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Robust and Adaptive Door Operation with a Mobile Robot
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Abstract The ability to deal with articulated objects

is very important for robots assisting humans. In this

work, a framework to robustly and adaptively operate

common doors, using an autonomous mobile manipula-

tor, is proposed. To push forward the state-of-the-art in

robustness and speed performance, we devise a novel al-

gorithm that fuses a convolutional neural network with

efficient point cloud processing. This advancement en-

ables real-time grasping pose estimation for multiple

handles from RGB-D images, providing a speed up im-

provement for assistive human-centered applications. In

addition, we propose a versatile Bayesian framework

that endows the robot with the ability to infer the door

kinematic model from observations of its motion and

learn from previous experiences or human demonstra-

tions. Combining these algorithms with a Task Space

Region motion planner, we achieve an efficient door op-

eration regardless of the kinematic model. We validate

our framework with real-world experiments using the

Toyota Human Support Robot.
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Fig. 1 The HSR robot assists a person to enter a room.

1 Introduction

Robots are progressively spreading to logistic, social

and assistive domains (Figure 1). However, in order to

become handy co-workers and helpful assistants, they

must be endowed with quite different abilities than their

industrial ancestors (Asfour et al., 2008; Schiffer et al.,

2012; Torras, 2016). The ability to deal with articulated

objects is relevant for robots operating in domestic en-

vironments. For example, robots need to open doors

when moving around homes and to open cabinets to

pick up objects (Mae et al., 2011). The problem of

opening doors and drawers with robots has been tack-

led extensively (Enders et al., 2013; Jain and Kemp,

2009; Kessens et al., 2010; Meeussen et al., 2010; Ott

et al., 2005). These approaches usually focus either on

a particular type of door and handle mechanism or on

a certain aspect of the task.
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Handling different types of doors (e.g. drawers, room

or refrigerator doors) and handles (e.g. doorknobs, lever

handles, drawer pulls) simultaneously remains a chal-

lenge. Therefore, our contribution is on devising a more

general framework that can incorporate different types

of door models and that provides adaptive behavior

during door operation. The paper is organized as fol-

lows: in Section 2 we review the state-of-the-art in the

field; in Section 3 we state the problem addressed; in

Section 4 we present our door and handle detection

model; in Section 5 we explain our approach for achiev-

ing robust real-time estimation of end-effector grasping

poses; in Section 6 we describe a method for unlatch-

ing door handles; in Section 7 we present a Bayesian

approach to learn door kinematic models which allows

improving performance by learning from experience as

well as from human demonstrations; in Section 8 we dis-

cuss the integration of kinematic model inference with

a motion planner; in Section 9 we experimentally vali-

date our framework; finally, in Section 10 we draw the

main conclusions.

2 Related Work

The detection of doors and handles is a key problem

when operating doors with an autonomous robot. A ro-

bust algorithm that allows the simultaneous detection

of several doors and handles regardless of the shape,

color, light conditions, etc, is essential (for instance,

see Figure 2). This problem has been explored based

on 2D images, depth data, or both. In (Chen et al.,

2014), they present a deep convolutional neural net-

work for estimating door poses from images. Although

doors are accurately located, the identification of han-

dles is not addressed. In (Banerjee et al., 2015), follow-

ing the requirements from the DARPA Robotics Chal-

lenge, the authors develop an algorithm for identifying

closed doors and their handles. Doors are detected by

finding consecutive pairs of vertical lines at a specific

distance from one another in an image of the scene. If a

flat surface is found in between, the door is recognized

as closed. Handle detection is subsequently carried out

by color segmentation. The paper (Llopart et al., 2017)

addresses the problem of detecting room doors and also

cabinet doors. The authors propose a CNN to extract

and identify the Region of Interest (ROI) in an RGB-

D image. Then, the handle’s 3D position is calculated

under the assumption that it is the only object con-

tained in the ROI and its color is significantly different

from that of the door. Although positive results are ob-

tained in these last two works, they rely on too many

assumptions limiting the versatility.

The door manipulation problem with robotic sys-

tems has also been addressed with different approaches.

Some works assume substantial previous knowledge of

the kinematic model of the door and its parameters,

while others are entirely model-free. Among the works

that assume an implicit model, in (Diankov et al., 2008)

the operation of articulated objects is formulated as a

kinematically constrained planning problem. The au-

thors propose to use caging grasps, to relax task con-

straints, and then use efficient search algorithms to pro-

duce motion plans. Another interesting work is (Wieland

et al., 2009). The authors combine stereo vision and

force feedback for the compliant execution of the door

opening task. In recent work Eppner et al. (2018), the

authors propose candidate models that include kine-

matic and dynamic properties, which are selected us-

ing interactive perception. Finally, in Abraham et al.

(2020) they propose a model-based path-integral con-

troller that uses physical parameters. Regarding model-

free approaches, in (Lutscher et al., 2010) they propose

to operate unknown doors based on an impedance con-

trol method, which adjusts the guiding speed to achieve

two-dimensional planar operation. Another example is

the approach presented in (Karayiannidis et al., 2013).

Their method relies on force measurements and esti-

mation of the motion direction, rotational axis and dis-

tance from the center of rotation. They propose a veloc-

ity controller that ensures a desired tangential velocity.

Both approaches have their own advantages and disad-

vantages. By assuming an implicit kinematic model, al-

though in practice a simpler solution is typically achieved,

the applicability is limited to a single type of door. On

the other hand, model-free approaches release program-

mers from specifying the motion parameters, but they

rely entirely on the compliance of the robot.

Alternatively, other works propose probabilistic meth-

ods that do not consider interaction forces. In (Nemec

et al., 2017) the authors combine reinforcement learning

with intelligent control algorithms. With their method,

the robot is able to learn the door-opening policy by

trial and error in a simulated environment. Then, the

skill is transferred to the real robot. In (Welschehold

et al., 2017) the authors present an approach to learn

door opening action models from human demonstra-

tions. The main limitation of these works is that they

do not allow to operate autonomously unknown doors.

Finally, the probabilistic approach proposed in (Sturm,

2013) enables the description of the geometric relation

between object parts to infer the kinematic structure

from observations of their motion. We have adopted

this approach as a basic reference but extended its ca-

pabilities to improve the performance by using prior

information or human demonstrations.
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In this paper, we propose a robust and adaptive

framework for manipulating general types of door mech-

anisms. We consider all the stages of the door opening

task in a unified framework. The main contributions of

our work are (a) the development of a novel algorithm

to estimate the robot’s end-effector grasping pose in

real-time for multiple handles simultaneously; (b) a ver-

satile framework that provides the robust detection and

subsequent door operation for different types of door

kinematic models; (c) the analysis of the door kinematic

inference process by taking into account door prior in-

formation; (d) the testing on real hardware using the

Toyota HSR Robot (Figure 1).

3 Problem Statement and Framework Overview

We study the problem of enabling a robot to open

doors autonomously, regardless of their form or kine-

matic model. Performing this task requires the exploita-

tion of the robot’s sensorial, actuation and computa-

tional capabilities. The following sub-tasks are to be

performed sequentially by the autonomous robot:

1. Door and handle detection (Section 4): First,

the door and handle must be identified and located

in the environment where the robot is operating.

A vision system that allows the recognition of the

corresponding Regions of Interest is required.

2. Grasping of the handle (Section 5): Once the

handle is located, the robot must position and ori-

ent the end-effector adequately in order to grasp it.

For inferring this pose, a vision system that also pro-

vides information about the 3-dimensional structure

of the environment is needed.

3. Unlatching the handle (Section 6): Then, the

robot must exert an appropriate torque for actu-

ating the handle mechanism. For determining such

torque, a sensor that provides force feedback in the

robot’s end-effector is essential.

4. Estimating the door kinematic model (Section

7): The robust operation of doors involves the infer-

ence of the required opening motion, i.e. the door

kinematic model. This inference can be either per-

formed online while actuating the door, or from ob-

servations of the door motion provided by a teacher.

5. Planning and executing door opening motion

(Section 8): Finally, the control actions for open-

ing the door according to its kinematic model must

be planned and executed. For a mobile manipula-

tor robot, this implies tight base-arm coordination

under the task constraints.

In this paper, we assume the robot is equipped with

a vision system able to capture features in a 3-dimensional

space. Additionally, we consider the particular case of

a mobile robot with an omnidirectional base and that

force/torque feedback in the end-effector is available.

Note that these assumptions attempt to be as general

as possible, as these requirements are usually met by

most service robots nowadays.

The proposed framework is structured sequentially

following the sub-tasks scheme discussed above. Rather

than having a distinct contribution to a specific detailed

theory or methodology itself, in this work, we combine

several state-of-the-art studies. Therefore, the reader

can directly refer to the section of interest, indicated in

the aforementioned list. The most novel approaches for

addressing the door opening task are those presented

for sub-tasks 2, 4 and 5.

4 Door and Handle Detection

Doors and handles present a wide variety of geometries,

sizes, colors, etc. Thus, a robust detection algorithm is

essential. Additionally, in order to achieve real-time es-

timation, it must operate at speeds of several frames-

per-second (fps). Object detection is the task of simul-

taneously classifying and localizing multiple objects in

an image. In (Redmond et al., 2016) the authors pro-

posed the You Only Look Once (YOLO) algorithm, an

open-source state-of-the-art object detector with CNN-

based regression. This network uses features from the

entire image to predict each bounding box, reasoning

globally about the full image and all the objects in

the image. It enables end-to-end training and facilitates

real-time speeds while maintaining high average preci-

sion. For these reasons, we decided to adopt this CNN

architecture and train it with a custom dataset for ad-

dressing the door and handle detection problem.

4.1 Model Training

Training the YOLO network with a custom dataset al-

lows us to build a handle and door detection model. The

simplest classification semantics for our objects of inter-

est are “door” and “handle”. However, to increase the

detail of the information and also to make our method

versatile and extendable to other applications, we pro-

pose to split the class door into three classes: “door”,

which refers to a room door, “cabinet door”, which in-

cludes all sorts of small doors such as drawers or a locker

door, and “refrigerator door”. We built a data set us-

ing images from the Open Images Dataset (Kuznetsova

et al., 2020) and annotated a total of 1213 images con-

taining objects of our desired object classes.
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Fig. 2 Examples of annotated images from the training
dataset used for building the door and handle detection
model. The bounding boxes enclose the objects, with the cor-
responding label, that should be identified by the model.

A total of 1013 images were used for the training set,

and the remaining 200 for the testing set (the dataset

is available in (Arduengo, 2019)). Some examples of the

annotated images are shown in Figure 2. We also ap-

plied data augmentation techniques to improve the gen-

eralization capabilities (Taylor and Nitschke, 2018).

4.2 Model Selection

For selecting the CNN weights and assessing the model

quality, we applied cross-validation against the test set.

As the performance index, we propose to use the mean

average precision (mAP). This criterion was defined in

the PASCAL VOC 2012 competition and is the stan-

dard metric for object detectors (Everingham et al.,

2015). Briefly, the mAP computation involves the fol-

lowing steps: (1) Based on the likelihood of the pre-

dictions, a precision-recall curve is computed for each

class, varying the likelihood threshold. (2) The area un-

der this curve is the average precision. Averaging over

the different classes we obtain the mAP. Precision and

recall are calculated as:

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(1)

where TP = True Positive, TN = True Negative, FP =

False Positive and FN = False Negative. True or false

refers to the assigned classification being correct or in-

correct, while positive or negative refers to whether the

object is assigned or not to a category.

5 Grasping the Handle

When a robot moves towards an object, it is actually

moving towards a pose at which it expects the object

to be. For solving the grasping problem, the handle’s

6D-pose estimation is essential. The end-effector grasp-

ing goal pose can be then easily expressed relative to

the handle’s pose, and reached by solving the inverse

kinematics of the robot. Perception is usually provided

by means of an RGB-D sensor, which supplies an RGB

image and its corresponding depth map (Alenya et al.,

2014; Elbasiony and Gomaa, 2018). For estimating the

6-D pose in real-time, we propose to: (1) Identify the

region of the RGB image where the door and the han-

dle are located. (2) Filter the RGB-D image to extract

the Regions of Interest, clean the noise and downsam-

ple. (3) From a set of 3D geometric features of the door

and the handle, estimate the grasping pose. We explain

in detail these steps in this section. The proposed ap-

proach is summarized in the algorithm below:

Algorithm 1 End-Effector Grasping Pose Esti-

mation

Input: RGB image I and point cloud P =
{
pj

}Npoints

0

Output: Grasping poses G = {gk}
Nhandles
1 with gk ∈ SE(3)

Bounding boxes B = {bl}
Nobjects

1 ← Detect Objects(I)
foreach bl ∈ B do
PROI

l ← ROI Segmentation(P)
Pdenoised

l ← Remove Statistical Outliers(PROI
l )

Pfiltered
l ← Downsample(Pdenoised

l )
if class(bl) = ”handle” then

orientationl ← Bounding Box Dimensions(bl)
Phandle

l ← RANSAC Plane Outliers(PROI
l )

Ol ← Centroid(Phandle
l )

else
Normal al; Pdoor

l ← RANSAC Plane(Pfiltered
l )

Ol ← Centroid(Pdoor
l )

end if
end for
k = 1
foreach bl ∈ B that class(bl) = ”handle” do
al ← Assign Closest Door(Ol)
hk ∈ SE(3)← Handle Transform(al ; Ol)
gk ← Goal Pose(hk ; orientationl)
k ← k + 1

end for
return G

5.1 Point Cloud Filtering

Raw point clouds contain a large number of point sam-

ples, but only a small fraction of them are of interest.

Furthermore, they are unavoidably contaminated with

noise. Point cloud data needs to be filtered adequately

for achieving accurate feature extraction and real-time

processing. We propose the following filtering process:
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Fig. 3 On the left, the Regions of Interest detected by our
door and handle detection model. On the right, the subset of
the corresponding point cloud enclosed in the ROIs.

5.1.1 Regions Of Interest (ROIs) Segmentation

The points of interest correspond to the doors and the

handles in the scene, which can be defined as those in

the bounding boxes of the object detection CNN. By

separating the sets of points in each ROI, the amount

of data to be processed is reduced significantly (Figure

3). There is a direct correspondence between the pixels

in the image and the point cloud indexes if the latter

is indexed according to its spatial distribution. As the

bounding boxes are usually provided in pixel coordi-

nates, let P be the raw point cloud. Then, each ROI

can be defined as follows:

PROI =
{
pj ∈ P | j = width · y + x

}
(2)

where j is the point cloud index; width is the image

width in pixels, x ∈ [xmin, xmax] and y ∈ [ymin, ymax],

being (xmin, ymin) and (xmax, ymax) two opposite cor-

ners of the bounding box in pixel coordinates.

5.1.2 Statistical Outlier Filtering

Measurement errors lead to sparse outliers, which com-

plicate the estimation of local point cloud features such

as surface normals. Some of these irregularities can be

solved by performing statistical analysis of each point

neighborhood, and trimming those that do not meet

a certain criterion. We can carry this analysis at a dis-

crete point level. By assuming that the average distance

from every point to all its neighboring points rj , can be

described by a Gaussian distribution, the filtered point

cloud can be defined as follows:

Pdenoised =
{
pj ∈ PROI | rj ∈ [µr ± α · σr]

}
(3)

where α is a multiplier, and µr and σr are the mean

distance and the standard deviation, respectively.

Fig. 4 On the left, the raw point cloud. On the right, the
downsampled point cloud using a voxelized grid approach.

5.1.3 Downsampling

In order to lighten up the computational load we pro-

pose to reduce considerably the amount of data by using

a voxelized grid approach (Figure 4). Unlike other sub-

sampling methods, the shape characteristics are main-

tained. If s is the number of points contained in each

voxel A, the set of points in each voxel is replaced by:

x̄ =
1

s

∑
A

x ȳ =
1

s

∑
A

y z̄ =
1

s

∑
A

z (4)

5.2 Grasping Pose Estimation

We have considered three geometric features of the 3D

structure of the door and the handle for the grasping

pose estimation: the handle orientation, its position and

the door plane normal direction.

5.2.1 Handle Orientation

The end-effector orientation for grasping the handle de-

pends on this feature. Since door handles are commonly

only oriented vertically or horizontally (for a doorknob,

full orientation is not relevant to grasp it), the binary

decision can be made by comparing the lengths of the

sides of the bounding boxes for the handles in the out-

put of the CNN. If the height is greater than the width,

the handle orientation will be vertical and vice versa.

5.2.2 Door Plane Normal

In order to grasp the handle correctly, the normal to the

“palm” of the robot’s end-effector (which we consider

similar to the human hand) must be parallel to the door

normal. We propose to use the RAndom SAmple Con-

sensus (RANSAC) algorithm (Rusu, 2013) to compute

the normal direction. RANSAC is a numerical method

that can iteratively estimate the parameters of a given

mathematical model from experimental data that con-

tains outliers, in such a way that they do not influence

the values of the estimates.
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Fig. 5 The red arrows show the normal direction of the plane
defined by each detected door.

A minimal set is formed by the smallest number of

points required to uniquely define a given type of ge-

ometric primitive. The resulting candidate shapes are

tested against all points in the data to determine how

many of the points are well approximated by the primi-

tive. RANSAC estimates the model by maximizing the

number of inliers (Zuliani, 2017).

Then, in order to compute the door normal direc-

tion we fit a planar model to the door point cloud and

calculate the coefficients of its parametric Hessian nor-

mal form using RANSAC. In Figure 5 we show some

examples of the resulting normal vectors obtained with

RANSAC.

5.2.3 Handle Position

The proposed approach for estimating the handle posi-

tion is illustrated in Figure 6. We make the assumption

that the handle position can be represented by its cen-

troid. However, it cannot be directly computed from

the sub-point cloud associated with the handle ROI,

since the defining bounding box usually may include

some points from the door in the background. Then,

we also use the RANSAC algorithm to separate these

points. By fitting a planar model, the ROI points can

be classified as inliers and outliers. In this case, the out-

lier subset corresponds to the handle. The position can

then be computed as the centroid of the outliers subset.

5.2.4 Goal Pose Generation

Let O = (Ox, Oy, Oz) be the handle centroid and a =

(ax, ay, az) the door plane normal unitary vector, both

expressed in an arbitrary reference frame w. The handle

pose can be defined as the following transform:

Thandle
w =


ax

ay

a2
x
+a2

y

axaz

a2
x
+a2

y

Ox

ay − ax

a2
x
+a2

y

− ayaz

a2
x
+a2

y

Oy

az 0 −1 Oz

0 0 0 1

 (5)

Fig. 6 Computation of the handle position. On the left, the
observed scene with the handle highlighted. On the upper-
right corner the ROI. On the lower-right corner, the ROI is
filtered using RANSAC and the handle position is obtained
as the centroid of the resulting point cloud.

The grasping pose can then be easily specified as a

relative transform to the handle reference frame Tgrasping
handle ,

taking into account its orientation. Thus, the pose for

which the Inverse Kinematics (IK) of the robot must

be solved in order to finally grasp the handle, can be

computed as:

Tgrasping
w = Thandle

w Tgrasping
handle (6)

6 Unlatching the Handle

There exists a variety of mechanisms to open a door.

Some of them do not require any specific actuation

while others generally require a rotation to be applied.

A handle usually occupies a small region in the door

image. Thus, in order to estimate its kinematic model

from visual perception data, the robot camera needs to

be placed very close to the handle. This operation would

increase considerably the time required to perform the

task, making the inference of the handle model using

the vision system unappealing.

Instead, we rely on force feedback on the robot’s

end-effector for inferring how the handle should be ac-

tuated. We propose a simple, trial-and-error strategy

for operating different types of handle mechanisms, il-

lustrated in Figure 7. The robot tries to turn the handle

in both directions, first anti-clockwise and then clock-

wise. Depending on a torque threshold, either the door

is unlatched or no actuation is required. Similarly, as

people proceed when opening a door, using the force

readings in the direction perpendicular to the door we

can determine whether it is required to pull or push to

open it by trial-and-error.
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Fig. 7 Proposed handle unlatching strategy. First, the wrist is turned anti-clockwise. If torque feedback is above the allowed
threshold, the movement is aborted. Then, the wrist is turned clockwise. If torque feedback is also above the threshold, the
handle is identified as “no actuation is required”.

7 Learning the Door Kinematic Model

Opening doors in unstructured environments is chal-

lenging for robots because they have to deal with un-

certainty since the kinematic model of the door is not

known a priori. What if a robot has no previous knowl-

edge of the door at the time of taking a decision? And,

what if previous knowledge is available? To address

these questions, we will present a probabilistic frame-

work that allows inferring the kinematic model of the

door when no previous knowledge is available and im-

prove the performance based on previous experiences

or human demonstrations.

7.1 Overview of the Probabilistic Framework

Let D = (d1, . . . ,dN ) be the sequence of N relative

transformations between an arbitrary fixed reference

frame and the door, observed by the robot. We assume

that the measurements are affected by Gaussian noise

and, also, that some of these observations are outliers

but not originated by the noise. Instead, the outliers

might be the result of sensor failures. We denote the

kinematic link model as M. Its associated parameters

are contained in the vector θ ∈ Rk (where k is the num-

ber of parameters). The model that best represents the

data can be formulated in a probabilistic context as

(Sturm et al., 2010):

(M̂, θ̂) = arg max
M,θ

p (M,θ | D) (7)

This optimization is a two-step process (MacKay,

2003). First, a particular model is assumed true and its

parameters are estimated from the observations:

θ̂ = arg max
θ

p (θ | D,M) (8)

By applying Bayes rule, and assuming that the prior

over the parameter space is uniform, this is equivalent

to:

θ̂ = arg max
θ

p(D | θ,M) (9)

which shows that fitting a link model to the observa-

tions is equivalent to maximizing the data likelihood.

Then, we can compare the probability of different mod-

els, and select the one with the highest posterior prob-

ability:

M̂ = arg max
M

∫
p (M,θ | D) dθ (10)

Summarizing, given a set of observations D, and

candidate modelsM with parameters θ, the procedure

to infer the kinematic model of the door consists of:

(1) fitting the parameters of all candidate models; (2)

selecting the model that best describes the observed

motion.

7.2 Candidate Models

When considering the set of doors that can be poten-

tially operated by a service robot, their kinematic mod-

els belong to a few generic classes (Rühr et al., 2012).

We have considered as candidate kinematic models a

prismatic model, and a revolute model, shown in Fig-

ure 8.

7.2.1 Prismatic model

Prismatic joints move along a single axis. Their mo-

tion describes a translation in the direction of a unitary

vector e ∈ R3 relative to a fixed origin, a ∈ R3. The

parameter vector is θ = (a; e) with k = 6.
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Fig. 8 Prismatic and revolute candidate kinematic models.

7.2.2 Revolute model

Revolute joints rotate around an axis that impose a

one-dimensional motion along a circular arc. It can be

parametrized by the center of rotation c ∈ R3, a radius

r ∈ R, and the normal vector n = R3 to the plane where

the motion arc is contained. This results in a parameter

vector θ = (c; n; r) with k = 7.

7.3 Model Fitting

In the presence of noise and outliers, finding the pa-

rameter vector θ̂ that maximizes the data likelihood is

not trivial, as least square estimation is sensitive to out-

liers. The RANSAC algorithm has proven to be robust

in this case and can be modified in order to maximize

the likelihood. This is the approach implemented by

the Maximum Likelihood Estimation SAmple Consen-

sus (MLESAC) algorithm (Torr and Zisseman, 2000).

In this case, the score is defined by the likelihood of the

consensus sample. Thus, for estimating the model vec-

tor parameter θ, the log-likelihood of a mixture model

is maximized (Zuliani, 2017):

θ̂ = arg max
θ

L [e(D | M,θ)] (11)

L̂ =

N∑
j=1

log

(
γ · p

[
e(dj ,M, θ̂) | jthelement ≡ inlier

]
+ (1− γ) p

[
e(dj ,M, θ̂) | jthelement ≡ outlier

]) (12)

where γ is the mixture coefficient, which is computed

with Expectation Maximization. The first and second

term correspond to the error distribution e(dj ,M, θ̂)

of the inliers and the outliers, respectively. The error

statistics of the inliers are modeled with a Gaussian.

On the other hand, the error of the outliers is described

with a uniform distribution.

7.4 Model Selection

Once all model candidates are fitted to the observa-

tions, the model that best explains the data has to be

selected (Sturm et al., 2011). Let Mm (m = 1, ...,M)

be the set of candidate models, with vector parameters

θm . Let p (θm|Mm) be the prior distribution for the

parameters. Then, the posterior probability of a given

model is proportional to (Hastie et al., 2009):

p (Mm | D) ∝
∫
p (D | θm,Mm) p (θm | Mm) dθm (13)

In general, computing this probability is difficult.

Applying the Laplace approximation and assuming a

uniform prior for the models, i.e. probability of model

Mm of being the true model before having observed

any data, it can be estimated in terms of the Bayesian

Information Criterion (BIC):

p(Mm | D) ≈
exp

(
− 1

24BICm

)∑M
m=1 exp

(
− 1

24BICm

) (14)

where: 4BICm = BICm −min {BICm}M1 , and:

BICm = −2 log
[
L
(
D | Mm, θ̂m

)]
+ k · logN (15)

The first term accounts for the likelihood of the fit, and

the second term for the model complexity; smaller BIC

are preferred. Thus, model selection can be reduced to

select the model with the lowest BIC:

M̂ = arg min
M

BIC(M) (16)

7.5 Exploiting Prior Knowledge

A robot operating in domestic environments can boost

its performance by learning priors from previous expe-

riences (Calinon, 2016). A small set of representative
models can be used as prior information to improve

the model selection and parameter estimation in an un-

known environment.

Suppose that the robot has previously encountered

two doors. We have two observation sequences D1 and

D2, with N1 and N2 samples. We must choose then

between two distinct models M1 and M2 or a joint

model M1+2. In the first case, the posterior can be

split as the two models are mutually independent:

p (M1,M2 | D1,D2) = p (M1 | D1) · p (M2 | D2) (17)

In the second case, both trajectories are explained

by a single, joint modelM1+2, which is estimated from

the joint data D1 ∪ D2. The corresponding posterior

probability is denoted p (M1+2 | D1,D2). In order to

determine whether a joint model explains the observed

data better than two separate models we can compare

the posterior probabilities:

p (M1+2 | D1,D2) > p (M1 | D1) · p (M2 | D2) (18)
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This expression can be evaluated efficiently using the

BIC

BIC (M1+2 | D1,D2) <

2∑
i=1

BIC (Mi | Di) (19)

Intuitively, merging two models into one is beneficial

if the joint model can explain the data equally well while

requiring only a single set of parameters. If we consider

more than two trajectories, this should be repeated for

all the possible combinations. This can become hard to

compute. Thus, instead, we check if merging the new

data with each learned model associated with the door

class being opened gives a higher posterior. In this way,

when opening a refrigerator door, the observations are

only going to be compared with the previous refriger-

ator door openings. In this way, the observed data is

more likely to match the recorded data, and trajecto-

ries that are not likely to match (i.e. a drawer) are not

considered. Finally, we pick the model with the highest

posterior and record the new data, which will be used

as prior knowledge for future doors. This approach is

summarized in algorithm 2.

Algorithm 2 Model Selection Using Prior

Knowledge

Input: New observed trajectory Dnew =
{
dnew
j

}N

1
;

door class c ∈ {door, cabinet door, refrigerator door};
previously observed trajectories Dc = {Ds}S1

Output: Best model Mbestand prior knowledge updated Dc

Mnew ← Kinematic Model (Dnew)
Mbest ← {Mnew} , Dc ← Dc ∪ {Dnew}, pbest ← 0
foreach Ds ∈ D do
Ms ← Kinematic Model (Ds)
Mnew+s ← Kinematic Model (Dnew ∪ Ds)
if p (Mnew+s|Dnew,Ds) > p (Mnew|Dnew) p (Ms|Ds) &

p (Mnew+s|Dnew,Ds) > pbest then

Mbest ← {Mnew, Ms}
Dc ← {D1, . . . ,Dnew ∪ Ds . . . ,DS}
pbest ← p (Mnew+s | Dnew,Ds)

end if
end for
return Mbest and Dc

7.6 Learning from Human Demonstrations

If robots can learn from demonstration, this can boost

the scale of the process, since nonexperts would be

able to teach them (Lee, 2017). With our probabilis-

tic framework, the only necessary input we need is a

set of observations of the door’s motion. Using our 6D-

pose estimation approach, this tracking behavior can be

efficiently achieved. Thus, the robot’s prior knowledge

can be provided by human demonstrations (Figure 9).

Fig. 9 Observations can be provided by executions of the
task by a human teacher. In this case, the robot infers the
motion of the cabinet is described by a prismatic model.

8 Execution of the Door Opening Motion

Computing the motion that enables a mobile manipu-

lator to open a door is challenging because it requires

tight coordination between arm and base. This makes

the problem high-dimensional and thus hard to plan.

In the previous section, we have discussed how to learn

the door kinematic model from observations of its mo-

tion. In order to achieve full autonomy, although obser-

vations are not provided before-hand, the robot must

also be able to operate the previously unseen door. In

this section, we will discuss how these issues can be ad-

dressed through a suitable motion planning framework

and an effective door opening strategy.

8.1 Task Space Region (TSR)

Task Space Region is a constrained manipulation plan-

ning framework presented in (Berenson et al., 2011).

The authors propose a specific constraint representa-

tion, that has been developed for planning paths for

manipulators with end-effector pose constraints. The

framework unifies an efficient constraint representation,

constraint satisfaction strategies, and a sampling-based

planner, to create a state-of-the-art whole-body manip-

ulation planning algorithm.

The sampling-based planner is based on rapidly ex-

ploring random trees (RRTs). Thus, it inherits many

of the limitations of sampling-based methods for plan-

ning. For instance, it is very difficult to incorporate

non-holonomic constraints and dynamics because these

constraints would disrupt the distance metric used by

the RRT. For these reasons, the applicability of this

framework is limited to robots without non-holonomic

constraints.
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Fig. 10 TSR representation for operating prismatic doors.
The x, y and z axis of each reference frame are red, green and
blue respectively.

TSRs describe end-effector constraint sets as sub-

sets of SE(3) (Special Euclidean Group). These sub-

sets are particularly useful for specifying manipulation

tasks. Once the end-effector pose restrictions are speci-

fied in terms of a TSR, the algorithm finds a path that

lies in the constraints manifold. To define a TSR, three

elements are required:

– T o
w: Transform between the origin reference frame

o and the TSR frame w.

– Tw
e : End-effector offset transform.

– Bw: 6× 2 matrix that defines the end-effector con-

straints, expressed in the TSR reference frame

(Bw)
T

=

(
xmin ymin zmin ϕmin θmin ψmin

xmax ymax zmax ϕmax θmax ψmax

)
(20)

where the first three columns bound the allowable trans-

lation along the x, y and z axes, and the last three

columns bound the allowable translation assuming the

Roll-Pitch-Yaw angle convention. Thus, the end-effector

constraints for the considered kinematic models can be

easily specified as follows.

8.1.1 TSR representation for Prismatic Doors

By fitting a prismatic model to the observations we can

estimate the axis along which the door moves. If this

axis is determined, we can specify the TSR reference

frame as shown in Figure 10, and define the end-effector

pose constraints as:

(Bw)
T

=

(
0 0 −d 0 0 0

0 0 0 0 0 0

)
(21)

Fig. 11 TSR representation for operating revolute doors.
The x, y and z axis of each reference frame are red, green
and blue respectively.

Fig. 12 Adaptive door opening procedure scheme. The robot
opens the door following these steps iteratively.

8.1.2 TSR representation for Revolute Doors

In the case of fitting a revolute model to the observa-

tions, we can estimate the center of rotation, the radius

and the normal axis. With these parameters, we can

specify the TSR reference frame as shown in Figure 11,

and define the end-effector pose constraints as:

(Bw)
T

=

(
0 0 0 −ϕ 0 0

0 0 0 0 0 0

)
(22)

8.2 Door Opening Procedure

To define the TSR reference frame, observations of the

door motion are also required. Instead of using visual

perception, it can also be inferred by direct actuation.

Once the handle is grasped, the position of the end-

effector directly corresponds with the position of the

handle. As a result, the robot can make observations of

the motion by solving its forward kinematics. Thus, D
can be obtained by sampling the trajectory. We execute

the door opening motion repeating iteratively a series

of sequential steps, shown in Figure 12. After each iter-

ation, we re-estimate the kinematic model of the door

and its parameters adding the new observations to D.
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Fig. 13 On top, a series of pictures of the HSR robot grasping different handles, starting from various relative positions. Below,
the estimated grasping pose for the handles in the scene, as well as the corresponding detections provided by our CNN. The esti-
mated grasping pose is illustrated through the red, green and blue axis (x, y and z respectively). Note the end-effector reference
frame is shown at the HSR gripper. Video demonstrations are available at https://www.youtube.com/watch?v=LbDfKPpxEss.

To start the opening process, when no observations

are available, we make the initial guess that the model

is prismatic. Using a compliant controller, the robot’s

end-effector trajectory is also driven by the forces ex-

erted by the door, adapting its motion to the true model.

Thus, a certain error margin is allowed, enabling the

robot to operate the door correctly even if the estima-

tion is biased when only a few observations have been

acquired.

9 Experimental Evaluation

In order to validate experimentally the proposed door

operation framework, we implemented it on the Toyota

HSR robot, a robot designed to provide assistance. It

is equipped with an omnidirectional wheeled base, an

arm with 4 degrees-of-freedom, a lifting torso and a

two-fingered gripper as an end-effector.

In this work, we take advantage of the sensorial feed-

back provided by a 6-axis force sensor, located on the

wrist, and an RGB-D camera, located on its head. We

conducted a series of real-world experiments to test the

performance of the presented grasping pose estimator

and the proposed kinematic model inference process.

We tested the latter in two different scenarios: with

and without exploiting prior knowledge. To assess the

robustness of our framework, we used different doors

such as cabinet, refrigerator, and room doors with their

variety of handles. Video demonstrations are available

at the following hyperlink.

9.1 Grasping Pose Estimation

For evaluating the performance of the grasping pose

estimation, we focused on accuracy and speed. Regard-

ing the door and handle detection model, due to the

https://www.youtube.com/watch?v=LbDfKPpxEss


12 Miguel Arduengo1,2 et al.

Fig. 14 (a) The posterior of the revolute model vs the number of observations. In the legend, the door true models are
indicated. The means of the executions are displayed as continuous lines. The shaded areas represent a margin of two standard
deviations. Next to the plot, the evolution of the posterior along the opening trajectory is shown graphically. (b) Evolution
of the revolute posterior mean against the number of observations. The legend indicates the true model of the doors being
opened and the predominant prior during the realization.

limited range of different doors available in the labora-

tory, its accuracy is best assessed, as discussed in Sec-

tion 4, by computing the mAP on the test set, with a
wide variety of doors and handles. The resulting mAP

of the selected model, as well as some reference values

for comparison, are shown in Table 1. We can see that

our model’s mAP is just 10% lower. This performance

value is close to that obtained by state-of-the-art object

detectors in high-quality image datasets.

Qualitatively, testing the model in the laboratory,

the available doors and handles were effectively detected

from different viewpoints. Given a successful detection,

the algorithm always computed the grasping pose of

the handles present in the image correctly. By solving

the IK, if the handle was located within the reachable

workspace, the robot was always able to grasp the han-

dle. Using an Nvidia Geforce GTX 1080 GPU, we ob-

tained a computation rate of 6fps. This shows an effi-

cient behavior of the presented real-time grasping pose

estimator. In Figure 13 we show a series of pictures that

illustrate how the HSR robot reaches the handle in dif-

ferent scenarios, after inferring the grasping pose with

our method. An effective grasping is achieved from sev-

eral starting positions and types of doors. We also show

some examples of the estimated goal pose from RGB-D

data. We can observe that is accurately located in the

observed point cloud for all the handles simultaneously.

Table 1 mAP comparison

mAP

YOLO on COCO dataset 55%

YOLO on VOC 2012 58%

YOLO on our custom dataset 45%

9.2 Kinematic Model Inference

In order to evaluate the door kinematic model infer-

ence process, when no prior knowledge is available, we

opened three different types of doors ten times: a drawer,

a room and a refrigerator door. The task of the robot

was to grasp the handle and open the door while it

learned its kinematic model. The robot succeeded 26

times out of 30 trials (87%). All four failures were due
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Fig. 16 The HSR robot successfully opens different types of doors, without a priori knowledge of their kinematic model.

to the gripper slipping from the doorknob, most likely

caused by the design of the gripper which is not very

suitable to manipulate this kind of object. No errors

were observed during model learning.

We also studied the convergence of the estimators

versus the number of training samples. We considered

ten successful openings for each of the two considered

kinematic models. Results are shown in Figure 14(a).

During the task, the evolution of the candidate pos-

terior model was evaluated against the number of ob-

servations. It can be seen that the posterior probabil-

ity for both cases converges towards the true model as

the number of observations increases. When a obser-

vations are acquired, the probability oscillates around

0.5, which is consistent with considering equal priors.

However, they soon diverge from this value, showing

an effective behavior regarding the decision criterion.

A more convergent behavior is visible in the case of

a revolute door. This is due to the difference in com-

plexity between both models. When a prismatic door is

opened, the revolute model can fit the data, which does

not happen in the opposite case.

Fig. 15 Evolution of the estimation error of the radius of a
revolute door during its operation. Two scenarios are com-
pared: without and with previous knowledge.

Then, we analyze our approach for exploiting prior

knowledge. We reproduced the same experiments when

no prior knowledge is available but for three different

situations: when the prior is predominantly revolute

or prismatic, and when both are balanced. Results are

shown in Figure 14(b). It can be observed that the be-

havior depends on the predominant prior. In the case it

matches the true model, the posterior converges quickly.

If the prior is balanced, the evolution depends on the

true model. When few new observations are available,

the posterior tends to converge to the simplest model

which is prismatic. This is reasonable since the trajec-

tory is very similar for both models at this point but

the complexity is penalized. However, at a relatively low

number of observations, the posterior rapidly converges

to the true model proving, therefore, an improvement

in performance. Note that priors start around 0.3, this

is because the new observations are matched to a pre-

vious model already from the starting point. Finally,

in the case the prior does not match the true model,

the behavior is symmetric for both doors. At the be-

ginning, the observations converge with the predomi-

nant prior model. However, when the number of obser-

vations is sufficiently large, they converge towards the

true model. A numerical evaluation of the advantage of

exploiting prior knowledge is shown in Figure 15, where

we can observe the evolution of the radius estimation

error when opening a revolute door with and without

providing demonstrations of its motion. By exploiting

prior knowledge, we can see that the estimation error is

almost null from the initial stages of the opening pro-

cess, which does not occur in the other scenario. Finally,

in Figure 16 we show a series of pictures that illustrate

how the HSR successfully opens different doors. Com-

bining the proposed probabilistic approach, with the

TSR manipulation framework, the robot can operate

doors autonomously in an unknown environment.
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10 Conclusion

In this work, our objective is to push the state-of-the-

art towards achieving autonomous door operation. The

door opening task involves a series of challenges that

have to be addressed. In this regard, we have discussed

the detection of doors and handles, the handle grasp,

the handle unlatch, the identification of the door kine-

matic model, and the planning of the constrained open-

ing motion.

The problem of rapidly grasping door handles leads

to the first paper contribution. A novel algorithm to es-

timate the required end-effector grasping pose for multi-

ple handles simultaneously, in real-time, based on RGB-

D has been proposed. We have used a CNN, providing

reliable results, and efficient point cloud processing to

devise a high-performance algorithm, which proved ro-

bust and fast in the conducted experiments. Then, in

order to operate the door reliably and independently

of its kinematic model, we have devised a probabilistic

framework for inferring door models from observations

at run time, as well as for learning from robot experi-

ences and from human demonstrations. By combining

the grasp and model estimation processes with a TSR

robot motion planner, we achieved a reliable operation

for various types of doors.

Our desire is to extend this work to include more

general and complex kinematic models (Barragan et al.,

2014; Hoefer et al., 2014). This would enable robots,

not only to achieve robust door operations but would

ultimately achieve generally articulated object manipu-

lation. Furthermore, the use of non-parametric models,

such as Gaussian processes, would allow the representa-

tion of even more complex mechanisms. Also, we would

like to explore in more depth the possibility of integrat-

ing our system in a general Learning from Demonstra-

tion (LfD) framework.
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