδ are all simple, the values of δ10, δ11, δ12
are completely determined by Mδ. It remains to see that Mδ also determines the other
values of δi, i = 1, . . . , 9 as long as δ ∈ X \ Y . Let ci denote the i-th column of Aδ. As
Pδ = S Aδ R, we have that the following are eigenvectors of Mδ:

� v1 = (1, 1, 1, 1)t, with eigenvalue λ1 = 1.

� v2 = Sc2, with positive eigenvalue λ2 =

{
(1 + δ10)e

(1−8k)π if k ≥ 0,

(1 + δ10)e
(1+8k)π if k < 0.

� v3 = S(c3 + i c4), with complex eigenvalue with positive imaginary part

λ3 =

{
δ11 + i(1 + δ12)e

−2π(1+2k) if k ≥ 0,

δ11 + i(1 + δ12)e
−4kπ if k < 0.

� v4 = S(c3 − i c4), with complex eigenvalue with negative imaginary part

λ4 = λ3 =

{
δ11 − i(1 + δ12)e

−2π(1+2k) if k ≥ 0,

δ11 − i(1 + δ12)e
−4kπ if k < 0.

Let us assume that there are δ, δ̃ ∈ X \ Y so that Mδ = M
δ̃
; write ṽ1, ṽ2, ṽ3, ṽ4

for the corresponding eigenvectors of M
δ̃

and c̃i for the i-th column of A
δ̃
. The aim is

to show that δ = δ̃. Using again that the eigenvalues are simple, we have that there are
z2, z3, z4 ∈ C such that vi = zi ṽi, i = 2, 3, 4.

- From v2 = z2 ṽ2, we have that Sc2 = z2Sc̃2 = S (z2 c̃2) and hence we get c2 = z2 c̃2.
From the second component of c2 and c̃2, we deduce that z2 = 1. Hence, c2 = c̃2
which implies that δi = δ̃i for i = 1, 2, 3.

- From v3 = z3 ṽ3, we deduce that S (c3 + i c4) = z3 S (c̃3 + i c̃4) = S (z3 (c̃3 + i c̃4)),
and hence c3+i c4 = z3 (c̃3+i c̃4). Write z3 = a+bi with a, b ∈ R. By looking at the
real part of the third component we get 1 = a− bδ̃9. Similarly, from the imaginary
part of the fourth component we have 1 = a+ bδ̃6. Since, (δ̃9 + δ̃6) 6= 0 this implies
that b = 0 and a = 1, so z3 = 1. We derive that c3 = c̃3 and c4 = c̃4 which implies
that δi = δ̃i for i = 4, . . . , 9.
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Remark 3.5. Examples of embeddable Markov matrices for which the principal logarithm
is not a rate matrix were already shown in [3, 17]. However, these examples cannot be
perturbed to obtain an open set of embeddable matrices as we did above. The main reason
is that the Markov matrices in those examples have negative eigenvalues and hence their
principal logarithm is not properly defined. Any open neighbourhood of such a matrix
contains a dense subset of Markov matrices with complex non-negative eigenvalues for
which the principal logarithm is not only defined but it is a rate matrix. Therefore, in
order to accomplish the goal of this paper it was necessary to look for another class of
matrices (see Example 3.1).

The results in this section exhibit that for every k ∈ Z it is possible to construct an
embeddable 4 × 4 Markov matrix M with only one Markov generator precisely given by
Logk(M). It follows from Theorem 4 in [8] that, excluding the cases k = 0 and k = −1,
there is no analogous construction for 3× 3 Markov matrices.

4 Constructing the examples

In this section we recover the results in [16] in order to show how we obtained the examples
in the previous section. As explained in Remark 3.5, we need to start with a matrix M
with a conjugated pair of non real eigenvalues and positive determinant so that it has a
countable number of real logarithms (see Corollary in [6]). As we want to perturb such
a matrix, we also need that all the eigenvalues are different in order to guarantee that
close matrices have countable real logarithms as well. As claimed in section 2, all the
real logarithms of such matrices are of the form Logk(·) defined in (1). A generic SS
matrix M satisfies such conditions and, moreover, all its logarithms Logl(M) keep the SS
structure. This is key for our purposes as it allows us to express these logarithms in terms
of a vector v ∈ R6 (whose components are a linear combination of the entries of Log(M))
and the arguments of the non-real eigenvalues of M : θ and θ. We start by providing this
parametrization in Proposition 4.1 and then in Lemma 4.3 we determine the conditions
that v, θ and k must satisfy in order to guarantee that Logk(M) is a rate matrix while
Log(M) is not. Finally, we make a particular choice of v and θ satisfying these conditions
(which provide the matrices in the examples of section 3).

Let us consider the algebraic variety

V = {(v1, . . . , v6) ∈ R6 | v24 − v5v6 = −1/4} (4)

and for any given v = (v1, . . . , v6) ∈ R6 and θ ∈ R define the matrix

Q(θ, v) :=

v1 + v2 − v3 − θv4 −v1 − v2 + θv5 −v1 − v2 − θv5 v1 + v2 + v3 + θv4
−v1 + v2 − θv6 v1 − v2 − v3 + θv4 v1 − v2 + v3 − θv4 −v1 + v2 + θv6
−v1 + v2 + θv6 v1 − v2 + v3 − θv4 v1 − v2 − v3 + θv4 −v1 + v2 − θv6

v1 + v2 + v3 + θv4 −v1 − v2 − θv5 −v1 − v2 + θv5 v1 + v2 − v3 − θv4

 . (5)
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Proposition 4.1. Given θ ∈ (−π, π) and v ∈ V, define M = eQ(θ,v). Then, it holds that:

i) The matrix M is a SS matrix with rows summing to 1.

ii) eQ(θ+2πk,v) = M for all k ∈ Z.

iii) If θ 6= 0, then M has two non-real conjugated pair of eigenvalues and Logk(M) =
Q(θ + 2πk, v).

Proof.

i) As Q(θ, v) is a SS matrix, so is M = eQ(θ,v). Since the rows of Q(θ, v) sum to 0
then (1, 1, 1, 1) is an eigenvector with eigenvalue 0 of Q(θ, v) and hence (1, 1, 1, 1) is
an eigenvector with eigenvalue e0 = 1 of M , which implies that the rows of M sum
to 1.

ii) Given v = (v1, v2, v3, v4, v5, v6), let w be the vector (0, 0, 0, v4, v5, v6). Using (5), it
is immediate to check that Q(θ + 2πk, v) = Q(θ, v) +Q(2πk,w). A straightforward
computation shows that Q(x, v)Q(y, w) − Q(y, w)Q(x, v) = 0 for any x, y ∈ C.
Therefore Q(θ, v) and Q(2πk,w) commute and hence

eQ(θ+2πk,v) = eQ(θ,v) eQ(2πk,w).

Note that as v ∈ V so does w. Using that w = (0, 0, 0, v4, v5, v6) ∈ V, an immediate
computation shows that eQ(2πk,w) = Id which concludes this part of the proof.

iii) By the previous statements, we know that Q(θ + 2πk, v) is a logarithm of M . A
direct computation shows that the spectrum of Q(θ + 2πk, v) is{

0, 4v1,−2v3 + (θ + 2πk)
√

4(v24 − v6v5),−2v3 − (θ + 2πk)
√

4(v24 − v6v5)
}

=
{

0, 4v1,−2v3 + (θ + 2πk) i,−2v3 − (θ + 2πk) i
}
.

where the last equality is obtained by using that v ∈ V. As the eigenvalues of
M are the exponential of these eigenvalues and θ 6= 0 this shows that M has a
conjugated pair of non-real eigenvalues with principal argument ±θ. Hence, we have
that Logk(M) = Q(θ + 2πk, v).

Remark 4.2. Conversely, given a SS Markov matrix M with eigenvalues 1, λ, µ, µ, with
λ ∈ (0, 1) and µ ∈ C \ R such that Arg(µ) > 0, it can be seen that there is v ∈ V such
that Logk(M) = Q(Arg(µ) + 2πk, v) for all k ∈ Z. Moreover, the vector v is uniquely
determined by the entries of M .

Given θ ∈ (−π, π), we denote by P(θ) the set of those v ∈ R6 such that Q(θ, v) is
a rate matrix and by P(θ)c its complementary. Note that P(θ) is an unbounded convex
polyhedral cone because the entries of Q(θ, v) are linear expressions on the components of
v, and hence if Q(θ, v) is a rate matrix so is Q(θ, λv) for any λ ≥ 0.
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Lemma 4.3. For any k ∈ Z, k 6= 0, it holds that P(θ)c ∩ P(θ + 2πk) has two connected

components C(k)1 and C(k)2 , where C(k)1 is the set of solutions to the following inequalities:

v1 + v2 + v3 + θv4 < 0,
v1 + v2 + v3 + (θ + 2πk)v4 ≥ 0,
v1 − v2 + v3 − (θ + 2πk)v4 ≥ 0,

−v1 − v2 + (θ + 2πk)v5 ≥ 0,
−v1 − v2 − (θ + 2πk)v5 ≥ 0,
−v1 + v2 + (θ + 2πk)v6 ≥ 0,
−v1 + v2 − (θ + 2πk)v6 ≥ 0.

(6)

Moreover, (v1, v2, v3, v4, v5, v6) ∈ C(k)1 if and only if (v1,−v2, v3,−v4, v6, v5) ∈ C(k)2 .

Proof. Since the rows of Q(θ, v) sum to zero, P(θ) is the convex polyhedral cone arising
from the inequation system Q(θ, v)i,j ≥ 0 for all pairs (i, j) with i 6= j. Moreover, due to
the symmetries of SS matrices the set of inequalities with i ∈ {1, 2} and i ∈ {3, 4} are the
same.

Let us assume that v ∈ P(θ)c ∩P(θ+ 2πk), so that R = Q(θ+ 2πk, v) is a rate matrix
while L = Q(θ, v) is not. For ease of reading we denote the entries of L and R by li,j and ri,j
respectively. According to (5), we have that r1,2+r1,3 = l1,2+l1,3 = 2(−v1−v2), r2,1+r2,4 =
l2,1+l2,4 = 2(−v1+v2) and r1,4+r2,3 = l1,4+l2,3 = 2(v1+v3). The off-diagonal entries of R
are non-negative because it is a rate matrix and hence (−v1−v2), (−v1+v2), (v1+v3) ≥ 0.
Since |θ| < |θ+2πk| we have that −v1−v2±(θ+2πk)v5 ≥ 0 implies −v1−v2±θv5 ≥ 0 thus
l1,2, l1,3 ≥ 0. Analogously, we can see that l2,1, l2,4 ≥ 0. Since L is not a rate matrix, then
l1,4 < 0 or l2,3 < 0 and we know that l1,4+ l2,3 = 2(v1+v3) ≥ 0 thus either l1,4 ≥ 0, l2,3 < 0
or l2,3 ≥ 0, l1,4 < 0 showing that P(θ)c∩P(θ+ 2πk) has two connected components. From
the definition of Q(θ, v) one can immediately check that given v = (v1, v2, v3, v4, v5, v6)
such that the only negative off-diagonal entry of R and L is l1,4 then we get that for
(v1,−v2, v3,−v4, v6, v5) the only negative off-diagonal entry of Q and L is l2,3. The linear
inequalities system in (6) is the reduced system arising from the assumption that the only
negative off-diagonal entry of R and L is l1,4.

If we replace the strict inequality in (6) by a not strict inequality, a straightforward
computation shows that, if k 6= 0, the solution space is the convex hull of 10 different rays
including the ones associated with the vectors

w1 := (−|θ + 2πk|, 0, |θ + 2πk|, 0, 1, 1), w2 := (−|θ + 2πk|, 0, |θ + 2πk|, 0,−1, 1),
w3 := (−|θ + 2πk|,−|θ + 2πk|, |θ + 2πk|, sign(k), 2, 0).

Among these, w3 satisfies that Q(θ, w3)1,4 < 0 and hence the interior of the convex

hull of the rays associated with w1, w2 and w3 is included in C(k)1 . In particular, for any

v ∈ V such that v = λ1w1 + λ2w2 + λ3w3 with λi > 0 we have that v ∈ V ∩ C(k)1 . An
example of such a vector is u ∈ V defined as:

u := (−|θ + 2πk|,−|θ + 2πk|/2, |θ + 2πk|, sign(k)/2, 1, 1/2) =
w1

4
+
w2

4
+
w3

2
. (7)

This shows that C(k)1 ∩V 6= ∅. Note that given v ∈ C(k)1 ∩V it follows from Proposition
4.1 that M = eQ(θ,v) is a SS matrix with rows summing to 0. Indeed, as v ∈ P(θ + 2πk)
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we have that Logk(M) = Q(θ + 2πk, v) is a rate matrix and hence M is an embeddable
Markov matrix. Moreover, we have that Log(M) = Q(θ, v) is not a rate matrix because
v ∈ Pc(θ), thus we have a constructive method to obtain embeddable SS matrices whose
principal logarithm is not a rate matrix.

However, the vector u in (7) lies in the boundary of C(k)1 ∩ V which implies that the
Markov generators obtained will have zero entries and hence such matrix can not be
deformed to obtain an open set as done in Theorem 3.3. For instance, by taking θ = π/2,
k = 1 and v as in (7), v = (−5π/2,−5π/4, 5π/2, 1/2, 1, 1/2), we get

L =
π

4


−26 17 13 −4

4 −14 4 6
6 4 −14 4
−4 13 17 −26

 and R =
π

4


−30 25 5 0

0 −10 0 10
10 0 −10 0
0 5 25 −30

 .

The examples in Section 3 where obtained by taking θ = π/2 and the vector

v = (−|θ + 2πk|,−|θ + 2πk|/2, |θ + 2πk|, sign(k)/2, 1, 1/2)− (π/4, 0,−π/2, 0, 0, 0).

This vector lies in the interior of C(k)1 ∩ V and hence the rate matrices obtained do not
have any null entry (see Example 3.2).
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