
Design, implementation and benchmark of a
RINA-based virtual networking solution for

distributed VNFs

Master Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by

Sergio Giménez Antón

In partial fulfillment
of the requirements for the master in

Master’s degree in Advanced Telecommunication Technologies (MATT)

Advisor: Jordi Perelló
Director: Eduard Grasa
Barcelona, January 2022

Contents

List of Figures 4

1 Introduction 7

2 State of the Art of network technologies to communicate distributed
VNFs 8
2.1 Distributed telco cloud challenges and use of RINA to mitigate them . . . 8

2.1.1 Challenge 1: Instantiation and reconfiguration of the network in-
frastructure of the distributed Telco Cloud 8

2.1.2 Challenge 2: Have the ability to respond to multiple applications
with differentiated quality of service requirements, using a common
infrastructure that supports dynamic instantiation of network slices 9

2.2 Network virtualization architectures for distributed telco cloud services . . 9
2.3 Netmap: a Software framework for the implementation of high-performance

network functions . 10

3 RINA (Recursive InterNetwork Architecture) 13
3.1 Definition of the service offered by the DIF 14
3.2 The Nature of the RINA layers (the DIFs) 15
3.3 Internal Functions and Protocols of the DIF 15
3.4 Naming and addressing . 16

4 Applicability of RINA for distributed VNFs 18
4.1 VNFs running in the same server . 19
4.2 RINA in the compute nodes (1 Global DIF) 19
4.3 RINA in the VNFs and the compute nodes (2 DIFs) 20
4.4 Comparison of both scenarios . 21

5 RINA Prototype Design and Implementation 22
5.1 Netmap Data Path Implementation . 22

5.1.1 Netmap Pipes and Netmap-Passthrough as NFV Networking Enablers 22
5.1.2 Processing non-RINA Traffic: Communicating with the OS Network

Stack . 23
5.2 A Netmap Based Layer 2 Virtual Switch 23

5.2.1 The MAC Learning Algorithm . 24
5.2.2 Batching Techniques in the L2-SW Implementation 24

6 The IPCP Implementation 30
6.1 IPCP Architecture Overview . 30
6.2 Data Transfer Implementation . 31
6.3 Layer Management Implementation . 32

6.3.1 The RIB Daemon . 32
6.3.2 The Enrollment Task . 33
6.3.3 The Flow Allocator and the Management Agent 34

2

7 Experimentation, validation and benchmarking 38
7.1 Experiment Evaluation . 39

8 Conclusions and future development: 41

References 42

Appendices 45

A Experiment for benchmark the performance of the RINA stack imple-
mentation datapath 45
A.1 Experiment Setup . 45

A.1.1 Start the IPCPs . 45
A.1.2 Start the Management Agents . 45
A.1.3 Invoke the bridges / L2-SW . 46

A.2 Run the experiment . 46
A.3 Core pinning . 46

B Physical deployment. 1 IPCP in each server in same datacenter 48
B.1 Netmap . 48

B.1.1 Install drivers the remote way . 49
B.1.2 Final Netmap configurations . 49

C Detailed Virtualized testbed Setup 51

D UML of the IPCP 52

3

List of Figures

1 Diagram representing what happens when a netmap interface is set in
netmap mode. The green area represents kernel space and the red one
user space . 10

2 Conventional flow of traffic from the NIC to the OS 11
3 RINA structure: DIFs between systems (below) and IPC components (on

top) . 13
4 Naming and addressing in RINA . 17
5 High level design diagram of RINA as a virtual network solution to inter-

connect VNFs . 18
6 Work hypothesis for VNFs running in the same server 19
7 Use Cases of 1 Global DIF topology . 20
8 Use Cases of 2 DIF topology . 21
9 Prototype’s netmap-based pipeline datapath workflow diagram 22
10 Parser that distributes traffic to be further processed 26
11 Both traditional socket applications and applications running in netmap

mode benefit from netmap-passthrough [17] 27
12 Generic NFV scenario. VMs running ptnet drivers, wired through netmap

pipes. Source: [17] . 27
13 MAC learning algorithm implemented in the Layer 2 Switch 28
14 Batching algorithm implemented in L2-SW 29
15 Generic overview of the IPCP architecture of the implementation 30
16 Overview of the RX pipeline of the prototype 31
17 Generic overview of the modules of the IPCP data path: EFCP, RMT and

PA . 32
18 RIB Daemon processing of incoming CDAP messages 33
19 Workflow illustrating the RIB daemon interactions when an M CREATE

CDAP message related to a flow allocation request is received 34
20 Full enrollment process followed by the IPCP 36
21 Detailed diagram of the virtualized testbed setup 37
22 Physical testbed . 38
23 Experiment setup from a RINA perspective 39
24 Virtual testbed using a netmap pipe emulaing a physical NIC and the medium 40
25 Speed and Throughput comparison between the PoC and IRATI 40
26 The experiment set up . 45
27 Physical testbed setup . 48
28 Detailed diagram of the virtualized testbed setup 51
29 UML Diagram of the IPCP with its main components. In yellow, hash

tables that contain internal mappings . 52

4

Acknowledgements

I would like to express my deepest appreciation to Eduard Grasa (Fundació i2CAT), who
already two years ago started guiding me towards learning an amazing and bleeding edge
technology such is RINA. He has been (and still is) the best mentor I could have had.
Almost all the knowledge inside this thesis, is here thanks to his great ability to teach
and tackle all the issues that have appeared throughout this journey.

I’m deeply grateful to thank Vincenzo Maffione (Università degli Studi di Pisa) for all the
support he gave regarding all the issues I encountered implementing the netmap-based
data path of the RINA stack prototype.

I also wish to thank Jordi Perelló (Universitat Politècnica de Catalunya) for his willingness
to be the advisor of this work, and all the support he gave during the journey of writing
this thesis.

Last but certainly not least. Thank all my family, for always being there. Especially my
father, for instilling in me from a young age the passion, curiosity and admiration for
the greatness of science and technology; and my mother, for her unconditional support in
absolutely all the decisions that I have made throughout this journey.

This research was supported by the Spanish Center for the Development of Industrial
Technology (CDTI) and the Ministry of Economy, Industry and Competitiveness un-
der grant/project CER-20191015/Open, Virtualized Technology Demonstrators for Smart
Networks (Open-VERSO)

5

Abstract

Scenarios where network functions are getting decoupled from the hardware they are
running on is appearing as a common use case nowadays. Datacenters distributed in
different network segments need to run this functions virtually and orchestrate them,
which is not a simple task. A promising solution to such challenging environment is to
use RINA as a network virtualization framework to support applications in the cloud,
which natively brings capabilities that current network architectures need to add as ad-
hoc solutions, such as support for mobility, multi-homing and flexible support for mapping
application QoS requests in internal network policies.

This thesis has carried out the design, implementation and initial benchmarking of a
software-based, performing RINA implementation that provides a network solution to
provide connectivity in a distributed VNF context.

6

1 Introduction

Network operators are moving towards a life cycle model (design, implementation, oper-
ation) generally known as “Carrier Cloud” or “Telco Cloud” [2]. This model provides the
ability to decouple instantiation of network functions from the platforms where they will
run, which can be thought of as a set of Data Centers (DC) of different sizes, distributed
across multiple network segments (edge, aggregation and core). Telco clouds enable op-
erators to adopt agile operating practices similar to those of large application service
providers and the web-scale cloud players [3]. However, to implement this model, network
operators must overcome important challenges.

Current Virtual Network Function (VNF) orchestration solutions are hampered by the
inability of current network protocols to dynamically create adequate connectivity [1]
and the legacy of current standards that encourage the proliferation of protocols that
attack point solutions; complicating dynamic management of connectivity. Orchestration
of network resources, based on intention, is required; but performed efficiently and based
on open standards, including: isolation of connectivity between different services, security
management, dynamic allocation of directions, route selection and application of quality
of service.

VNFs within Telco Clouds require secure connectivity environments with the right amount
of quality, isolated from interference from services owned by other tenants. A promising
solution to such challenging environment is to use RINA - the Recursive InterNetwork
Architecture - as a network virtualization framework to support applications in the cloud,
combining traditional functions of network protocols and service meshes [34] functions in
a single integrated solution. This approach leverages the benefits of RINA to efficiently
address VNF connectivity requirements, such as: application independent namespaces [5],
dynamic, secure and customizable connectivity environments [6], support for mobility and
multi-homing without the need for dedicated protocols and flexible support for mapping
application QoS requests in internal network policies [7].

All existing implementations of the RINA architecture to date are software-based and
not designed for high-performance systems. IRATI [9] and rlite [33] are C/C++ based
implementations for Linux hosts, mostly focused on Linux-based servers, laptops and
Virtual Machines. ProtoRINA [31] is a Java-based RINA implementation, mostly designed
for education purposes and quick prototyping in academic environments. Last but not
least, RINASim [32] is an OMNeT++ based simulation framework for RINA networks.

The main contribution of this thesis is the design, prototype implementation and ini-
tial benchmarking of a software-based, performing RINA implementation that provides a
virtual network substrate in a distributed VNF context. The thesis is structured as fol-
lows: section II introduces the distributed VNF use case; section III describes the design
and implementation for the RINA virtual networking solution; section IV provides initial
benchmarking results, and section V states conclusions and discusses future work.

Part of the outcomes of this project have been included in the preparation of a scientific
article submitted for presentation in the 2022 EuCNC & 6G Summit held in Grenoble,
France on June 2022, currently under review.

7

2 State of the Art of network technologies to com-

municate distributed VNFs

2.1 Distributed telco cloud challenges and use of RINA to mit-
igate them

2.1.1 Challenge 1: Instantiation and reconfiguration of the network infras-
tructure of the distributed Telco Cloud

As we stated previously in Section 1, VNFs within Telco Clouds require secure connectivity
environments with the right amount of quality, isolated from interference from services
owned by other tenants.

The Telco Cloud distributed network fabric must be dynamically reconfigured to track the
creation and destruction of VNFs throughout their lifetime, regardless of their location.
Traditional network protocols and services, focused on connecting devices in a mostly
static configuration, do not adapt well to the requirements of native application networks
in the cloud [4], due to:

1. The lack of space for names independent of location and under application control.

2. The need for dedicated protocols to support multi-homing and mobility.

3. The difficulty of guaranteeing the performance of distributed applications.

4. The complexities related to address management and its scope in deployments of
functions in native environments in the cloud, such as virtual machines or containers.

Therefore, cloud applications generally require middleware that mitigates the limitations
of current network protocols. Service Meshes [30] are the latest incarnation of this type of
middleware, and they support a cloud application development model known as “microser-
vices architecture”. Since network protocols and service mesh proxy servers are designed
and implemented independently, this approach decreases the efficiency of network func-
tions due to redundant or misaligned functionality between service meshes and network
protocols. Also, the performance of service meshes is a problem for VNFs that play a role
in the data plane [3].

The work exposed in this thesis is tested in Open-VERSO, a 5G network targeting evolu-
tion to 6G and focusing on the delivery of bandwidth-demanding and latency-constrained
services, modelled through VNFs. In this context, RINA is applied as a network virtual-
ization framework to support applications in the cloud, integrating traditional functions of
network protocols and service meshes functions in a single integrated solution. The project
leverages the benefits of RINA to efficiently address application networking requirements,
such as

1. Application independent namespaces [5].

2. Dynamic, secure and customizable connectivity environments [6].

3. Support for mobility and multi-homing without the need for dedicated protocols.

8

4. Flexible support for mapping application QoS requests in internal network policies
[7].

2.1.2 Challenge 2: Have the ability to respond to multiple applications with
differentiated quality of service requirements, using a common infras-
tructure that supports dynamic instantiation of network slices

Until relatively recently, the quality of service in networks has been synonymous with con-
cepts such as ”speed”, ”bandwidth reservation” or the ability to guarantee a minimum or
maximum data transfer speed (peak). However, this view is changing, and network quality
metrics are evolving to better describe what applications need. The industry is gradually
recognizing the need for standard metrics that relate the performance of applications to
the behavior of the network, so that the network can:

1. The lack of space for names independent of location.

2. Fine-tune their internal mechanisms to provide adequate amounts of quality for
these applications (not too much, not too little).

3. Measure the quality that is being delivered in each network service, to assess whether
it is achieving its objectives. This metric is called quality attenuation (it is symbol-
ized by ∆Q) and it is gaining traction in the industry [8].

To be able to apply ∆Q metric in practice, the network must offer mechanisms to the
applications so that they can express their requirements dynamically, each time they
request a network service.

As stated in the introduction (section 1), RINA provides a network service API that
allows you to express this information, and also allows you to add and move it as you
go down the network layers to the physical medium. Research work prior to this project
developed a resource allocation policy for RINA based on the ∆Q framework - called
QTAMux. This policy allows a DIF to support various levels of quality of service while
making efficient use of DIF resources [7].

2.2 Network virtualization architectures for distributed telco
cloud services

To date there have been a number of European research projects (FP7 and H2020) whose
objective has been to develop technology based on RINA; working on your specifications,
use cases, network designs, and prototype implementations. The FP7 IRATI project de-
veloped the first open source RINA prototype for the Linux operating system [9], allowing
RINA to be deployed over Ethernet, TCP or UDP with simple policies for DIFs . The FP7
PRISTINE project improved the RINA implementation developed in IRATI by making it
programmable through an SDK (Software Development Kit). PRISTINE designed more
sophisticated policies for congestion control [10], scheduling [7] and security [11] functions.

Finally, the H2020 ARCFIRE project contributed to issues related to network manage-
ment [12], designed and implemented policies for quality of service, distributed mobility

9

management [6] and the dynamic change of network addresses [13]. ARCFIRE improved
the IRATI prototype with new policies, support for deploying RINA over Wi-Fi and
stability improvements to support test scenarios with up to 100 nodes using the FIRE
program testbeds [14].

The use case that this work tries to cover, is the Open-VERSO project [15], which requires
a software-based implementation of RINA, but with performance (in terms of packet-per-
second processing capacity) higher than current RINA prototypes can provide. IRATI and
rlite, RINA’s two main prototypes for the Linux operating system, are designed in which
part of the components reside in user space and part in the operating system kernel. This
design is well suited to the requirements of generic applications, allowing it to integrate
well with Linux network subsystems and provide a consistent API to all applications.

However, when the use case is focused on supporting high-performance VNFs, another
type of design is needed. This RINA prototype is based on a software framework designed
to process packets with high speed and low latency. There are different frameworks focused
on providing this functionality. For this RINA implementation it has been decided to use
Netmap, since it supports several operating systems (Linux and FreeBSD) and it allows
packets to be forwarded from an interface to the network subsystem in the kernel (which
DPDK does not allow).

2.3 Netmap: a Software framework for the implementation of
high-performance network functions

+Network
stack

netmap
ring

netmap
buf NIC

ring
NIC
ring

netmap
buf netmap

ring

NIC

Figure 1: Diagram representing what happens when a netmap interface is set in netmap
mode. The green area represents kernel space and the red one user space

10

Netmap [16] is a hardware-independent tool, which provides an API to have direct access
to the NIC functionalities from user space of the operating system. In addition, netmap
provides a set of optimizations techniques that provide better performance for packet
processing (in terms of number of packets processed per second and latency) than the
conventional implementation of network subsystems in the operating system.

When an interface is set in netmap mode, packets are intercepted before they are processed
by the operating system’s network subsystem (called “network stack” in Figure 1).

Network
stack

NIC

NIC
tx ring

NIC
rx ring

Figure 2: Conventional flow of traffic from the NIC to the OS

The conventional packet transmission and reception scheme is illustrated in Figure 2. On
the other hand, in Figure 1, an interface is shown in netmap mode that, as previously
mentioned, is disconnected from the network subsystem when the NIC is set in netmap
mode.

When an interface is in netmap mode, netmap buffers and netmap rings are allocated in
a shared memory region (zones represented in green are only accessible from kernel space,
while red ones are only accessible from user space). A netmap ring is just an abstraction
of a real NIC ring. The applications that operate in the netmap rings are synchronized
with the actual rings belonging to the NIC through calls to the operating system.

Netmap is implemented as a kernel module for FreeBSD (native) and Linux (out of the
tree) systems. Netmap offers native support for several NICs through slightly modified
drivers. For all other NICs, netmap provides a generic emulator that allows to use netmap
on top of the standard drivers.

The netmap API provides a number of optimizations de facto. One of the most relevant
is the amortization of system calls through batching. Here is a summary of the numbers
that netmap can provide:

• 10G speed with minimal packets using a fraction of a core.

• 30 Mpps on 40G NICs (limited by NIC hardware).

11

• 20 Mpps on VALE ports (netmap kernel software switch).

• 100 Mpps in netmap pipes.

• Similar performance on both physical machines and VMs.

12

3 RINA (Recursive InterNetwork Architecture)

RINA (the Recursive InterNetwork Architecture) is an architecture of computer network
protocols that unifies distributed computing with telecommunications. The fundamental
principle of RINA is to model the communications between computers as a generalization
of the communication between processes (Inter Process Communication, IPC). RINA re-
constructs the architecture of the Internet forming a model composed of a single type
of repeating layer – the DIF (Distributed IPC Facility). The DIF provides the minimum
number of components necessary to allow the distributed communication between appli-
cation instances. RINA supports multi-homing and mobility natively, provides quality of
service without need for additional protocols - beyond those already provided by the ar-
chitecture -, offers a safe and programmable environment, facilitates a more competitive
market than the current one and makes possible a gradual deployment of the technology
- interoperating with today’s existing network protocols.

RINA is the result of scientific work that seeks to describe what are the general principles
of computer networks that apply to any type of network and environment. RINA is also
the specific architecture, implementation, test platform and deployment of this theory.
The theory informally known as the IPC-based network model [26], [27]; although it also
defines concepts and results that are applicable to any type of distributed application (not
only to computer networks).

Figure 3: RINA structure: DIFs between systems (below) and IPC components (on top)

RINA is structured from a single layer type – the DIF – which is repeated as many times
as the network designer needs (Figure 3, below). in RINA, layers (DIFs) are distributed
applications that provide the same service (communication flows between application

13

instances) and have the same internal structure (Figure 3, top). The instantiation of
a layer in a system is a process called IPC Process (IPCP). All IPCPs have the same
functions, which can be grouped into the following categories:

1. Data transfer (delimited, addressing, sequencing, multiplexing, time-to-live control,
error control, encryption)

2. Data transfer control (flow control, retransmission control)

3. Layer management (routing, allocation of flows, management of the name space,
resource allocation, security management)

The functions of an IPCP can be programmed and customized through policies, so that
each DIF can be optimally adapted to its environment of operation and the requirements
of different applications.

3.1 Definition of the service offered by the DIF

The service definition of a DIF provides an abstract description of the API offered by the
DIF to the applications that use your services – the specific APIs depend on each operating
system). The application using the DIF can also be an IPC Process belonging to another
higher level DIF, thus reflecting the recursive nature of RINA. All DIFs provide the same
service, called flow. A flow is the instantiation of a communication service between two
or more instances of an application. The API offered by the DIF allows to operate on the
flows through the following operations:

• Allocate: Allows an instance of an application to request a flow to communicate
with other instance(s) of an application. To allocate a flow, the application instance
provides the name of the application destination and flow quality requirements if
necessary (limits statistics of latency and data losses, minimum capacity, etc.). If the
allocation is successful, the DIF returns a local identifier of the flow, called port-id.

• Write: Allows you to send a data unit (SDU, Service Data Unit) to through the
flow identified by the port-id. The application sends an SDU - made up of N bytes
of data - atomically. The DIF maintains the integrity of the SDU, trying to deliver
it as it is to the instances of target applications. Applications may agree to receive
SDUs incompletely or even partially (if so specified in the flow allocation). The DIF
API can block the application or return an error if the internal flow control of the
DIF does not allow send data at a certain time.

• Read: Allows to receive a data unit (SDU) through a flow identified by the port-id.
If no data is available the DIF API can block the application until receiving them
(or a timeout expires) or return an error code.

• Deallocate: The DIF removes the flow and releases all associated resources to it
(such as internal memory, scheduling capacity, etc.)

14

3.2 The Nature of the RINA layers (the DIFs)

In contrast to traditional network architectures where layers have been defined as units
of modularity (different layers carry out different functions), in RINA the layers (DIFs)
are modeled as units of resource allocation [11]: all layers perform the same functions,
but in different regions of operation (a point-to-point link, a backbone network, an access
network, an Internet, a virtual private network, etc.).

The scope of each layer is designed to manage a certain range of bandwidth, quality
of service and scale; applying the principle of “divide and conquer”. Layers manage a
certain range of resources. the policies of each layer (DIF) are selected to optimize this
management, allowing each function performed by the layer to adapt to its operational
environment [29].

How many layers are necessary in a given network? Depends on bandwidth range, quality
of service and scale: networks very simple can have enough with two levels of layers;
internet very simple with three; larger and more complicated networks may have more.
It is a question that is determined at the time of designing a network determined with
specific requirements; not at the time of specifying the protocol architecture.

3.3 Internal Functions and Protocols of the DIF

One of RINA’s main design principles is to maximize the invariances and minimize discon-
tinuities. In other words, try to the architecture has the minimum possible functions and
mechanisms, without the need to generate special cases. Applying the principle of design
in the operating systems to separate mechanism and policy - first to the data transfer
protocols and then to the data management machinery layer – it turns out that in one
layer (DIF) only two abstract protocols are needed (completed by different policies, thus
generating various specific protocols with a very large common part) [26]:

• An abstract data transfer protocol that supports different policies and a variety
of concrete syntaxes (differentiated by the lengths of the header fields used by the
protocol). This protocol is called EFCP – Error and Flow Control Protocol.

• An application protocol that allows performing operations on objects remotes, used
by all layer management functions (routing, allocation of flows, resources, etc.). This
protocol is called CDAP – Common Distributed Application Protocol.

The separation of mechanism and policy also made it possible to structure the functions
within the layer, as illustrated in Figure 3. The components of an IPC Process or IPCP
can be divided into three categories: Data transfer, decoupled via a state vector of b)
Data transfer control, decoupled through a Resource Information Base (RIB) of c) Layer
management. These three groups of functions are characterized by a decreasing duty cycle
and an increasing computational complexity (data transfer functions are the simplest ones
and those that are executed more often, etc.).

• Delimitation of SDUs. The integrity of an SDU transmitted through of the stream
is preserved by the DIF through the delimit function. This function also adapts the

15

SDU to the maximum packet size (PDU, Protocol Data Unit) with which the DIF
works. The function of delimited uses the mechanisms of fragmentation, reassembly,
concatenation and separation. In the prototype implementation presented in this
work, this functionality is implemented by the Protection and Adaptation module
(see Section 6.2)

• Error and Flow Control Protocol (EFCP). There is an instance of this protocol
for each flow that originates or terminates in the IPC Process. The protocol is di-
vided into two large functional blocks, related through a state vector: Data Transfer
(with sequencing mechanisms, packet detection of duplicated or missing, identifi-
cation of parallel EFCP instances) and Data transfer control (with data transfer
control mechanisms stream and relay).

• Relaying and Multiplexing Task (RMT). It takes decisions regarding packet
forwarding for all packets entering the IPCP through the flows provided by the
lower level DIFs, and multiplexes the multi-stream packets provided by the IPCP
that they belong to on the flows provided by the lower level DIFs. There is an
instance of the RMT for each IPC Process.

• SDU protection. This component performs the functions of verification of the
integrity of the PDUs, error detection, compression, encryption and packet lifecy-
cle management. There can be a different protection policy for each flow provided
by lower level DIFs. In the prototype implementation presented in this work, this
functionality is implemented by the Protection and Adaptation module (see Section
6.2)

The state of an IPCP is modeled as a series of objects that are stored in the RIB (Re-
source Information Base), access to which is controlled by the RIB Daemon. The RIB
imposes a schema on objects that model the state of the IPCP, defining which of the
operations available in the CDAP protocol can be executed on each object, and what are
its effects. The RIB Daemon provides all the functions of layer management the common
mechanism for interacting with the RIBs of other IPCPs on the same DIF (instead of
each layer management function using its own independent protocol, as is traditional).
This behaviour is illustrated in Figure 18, in Section 6.

3.4 Naming and addressing

Figure 4 illustrates the main entities that receive names in the RINA architecture. Appli-
cations are given a name that is independent of their location in the network (this way
they can move without losing their identity). Applications can have a name that

1. Identifies all the distributed application (it is called DAF name, Distributed Appli-
cation Facilities).

2. Identifies a subset of the process instances, members of the distributed application.

3. Identifies specific members of the distributed application (process instances of this
application).

16

Figure 4: Naming and addressing in RINA

Application names are unique within the application namespace (although there may be
multiple namespaces independent of each other). When an application requests a stream
through the DIF API, the application provides the target application name as one of the
arguments. If the stream allocation is successful, the application receives a port-id, which
is the local identifier of the stream.

The IPC Processes are instances of applications, so they have an application process
name that uniquely identifies them; as defined in the first paragraph of this section.
However, the size of the space names of IPCPs can be much larger than the number
of IPCPs within a given DIF. Also, the application names are not designed to facilitate
the routing of packets within a DIF. Therefore, it is useful to assign a synonym to the
IPC Process, called an address. The address must be dependent on the location of the
IPCP within the DIF – in other words, it should make it easier to search for and find the
IPCP in the DIF. However, the direction also has to be independent of the route taken
to get there to the IPCP – so that an IPCP can be reached efficiently by different routes
[28]. Multiple addresses can be assigned to the same IPCP – since the addresses do not
express the identity of the IPCP – that only have meaning inside the DIF (each DIF
keeps its space of addresses, which is independent of the address spaces of other DIFs).
IPCPs exchange traffic with higher or lower level DIFs through the flows identified by the
port-ids – in the same way as do the “normal” applications.

Each stream offered by a DIF is implemented internally through a ”connection” between
two instances of the EFCP protocol. Each EFCP connection is identified through a pair of
”Connection Endpoint ids” (CEP-ids), which identify the source and destination EFCP
instance for that connection. The port-ids and the CEP-ids are locally associated in each
IPC Process; an association that can change during the lifetime of the flow. The QoS-ids
identify the class to which the packets in a flow belong. All packages of the same class
receive the same treatment within the DIF, thus allowing a differential treatment between
classes (affecting variables such as latency, capacity, etc.).

17

4 Applicability of RINA for distributed VNFs

The prototype described in this work targets the core needs of the common use case in
NFV-enabled platforms, where every compute node supports the deployment of multiple
VNFs that are interconnected to provide services to users (see Figure 5). The work is tested
in the Open-VERSO federated infrastructure, a 5G network targeting evolution to 6G
and focusing on the delivery of bandwidth-demanding and latency-constrained services,
modelled through VNFs. In this context, RINA provides Virtual Private Networks (VPNs)
to connect VNFs belonging to the same service, while isolating VNFs belonging to different
services.

VM

VNF

L2 Switch
Layer 2 VM

DC1 Underlay

VNF

Datacenter DIF

WAN Underlay DC2 Underlay

Compute Server (DC1) Compute Server (DC2)

MA

MA MA

MA

RINA Manager

Integration with SOE and VIM

L2 Switch
Layer 2

Figure 5: High level design diagram of RINA as a virtual network solution to
interconnect VNFs

RINA offers virtual private networks of layer 2 between compute servers in the same or
different datacenter. This model states that each VNF is located in a dedicated VM, that
way it is ensured that isolation is provided between VNFs. These VNFs encapsulated in
VMs are the endpoints of the network. Those endpoints located in the same compute
server are interconnected through a Layer 2 software switch. The connection between
endpoints distributed in different servers (in the same or in a different datacenter) is
handled by a DIF, the underlying facility that provides communication services to the
VNFs. The applications that are responsible to provide and manage the communication
between the endpoints are the IPCPs (the orange dots in Figure 5 represent the IPCPs).
It is important to note that, although only one DIF is enough to handle communication
between the applications, it is mandatory to have IPCPs in the gateways of the datacenters
in order to add the necessary underlay that the WAN requires.

This RINA as a virtual network solution model must integrate with advanced 5G infras-
tructures. Hence, it shall communicate with the infrastructure layer of the architecture
in order to support the orchestration layer with the capabilities of instantiating VNFs
and RINA-based networks. This integration is handled by two main elements: the RINA
Management Agent (MA) and the RINA Manager (blue elements in Figure 5). A RINA
Management Agent runs in every compute server and is directly attached to a centralized

18

RINA Manager - which shall be able to interact with a Virtual Infrastructure Manager
(VIM). In the work presented in this paper, we use OpenStack as a VIM. To that end,
the RINA Manager is implemented as a mechanism driver for the Modular Layer 2 (ML2)
plugin for Neutron, the network system of OpenStack.

4.1 VNFs running in the same server

Regarding communication between VNFs running in the same server, the hypothesis
shown in Figure 6 is considered. There is an instance of a MAC learning software switch
(L2 Switch in Figure 6 and Figure 5) for each service that interconnects the corresponding
VNFs. In other words, VNFs belonging to the same service are connected between them
and isolated from those that do not belong to the same server. The L2 switch is imple-
mented with the netmap API, and its design and implementation is described in section
5.

Layer 2Layer 2

Layer 2

Layer 2

L2 switch

VNF
Layer 2

L2 switch

VM

VNF

VM

VNF

VM

VNF

VM

Computer Server

Figure 6: Work hypothesis for VNFs running in the same server

4.2 RINA in the compute nodes (1 Global DIF)

Figure 7 illustrates the two main use cases of RINA as a network solution for an NFV
context. On top, Figure 7 shows the case in which all VNFs are located in the same
datacenter or - what would be equivalent - the compute servers are connected by the same
underlay network (with Ethernet technology, IP, MPLS, etc.). VNFs - running isolated in
a VM or a container - connect to an instance of a virtual Layer 2 switch (shown in red in
Figure) inside the compute server.

The virtual Ethernet switches of different compute servers associated with VNFs belonging
to the same service are connected to each other throughout a DIF, the underlying facility

19

that provides communication services to the VNFs; in a configuration where RINA offers
Layer-2 virtual private networks.

Case B of Figure 7 reflects a scenario where the VNFs belonging to the same service are
hosted in different datacenters, therefore they do not have a common underlay. In this
case, the DIF also needs instances of IPC Processes on the gateway nodes, so these IPC
Processes can route the traffic of the VNFs through the different network segments.

VNF

L2 Switch
Layer 2

VM

VNF

L2 Switch
Layer 2

VM

Datacenter DIF

Intra DC Underlay

Case A) All VNFs in the
same datacenter

L2 Switch
Layer 2

VM

VNF

L2 Switch
Layer 2

VM

DC1 Underlay

Case B) VNFs distributed
among several datacenters VNF

Datacenter DIF

WAN Underlay DC2 Underlay

Compute Server Compute Server

Compute Server (DC1) Compute Server (DC2)

Figure 7: Use Cases of 1 Global DIF topology

4.3 RINA in the VNFs and the compute nodes (2 DIFs)

In the design described previously in Section 4.2, the VMs do not run any RINA stack. In
other words, there is only RINA running in the host, and the VNFs are generic applications
that use a legacy stack (Ethernet).

Another possible design approach is to run RINA not only in the host, but also in the
VMs. With this approach it comes a new Application DIF that uses the services of the
Datacenter DIF, i.e. the N - 1 DIF (see Figure 8). This topology allows that the application
processes inside the same Application DIF, can use the services of the DIF to have a
more tailored QoS requirements or different policies depending on the services they offer.
Furthermore, VNFs could benefit from a cleaner API, while having better support multi-
homing and mobility, without any ad-hoc solutions [35].

Regarding a possible testing scenario, since the applications running in the VMs are
generic, a path towards the implementation of this scenario could be to run IRATI [9]
inside the VMs (blue IPCPs in Figure 8) and the netmap-based implementation proposed
in this work in the hosts (orange IPCPs in Figure 8).

20

VM

VNF

VM
Datacenter DIF

Intra DC Underlay

Case A) All VNFs in the
same datacenter

VM

VNF

VM

DC1 Underlay

Case B) VNFs distributed
among several datacenters VNF

Datacenter DIF

WAN Underlay DC2 Underlay

Compute Server Compute Server

Compute Server (DC1) Compute Server (DC2)

Application DIF

VNF

Application DIF

Figure 8: Use Cases of 2 DIF topology

4.4 Comparison of both scenarios

While the 2 DIF solution brings more tailored resources for each service that the ap-
plication processes bring, it has two main drawbacks. In the first place, the application
processes must interact with the RINA stack, which is yet not supported by many appli-
cations. In fact, one of the PoC is going to be carried on top of the RINA stack prototype
presented on this work, is to run a disaggregated Open5Gs core on top of the RINA
network and see how it performs with respect to current network architectures.

21

5 RINA Prototype Design and Implementation

This section presents the design and implementation of a minimal RINA stack written in
C, as well as the needed components to integrate the implementation with an advanced
5G federated architecture. As shown in Figure 5, those main components are the Layer 2
Switch, the Management Agent, the IPCP and the data path implementation.

5.1 Netmap Data Path Implementation

RX Host Ring

skbuf

"legacy" socket
application

IPCP

RX TX

NIC
(in netmap mode)

OS' Network Stack

Hardware
Rings

Parser

Zero-Copy

netmap
pipe

netmap
pipe

socket
API

VNF ptnet

VM

L2 Switch

mem copy

RINA stack

RINA

traffic

non-RINA

traffic

Figure 9: Prototype’s netmap-based pipeline datapath workflow diagram

One potential path towards a high-performance RINA stack implementation is to use a fast
packet I/O software framework that can run on generic compute hardware, such as netmap
[16] or Intel DPDK [20]. The advantages of this approach are twofold. First, it provides
relatively high throughput with a great amount of flexibility; since the implementation of
the software program is only bound by the constraints of compute hardware instruction
sets. Second, the diversity of supported available hardware platforms. As shown in Figure
9, all the data path implementation is netmap based. Figure 16 also shows a workflow
illustrating the RINA stack path and all the interactions between the different components
that compose the data plane, shown in Figure 9. On the other hand, in Figure 10, is shown
the Parser workflow for a use case where the underlay is VLAN traffic.

5.1.1 Netmap Pipes and Netmap-Passthrough as NFV Networking Enablers

A network I/O virtualization solution must be in place in order to attach VMs to the net-
work of the host (where VMs contain VNFs), allowing inter-VM communication. There
are several state-of-the-art network back-ends: TAP (to inject/receive packets from host
TCP/IP stack), socket (packets forwarded through a TCP/UDP socket), netmap/DPDK

22

(packets injected/received from a high-performance user space networking framework). A
traditional deployment could be a virtio-net frontend attached to a TAP back-end con-
nected to either an OpenVswitch instance or a standard in-kernel L2 bridge. However, this
kind of deployment has several issues, such as not-batched read/writes to TAP interfaces
or virtual switch processing [21].

Netmap brings a network I/O virtualization solution among the aforementioned by fol-
lowing an alternative approach: netmap-passthrough [19]. Netmap provides ptnet, which
defines a virtual network driver that performs I/O. Briefly, the ptnet driver allows the VM
to connect to a device that exposes the netmap API such as physical ports (NICs), VALE
[23] ports (in-kernel virtual L2 switch) and netmap pipes. In Figure 11, is shown how the
VM bypasses the hypervisor and both netmap and legacy applications are able to benefit
from netmap optimizations. Netmap pipes are fast, zero-copy point-to-point virtual links
that make it easy to set up high speed VNF chains. They behave like Unix pipes, where
two processes can communicate between them. In a VNF context, with virtual networks
made up with ptnet as front-end, plus netmap pipes as back-end to interconnect VMs (see
Figure 12), even traditional network stack applications are able to benefit from netmap
optimizations. Finally, netmap pipes make it easy to set up high speed NVF chains, and
besides the simplicity they bring, they also overpass the performance of the state of the
art I/O virtualization solutions such as VirtIO [19], [21].

5.1.2 Processing non-RINA Traffic: Communicating with the OS Network
Stack

It is desired that the compute servers that are running a RINA stack, are also able to
process non-RINA traffic. That way, the RINA implementation allow compute servers still
be able to work with legacy non-RINA applications. This is an important feature that the
prototype must implement, so we make sure that all applications that work with current
internet architectures also can be deployed on top of a RINA network.

When a NIC is set in netmap mode, the NIC is disconnected from the host stack, and
made directly accessible to applications that use the netmap API. The operating system,
however, still believes that the NIC is present and available, so it will try to send and
receive traffic from it. In order to make the NIC rings still accessible by the operating
system, we need to make use of host rings, which are two software netmap rings that are
directly connected to the host stack, making it accessible using the netmap API. [22].

5.2 A Netmap Based Layer 2 Virtual Switch

Existing VALE virtual L2 switch has a very efficient and scalable switching logic [23],
but it forces working in the kernel, with a limited environment (limited libraries, fixed
threading and locking scheme, etc.). Since all the prototype is implemented in user-space,
a new implementation of a netmap-based L2 switch has been developed.

The L2 Switch (L2-SW) follows the netmap bridge logic [24] - which forwards traffic
between two network interfaces - generalized to N ports. However, the L2-SW implemen-

23

tation is by now a minimal implementation with the only goal to validate feasibility of the
prototype: it is not yet multithreaded, and lacks code optimizations that make L2-SW
still a bit behind of the performance brought by the bridge tool when the number of
ports is increased to more than two.

5.2.1 The MAC Learning Algorithm

The L2-SW uses a very simple MAC learning algorithm. When an Ethernet packet is
received, the L2-SW extracts the source and destination mac addresses. To do so, it gets
the MAC addresses and translate them to an unsigned 64 bytes integer:

uint64_t

mac2int(uint8_t hwaddr[])

{

int8_t i;

uint64_t ret = 0;

uint8_t *p = hwaddr;

for (i = 5; i >= 0; i--) {

ret |= (uint64_t)*p++ << (CHAR_BIT * i);

}

return ret;

}

Once the L2-SW has the translation of the source MAC, it uses is to do a lookup(src_addr)
function to the MAC learning table, where it is stored the {hash(addr), L2-SW interface}

mapping. Note that, since it is a netmap-based switch, the interfaces are stored as a
nmport_d structure, which contains all the needed information to use the netmap API.
If this lookup to the MAC table results to be NULL, then the {hash(src_addr) and the
L2-SW interface from where the packet came is stored in the MAC table. If the lookup
is successful, then a lookup(dst_addr) is performed. If this operation returns NULL, then
the L2-SW needs to do a broadcast, otherwise it already knows where to forward the
incoming packet.

All this proceeding is illustrated in a workflow on Figure 13.

5.2.2 Batching Techniques in the L2-SW Implementation

Batching is one of the key aspects to take in account when implementing a netmap
application. We need to make sure that we are amortizing system calls, i.e., for every
poll() call, the L2-SW must have processed as many packets as possible due to the fact
that system calls are computationally very expensive.

The batching algorithm implemented in L2-SW is illustrated in Figure 14, and is described
as it follows:

24

If no packets are coming (i.e., the RX-rings are empty), the L2-SW remains blocked by
poll(). When a batch of packets is copied to any RX ring, the L2-SW reads the first one
and stores its memory address (i.e., a pointer to the packet) and the destination MAC
address - for convenience, the MAC addresses are also converted to integers as explained
in Section 5.2.1 -. Then, the Netmap cur index is updated and the pkts_rcvd counter -
which represents the packets in the received batch left to be processed - is decremented by
one. The following consecutive packets of the batch that has the same destination MAC
address as the first packet, are also cur ++ and pkts_rcvd --. Once there are no more
packets in the RX-ring or the destination MAC address change (i.e., the incoming packet
has a different destination than the previous one), the L2-SW marks the destination
netmap port associated to the destination MAC with the POLLOUT flag and calls poll().
This will force netmap to wait for egress space in the destination port before copying the
packets. Once there is space in the TX-ring of the destination port, the L2-SW copies
(cur - head) packets from the source port RX-ring to the destination port TX-ring.
Finally, the L2-SW updates the head index to cur in the RX-ring of the source port in
order to indicate that ingress space is again available.

25

Packet
received

Parse (outter)
Ethernet header

EtherType

==

0x8100 ?

NO

Parse VLAN
header

Parse EFCP
header

Is expected

VLAN?

Send to network
stack

NO

YES

YES

Send to EFCP instance

eType == 0xD1F?

YES

Drop
NO

EtherType

==

0x0800 ?

Send to network
stack

Parse IP header

Parse UDP header

Is expected

UDP port?

NO
Drop

NO

YES

YES

Figure 10: Parser that distributes traffic to be further processed

26

Figure 11: Both traditional socket applications and applications running in netmap
mode benefit from netmap-passthrough [17]

Figure 12: Generic NFV scenario. VMs running ptnet drivers, wired through netmap
pipes. Source: [17]

27

Eth frame
 received

Extract
src_addr and
dst_addr

src_addr
 already in the

hashtable?

NO

dst_addr
 already in the

hashtable?

return netmap port
(value) associated to

that mac address
(key)

nm_dst = lookup (dst_addr)

send frame through
all the interfaces (but
not the one which the

packet came from)

broadcast (src_addr){

 for (dst_addr in table){
 nm_dst = lookup(src_addr);
 send_packet(nm_dst, pkt);
 }
}

lookup(src_addr)

lookup(dst_addr)

YES

YES NO

Legend
Red: beginning or end of the flow
Green: Action
Yellow: Decission
Blue: Pseudocode associated to a decision/action

insert(src_addr)
Insert

src_addr to
table

Figure 13: MAC learning algorithm implemented in the Layer 2 Switch

28

pkts in src rx
queue?

save first pkt
memory addr and
first pkt dst mac

is first pkt?

compare mac of
current pkt with mac

of first pkt

current pkt mac
==

first pkt mac?

rxring->cur ++

Wait for egress space in
the dst port

POLLOUT
in dst fd

Copy
[rxring->cur - rxring->head]

pkts to dst port

rxring->head = rxring->cur

pkts_rcvd --

pkts_rcvd = 0;

 break;

Start

Figure 14: Batching algorithm implemented in L2-SW

29

6 The IPCP Implementation

This section explains in detail how the IPCP is implemented. As mentioned in previous
sections, this project implements a prototype of an IPCP, implementing only the necessary
functionalities that lead to evaluate the experiments shown in Section 7. to be able to run
the IPCP. For a generic implementation, please refer to the IRATI project [9].

6.1 IPCP Architecture Overview

Th_tx_producer Th_tx_consumer

TO_NS

RX LM queue

TO_LM

Th_ribd

Th_rx

TX ring

RX ring

TO_AP

NIC
(netmap mode)

EFCP
Instance

Protection
&

Adaptation

L2 Switch

n
m

p
i
p
e

TX RMT Queue

RMT

Egress
traffic

Ingress
traffic

CDAP

From
VNF

To
VNF

Egress traffic
Ingress traffic
Layer Management traffic

RIB

Network
Stack

Figure 15: Generic overview of the IPCP architecture of the implementation

In Figure 15 is shown the architecture of the different internal modules of the IPCP

30

(rounded corner squares), the threads that move along the modules (orange boxes with
stripes in the sides) and the queues (all the queues are thread-safe FIFO queues).

The thread th_rx parses all the ingress traffic and sends it either to layer management
processing, the network stack or the application process (which is always a VNF in this
implementation). On the other hand, the egress traffic starts being processed by the
th_tx_producer thread. It reads the netmap RX ring of the L2-Switch, passes through
the required data transfer modules and finally enqueues the egress traffic of the VNF to
the RMT, hence, exists one th_tx_producer per every EFCP instance and VNF pair.
All these producers compete to queue traffic in the RMT queue, which is finally dequeued
and copied to the NIC TX ring by the th_tx_consumer.

Finally, the th_ribd thread implements the functionalities of the RIB daemon: it dequeues
layer management traffic, decodes it using the CDAP module, queries the RIB in order
to apply operations on its RIB objects and at the end queues the traffic in the RMT to
be further copied to the NIC by the th_tx_consumer.

6.2 Data Transfer Implementation

Protection
and

Adaptation

Relaying
and

Multiplexing

EFCP
instance

netmap
pipe

L2 Switch
VNF ens4

inner_Eth

Data

inner_Eth

Data

EFCP

VLAN

outter_Eth

netmap
pipe

inner_Eth

Data

parsed_pkt

Incoming packet

Physical NIC

EFCP

VM

IPCP

Layer 2 pkt

Figure 16: Overview of the RX pipeline of the prototype

As shown in Figure 15, there are three modules involved in data transfer functionality:
Error and Flow Control Protocol (EFCP) module, Relay and Multiplexing Task (RMT)
and the Protection and Adaptation module (PA).

• The EFCP module stores the EFCP objects and is responsible for performing op-
erations on them. It also stores the mappings between EFCP objects, VM virtual
interfaces file descriptors and flow allocator instances.

• The RMT stores the egress queues, each one mapped to the N - 1 port-id associated
to the N - 1 DIF. On the other hand, it maps the EFCP destination addresses to
its corresponding N - 1 port.

• The PA module stores all the information regarding the network underlay, so it is
responsible for adding/parsing the overhead of the egress/ingress traffic. In other
words, it implements all the operations related to SDU protection/delimitation de-
scribed in Section 3.3

31

Figure 16 shows the modules just described previously and how they attach to the whole
RX pipeline.

EFCP
instance

EFCP
instance

EFCP
instance

Relaying
and

Multiplexing

Protection
and

Adaptation

Protection
and

Adaptation

IPCP

Figure 17: Generic overview of the modules of the IPCP data path: EFCP, RMT and PA

6.3 Layer Management Implementation

The IPCP provides a minimal yet scalable layer management implementation. It only
implements the enrollment task, the flow allocator module - since those are the bare mini-
mum modules needed to establish a connection between IPCPs and application processes
-, the namespace manager and the routing module. However, namespace manager and the
routing module have not been implemented yet. This is due to the fact that all the tests
have been carried on with two IPCPs maximum, so the neighbor object in the neighbor
database in the IPCP is always the remote IPCP, thus there is no need to implement the
namespace manager. Same with the routing, since both IPCPs are directly attached with
an Ethernet link, there is no routing further than one hop yet.

6.3.1 The RIB Daemon

The RIB Daemon is the main component in layer management functionalities. It stores
the th_ribd thread, which, as shown in Figure 15, is in charge of processing all the layer
management PDUs by passing through the required modules.

It is responsible to encode and decode all the layer management traffic, which is encoded
using a Common Distributed Application Protocol (CDAP). CDAP is the common appli-
cation protocol that operates on remote objects. In this particular implementation, the
CDAP encodings are performed via protocol buffers, due to its efficiency and portability
to other languages.

When a CDAP request is received, the RIB Daemon will fetch an object from the RIB
based on its object name. The RIB is a database where RIB objects are stored. These

32

objects point to operations that perform actions in the IPCP. In other words, an IPCP
execute operations on a remote IPCP by sending CDAP PDUs. On the other hand, when
a request is sent, the RIB Daemon creates and stores a function callback. That way,
the callback will be called by the RIB Daemon once the response corresponding to the
previously sent request is received. This approach is illustrated in Figure 18. Figure 19
illustrates all the description above

The RIB Daemon also implements the Common Application Connection Establishment
Phase (CACEP). During the CACEP, two IPCPs exchange naming information and the
RIB Daemon stores and updates all this information in an application connection object.

Enrollment
Task

Flow
Allocator

RIB
Daemon

M_CREATE
M_START
M_STOP

M_DELETE

M_CONNECT
M_CONNECT_R

M_RELEASE
M_RELEASE_R

Fetch object from the RIB
(on object_name) and

invoke create()
delete() start()

RIB
Object

Call enrollment task connect()
connect_response() release()

release_response()

Delegate
operation
to relevant

module

M_CREATE_R
M_START_R

M_DELETE_R
M_STOP_R Fetch callback for the given invoke_id and

invoke create_response(),
start_response()...

Encoded
CDAP

Message
Namespace
Manager

Routing

Figure 18: RIB Daemon processing of incoming CDAP messages

6.3.2 The Enrollment Task

In order to establish a connection between two VNFs (which more generically is an appli-
cation process) it is needed to first establish a shim DIF over the underlay network, then
use the services of the shim DIF (the N - 1 DIF) to proceed with the CACEP.

Once the CACEP is established and both IPCPs have stored all the needed naming
information, the enrollee IPCP starts the enrollment to the DIF by sending an M_START

CDAP message. Within the M_START and M_START_R message exchange, both IPCPs
exchange their addresses. Right after the M_START_R message, the enroller also sends an
M_CREATE message with the enroller info, so the enrollee can store enroller’s information
as a neighbor object in the neighbors’ database. With the subsequent M_CREATE_R, the
enrollee sends to the enroller all the static (part of the definition of the DIF) and near-
static (information that may change but very infrequently, i.e. the address) information
so both IPCPs know all the necessary information from their peers. The full enrollment
process, as well as all the internal function calls of the IPCP, are shown as a sequence
diagram in Figure 20. In

33

Flow Allocation from RIBd point of view (of the IPCP 'server' side)

REMOTE_IPCP

REMOTE_IPCP

RIBd

RIBd

CDAP

CDAP

RIB

RIB

FA_inst

FA_inst

RMT_queue

RMT_queue

M_CREATE

process_msg

decoded_msg

rib_fetch_obj (object_name)

lookup

FA_rib_obj.create()

create_flow()

flow_info

encode_resp

encoded_resp

enqueue

Figure 19: Workflow illustrating the RIB daemon interactions when an M CREATE
CDAP message related to a flow allocation request is received

6.3.3 The Flow Allocator and the Management Agent

Once the two IPCPs are enrolled in the DIF, the application process (IPCP) on the N -
DIF can request a flow to enable communication between applications on the same DIF.
As stated in Section 4, in the use case covered by this work, the RINA implementation is
attached with a Software Orchestration Engine (SOE) and a VIM that govern the appli-
cation processes life cycles. Hence, the application process that request flow allocations
to the IPCP is the RINA Management Agent.

The flow allocation workflow starts with the MA receiving a slice creation request from
the infrastructure layer. Each network slice may contain several distributed VNFs, so a
network slice request may ask for several flow allocation requests to the IPCP. A network
slice request contains: the unique slice ID, the remote MAs that this MA should allocate a
flow with, and the local port where the VNF is located. In this particular implementation,
the local port is always a netmap pipe.

Once the MA request a flow allocation to the IPCP, it creates a new flow allocator instance

34

and sends an M_CREATE CDAP message to trigger a remote flow allocation in the remote
IPCP. The remote IPCP will ask his MA if this flow allocation request is legit and if yes,
the IPCP will establish a flow and send back an M_CREATE_R to confirm that the flow
allocation was successful. As an example, Figure 21 illustrates all the process described
above as a sequence diagram.

35

Enrollment workflow

onStart

onStart

ENROLLEE

ENROLLEE

ENROLLEE_RIBD

ENROLLEE_RIBD

ENROLLER_RIBD

ENROLLER_RIBD

ENROLLER

ENROLLER

enr_tsk_connect()

send_req(M_CONNECT)

M_CONNECT

enr_tsk_enroller()

send_resp(M_CONNECT_R)

M_CONNECT_R

enr_tsk_handle_conn_r()

send_req(M_START, "enrollment")

M_START

rib_obj.start()

enr_tsk_enroller()

send_req(M_START_R, "enrollment")

M_START_R

- Create neighbor object with my info
- Encode it in CDAP PDU

send_req(M_CREATE, "enrollment")

M_CREATE

send_req(M_STOP, "enrollment")

M_STOP

rib_callback_ops.start_response()

enr_tsk_handle_start_r()

rib_obj.create()

Add neigh info in neighbor db

rib_obj.stop()

enr_tsk_stop()

send_req(M_STOP_R, "enrollment")

M_STOP_R

rib_callback_ops.stop_response()

enr_tsk_handle_stop_r()

Figure 20: Full enrollment process followed by the IPCP

36

Slice and Flow Allocation Request Workflow
OpenStack IPCP A IPCP B

Trigger

Trigger

Neutron

Neutron

ML2

ML2

RINA_Mech_Driver

RINA_Mech_Driver

MA_A

MA_A

mgmt_A

mgmt_A

FA_A

FA_A

RIBd_A

RIBd_A

MA_B

MA_B

RIBd_B

RIBd_B

mgmt_B

mgmt_B

FA_B

FA_B

Request L2
network creation

Create/Update
L2 network

Notify RINA

Create Slice
(master)

Create Slice
(slave)

allocate resources

M_ALLOCATE_REQ(vm_port)

allocate_flow()

send_req(M_CREATE)

M_CREATE

accept_remote_flow()

accept?

M_ALLOCATE_REQ

allocate resources

M_ALLOCATE_RSP

remote_allocate_flow()

send_rsp(M_CREATE_R)

M_CREATE_R

handle_create_r()

send_ack()

M_ACK

Figure 21: Detailed diagram of the virtualized testbed setup

37

7 Experimentation, validation and benchmarking

Network Slice

VNF1

VM

MA

IPCP

MA

IPCP DIF

RINA Openstack Neutron Driver

Management Layer (SOE, VIM)

Server A Server B

L2-SW L2-SW

VNFn

VM

...

VNF1

VM

VNFn

VM

...PHY

Figure 22: Physical testbed

The testbed for the experiments is shown in Figure 22. It consists of two physical servers
located in the same datacenter, connected via an 1Gb Ethernet cable. The experiment
aims to evaluate the performance between this prototype and IRATI [9], which is right
now one of the most mature and generic RINA implementation as stated previously in
Section 2.

Additionally, in Figure 23 the testbed is shown from a RINA perspective in the sense that
the Figure shows how the VNF inside a VM is an application process and how hey form
a Distributed Application Process (DAF). A DAF is no more than the whole distributed
application, and it is formed by exchanging CDAP messages and using the IPC services
from the DIF they belong to.

However, the testbed has a main caveat: the maximum line rate supported on a physical
link, 1.488 for 1 Gb Ethernet. Also, other minor constraints are expected to appear in this
physical testbed, such as physical medium or hardware inefficiencies. Because of this, the
performance of the prototype has been tested in a fully virtualized environment, shown
in Figure 24. In this virtualized experiment, a netmap pipe attached to both IPCPs acts
as a physical NIC and physical medium at the same time. That way, it is possible to test
the performance of the implementation without being capped by physical limitations.

Having a virtualized testbed in a single machine facilitates the quick testing of functionali-
ties under development as well as the ability to act as a benchmark in the sense of a way of
obtaining maximum values thanks to the lack of physical hardware/medium limitations.
It is important to note that, in order to increase the simplicity of the virtualized test, we
are not using virtual machines, since the performance is the same with or without using
VMs due to the use of netmap-passthrough [19].

38

AP

Connection
(src_cepid <--> dst_cepid)

AP

DAF VNF

VM

DIF
IPCP

SHIM DIF

port-id port-id

netmap
descriptor

netmap
descriptor

cep-id

port-id port-id

ETHERNET

VNF

VM

IPCP

cep-id

N-1 Flow
(port-id <--> port-id)

N Flow
(port-id <--> port-id)

Figure 23: Experiment setup from a RINA perspective

All metrics related to speed and latency are obtained through the pkt-gen [25] tool, which
leverages netmap to generate and receive packets in large batches, taking advantage of all
netmap optimizations. Another consideration is that only one VNF runs at each server,
which results into the lack of threads of execution competing for the resources of the
queues, and thereby this experiment can be considered as a benchmark.

7.1 Experiment Evaluation

Figure 25 shows the speed in Mega packets per second (Mpps) and the throughput in
Gbps, both as a function of the packet size. The green-dotted line represents the theoretical
maximum speed in a physical 1 Gbit Ethernet wire. As stated in previous sections, due
to the use of packet I/O software framework for packet processing, performance in terms
of speed (Mpps) and throughput (Gbps) is the order of 100 times higher than IRATI.

39

pkt-
gen
tx

pkt-
gen
rx netmap

pipe switch

IPCP
A

IPCP
B netmap

pipe
netmap

pipe
[NIC]

netmap
pipe switch

Figure 24: Virtual testbed using a netmap pipe emulaing a physical NIC and the medium

pkt size

S
pe

ed
 (M

pp
s)

0

2

4

6

250 500 750 1000 1250

netmap-based RINA IRATI Theoretical Maximum in 1Gb Ethernet wire

Speed [Mpps]

(a) Speed vs packet size in Mpps

pkt size

Th
ro

ug
hu

t (
G

bp
s)

0

10

20

30

40

250 500 750 1000 1250

netmap-based RINA IRATI Theoretical Maximum in 1Gb Ethernet wire

Throughut [Gbps]

(b) Throughput vs packet size in Gbps

Figure 25: Speed and Throughput comparison between the PoC and IRATI

However, it can be noted that the throughput is slightly higher than it should be: this is
due to the addition of the WAN header (IP + UDP) and the RINA header (EFCP).

It is important noting that, among the components that are part of the pipeline shown
in Figure 24, the IPCP is the bottleneck, as it can process 60 bytes packets at 4 Mpps;
whereas a single L2-SW can process 60 bytes packets at 12 Mpps (using zero-copy). As
the IPCP implementation can be further optimized, it is expected that performance of
the pipeline could increase.

40

8 Conclusions and future development:

The work carried out in this thesis has proven the feasibility of implementing a RINA
stack based on netmap as packet processing framework.

However, some improvements on the prototype implementations are to be done. This in-
cludes moving towards a multi-thread approach in the L2-SW, i.e., having a consumer/pro-
ducer thread pair per interface that reads/forward traffic without giving any priority to
any interface (or giving priorities on purpose).

On the other hand, another improvement consists on having more than one thread that
performs read/write operations to the physical NICs. Whereas this is not needed in vir-
tualized environments (due to the fact that netmap pipes only have a single TX/RX ring
pair), it may affect the performance in physical NICs that have several TX/RX ring pairs.

Due to the fact that the data plane implementation is fully implemented in user-space,
an implementation from scratch of the IPCP has been carried out. The IPCP is a key
component in the RINA architecture, as it is responsible to expose the API to operate
in remote objects in the DIF, so a more generic IPCP implementation is an important
improvement to take in account and make sure it can cover use cases that may appear.

Finally, the next steps regarding the implementations are to validate the integration of
the prototype with a federated 5G architecture, first validating its integration with an
infrastructure layer (i.e., OpenStack) as well as validating the performance with highers
layers (i.e., an orchestration layer). In order to achieve so, work towards the implementa-
tion of a mechanism driver to be integrated with Neutron’s ML2 plugin in OpenStack is
already being carried on.

41

References

[1] J. Day, “How in the heck do you lose a layer!?,” in 2011 International Conference on
the Network of the Future, pp. 135–143, 2011.

[2] T. Nolle, “Cloud-native for carrier cloud.” Accessed: 2021-12-6.

[3] G.-P. S. N. WG, “From webscale to telco, the cloud native journey,” 2018.

[4] R. R. Kewin Rausch, “Progressive network transformation with rina,” 2017.

[5] M. P. d. L. Leon, R. Ranganathan, D. Bainbridge, K. Ramanarayanan, A. Corston-
Petrie, and E. Grasa, “Multi-operator ipc vpn slices: applying rina to overlay net-
working,” in 2019 22nd Conference on Innovation in Clouds, Internet and Networks
and Workshops (ICIN), pp. 72–75, 2019.

[6] E. Grasa, L. Bergesio, M. Tarzan, D. Lopez, S. van der Meer, J. Day, and L. Chitku-
shev, “Mobility management in rina networks: Experimental validation of architec-
tural properties,” in 2018 IEEE Wireless Communications and Networking Confer-
ence (WCNC), pp. 1–6, 2018.

[7] S. Gaixas, J. Perello, D. Careglio, E. Gras, M. Tarzan, N. Davies, and P. Thomp-
son, “Assuring qos guarantees for heterogeneous services in rina networks with δq,”
pp. 584–589, 12 2016.

[8] B. Forum, “Quality of experience delivered (qed) project press release.” Accessed:
2021-12-6.

[9] S. Vrijders, D. Staessens, D. Colle, F. Salvestrini, E. Grasa, M. Tarzan, and L. Ber-
gesio, “Prototyping the recursive internet architecture: the irati project approach,”
IEEE Network, vol. 28, no. 2, pp. 20–25, 2014.

[10] P. Teymoori, M. Welzl, S. Gjessing, E. Grasa, R. Riggio, K. Rausch, and D. Siracusa,
“Congestion control in the recursive internetworking architecture (rina),” pp. 1–7,
2016.

[11] E. Gras, O. Rysavy, O. Lichtner, H. Asgari, J. Day, and L. Chitkushev, “From pro-
tecting protocols to layers: Designing, implementing and experimenting with security
policies in rina,” 05 2016.

[12] S. van der Meer, J. Keeney, L. Fallon, S. Feghhi, and A. de Buitléir, “Large-scale
experimentation with network abstraction for network configuration management,”
pp. 60–65, 2019.

[13] E. Grasa, L. Bergesio, M. Tarzan, D. Lopez, J. Day, and L. Chitkushev, “Seamless
network renumbering in rina: Automate address changes without breaking flows!,”
pp. 1–6, 2017.

[14] A. F4.4, “Arcfire d4.4. execution of experiments, analysis of results and benchmarking
of kpis.” Accessed: 2021-12-10.

[15] “Open-verso project.” Accessed: 2021-12-12.

42

[16] L. Rizzo, “netmap: a novel framework for fast packet i/o,” pp. 101–112, 2012.

[17] V. Maffione, “Netmap as a backend for vms.” Accessed: 2021-12-8.

[18] E. Security, “What’s the max speed on ethernet?.” Accessed: 2021-12-19.

[19] V. Maffione, L. Rizzo, and G. Lettieri, “Flexible virtual machine networking using
netmap passthrough,” 06 2016.

[20] M.-A. Kourtis, G. Xilouris, V. Riccobene, M. J. McGrath, G. Petralia, H. Koumaras,
G. Gardikis, and F. Liberal, “Enhancing vnf performance by exploiting sr-iov and
dpdk packet processing acceleration,” Proceedings of 2015 IEEE Conference on Net-
work Function Virtualization and Software Defined Network (NFV-SDN), 2015.

[21] V. Maffione, “Netmap as a backend for vms.” Accessed: 2022-1-10.

[22] L. Rizzo, “Revisiting network i/o apis: The netmap framework,” ACM Queue, vol. 10,
p. 30, 03 2012.

[23] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual machines,” 12 2012.

[24] M. L. Luigi Rizzo, “A netmap application to bridge two network interfaces.” Ac-
cessed: 2022-1-10.

[25] L. Rizzo, “Packet generator for use with netmap.” Accessed: 2022-1-13.

[26] J. Day, Patterns in network architecture: A return to fundamentals. Pearson Educa-
tion, 2007.

[27] J. Day, I. Matta, and K. Mattar, “Networking is ipc: A guiding principle to a better
internet,” in Proceedings of the 2008 ACM CoNEXT Conference, CoNEXT ’08, (New
York, NY, USA), Association for Computing Machinery, 2008.

[28] J. Day, “How naming, addressing (and routing) are supposed to work,” 2016.

[29] V. Maffione, F. Salvestrini, E. Grasa, L. Bergesio, and M. Tarzan, “A software devel-
opment kit to exploit rina programmability,” in 2016 IEEE International Conference
on Communications (ICC), pp. 1–7, 2016.

[30] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service mesh: Challenges, state of
the art, and future research opportunities,” in 2019 IEEE International Conference
on Service-Oriented System Engineering (SOSE), pp. 122–1225, 2019.

[31] Y. Wang, I. Matta, F. Esposito, and J. Day, “Introducing protorina: a prototype for
programming recursive-networking policies,” SIGCOMM Computer Communications
Review, vol. 44, pp. 129–131, July 2014.

[32] V. Vessely, M. Marek, T. Hykel, and O. Rysavy, “Rinasim: Your recursive inter-
network architecture simulator,” Proceedings of the OMNeT++ Community Summit
2015, September 2015.

[33] V. Maffione, “A light rina implementation.” Online: https://github.com/rlite/rlite,
2017.

43

[34] S. Fulton, “Service mesh: What it is and why it matters so much now.” Accessed:
2021-12-27.

[35] E. Grasa, L. Bergesio, M. Tarzan, D. Lopez, S. van der Meer, J. Day, and L. Chitku-
shev, “Mobility management in rina networks: Experimental validation of architec-
tural properties,” in 2018 IEEE Wireless Communications and Networking Confer-
ence (WCNC), pp. 1–6, 2018.

44

Appendices

A Experiment for benchmark the performance of the

RINA stack implementation datapath

A.1 Experiment Setup

pkt-gen
tx

pkt-gen
rx

IPCP
A

IPCP
B

netmap
bridge

netmap
bridge

netmap
pipe

netmap
pipe

netmap
pipe
[NIC]

netmap
pipe

3:01{1 3:01}1 3:01{2 3:01}2 3:02}1 3:02{1 3:03{2

netmap
pipe

3:03}1 3:03{1 3:03}2

Figure 26: The experiment set up

• Maximum 2 netmap pipes per VALE port memory region. IOW, maximum pipes
between you can zerocopy is 2.

• Using pkt-gen as the packet generator.

• There is no need to use VMs because with netmap passthrough, pkt-gen has the
same performance in or outside a VM.

A.1.1 Start the IPCPs

Build them if not already built:

mkdir build

cd build

cmake ..

make ipcp

make l2-switch

Now start IPCP A and IPCP B:

IPCP A:

sudo ./out/ipcp ../test/11_two_ipcps_config_file/ipcp_a.json

IPCP B:

sudo ./out/ipcp ../test/11_two_ipcps_config_file/ipcp_b.json

If everything went fine, you should see an output telling that enrollment went fine in each
IPCP:

[INFO] enr_tsk_handle_stop_r (/home/sergio/i2cat/netmap-rina-router/ipcp/enrollment-task.c:236) - Enrollment finished with IPCP IPCP_B

A.1.2 Start the Management Agents

Read the MA README to know how to install dependencies and start the management
agents.

45

Start MA A and wait for slice request:

python management_agent.py -c ./test/config_a.json

MA_A>: --start

MA_A>: -c -id 1 -rapn MA_B -r slave -p vale3:01}2

{management_agent.py:155} INFO - ManagementAgent: Creating slice

Start MA B and create a slice request:

python management_agent.py -c ./test/config_b.json

MA_B>: --start

MA_B>: -c -id 1 -rapn MA_B -r master -p vale3:03}1

If all the flow allocation workflow went fine, you should see an ACK coming from IPCP
B to MA B:

MA_B>: Received message: opcode: M_ACK

Note that the MA will complain because it cannot find the layer 2 process. It’s fine, I just
removed some lines to avoid the MA to invoke the L2-SW.

A.1.3 Invoke the bridges / L2-SW

Invoke the ”IPCP A” bridge:

sudo bridge -i vale3:01}1 -i vale3:01{2

Invoke the ”IPCP B” bridge:

sudo bridge -i vale3:03{1 -i vale3:03{2

A.2 Run the experiment

On the IPCP B side, run a the netmap pkt-gen tool in receive mode:

sudo pkt-gen -i vale3:03}2 -f rx

Finally, on the IPCP A side, run a the netmap ‘pkt-gen‘ tool in transmit mode:

sudo pkt-gen -i vale3:01{1 -f tx

A.3 Core pinning

The experiment might run faster if the affinity of the process is constrained to a CPU
core.

$ pgrep ipcp & pgrep bridge

50748

46

50761

49243

49251

$ sudo taskset -cp 0,1 50748

pid 50748’s current affinity list: 0-7

pid 50748’s new affinity list: 0,1

$ sudo taskset -cp 2,3 50761

pid 50761’s current affinity list: 0-7

pid 50761’s new affinity list: 2,3

$ sudo taskset -cp 4,5 49243

pid 49243’s current affinity list: 0-7

pid 49243’s new affinity list: 4,5

$ sudo taskset -cp 6,7 49251

pid 49251’s current affinity list: 0-7

pid 49251’s new affinity list: 6,7

47

B Physical deployment. 1 IPCP in each server in

same datacenter

Network Slice

VNF1

VM

MA

IPCP

MA

IPCP DIF

RINA Openstack Neutron Driver

Management Layer (SOE, VIM)

Server A Server B

L2-SW L2-SW

VNFn

VM

...

VNF1

VM

VNFn

VM

...PHY

Figure 27: Physical testbed setup

B.1 Netmap

First thing we need to do is to install netmap-patched drivers in the server.

In espriuX case, NIC drivers are igb in both servers, then all the commands
are related to the igb driver.

First, clone the netmap repo in any directory:

git clone https://github.com/luigirizzo/netmap

Now, move to the netmap directory, and run the configure command. Make sure you have
kernel headers matching your installed kernel. For some drivers (e1000, veth, forcedeth,
virtio-net or r8169). The easiest way I found for downloading the sources is to download
the sources from launchpad.net. To do so, in the google search bar type: site:launchpad.net
linux-image-4.4.0-31-generic. That will look only for results in launchpad.net and
for exact name search.

./configure --drivers=igb

We specify the driver we want to use in order to not download all the sources
of the drivers that netmap supports (which is the default option). In this case,
we are using the igb driver.

Now, compile and install the netmap kernel module with:

48

make

sudo make install

Now we have the netmap kernel module installed in the kernel (you can double-check with
lsmod | grep netmap).

Now we have to replace the current NIC driver with the netmap-patched driver we just
compiled. Please do that in a physical tty (not ssh or remote access), because when the
NIC driver is removed, you will automatically lose connection to the remote machine.
Later I’ll put also a “remote install method” that worked for me.

Assuming you are in the netmap directory:

• Remove the igb driver:

rmmod igb

• Install netmap module if not done previously:

insmod ./netmap.ko

• Install the netmap-patched driver:

insmod igb-5.3.5.20/src/igb.ko

B.1.1 Install drivers the remote way

If there is not physical access to the server, you can install the netmap-patched driver in
the remote machine using the following commands (at least that worked for me).

First create a bash script that will be executed in the remote machine. The script looks
like that:

rmmod igb

modprobe netmap

insmod path/to/netmap/igb-5.3.5.20/src/igb.ko

Now, run the script in the remote machine. Make sure it is run in background!
Otherwise, the process will stop in the rmmod igb step, and you’ll lose the ssh
access

sudo ./remote_install.sh &

B.1.2 Final Netmap configurations

Enable communication within the network stack In order to enable communica-
tion within the network stack, we need to disable NIC offloads. netmap does not program
the NICs to perform offloadings such as TSO, UFO, RX/TX checksum offloadings, etc. As
a result, in order to let netmap applications correctly interact with the host rings,
you need to disable these offloadings:

ethtool -K eth0 tx off rx off gso off tso off gro off lro off

49

Wait time for the NIC to be ready Sometimes when netmap opens a physical NIC
in netmap mode it needs to wait a bit for negotiation and the link might last a few seconds
to be up. Beware of that, because a timer may be useful when talking to physical ports
to let link negotiation complete before starting transmission (netmap bridge application
leaves 4 seconds for negotiation in physical links).

However, I’ve not encountered the need for a wait time with virtual netmap ports such
as netmap pipes.

50

https://github.com/luigirizzo/netmap/blob/master/apps/bridge/bridge.c#L201

C
D
e
ta
il
e
d

V
ir
tu

a
li
ze

d
te
st
b
e
d

S
e
tu

p

va
le

2:
1{

1
va

le
2:

1}
1

n
m

p
i
p
e

T
h
_
t
x
_
p
r
o
d
u
c
e
r

T
h
_
t
x
_
c
o
n
s
u
m
e
r

T
X
_
q
o
s
_
q
u
e
u
e

N
e
t
w
o
r
k

S
t
a
c
k

T
O
_
A
P

T
O
_
N
S

R
X
_
L
M
_
q
u
e
u
e

T
O
_
L
M

w
r
i
t
e

C
D
A
P

r
e
s
p
o
n
s
e

T
h
_
r
i
b
d

T
h
_
r
x

C
D

AP

v
3
:
0
9
{
1

v
3
:
0
9
}
1

nm pipe

T
h
_
r
x

R
X
_
L
M
_
q
u
e
u
e

T
O
_
L
M

T
h
_
r
i
b
d

T
h
_
t
x
_
c
o
n
s
u
m
e
r

T
X
_
q
o
s
_
q
u
e
u
e

v
2
:
4
}
1

n
m

p
i
p
e

T
h
_
t
x
_
p
r
o
d
u
c
e
r

IP
C

P
A

v
3
:
0
2
{
1

v
3
:
0
2
}
1 T
X
_
r
i
n
g

R
X
_
r
i
n
g

T
X
_
r
i
n
g

R
X
_
r
i
n
g

ne
tm

ap
 p

ip
e

C
D

AP

va
le

2:
1{

1
v
3
:
0
9
}
1

p
k
t
-
g
e
n

-
f

r
x

p
k
t
-
g
e
n

-
f

t
x

l
m
-
n
m
-

s
e
n
d
e
r

p
k
t
-
g
e
n

-
f

r
x

p
k
t
-
g
e
n

-
f

t
x

l
m
-
n
m
-

s
e
n
d
e
r

T
O
_
A
P

N
e
t
w
o
r
k

S
t
a
c
k

T
O
_
N
S

v
3
:
0
9
}
1

v
2
:
0
2
{
1

nm pipe

M
an

ag
em

en
tA

ge
nt

va
le

9:
01

{1

va
le

9:
01

}1

M
an

ag
em

en
tA

ge
nt

va
le

9:
02

{1

nm pipe

va
le

9:
02

}1

L2
-S

W

va
le

2:
2{

1 n
m

p
i
p
eva

le
2:

2}
1

IP
C

P
B

L2
-S

W

va
le

2:
3{

1

n
m

p
i
p
e

va
le

2:
3}

1
v
2
:
4
{
1

F
ig
u
re

28
:
D
et
ai
le
d
d
ia
gr
am

of
th
e
v
ir
tu
al
iz
ed

te
st
b
ed

se
tu
p

51

D
U
M

L
o
f
th

e
IP

C
P

ip
cp

+
fie

ld
: t

yp
e

+
m

et
ho

d(
ty

pe
):

ty
pe

<<
 th

re
ad

 >
>

ip
cp

_t
h_

rx

<<
 th

re
ad

 >
>

ip
cp

_t
h_

tx

ef
cp

- c
on

ne
ct

io
n-

ta
bl

e

co
nn

ec
tio

n-
ta

bl
e

<u
in

t1
6_

t l
oc

al
_c

ep
id

,
(s

tru
ct

 n
m

_p
or

td
 *n

m
_p

ip
e

st
ru

ct
 e

fc
p_

co
nn

ec
tio

n
*e

fc
pc

on
n)

 >

re
ad

/w
rit

e

re
la

yi
ng

-m
ul

tip
le

xi
ng

- f
or

w
ar

di
ng

_t
ab

le
- t

xq
_c

on
ta

in
er

fo
rw

ar
di

ng
-ta

bl
e

<u
in

t1
6_

t d
st

_a
dd

r,

 u

in
t1

6_
t n

1_
po

rt

 s
tru

ct
 q

ue
ue

 *t
xq

>

Le
ge

nd
: In
 ta

bl
es

, u
si

ng
 th

e
no

ta
tio

n:
 <

ke
y,

 v
al

ue
>

pr
ot

ec
tio

n-
ad

ap
ta

tio
n

- p
a_

un
d_

ta
bl

e

un
de

rla
y-

ta
bl

e

<u
in

t1
6_

t n
1_

po
rt,

 s
tru

ct
 u

nd
er

la
y

*u
nd

>

re
ad

/w
rit

e

<<
 In

te
rf

ac
e

>>
ha

sh
-ta

bl
e.

h

Im
pl

em
en

ts

Im
pl

em
en

ts Im
pl

em
en

ts

rx
_l

m
_q

ue
ue

tx
_q

os
_q

ue
ue

<<
 In

te
rf

ac
e

>>
fif

o-
qu

eu
e-

ifa
ce

.h

Im
pl

em
en

ts

Im
pl

em
en

ts

<<
 th

re
ad

 >
>

rib
d_

th
rib

d

ac
_t

ab
le

<u
in

t1
6_

t n
1_

po
rt,

 s
tru

ct
 a

pp
lic

at
io

n_
co

nn
 *a

c>

<<
 E

xt
er

na
l >

>
na

no
pb

cd
ap

.p
ro

to

<<
 E

xt
er

na
l >

>
ne

tm
ap

ne
tm

ap
-u

til
s

1

1

1

1

1 1

1

ef
cp

-c
on

ne
ct

io
n

- d
st

_a
dd

r
- s

rc
_a

dd
r

- q
os

_i
d

- d
st

_c
ep

id
- s

rc
_c

ep
id

co
nn

T_
en

tr
y

- s
tru

ct
 e

fc
p_

co
nn

ec
tio

n
*c

on
n

- s
tru

ct
 n

m
po

rt_
d

*n
m

_p
or

t

0.
.*

U
se

U
se

U
se

U
se

U
se

U
se

en
qu

eu
es

 /
de

qu
eu

es

en
qu

eu
es

en
qu

eu
es

U
se

U
se

ta
bl

e_
op

s

0.
.*

fw
dT

_e
nt

ry

- s
tru

ct
 q

ue
ue

 *q
ue

ue
- u

in
t1

6_
t *

n1
_p

or
t

0.
.*

un
de

rla
y

-
st

ru
ct

 e
th

er
_h

ea
de

r *
o_

et
h

- s
tru

ct
 ip

hd
r *

ip
h

-
st

ru
ct

 u
dp

hd
r *

ud
ph

-
st

ru
ct

 v
la

n_
hd

r *
vl

an
h

-
st

ru
ct

 n
m

po
rt_

d
*n

m
_d

st
_p

or
t

-
en

um
 p

kt
_t

yp
e

ty
pe

0.
.*

de
qu

eu
es

1

1

1

U
se

cd
ap

+
en

co
de

()
+

de
co

de
 ()

pa
ss

es

m
sg

s
st

ar
ts

st
ar

ts

st
ar

ts

tx
q-

co
nt

ai
ne

r

<
ui

nt
16

_t
 n

1_
po

rt,

qu
eu

e
*tx

q>
Im

pl
em

en
ts

0.
.*

1

ta
bl

e_
op

s

rib

<s
tri

ng
_t

 o
bj

_n
am

e,
 s

tru
ct

 ri
b_

ob
j *

>

Im
pl

em
en

ts

Im
pl

em
en

ts

1

rib
_o

bj

0.
.*

in
se

rts
 /

re
tri

ev
es

in
vo

ke

its
 o

pe
ra

tio
ns

en
ro

llm
en

t-t
as

k

1
in

vo
ke

pr
im

iti
ve

s

<<
 In

te
rf

ac
e

>>
ba

se
-r

ib
-o

bj

Im
pl

em
en

ts

flo
w

-a
llo

ca
to

r

1

js
on

-p
ar

se
r

+
cj

so
n_

pa
rs

er
_t

es
t_

co
nf

_f
ile

(c
ha

r *
 fi

<<
 E

xt
er

na
l >

>
cJ

SO
N

U
se

pa
rs

es

co
nf

ig
 fi

le

in
vo

ke
pr

im
iti

ve
s

ne
ig

hb
or

s-
db

<c
ha

r *
 a

p_
na

m
e

st
ru

ct
 n

ei
gh

bo
r_

ne
ig

hb
or

_i
nf

o

0.
.*

pe
nd

in
g_

re
qs

_t
ab

le

<u
in

t1
6_

t i
nv

ok
e_

id
, s

tru
ct

 c
al

lb
ac

k_
op

s
*c

o>
1

ca
llb

ac
k_

op
s

ap
pl

ic
at

io
n_

co
nn

ec
tio

n

fa
i_

ta
bl

e

<c
ha

r *
 p

or
t_

id
, s

tru
ct

 fa
i *

>

fa
i

0.
.*

n-
flo

w
-c

on
ne

ct
io

n-
ta

bl
e

<i
nt

 n
et

m
ap

_p
or

t_
fd

,
st

ru
ct

 e
fc

p_
co

nn
ec

tio
n

*e
fc

pc
on

n>

1.
.*

1

Im
pl

em
en

ts

sl
ic

e_
flo

w
_m

ap

<i
nt

 s
lic

e_
id

, i
nt

 lo
ca

l_
po

rt_
id

 *>
Im

pl
em

en
ts

Im
pl

em
en

ts

F
ig
u
re

29
:
U
M
L
D
ia
gr
am

of
th
e
IP

C
P
w
it
h
it
s
m
ai
n
co
m
p
on

en
ts
.
In

ye
ll
ow

,
h
as
h
ta
b
le
s
th
at

co
n
ta
in

in
te
rn
al

m
ap

p
in
gs

52

	List of Figures
	Introduction
	State of the Art of network technologies to communicate distributed VNFs
	Distributed telco cloud challenges and use of RINA to mitigate them
	Challenge 1: Instantiation and reconfiguration of the network infrastructure of the distributed Telco Cloud
	Challenge 2: Have the ability to respond to multiple applications with differentiated quality of service requirements, using a common infrastructure that supports dynamic instantiation of network slices

	Network virtualization architectures for distributed telco cloud services
	Netmap: a Software framework for the implementation of high-performance network functions

	RINA (Recursive InterNetwork Architecture)
	Definition of the service offered by the DIF
	The Nature of the RINA layers (the DIFs)
	Internal Functions and Protocols of the DIF
	Naming and addressing

	Applicability of RINA for distributed VNFs
	VNFs running in the same server
	RINA in the compute nodes (1 Global DIF)
	RINA in the VNFs and the compute nodes (2 DIFs)
	Comparison of both scenarios

	RINA Prototype Design and Implementation
	Netmap Data Path Implementation
	Netmap Pipes and Netmap-Passthrough as NFV Networking Enablers
	Processing non-RINA Traffic: Communicating with the OS Network Stack

	A Netmap Based Layer 2 Virtual Switch
	The MAC Learning Algorithm
	Batching Techniques in the L2-SW Implementation

	The IPCP Implementation
	IPCP Architecture Overview
	Data Transfer Implementation
	Layer Management Implementation
	The RIB Daemon
	The Enrollment Task
	The Flow Allocator and the Management Agent

	Experimentation, validation and benchmarking
	Experiment Evaluation

	Conclusions and future development:
	References
	Appendices
	Experiment for benchmark the performance of the RINA stack implementation datapath
	Experiment Setup
	Start the IPCPs
	Start the Management Agents
	Invoke the bridges / L2-SW

	Run the experiment
	Core pinning

	Physical deployment. 1 IPCP in each server in same datacenter
	Netmap
	Install drivers the remote way
	Final Netmap configurations

	Detailed Virtualized testbed Setup
	UML of the IPCP

