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Abstract 
 
 

The objective of this master's thesis is the implementation and validation, by means of literature 
examples, of the Herschel-Bulkley constitutive law in fluid dynamics in a particle finite element method 
(PFEM). 
 
The basis of the work is the PFEM formulation for Bingham fluids implemented in the open-source 
platform Kratos Multiphysics. 
 
The Herschel-Bulkley model relates the shear stress tensor to the strain rate tensor taking into account 
the yield stress, which limits the beginning or the end of the fluid motion; the fluid viscosity, which is 
responsible for the fluid's resistance to motion; and the fluid index, a parameter representing the level of 
nonlinearity of the motion. 
 
The Herschel-Bulkley law is validated with benchmark problems from the literature. Convergence in space 
and time, sensitivity analysis of the model variables and comparisons with the standard Bingham model 
are carried out.  
 
In addition, the so-called Papanastasiou regularization is applied to avoid numerical drawbacks arising 
from the Herschel-Bulkley model. 
 
All results are plotted throughout the paper and compared to both numerical and experimental 
references found in scientific articles. 
 
Throughout the numerical calculations it is possible to calibrate a series of fundamental parameters for 
simulations with the model. 
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Resumen 
 
 

El objetivo de este trabajo de final de máster es la implementación y validación, mediante ejemplos en la 
literatura, de la ley constitutiva de Herschel-Bulkley de la dinámica de fluidos mediante el método de 
elementos finitos de partículas (PFEM). 
 
La base del trabajo es la formulación PFEM para fluidos Bingham implementada en la plataforma de 
código abierto Kratos Multiphysics. 
 
El modelo de Herschel-Bulkley relaciona el tensor de tensiones cortante con el tensor de velocidad de 
deformación teniendo en cuenta el límite elástico, que limita el inicio o el final del movimiento del fluido; 
la viscosidad del fluido, que es responsable de la resistencia del fluido al movimiento; y el índice del fluido, 
un parámetro que representa el nivel de no linealidad del movimiento. 
 
La ley de Herschel-Bulkley se valida con problemas de referencia de la literatura. Se lleva a cabo la 
convergencia en el espacio y el tiempo, el análisis de sensibilidad de las variables del modelo y las 
comparaciones con el modelo estándar de Bingham.  
 
Además, se aplica la llamada regularización de Papanastasiou para evitar los inconvenientes numéricos 
del modelo de Herschel-Bulkley. 
 
Todos los resultados se grafican a lo largo del trabajo y se comparan con referencias numéricas y 
experimentales encontradas en artículos científicos. 
 
A lo largo de los cálculos numéricos es posible calibrar una serie de parámetros fundamentales para las 
simulaciones con el modelo. 
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1.1. Objectives 
 
The main purpose of the work consists in the implementation and validation of a Herschel-Bulkley 
constitutive law with Papanastasiou regulating parameter. The regularization of the Herschel-Bulkley law 
is required in order to circumvent the numerical drawbacks arising from the piecewise function of the 
model and its singularity. For this purpose, this model is solved numerically by means of the Particle Finite 
Element Method, a method that combines the fundamentals of particle methods and the Finite Element 
Method (FEM). 
 
The model is implemented in the Kratos Multiphysics program (from here on Kratos) that is a framework 
for building parallel multi-disciplinary simulation software. Kratos has BSD license and is written in C++ 
with extensive Python interface. 
 
The implementation of the law is validated and contrasted with examples found in the literature. The 
validation has multiple parts where convergence studies are highlighted by varying the mesh size among 
others. Through this, the sensibility of the model to crucial parameters is studied. Particular attention is 
devoted to study the effect of the Papanastasiou regulation parameter. 
 
 

1.2. Motivation 
 
Laboratory testing on non-Newtonian fluids is a complex task. It is particularly complex to recreate real-
world situations on a reduced and control scale (called reduced physical model). Numerical methods, after 
being calibrated and validated, offer the possibility of perform varied analyses for different fluid 
characteristics and on different scales and geometries in a quite straightforward fashion. Nevertheless, in 
order to consider the numerical results reliable, it is necessary a preliminary phase of validation of the 
numerical tool where simple experimental tests are used as the reference. 
 
The Finite Element Method is one of the most known numerical methods. In fluid mechanics, the FEM is 
usually employed using an Eulerian description of the motion and mesh. An Eulerian mesh is fixed and 
this is useful for large deformations analysis (that are typical in fluid dynamics) because it does not get 
distorted during the fluid motion. However, this description is linked to convective terms in the 
development of the time derivatives, which need a special treatment to avoid numerical drawbacks, such 
as instability of the numerical results. Furthermore, Eulerian FEM requires ad hoc strategy to capture the 
fluid free surface. The PFEM uses a Lagrangian description of the medium, usually used for solid mechanics 
due to its low deformations. This can be done thanks to the use of a continuous remeshing algorithm This 
has the great advantage of getting rid of the convective derivative and equating the material derivative 
with the spatial derivative- Furthermore, in such a Lagrangian method, the fluid free surface is 
automatically detected by the mesh nodes position. For these reasons, the PFEM has been used here for 
modelling the non-Newtonian fluids 
 
The use of numerical simulation has significant advantages with respect to laboratory tests Just knowing 
the necessary material parameters and geometry, a good numerical simulation can reach accurate results. 
With this, someone can reduce the use of physical laboratory tests and use them to contrast the numerical 
simulation results under specific situations and geometries. 
 
 Figure 1.1 shows the scheme that computational engineering follows when facing a problem like the 
present one (like any other). A more detailed outline of the computational engineering approach to the 
problems posed to it is presented in Annex C. 
 
The innovation of this work is not the treatment of the fluid flow from a Lagrangian description approach 
(that has already been done successfully before), but the implementation and careful validation of a 
Herschel-Bulkley law in this numerical framework. 
 
The fact of considering a non-linearity in the rheological law of the fluids increase the complexity of the 
numerical model. 
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The Herschel-Bulkley law represent a general framework of non-Newtonian fluid law. For example, the 
Bingham law can be view as a particular case of the Herschel-Bulkley model. 
 
 
 

 
Figure 1.1: Computer engineering scheme 

 
 

1.3. State of the art 
 
This part presents the existing advances on the subject in question. 
 
Throughout the paper, different approaches to the description of fluid dynamics are presented. It is not 
only the description that differs but also the way of solving it by numerical methods. 
 
Due to the nonlinear relationship between stresses and kinematic quantities, the numerical simulation of 
non-Newtonian fluid mechanics is challenging and still in active development. There are different 
numerical procedures in the description of non-Newtonian materials. The most known methods are the 
finite difference method and finite element method.   
 
In the Table 1.1 are examples of the application of different numerical methodologies for the resolution 
of viscoplastic fluids type: 
 
 

Numerical method Examples 

Finite Elements [1] & [2] 

Finite Volumes [3] 

Boundary Elements [4] 
Table 1.1: Examples of application of numerical methods 

 
In [5], a detailed description of advantages and disadvantages of the use of differences and finite elements 
as applied to fluids: 
 

1) Finite difference techniques are relatively easy to understand and to implement for a newcomer 
to the field, while the development of a finite element code requires a non-negligible amount of 
programming. 

Real world 
problems

Science
• Mathematics

• Physics

Engineering

Computing
• Hardware
• Software
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2) The finite difference method will usually be cheaper on the computer than the finite element 
method. 

 
3) The finite element method has a tremendous advantage over finite differences for solving flows 

in a complex geometry, which, usually, cannot even be approached with the latter. 
 
 
In spite of the different numerical resolution methodologies applied, there is also, in each of these 
methods, a different approach to the description of the motion. Many of the models used in the literature 
characterize the motion with the Eulerian description (spatial description). The physical properties are 
described in terms of the spatial coordinates and time. In a Eulerian description, the focus is on what is 
occurring at a fixed point in space (a spatial point labeled by its spatial coordinates) as time progresses. It 
is used, normally, in fluid mechanics [6]. However, the method presented here presents a totally different 
approach and uses the Lagrangian description of the motion (material description). The physical 
properties are described in terms of the material coordinates and time. It focusses on what is occurring 
at a moving material point (a particle, labeled by its material coordinates) as time progresses [6]. 
 
It is not only the numerical method and the description of the motion, but also the constitutive law model 
that is used for the simulation. The Bingham model (a particular case of Herschel-Bulkley) is one of the 
most studied and used non-Newtonian laws. The model has been used in the application of engineering 
numerical simulations of many types, such as, landslides, snow avalanches, mud flows and debris flows 
[7]. All of the above cases have one thing in common and that is the fact that they comply with the free 
surface flow condition. A free surface is understood to be that surface of a fluid that is subjected to a zero 
parallel shear tensor field. 
 
The PFEM has been applied to numerous examples of physical problems and has been able to solve them 
correctly with great efficiency. It has been applied to geotechnics [10] , fluid-structure interaction [11], 
and free surface fluid dynamics flows [12], among others. Debris flows have been investigated also using 
a Herschel Bulkley model in [8]. This article deals with the model using the Smooth Particle Hydrodynamics 
(SPH) method, which is a mesh-free particle based numerical method (using a Lagrangian motion 
description). 
 
An extra addition to the numerical calculation of viscoplastic fluids as presented in this work is the 
evaluation of the variables that characterize them. The parameters of the Herschel Bulkley model are 
difficult to calculate. One of the ways to do it is by the method proposed and developed by [9] that consists 
in measuring the pressure gradients while the fluid flows at different apparent velocities in a circular pipe 
using a combination of physics-based equations and nonlinear optimization. 
 
Finally, it should be noted that the fact that the fluid boundaries are constantly evolving makes the 
simulation of these very complex. When using the Eulerian description, the models must be completed 
with specific techniques capable of following the free surface of the fluid in each step of the simulation 
itself (for instance, Level Set Method [13] and Volume Of Fluid [14]). However, in the Lagrangian 
description, where the position of the particles (the nodes of the discretization mesh) is constantly being 
updated, the free surface of the fluid is automatically located. 
 
 

1.4. Methodology 
 
After a review of non-Newtonian fluids and their multiple numerical and variant methods of resolution, 
the methodology used is explained. 
 
The fluid dynamics is described with the constitutive law of the model proposed by Herschel-Bulkley. In 
order to circumvent the numerical drawbacks arising from the piecewise function of the model and its 
singularity, the model is regularized with the Papanastasiou parameter. 
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Once it is understood, it is implemented in the Kratos Multiphysics program, which has a user-friendly 
graphical interface in the GiD software, a universal and adaptive and pre and post processor for numerical 
simulations in science and engineering [15]). The model was implemented using the C++ programming 
language. 
 
Prior to model testing, several checks of the parameters involved in the numerical calculations must be 
performed. This is achieved by convergence analysis of these parameters and their calibration. 
 
As a previous step to the validation of the implemented model, the Bingham model is validated in order 
to be able to perform a behavioral analysis of the current state of the software. Once this is done, the 
Herschel-Bulkley validation must be performed. For this, several examples must be simulated contrasting 
the results with the existing literature. 
 
 

1.5. Structure 
 
The structure followed consists of the following path through the sections of the report: 
 

• First, in the Introduction (Chapter 1), the motivation is detailed and the objectives present in this 
final work are extended. 

 
• Then, in the State of the Art (Chapter 2), the current state of the art is summarized in terms of 

the model to be used and the numerical methods employed. 
 

• Then, a detailed description of the PFEM (Chapter 3) program is given. For a better understanding 
of the method, a summary of numerical methods is attached (Annex C). For a better 
understanding of the model to be simulated, Annex B (and A as language of B) is added. 

 
• Once the method is implemented, it is time to contrast its operation with examples. This is 

developed in Chapter 4 (Validation). 
 

• In the Conclusions and future lines of research, a summary of the results is provided and future 
work to be carried out such as the coupling of the thermo-mechanical analysis using PFEM is 
proposed. 
 

• In Annex D, it is briefly explained what the program used consists of, as a basic tool for solving 
the mathematics. 
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2.1. Non-Newtonian fluids 
 
The continuum, as can be seen in Figure 2.1., is classified into very large sets according to its mechanical 
characteristics.  Much of the theory of fluid mechanics focuses on Newtonian fluids because of their 
peculiarity in their rheology, a linear relationship between strain rates and shear stresses. However, not 
all fluids can be modeled by this simple constitutive law. 
 
That is why solid alternatives to that theory must be studied. Many types of constitutive laws arise and all 
of them can be applied in different fields depending on the characteristics of the fluid. In the case of this 
work, the focus is on non-Newtonian viscoplastic time-independent fluids. 
 
These types of fluids are constantly present on a daily basis. Examples are shower gel and blood itself. An 
example applied to civil engineering is the fresh cement. Examples in nature are lava and mud. 
 
To model such fluids, one must apply Newton's second law to obtain the linear momentum balance. 
 
 

 
Figure 2.1: General classification of fluids 

 
 
The Cauchy stress tensor is usually expressed in fluid mechanics by (3.1), where "	𝑝" is the pressure (there 
are several definitions, listed in Annex B) and "𝜏" is the viscous stress tensor. Note that the first equation 
is written in a tensorial way, while the second one is provided with indicial notation. This is done also for 
the following equations. 
 

*		
𝜎 = −𝑝	𝛿 + 𝜏

	
	

𝜎!" = −𝑝	𝛿!" + 𝜏!"
 (3.1) 

 
 
The viscosity stress tensor is formulated for both compressible (3.2) and incompressible (3.3) media. 
 
 

*		
𝜏 = 𝜅 2𝑑 ∶ 𝛿5 𝛿 + 2	𝜇	𝑑#

	
	

𝜏!" = 𝜅	𝑑$$	𝛿!" + 2	𝜇	𝑑!"#
 (3.2) 

 
 
 

*		

𝜏 = 2	𝜇	𝑑 = 2	𝜇	𝑑#
	
	

𝜏!" = 2	𝜇	𝑑!" = 2	𝜇	𝑑!"#
 (3.3) 

Continuum 
medium

Solid

Fluid

Newtonian

Non-
Newtonian

Vicoelastic

Inelastic

Time 
dependent

Time 
independent

Pseudoplastic

Dilatant

Vicoplastic
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Where “𝜎!"” is the Cauchy stress tensor measured in [Pa], “𝑝” is the thermodynamic pressure measured 
in [Pa], “𝜅” is the bulk viscosity measured in [Pa·s], “𝑑!"” is the strain rate tensor measured in [1/s], “𝛿!"” 
is the Kronecker’s delta, “𝜇” is the dynamic viscosity measured in [Pa·s]. 
 
It is highlighted that the dynamic viscosity in the Herschel Bulkley model is represented by the so-called 
consistency modulus k. For further clarification and to avoid misinterpretation in the notation, the Table 
2.1 shows the different meaning of indices represented with a similar letter. 
 
Figure 2.2 shows the formulation used in the model implemented in the simulations. 
 
 

 
𝑝̇ + 𝜅8𝛻 ∙ 𝑣< = 0	

	
𝛻 ∙ 𝜎 + 𝜌	𝑏 = 𝜌	𝑣̇

		@ 			→ 			𝑀𝑎𝑠𝑠	𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑖𝑛𝑒𝑎𝑟	𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚	𝐵𝑎𝑙𝑎𝑛𝑐𝑒	 

  
      ↑     Stress tensor decomposition 
 

          𝜎 = −𝑝	𝛿 + 𝜏 
 
                              ↑     Shear stress description 
 

                                  𝜏 = 2	𝜇(𝛾̇)	𝑑 
 
                                            ↑     Herschel-Bulkley-Papanastasiou proposal 
 

                                              𝜇(𝛾̇) = %!
&̇
81 − 𝑒()	&̇< + 𝑘	𝛾̇+(, 

 
                                                                 ↑     Herschel-Bulkley model 
                 

                                                           𝜏 = 𝜏- + 𝑘	𝛾̇+ 
  

Figure 2.2: Outline of the formulation to be followed 

 
 
 

 
𝐵𝑢𝑙𝑘	𝑀𝑜𝑑𝑢𝑙𝑢𝑠			 → 				𝜅 
 
𝐵𝑢𝑙𝑘	𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦			 → 				𝒦 

 
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦	𝑀𝑜𝑑𝑢𝑙𝑢𝑠 = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐	𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦			 → 				𝑘 
 

Table 2.1: Distinction of the different K's 

 
 
A general way to express the general dynamic behavior of any fluid is: 
 

𝜇 = 𝑓 2𝑑, 𝜌, 𝜃5 (3.4) 

 
Where “𝑑” is the strain rate tensor, “𝜌” is the fluid density and “𝜃” is the fluid temperature. 
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Some of non-Newtonian fluids require minimal shear stress “𝜏-” to start moving or deforming (to keep 
the material flowing). This minimum stress is called yield shear stress. 
 
As it can be seen in Table 2.2, there exits some different theorical fluid behaviors, also illustrated in the 
Figure 2.3. 
 
 

 
Figure 2.3: Rheological diagrams showing different models 

 
 
 
 

 Rheological Models 

 𝑘	[𝑃𝑎 ∙ 𝑠+] 𝑛	[−] 𝜏-	[𝑃𝑎] 𝐿𝑎𝑤 

Newtonian 𝜇 > 0 1 0 𝜏 = 𝜇	𝛾̇ 

Bingham > 0 1 > 0 𝜏 = 𝜏- + 𝑘	𝛾̇ 

Casson 𝜇 > 0 
1
2 > 0 √𝜏 = c𝜏- +c𝜇	𝛾̇ 

Herschel-Bulkley > 0 0 < 𝑛 < ∞ > 0 𝜏 = 𝜏- + 𝑘	(𝛾̇)+ 

Pseudoplastic / Shear-Thinning > 0 0 < 𝑛 < 1 0 𝜏 = 𝑘	(𝛾̇)+ 

Dilatant / Shear-Thickening > 0 1 < 𝑛 < ∞ 0 𝜏 = 𝑘	(𝛾̇)+ 

Table 2.2: Fluid rheological models 

 
 

 
 Strain rate (  ) [1/s]
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ss

 ( 
 ) 

[P
a]

Newtonian
Bingham
Casson
Herschel-Bulkley
Shear-Thinning
Shear-Thickening
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2.1.1.  Herschel-Bulkley 
 
The Herschel-Bulkley model (1926) is a general expression so far for modelling the dynamic behavior of a 
Newtonian and non-Newtonian fluid. 
 
In [16], it is stated that the plastic Herschel-Bulkley model is for non-Newtonian and time independent 
fluids (the yield stress and the potential law are combined), it is only dependent on the deformation speed 
(strain rate tensor), so the stress can be expressed as (3.5) 
 

𝜏 = 𝑓 2𝑑5 = 𝑓 f𝛾̇g 			→ 			 𝜏!" = 2	𝜇(𝛾̇)	𝑑!" = 𝜇(𝛾̇)	𝛾̇!" (3.5) 

 
There is an empirical law called potential law (proposed by Waele) that describes non-Newtonian fluid 
motion (3.6): 
 

𝜏 = 𝜏- + 𝑘	𝛾̇+ 						→ 						
𝑑𝜏
𝑑𝛾̇ = 𝑛	𝑘	𝛾̇+(, (3.6) 

 
Where “𝑘” and “𝑛” are constants for a particular fluid. The value of “𝑘” is a measure of the consistency 
of the fluid; the higher the “𝑘” value, the more “viscous” the fluid. The value of “𝑛” is a measure of the 
degree of non-Newtonian behavior; the farther away the value of “𝑛” is from unity, the more pronounced 
the non-Newtonian properties will be of the fluid. To better understand the behavior described by (3.6), 
Figure 2.4 displays the stress as a function of strain rate. 
 
 
 

 
Figure 2.4: Visualization of rheological laws varying "n" 

 
Figure 2.5: Law of rheology derivatives with respect to 

strain rate 

 
Herschel-Bulkley proposed the following expression to model the viscosity (apparent/dynamic viscosity) 
as a function of the strain rate tensor norm (3.7). 
 
 

⎩
⎨

⎧
		
𝜇(𝛾̇) = 𝑘	𝛾̇+(, +

𝜏-
𝛾̇ 												𝑓𝑜𝑟		𝜏 > 𝜏-
	
	

𝛾̇ = 0																																							𝑓𝑜𝑟		𝜏 ≤ 𝜏-

 (3.7) 

 
 
The expression of the dynamic viscosity arises from the combination of the Herschel-Bulkley Law and the 
proposal of the tangential stresses of the stress tensor (3.8): 

 
 Strain rate (  ) [1/s]

 

 S
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 s
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ss

 ( 
 ) 
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a]

Newton Fluid
n < 1
n = 1 (Bingham Fluid)
n > 1

 
 

d
 / 

d
  [
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Herschel-Bulkley (n < 1)
Herschel-Bulkley (n > 1)
Herschel-Bulkley-Papanastasiou (n < 1)
Herschel-Bulkley-Papanastasiou (n > 1)
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𝜏 = 2	𝜇(𝛾̇)	𝑑 = 𝜇(𝛾̇)	𝛾̇	
	

𝜏 = 𝜏- + 𝑘	𝛾̇+					
		o 		→ 		𝜇(𝛾̇)	𝛾̇ = 𝜏- + 𝑘	𝛾̇+ 			→ 					𝜇(𝛾̇) =

𝜏-
𝛾̇ + 𝑘	𝛾̇

+(, (3.8) 

 
 
The “𝛾̇” is the equivalent strain rate, computed as the positive part of the square root of the second 
invariant J (3.9) (see annex A): 
 

𝛾̇ = q𝐽. f𝛾̇g = q
1
2	f𝛾̇ ∶ 𝛾̇g = s2 2𝑑 ∶ 𝑑5 (3.9) 

 
The “𝜏” is the equivalent strain rate, computed as the positive part of the square root of the second 
invariant J (3.10) (see annex A): 
 

𝜏 = s𝐽. 2𝜏5 = q1
2	2𝜏 ∶ 𝜏5 (3.10) 

 
The flow rate can be determined by laboratory tests using the logarithmic (3.11) expression: 
 
 

𝑛 =
𝑙𝑛(𝜏 − 𝜏-) − 𝑙𝑛(𝑘)

𝑙𝑛(𝛾̇) 								∀𝜏 > 𝜏- (3.11) 

 
 
By means of this equation, a linear regression can be performed and observe which value predominates 
when fixed parameters are established in the fluid (density, bulk modulus, yield stress, boundary and 
initial conditions). 
 
 

2.1.2. Papanastasiou model 
 
The drawback of the Herschel-Bulkley model is its singularity in the viscosity when "𝛾̇ → 0". In 1987, 
Papanastasiou proposed a regularization valid both for the unyielded and the yielded zone models. The 
reason for the use of this regularization parameter is its immediate application and implementation in 
viscoplastic discontinuous models in numerical solvers [16] [1].  
 
This model is one of the most widely used in solving problems for viscoplastic fluids in numerical 
calculations due to its ease of implementation (Mitsoulis and Zisis, 2001), (Frey et al., 2010), (Perić and 
Slijecpčević, 2001), among others. 
 
Its main advantage is the description in a single equation, both in creep (𝜏 > 𝜏-) and non-creep (𝜏 ≤ 𝜏-) 
zones. It achieves this by means of a smoothed function of the viscosity which is a function of the strain 
rate "𝛾̇" and a regularization parameter "𝑚" described with (3.12)	expression. The effect of "m" can be 
visualized at Figure 2.6. 
 

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛			 → 			 81 − 𝑒()	&̇< (3.12) 

 
This parameter is applied as a product in the yield stress term (3.13) in the Herschel-Bulkley expression, 
thus modeling, as a continuous function, the law. 
 

𝜏 = 𝜏-81 − 𝑒()	&̇< + 𝑘	𝛾̇+ = [𝑃𝑎] (3.13) 

Where “𝑒” is the Euler’s number. 
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In (3.13) the derivative with respect to the strain rate of the (3.14) law is formulated, where it can be 
observed in the Figure 2.5. 
 

𝑑𝜏
𝑑𝛾̇ = 𝜏-8𝑚	𝑒()	&̇< + 𝑛	𝑘	𝛾̇+(, = [𝑃𝑎 ∙ 𝑠] (3.14) 

 
The regularization parameter has a key role for the approximation of the Herschel-Bulkley curve for small 
values of the shear strain rate. The higher is “𝑚”, the better is the approximation of the rigid behavior of 
the original Herschel-Bulkley model. Note that “𝑚” has the dimension of the time [s]. 
 
In [16], states that the viscosity is bounded when the strain rate gradient tends to zero. For very high 
values of the regularization parameter "𝑚" this limit value of the viscosity may cause numerical problems. 
 

𝜇)/0 = 𝑙𝑖𝑚
&̇→-

	𝜇(𝛾̇) (3.15) 

 
The limiting value of the viscosity when the strain rate tends to zero varies according to the value "𝑛", as 
can be seen in Table 2.3 (limits solved by L'Hôpital's Rule). 
 
 

 
Figure 2.6: Effects of the Papanastasiou regularizing parameter on the Herschel-Bulkley law. 

 
It is observed that for pseudoplastic fluids (𝑛 < 1) the viscosity is not bounded. In these cases, it is 
essential to apply the truncation procedure express in (3.16) and visualized in Figure 2.7. 
 
 

Exponent “𝑛” Viscosity “𝜇)/0” 

𝑛 < 1 ∞ 

𝑛 = 1 𝑘 + 𝜏-	𝑚 

𝑛 > 1 𝜏-	𝑚 

Table 2.3: Results of the calculation of the (3.15) limit for different fluid indexes 
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𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛	𝑣𝑎𝑙𝑢𝑒			 → 			 𝜇2 < 𝜇)/0		𝑤ℎ𝑒𝑛		𝛾̇ < 𝛾̇2 (3.16) 

 
 
 

 
Figure 2.7: Truncation value for extreme cases [16] 

 
Figure 2.8: Dynamic viscosity as a strain rate function 
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2.2. Particle Finite Element Method (PFEM) 
 
The PFEM is a numerical technique developed for the solution of multi-physics problems involving large 
deformations of the domain [17]. 
 
The birth of this method can be considered to have occurred in 2004, with the publication of the article 
“The particle finite element method: a powerful tool to solve incompressible flows with the free-surfaces 
and breaking waves (S.R. Idelsohn, E. Oñate and F. Del Pin)” on which the present chapter is based. 
 
The initial aim was to “Analyze problems in which the interface changes continuously or in fluid-structure 
interaction with free-surfaces where complicated contact problems are involved” [17]. 
 
The key idea of the PFEM is to combine a Lagrangian Finite Element Method (FEM) with an efficient and 
fast remeshing procedure. In the PFEM, the domain is defined by a set of particles (coinciding with the 
mesh nodes) that move in a Lagrangian manner according to the calculated nodal variables (e.g., velocity 
or displacements) and bringing their physical properties. 
 
The PFEM can be seen as both a FEM-based (described in Annex C) and a particle method. A summary of 
the rationale for both theories is attached at Table 2.4 and Table 2.5. 
 
 

 
• Computational domain seen as a collection of material particles. 

 
• All physical properties (density, viscosity, bulk modulus, etc.) and variables 

(pressure, velocity, temperature, etc.) are assigned to each particle. 
 
• Particles move according to the external and the interaction forces. 

 
Table 2.4: Particle method fundamentals 

𝑷𝑭𝑬𝑴	 = 	𝑭𝑬𝑴	𝒃𝒂𝒔𝒆𝒔	 ∪ 	𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆	𝒎𝒆𝒕𝒉𝒐𝒅 
 

 
• A mesh is generated over the particles to define shapes functions and solve the 

governing equations in a Lagrangian way. 
 
• All physical properties (density, viscosity, bulk modulus, etc.) and variables 

(pressure, velocity, temperature, etc.) are assigned to each particle. 
 
• Particles move according to the external and the interaction forces. 

 
Table 2.5: Finite Element Method (FEM) bases 

 
2.2.1. Description 
 
For continuum mechanics problems, in the Eulerian (Spatial) way to described the medium motion, the 
finite element mesh is fixed and the material moves across the grid, being the mesh nodes dissociated 
from physical particles. Due to the relative motion between the material and the grid, convective terms 
appear in the definition of the time derivatives (view Annex B). 
 
Eulerian meshes are particularly suited for large deformation problems in enclosed domains, as those 
generally considered in standard computational fluid dynamics. On the other hand, they do not provide a 
natural definition of evolving interfaces (like a free surface in fluid flows). 
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Lagrangian (Material) way to described the medium motion, the finite element mesh moves along with 
the continuum body. Consequently, boundaries and interfaces are naturally tracked during the motion 
allowing for a simpler imposition of boundary conditions. As the material points coincide with the grid 
nodes, no convective terms appear in the governing equations and material derivatives reduce to time 
derivatives. Also, the integration points (numerical integration) move with the material, so constitutive 
laws are evaluated at the same material points for all the duration of the analysis [17]. 
 
 

 
The Eulerian description of motion is given to fluid mechanics while the Lagrangian 
description is given to solid mechanics (annex A). 
 
However (and here is the novelty), PFEM uses the Lagrangian description to solve 
problems in fluid mechanics. 

 
 
 
Since the Lagrangian method allows the mesh to move, the mesh deteriorates with motion. These 
phenomena constituted for a long time the intrinsic limit of Lagrangian mesh-based solvers. In the 
literature, there exist two different options to overcome this endemic feature: 
 

1) To introduce a remeshing technique. 
2) To abandon completely the concept of mesh, giving rise to the so-called meshless methods. 

 
PFEM deals with the problem of mesh distortion with remeshing. When the mesh becomes too distorted, 
a new mesh is made with an ad-hoc procedure. 
 
Unavoidably, these remeshing operation introduce unwanted numerical diffusion into the numerical 
solution. That’s the reason why PFEM was proposed by Idelsohn, Oñate and coworkers in 2004. 
 
The PFEM combines the accuracy and robustness of mesh-based techniques with the advantages of 
particle-based methods. The PFEM discretizes the physical domain with a mesh on which the differential 
governing equations are solved with a standard finite element approach. To avoid remapping from mesh 
to mesh, it keeps the nodes of the previous mesh fixed. The new connectivity is built using the Delaunay 
Triangulation (mesh regeneration algorithm) and a specific technique (alpha-shape method) is used to 
identify internal and external boundaries. The obtained mesh is then used as the support over which the 
differential equations are solved in a standard FEM fashion [17]. 
 
At the Table 2.6, it presents a summary of the fundamental features: 
 

Fundamental features PFEM 
 
• Lagrangian description of the mechanics problem. 

 
• Mesh nodes are treated as physical particles. 

 
• All the information is stored at the mesh nodes. 

 
• The FEM is used to solve the governing equations. 

 
• Mesh connectivity by Delaunay Tessellation. 

 
• Boundaries are recovered through ad-hoc techniques (alpha-shape method). 

 
Table 2.6: Summary of the fundamental features of the PFEM [17] 
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2.2.2. Steps 
 
A general solution scheme of the method can be summarized in Table 2.7: 
 

PFEM steps 
 

1) Fill the domain with a set of points referred to as “particles”. 
 

2) Generate a finite element mesh using the particles as nodes. 
 

3) Identify the external and internal body’s boundaries. 
 

4) Solve the Lagrangian form of the governing equations with the FEM. 
 

5) Update the positions of the nodes. 
 

6) Proceed to the next time step. If a remeshing is needed, go to step 2 
otherwise, go to step 5. 

 
Table 2.7: Summary of the PFEM steps [17] 

 
In the second step, the mesh can be regenerated with the Delaunay triangulation. The identification of 
boundaries in the third step, needed to compute the domain integrals and to impose correctly the 
boundary conditions, is performed using the alpha shape method. 
 

 
It is also important to remark that equations of motions solved in fourth step, can 

be non-linear and so they may require an iterative solution scheme (annex C). 
 

 
 
2.2.3.  Mesh 
 
In the PFEM, the re-generation of the mesh should be considered a redefinition of the element 
connectivity rather than a real remeshing because the mesh nodes of the previous mesh are kept in the 
same position. 
 
The mesh nodes move according to the equation of motion, behaving like particles and the transporting 
their momentum together with all their physical properties [17]. 
 
 

2.2.3.1. Delaunay triangulation 
 
The Delaunay triangulation is a direct consequence of the Voronoi diagrams (described in Table 2.8). 
 
The Delaunay triangulation can be constructed by joining the points whose Voronoi cells have a common 
boundary. It is de dual of the Voronoi diagram. The Delaunay tessellation generates a mesh of tetrahedra 
(in 3D) and triangles (in 2D). 
 
None of its vertices lays inside any tetrahedron’s circumsphere (in 3D) or triangle’s circumcircle (in 2D). 
 
Moreover, the Voronoi cells vertices represent the center of tetrahedron’s circumsphere (in 3D) or 
triangle’s circumcircle (in 2D) of the Delaunay triangulation. Given a set of points in space, the Voronoi 
diagram is unique, but may exists different Delaunay triangulations [17]. 
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Figure 2.9: Schematic representation of the iterative solution of a generic time step. The subindex “i” represents the 
iteration number of the implicit solution [7]  

 
 
 

 
Given a set of “n” points, the Voronoi diagram is defined as the partition of ℝ3 in convex regions “𝑇!”, 
where a node “𝑛!” is associated to each region “𝑇!”, such that every point of “𝑛!” is closer to “𝑇!” than 
to any other nodes “𝑛"” with 𝑖 ≠ 𝑗. 
 

𝑉𝑜𝑟𝑜𝑛𝑜𝑖	𝐶𝑒𝑙𝑙			 → 			 𝑇! = �𝑥 ∈ ℝ3 ∶ 		 �𝑥 − 𝑥!�. ≤ �𝑥 − 𝑥"�.,			∀𝑖 ≠ 𝑗� 
 
The region “𝑇!” is the set of points closest to a given point “𝑥” 
 
Each Voronoi cell is convex and close if internal and open if placed at the boundary. 
 

𝑉𝑜𝑟𝑜𝑛𝑜𝑖	𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑠 = 𝑇ℎ𝑖𝑒𝑠𝑠𝑒𝑛	𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝑠 = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡	𝑇𝑒𝑠𝑠𝑒𝑙𝑎𝑡𝑖𝑜𝑛		 
 

Table 2.8: Description of the Voronoi Diagrams [18] 

 
It is not a must to use Delaunay triangulation for every PFEM problem to be solved. Other methods could 
be used as long as the mesh obtained was made quickly from an initial distribution of points. 
 
 

Solve discrete momentum 
balance equations for ∆𝒗𝒊5𝟏 

Update the nodal velocities for 𝒗𝒊5𝟏 = 𝒗𝒊 + ∆𝒗𝒊5𝟏 

Update the nodal pressures for 𝒑𝒊5𝟏 

Solve mass balance equation for 𝒑𝒊5𝟏 

Convergence 
check NO! → i = i + 1 

OK!  

Update mesh nodes position 
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2.2.3.2. Alpha-Shape technique 
 
The basic idea is to remove the unnecessary elements from the mesh using a geometrical criterion based 
on the mesh distortion. It is a pure geometrical check: it erases from the mesh all those elements that are 
too large or distorted. For each element “e” of the mesh, an index of elemental distortion “𝛼7” is defined 
as (3.16): 
 

𝛼7 =
𝑅7

ℎ)7/+
 (3.16) 

 
Where “𝑅7” is the radius of the circumsphere (3D) or circumcircle (2D) to the considered element and 
“ℎ)7/+” is a characteristic mesh size. An example of “ℎ)7/+”  can be the average of the minimum element 
size among all the elements of the initial mesh. 
 
A threshold value “	𝛼	” for the distortion of the mesh can be fixed and, consequently, all the elements 
that not satisfy the condition “𝛼7 ≤ 𝛼” are removed from the mesh. It is allowed to use different values 
of “	𝛼	”  for distinct parts of the domain. Different values of “𝛼” may lead to different meshes and 
computational domains. All particles on an empty sphere with a radius 𝑟(𝑥) > 𝛼 ∙ ℎ(𝑥) are considered as 
boundary particles [17]. 
 
One of the main strengths of the PFEM lays in its capability to model separation and reconnection of parts 
of the computational domain and also single isolated particles. The identification of the parts detaching 
from the rest of the domain is done automatically by the alpha-shape method. 
 
 

 
Suggested values for 2D analyses [19]: 

 
𝛼 ≈ 1,2 ÷ 1,25 

 
 
 
Numerical simulations of the validation examples considered in this work use an alpha shape of 1.25 in 
2D and 1.3 in 3D. 
 
 

2.2.3.3.  Adding and removing nodes 
 
In the PFEM, insertion and removal of mesh nodes can be safely done because the mass is not associated 
with the nodes but with the elements, as in standard FEM. 
 
Different algorithms to add and remove particle have been proposed. However, the key idea is always 
based on the following two concepts: 
 

• If a node comes too close to another (or to a boundary) the node should be removed (or moved 
to another location). 

 
• If an element becomes too large, a new node should be inserted. 

 
It is a must to avoid the “artificial leakage” in the removing nodes situation. Adding and removing nodes 
can also be done with-out altering the total number of nodes. In this case, a new node is added only if a 
node can be removed from another position [17]. 
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2.2.4. Summary 
 
Table 2.9 summarizes the advantages and disadvantages of this method. 
 

Advantages Disadvantages 

 
• It allows highly deforming domains: 

free surface, separation/reconnection 
of subdomains. 

 
• It guarantees good mesh quality at 

each FEM solution step. 
 
• It allows a Lagrangian description of 

motion: natural modeling of 
convection. 

 
• It allows the detection of fixed or 

moving solid interfaces. 
 

 
• It may include artificial changes of 

topology. 
 
• It may induce loss of mass 

conservation. 
 
• It represents an additional 

computational cost. 
 
• It induces the loss of element 

information stored at Gauss point. 
 
• FEM structures must be rebuilt 

continuously. 
 

Table 2.9: PFEM remeshing advantages and disadvantages 

 
 

2.3. PFEM for fluid dynamics problems 
 
The PFEM was originally conceived for the solution of free-surface fluid flow problems. Thanks to its 
Lagrangian description of the motion, the convective terms do not enter in the PFEM governing equations. 
This is a great advantage as those terms are responsible for non-linearity and non-symmetry, thereby 
complicating significantly the solution of the governing equations in an Eulerian framework and typically 
requiring the introduction of stabilization terms to avoid numerical oscillations [17]. 
 
The price to pay is the need to continuously remesh the computational domain. This fact has important 
implications on several aspects of the numerical solver, such as time integration and spatial discretization, 
the imposition of boundary conditions, or mass conservation. 
 
 

2.3.1. Problem statement 
 
This section includes the balance equations governing a fluid (defined in Annex B). 
 
 

2.3.2. Space discretization and stabilization 
 
In the PFEM, a Standard Galerkin approach is used to discretize in space the mass conservation and linear 
momentum balance equations. In a standard PFEM framework, only linear shape functions are used to 
approximate the unknown variables. Introducing an isoparametric (same shape/interpolation functions) 
finite element discretization, the velocity and the pressure can be expanded in terms of the nodal vectors 
“𝑉” and “𝑃”, respectively. The semi-discretized motion equations are expressed in (3.17), developed in 
[17]. 
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⎩
⎨

⎧
		

𝑀	8 ∙ 𝑉̇ + 𝐾 ∙ 𝑉 + 𝐷9 ∙ 𝑃 = 𝐹 								→ 				𝐿𝑖𝑛𝑒𝑎𝑟	𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚
	
	

𝑀	: ∙ 𝑃̇ + 𝜅	𝐷 ∙ 𝑉 = 0 																	→ 				𝑀𝑎𝑠𝑠	𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
 (3.17) 

 
 

 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠											 → 										𝑓 = 𝑓-										𝑓 ∈ 𝛤-												

	

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠					 → 					 �		
𝑓 = 𝑓𝒟										𝑓 ∈ 𝛤𝒟!<!=>?72

	
𝑓 = 𝑓𝒩 										𝑓 ∈ 𝛤𝒩7A)/++

 

 
Table 2.10: IVC & BVC 

 
Where “𝑀	8” is mass matrix for velocity unknown, “𝑀	:” is mass matrix for pressure unknown, “𝐾” is the 
fluid matrix emanating from viscosity term, “𝐷” is the discretized divergence differential operator and 
“𝐹” is the body forces vector and conditions (Table 2.10). 
 
 
Those equations must be integrated in time and thus an approximation for the time derivative of pressure 
and velocities should be provided (3.20), but not before presenting in	 (3.18) and (3.19)	 the 
discretization of the variables to be determined 
 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑣𝑒𝑐𝑡𝑜𝑟	𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛			 → 			 𝑣8𝑥, 𝑡< ≈ 𝑣> =�𝑁!8𝑥<	𝑉	!(𝑡)
	

!

 (3.18) 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒	𝑠𝑐𝑎𝑙𝑎𝑟	𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛			 → 			𝑝8𝑥, 𝑡< ≈ 𝑝> =�𝑁!8𝑥<	𝑃	!(𝑡)
	

!

 (3.19) 

 
Where “𝑁!8𝑥<” are linear shape functions. 
 
The time derivative can be computed as: 
 

𝑑𝑉
𝑑𝑡 =

𝑉+5, − 𝑉+

∆𝑡 															
𝑑𝑃
𝑑𝑡 =

𝑃+5, − 𝑃+

∆𝑡  (3.20) 

 
As described in [7], the nodal accelerations can be computed according to the implicit Newmark 
integration (3.21) 
 

𝑉̇ 	+5, =
28𝑉 	+5, − 𝑉 	+<

∆𝑡 − 𝑉̇ 	+														𝑃̇	+5, =
𝑃	+5, − 𝑃	+

∆𝑡  (3.21) 

 
Using an equal order interpolation for both the pressure and velocity unknowns, the compatibility 
condition is not fulfilled. Hence, the formulation must be stabilized. In this work it has been used the Finite 
Increment Calculus (FIC) [17]. 
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3.1. Bingham validation 
 

3.1.1. Initial validations 
 
The first validation step is to check and validate the code programmed in Kratos (annex D) using PFEM 
and the Bingham-Papanastasiou model. This is because the code is the basis for programming the 
Herschel-Bulkley-Papanastasiou model. 
 
For this purpose, the problems presented in [20] are taken as reference. 
 
The study focuses on the rheological characterization of so-called liquefied sands as Bingham fluid by 
means of numerical simulation of dam-break. It is important to note that the mentioned article also 
describes the fluid motion using the PFEM. 
 
In the reference paper, various tests are analyzed for the same initial geometry but varying mechanical 
properties such as yield stress “𝜏-” or dynamic viscosity “𝜇”. 
 
A difference to take into account between the simulations perpetuated by the authors of the article and 
this work are: mass conservation equation. In the validation article the fluids are stipulated as 
incompressible, however in this draft the situations were realized by means of a quasi-incompressible 
formulation (annex B). 
 
Another difference is the density used: the numerical reference uses a density of 1600 kg/m3, as does the 
validation in this work, but the laboratory test determined a dry density of 1510 kg/m3. The same density 
proposed in the reference work is used here. 
 
Each of the simulations has been performed with the following geometry illustrated in Figure 3.1 (length 
units are in meters): 
 

 
Figure 3.1: Geometry defined for Bingham validation 

 
It is a simple geometry, a rectangle initially at rest (velocity equal to 0 in all the elements that compose it 
and zero pressure at the top of the fluid). The walls are considered as rigid bodies, that is, they do not 
suffer deformations and the velocity of the elements that compose it is zero, however, the pressure does 
vary according to the dynamics of the fluid in motion. 
 
The fluid starts its movement due to the gravity (by its own weight). It is discretized with triangular two-
dimensional elements with linear shape functions.  
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Both simulations have been carried out with more than 3000 finite elements discretizing the fluid (in this 
work a mesh size about ℎ)7B> = 0,006	𝑚 has been used to achieve this), using a time step ∆𝑡B27: =
0,001	𝑠 and a Papanastasiou parameter 𝑚 = 1000	𝑠. 
 
The properties of the two simulations are described at Table 3.1: 
 

 𝑡7+C 	[𝑠] ∆𝑡B27:	[𝑠] ℎ)7B>	[𝑚] 𝜌	 ¡
𝑘𝑔
𝑚3¢ 𝜅	[𝑃𝑎] 𝜇	[𝑃𝑎 ∙ 𝑠] 𝜏-	[𝑃𝑎] 𝑚	[𝑠] 

Bingham 
validation 1 6 0,001 0,006 1600 2,1·109 

200 100 
1000 

Bingham 
validation 2 300 50 

Table 3.1: Bingham and simulation parameters 

The following experimental results illustrate the horizontal position of the liquefied mass tip as a function 
of time for a total duration of 6 seconds (Figure 3.2 and Figure 3.4). PFEM simulations with the code 
proposed by this write-up and the validation comparison code are also included in the results shown in 
the plots. The difference of results, measured in percentage %, with respect to the numerical reference, 
has been added beside them. 
 
 

 
Figure 3.2: Bingham validation 1 results 

 

 
Figure 3.3: Variation of results between Bingham 1 and 

reference 

 
Figure 3.4: Bingham validation 2 results 

 

 
Figure 3.5: Variation of results between Bingham 2 and 

reference 
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It can be seen that the first simulation (Figure 3.3) starts out giving similar results to the reference 
simulation, but as time progresses, it becomes more deformed than the reference simulation, arriving at 
the end of the calculation with a difference less than 4%. 
 
The second simulation starts as the first one, with values similar to the reference values (Figure 3.5). 
However, once the calculation time has elapsed, it continues with similar values, ending the calculation 
with a difference to the reference values of less than 2%. 
 
 

𝑡 = 0.0	𝑠 

    𝑡 = 2.0	𝑠 
 

    𝑡 = 4.0	𝑠 
 

    𝑡 = 6.0	𝑠 
 

Figure 3.6: Velocity contour plots of Bingham 2 validation 

 
The same plotted contours of the velocity field extracted from [20] are attached in Figure 3.7in order to 
compare the results calculated using one formulation and the other. The maximum speed of color printing 
has been limited to facilitate visual analysis. 
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Figure 3.7: Velocity field. Source: [20] 

 
It can be seen that a large region of the fluid exceeds the velocity of 0.0188 from the very beginning. In 
both simulations the commented region decreases with time in a similar way.  A notable difference is 
the amount of fluid that remains attached to the vertical wall. In this work it is clearly observed that it 
remains much more clinging than in the reference work. 
 
 

3.1.2. Varying Bingham parameter 
 
After the two previous simulations, the model continues to be validated with the next step of the same 
article: comparison of the fluid front advance by varying the two main characteristics of the Bingham 
model: yield stress and dynamic viscosity. 
 
 

3.1.2.1. Varying viscosity and constant yield stress 
 
The simulations are performed with the same geometrical characteristics as in section 1.1 of this chapter. 
The differences are the variations of the mechanical properties of the Bingham model. In this first section, 
it has varied the dynamic viscosity of the fluid, keeping the yield stress constant, in order to analyze how 
this affects its movement. It can be clearly seen that there are differences in the motion between one 
simulation code and another. 
 
 

3.1.2.2. Varying yield stress and constant viscosity 
 
The simulations are performed with the same geometrical characteristics as in section 1.1 of this chapter. 
The differences are the variations of the mechanical properties of the Bingham model. In this second 
section, it has varied the yield stress of the fluid, keeping the dynamic viscosity constant, in order to 
analyze how this affects its movement. The results of these last three simulations leave open the following 
hypothesis: the lower the yield stress, the greater the variation of the results with the reference values, 
and these variations increase with the passage of time. However, when the yield stress is large, then the 
variation is smaller and even appears to be decreasing over the simulation time. 

DELLA VECCHIA ET AL. 7

FIGURE 5 Velocity contour plots—values in m/s. Set of material parameters: ! = 1600 kg/m3, " = 300 Pa·s, #y = 50 Pa: A, t = 0 s; B,
t = 2 s; C, t = 4 s; D, t = 6 s [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Sensitivity of dam-breaking particle finite element method (PFEM) results to viscosity and yield stress—time evolution of tip
position: A, varying viscosity, constant yield stress; B, varying yield stress, constant viscosity

constant " = 400 Pa·s). It is apparent that variations of either " or #y produce similar qualitative effects on the position
of the moving tip, in a way that makes practically impossible to identify both parameters by only looking at one specific
measurement. Similar conclusions have also been drawn by Jeyapalan et al6 and Moriguchi et al,39 still regarding the sim-
ulation of dam-breaking tests. Although conceptually obvious, this “calibration dilemma” has not yet found a satisfactory
solution—the remainder of this paper is fully devoted to filling this relevant gap.

5 UNAMBIGUOUS IDENTIFICATION OF BINGHAM PARAMETERS

5.1 From the analysis of free, gravity-driven flow
More robust calibration of Bingham parameters can be achieved by monitoring at the same time the position of the mass
tip and the maximum height at the back-wall, ie, L and H in Figure 2, with the latter decreasing in time as the liquefied
material flows. In particular, useful indications may be obtained from the time evolution of the H∕L aspect ratio. After
simple post-processing of the same results in Figure 6, Figure 7 shows how the effects of varying " and #y are more readily
apparent when visualised in terms of H∕L ratio: a varying #y at constant " directly impacts the final steady state value of
the aspect ratio, whereas a varying " at constant #y results in different evolution rates towards approximately the same
asymptotic H∕L value (Figure 7B). Unlike the time evolution of the tip displacement, the asymptotic H∕L ratio appears to
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Figure 3.8: Bingham validation 3 (μ=100 Pa·s ,τo=20 Pa) 

 

 
Figure 3.9: Bingham validation 4 (μ=400 Pa·s ,τo=20 Pa) 

 

 
Figure 3.10: Bingham validation 5 (μ=800 Pa·s ,τo=20 Pa) 

 

 
Figure 3.11: Variation of results between Bingham and 

references 

 

 
Figure 3.12: Bingham validation 6 (μ=400 Pa·s ,τo=20 Pa) 

 

 
Figure 3.13: Bingham validation 7 (μ=400 Pa·s ,τo=100 Pa) 
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Figure 3.14: Bingham validation 8 (μ=400 Pa·s ,τo=400 Pa) 

 
Figure 3.15: Variation of results between Bingham and 

references 
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3.2. Herschel-Bulkley validation 
 
This section has been based on and guided by the following articles: [21] and [22]. 
 
For the validation of the Herschel-Bulkley-Papanastasiou model, some previous steps had to be taken 
before testing the model against another article. The drawback was not knowing which time step "∆𝑡B27:", 
mesh size "ℎ)7B>" and parameter "m" to use in the validations. Due to this challenge, the solution was, 
based on the characteristics of the first test of the article, to run several simulations in order to compare 
errors from one simulation to another. 
 
The steps to follow are described in Table 3.2: 
 

 
𝑡7+C 			→ 			 ℎ)7B> 			→ 			 ∆𝑡B27: 			→ 			𝑚			 → 			𝑇𝑒𝑠𝑡𝑠	𝐻𝐵 − 2𝐷		 → 			𝑇𝑒𝑠𝑡𝑠	𝐻𝐵 − 3𝐷 

 
Table 3.2: Scheme followed in the validation of Herschel-Bulkley 

Numerical simulations, in the comparison work, were performed using the VOF (Volume of Fluid Method) 
in a two-dimensional domain through the numerical package ANSYS CFX [21]. 
 
This time, the study reference uses the mass conservation equation in all its expression, treating the 
fluid to be simulated as compressible, while the PFEM treats the fluid as quasi-incompressible (annex B): 
 
The geometry to be used, in two spatial dimensions, is as follows in Figure 3.16: 
 

 
Figure 3.16: Geometry defined for Herschel-Bulkley 2D validation 

 
The geometry to be used, in three spatial dimensions, is identical to the two-dimensional geometry, by 
extruding in the third dimension the length shown in the Figure 3.17 below: 
 

 
Figure 3.17: Geometry defined for Herschel-Bulkley 3D validation 

H 
H 
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A zero velocity along the entire contour of the fluid retaining walls has been imposed as a boundary 
condition. 
 

 
Necessary condition to be fulfilled for the calculation at the time of the numerical simulations: 
 

𝒉	𝒎𝒆𝒔𝒉 	> 	𝒗	𝒓𝒖𝒏 · ∆𝒕	𝒔𝒕𝒆𝒑 
 
The time step variation ∆𝑡B27: is something that can be set (chosen). The calculation speed is what it is 
(each processor has its own capacity). The mesh size “ℎ	)7B>” is also selected. 
 
This condition must be taken into account because otherwise, the "particles" (the mesh nodes) would 
advance a distance greater than the mesh dimensions and may cause topological inconvenient and 
consequently errors in the computation (for example, it does not respect the boundary conditions). 
 

 
 

3.2.1. Two dimensions validation 
 

3.2.1.1. End time 
 
The first step in validation is to know how much to simulate in order to be able to compare, beyond the 
values and parameters established by the article. 
 
For this purpose, Test 1 has been modeled, recreating its geometry and properties. 
 
It was decided to set a step time ∆𝑡B27: = 0,001 seconds, a mesh size ℎ)7B> = 0,005 meters and an 
adaptive exponent (Papanastasiou parameter) 𝑚 = 1000 seconds. 
 
This analysis shown in Figure 3.18 is also used to verify whether both Herschel-Bulkley law and Bingham's 
law end up at the same point in terms of fluid motions. 
 
 

 
Figure 3.18: End time of movement according to the model used 
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It can be seen that with both the one and the other, the movement effectively ends at the same location. 
This is due to the fact that the dynamics is influenced, above all, by the yield stress since, if this stress 
value is not exceeded, there is no movement. 
 
However, it is observed that to reach the same stopping point in the movement, much more end time 
𝑡7+C is required with its resulting computational cost. With Herschel-Bulkley, motion arrest occurs at 1,5 
seconds and with Bingham it takes more than 9 seconds. Completion time is reduced by more than 83%. 
 
 Figure 3.18 shows what in [20] has already been commented. The stopping of the motion is influenced 
by the yield stress. If the inertia of the motion of the fluid itself is small, using both the Bingham and 
Herschel-Bulkley laws, the fluid itself will tend to stop at the same point of displacement. Conversely, if 
the inertia of the motion is high enough, using one law or the other will cause the motion to stop at a 
different point. Herschel-Bulkley will stop earlier or later than Bingham depending on the fluid index “n” 
taken as a value. 
 
It can be seen that the movement according to the Bingham model takes longer to occur as time passes. 
 
With this analysis it is possible to proceed to the next one establishing a final time of 1,5 seconds as in the 
basic article for validation. 
 

𝒕𝒆𝒏𝒅 = 𝟏, 𝟓	𝒔 
 

3.2.1.2. Mesh size 
 
In this section, the effect of the mesh size on the numerical results is analyzed. The process consists of, 
starting from the geometrical and mechanical properties of Test 1, comparing different simulations by 
varying the mesh size, observing the computational cost (run time 𝑡 	<A+), the displacement suffered by 
the fluid, with their respective relative error committed. 
 
It has been tested from mesh sizes of 0,1 meters (which did not result in any calculation due to poor 
discretization of the medium and its properties) to a mesh size of 0,001 meters, having up to 100 elements 
in the high of the fluid at the beginning of the simulation. The Figure 3.19 shows each of the results of the 
numerical calculation. There is a clear increase in computational cost when using mesh sizes smaller than 
0,01 meters. Even so, it is worth mentioning that from then on, as can be seen in the Figure 3.21, the error 
is less than 3,2%, leading to the conclusion that a value within that size range is sufficient to continue with 
the simulations. The variation in movement between a size of 0,01 and 0,001 meters is only 9 millimeters. 
 
 

 
Figure 3.19: Comparison of running time with varying 

mesh size 

 
Figure 3.20: Comparison of the fluid front as a mesh size 

function 
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In Figure 3.20, a decrease in the value of the final horizontal wave front position is observed as the mesh 
size decreases. 
 
With this analysis it is possible to proceed to the next one establishing a mesh size of 0,005 meters. This 
is due to the fact that a decrease in size implies an excessive computational cost for the numerical 
simulations and since it produces a small relative error, this advantage should be taken advantage of. 
 
 

 
Figure 3.21: Relative error varying the mesh size 

 
𝒉	𝒎𝒆𝒔𝒉 = 𝟎, 𝟎𝟎𝟓	𝒎 

 

3.2.1.3. Time step 
 
This section determines the time step to be used in the validation simulations of the model proposed in 
this document. As in the previous section, where the analysis is performed with the geometrical and 
mechanical properties of Test 1, this section proceeds in the same way. 
It was decided to set a mesh size ℎ)7B> = 0,005 meters and an adaptive exponent (Papanastasiou 
parameter) 𝑚 = 1000 seconds. 
The first attempts at time step are totally inefficient for the calculation, as it is simply not possible for the 
computer to simulate anything since the time from one step to the next is so long. 
 

 
Figure 3.22: Comparison of running time with varying time 

steps 

 
Figure 3.23: Comparison of the fluid front as a time step 

function 
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As with the determination of the mesh size to be used, the same applies to the time step analysis. The 
computational cost increases dramatically once the value of 0,01 seconds is exceeded. However, it has to 
be lower than this value due to its error when compared to other values. 
 
Based on the results of this analysis, it was decided to use a time step of 0,001 seconds for the model 
validation tests, since it produces a relative error of less than 3%. 

 
∆𝒕	𝒔𝒕𝒆𝒑 = 𝟎, 𝟎𝟎𝟏	𝒔 

 
 

 
Figure 3.24: Relative error varying the time step 

 
 

3.2.1.4. Papanastasiou parameter 
 
Once the mesh size and the step time have been established, it is time to determine the adaptive 
parameter to be used in the numerical simulations Tests for the validation of the model of this writing. 
 

 
Figure 3.25: Comparison of running time with varying 

regularization parameter 

 
Figure 3.26: Expansion in the area of interest of the Figure 

3.25 

 
The two graphs immediately above this paragraph (Figure 3.25 and Figure 3.26) show the same result, 
however it has been decided to enlarge the starting area of the analysis in order to better appreciate the 
behavior of the simulations. 
 
It is curious how from a parameter m = 10 and above, the relative error committed is less than 5%. 
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It is recalled that the higher the value of this parameter, the better it was able to recreate the Herschel-
Bulkley law, shown at Figure 2.6. 

 
Figure 3.27: Comparison of the fluid front as a 

regularization parameter function 
 

Figure 3.28: Relative error varying the regularization 
parameter 

 
The simulation of the test was also attempted by imposing an 𝑚 = 100000, however, the computer was 
unable to perform it. This is due to the presence of very high viscous terms in the governing equations for 
shear strain rates approaching to zero, thus close to the singularity of the Herschel-Bulkley model. In fact, 
for excessive high values of parameter “m”, the regularization effect is reduced and the drawbacks of the 
standard Herschel-Bulkley model arise again.  
 
Using high values of “m” and so, high viscous parameter, have a clear effect on the solution of the linear 
system. In fact, for high value of “m”, the solution system may become ill-conditioned and so more 
difficult to be solved by the iterative linear solver. In other words, for high values of viscosity the solver 
may need many iterations to reach the exact solution of the linear system. This has a clear consequence 
on the duration of the analyses, because the solver will last more time to obtain the solution of each time 
step. In the next analysis, it is analyzed this effect by solving the first steps of the analysis for different 
values of “m”. 
 
The same analyses, but with a better visualization of the comparisons between one value and another, 
are as follows: Figure 3.29 is the comparison between the various values of the "m" parameter when 
visualizing the fluid motion and the Figure 3.30 analysis is the comparison of the computational cost 
required by 10 step times according to the Papanastasiou parameter. 
 
It can be seen in the Figure 3.29, once again, that from m = 10 the fluid motion hardly varies. 
The Figure 3.30 determines the computational cost and it can be clearly seen that this, for 10 time steps 
alone, more than doubles its cost to avoid making an error of less than 5%. If this is extrapolated to the 
time end, the cost increases exponentially, as seen in the previous parameter determination simulations. 
 
The number of steps to be calculated is determined by (4.1), where both values are pre-set at the time 
of performing the simulations. 
 

𝒕𝒆𝒏𝒅
∆𝒕	𝒔𝒕𝒆𝒑 	= #	𝒔𝒕𝒆𝒑𝒔							 → 							

1,5	[𝑠]

0,005	 © 𝑠
𝑠𝑡𝑒𝑝ª

	= 300	𝑠𝑡𝑒𝑝𝑠 (4.1) 

 
It was decided to continue the numerical calculations with a Papanastasiou parameter value of 1000 
seconds since it is one of the cheapest, computationally speaking, compared to others and it respects the 
behavior of the Herschel-Bulkley law regarding the onset of motion and its yield stress. 
 

𝒎 = 𝟏𝟎𝟎𝟎	𝒔 
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Figure 3.29: Wave front horizontal position varying the parameter “m” 

 
 
 

 
Figure 3.30: Run time after 10 seconds of Time step by varying the parameter “m” 
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3.2.1.5. Tests 
 
Once the four extrinsic parameters of the Herschel-Bulkley (𝑡7+C, ℎ	)7B>, ∆𝑡 	B27: and 𝑚) model have been 
determined, it is proceeded to its validation. It is now time to test different fluids with different geometry 
heights within the dam break example. 
 
The validation is divided into 5 fluids of different mechanical properties and three possible starting heights 
for dam breakage (H=0.07, 0.10 or 0.13 m). The properties of the fluids are detailed in the attached tables. 
 
 

3.2.1.5.1. Fluid 1 
 
Equal conditions in terms of mechanical and geometrical properties except for the H value, shown in Table 
3.3: 
 

 𝑯	[𝑚] 𝜌	 ¡
𝑘𝑔
𝑚3¢ 𝜅	[𝑃𝑎] 𝑘[𝑃𝑎 ∙ 𝑠+] 𝑛	[−] 𝜏-	[𝑃𝑎] 

Test 1 0,10 
1000 2,1·109 4,297 0,479 30,002 

Test 2 0,13 

Table 3.3: Properties of fluid 1 in Herschel-Bulkley validation simulations 

 
In this test it can be seen that the fact that the height of the fluid in the simulation greatly influences the 
final results compared to the numerical reference from which the validation examples were taken. The 
higher the starting height of the fluid, the smaller the difference at the end of the numerical calculation 
with the reference values (with a final time 𝑡7+C = 1,5 seconds). 
 
The Figure 3.31 shows the advance of the horizontal wave front on the ordinate axis, measured in 
millimeters, and on the abscissa axis the time advance measured in seconds, where it is limited to 1.5 
seconds, is simulated by what was analyzed in section 3.2.1.1. Four types of curves are plotted: the 
coordinates of the black (numerical reference) and red curves (experimental reference) are taken from 
[21], while the light blue (Bingham model) and deep blue (Herschel-Bulkley model) coordinates are 
obtained from simulations using PFEM implemented in Kratos. This figure description is also valid for the: 
Figure 3.33, Figure 3.35, Figure 3.37, Figure 3.39, Figure 3.45, Figure 3.47, Figure 3.49, Figure 3.55, Figure 
3.57, Figure 3.59, Figure 3.61 and Figure 3.63. 
 
 

 

Figure 3.31: Test 1 results 

 

 

Figure 3.32: Variation of results between Test 1 and 
reference 
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The Figure 3.32 shows the progress in time (abscissa axis) of the variation of the results obtained from 
the PFEM simulation and the numerical reference values. This figure description is also valid for the: Figure 
3.34, Figure 3.36, Figure 3.38, Figure 3.40, Figure 3.46, Figure 3.48, Figure 3.50, Figure 3.56, Figure 3.58, 
Figure 3.60, Figure 3.62 and Figure 3.64. 
 

 
Figure 3.33: Test 2 results 

 

 
Figure 3.34: Variation of results between Test 2 and 

reference 

 
In Test 1, the variation with respect to the numerical reference, at the end of the calculation, is less than 
10%. However, in Test 2, where the height is greater (0,13 meters), the final variation of the simulation is 
less than 4%. 
 
In both cases, the initial behavior of the movement is similar to the reference values, and it is only after 
the displacement has elapsed that the variation begins to increase. 
 

3.2.1.5.2. Fluid 2 
 
Equal conditions in terms of mechanical and geometrical properties except for the H value, shown in Table 
3.4. 
 

 𝐻	[𝑚] 𝜌	 ¡
𝑘𝑔
𝑚3¢ 𝜅	[𝑃𝑎] 𝑘	[𝑃𝑎 ∙ 𝑠+] 𝑛	[−] 𝜏-	[𝑃𝑎] 

Test 3 0,07 

1000 2,1·109 1,904 0,531 18,242 Test 4 0,10 

Test 5 0,13 

Table 3.4: Properties of fluid 2 in Herschel-Bulkley validation simulations 

 
In the simulation of this fluid, there is, in the first test (Test 3), an important difference of movement. 
Again, this large variation in the final results occurs in the geometry of lower initial fluid height. However, 
there are very favorable results in the other two tests (4 and 5). 
 
In test 3, variations of an order of magnitude greater than 15% are shown. However, and even being the 
same fluid with the same mechanical properties, in test 4 and 5 the variations decrease to less than 6% 
and 1%, respectively, being a very close fit to the references. The greater the initial height, the smaller 
the final difference, which leads to a very similar representation of the numerical method proposed in 
this work and the reference method. 
 
In an attempt to find out what has happened in Test 3, it was simulated again by decreasing both the time 
step value and the mesh size, refining it (Figure 3.41 and Figure 3.42). 
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Figure 3.35: Test 3 results 

 

 
Figure 3.36: Variation of results between Test 3 and 

reference 

 

 

Figure 3.37: Test 4 results 

 

 

Figure 3.38: Variation of results between Test 4 and 
reference 

 

 
Figure 3.39: Test 5 results 

 

 
Figure 3.40: Variation of results between Test 5 and 

reference 

The Table 3.5 shows the modifications that have been made in the simulations and the computational 
cost of these changes. The fact of varying the mesh size greatly penalizes the numerical calculation. 
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 ∆𝑡B27:	[𝑠] ℎ)7B>	[𝑚] Computational cost [s] 

Test 3 0,001 0,005 2007,88 

Test 3a 0,0005 0,005 3084,07 

Test 3b 0,001 0,0025 8120,46 

Test 3c 0,0005 0,0025 - 

Table 3.5: Redefinition of parameters in Test 3 

 
It can be seen that having refined the mesh (decreased its size) and/or changed the time step, the 
variation with respect to the reference is hardly affected. 
 

 
Figure 3.41: Comparison of the same Test 3 varying 

properties 

 
Figure 3.42: Variations of Test 3 simulations with respect 

to the numerical reference 

 
However, and this is the case in most tests, varying the alpha shape of the simulation parameters 
decreases the relative error by a little more than 1%. Thus, it can also be said that it does not affect the 
results. This is shown in the following Figure 3.43 and Figure 3.44: 
 
 

 
Figure 3.43: Test 3 results by varying the alpha shape 

 

 
Figure 3.44: Variations of Test 3 with respect to the 

references by varying the alpha shape 
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3.2.1.5.3. Fluid 3 
 
Equal conditions in terms of mechanical and geometrical properties except for the H value, shown in Table 
3.6. 
 

 𝐻	[𝑚] 𝜌	 ¡
𝑘𝑔
𝑚3¢ 𝜅	[𝑃𝑎] 𝑘	[𝑃𝑎 ∙ 𝑠+] 𝑛	[−] 𝜏-	[𝑃𝑎] 

Test 6 0,07 

1000 2,1·109 7,837 0,442 49,179 Test 7 0,10 

Test 8 0,13 

Table 3.6: Properties of fluid 3 in Herschel-Bulkley validation simulations 

 

 
Figure 3.45: Test 6 results 

 

 
Figure 3.46: Variation of results between Test 6 and 

reference 

 

Figure 3.47: Test 7 results 

 

 

Figure 3.48: Variation of results between Test 7 and 
reference 

In these tests it can be seen that the fluid stops its movement much earlier than the rest due to the higher 
yield stress value. It is also observed that the smaller the fluid height, the greater the difference in fluid 
motion front results between the simulations (including the reference ones) and the laboratory 
experimental values. 
In general, it is observed that the PFEM analyses overestimate the numerical and experimental results of 
this test.  In section 4.2.2. some of these tests are studied in three dimensions, to analyze the effect that 
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can be produced, for example, by the friction of the side walls at the final location of the fluid front after 
the study time has elapsed. 
 

 
Figure 3.49: Test 8 results 

 

 
Figure 3.50: Variation of results between Test 8 and 

reference 

 

Figure 3.51: Comparison of the same Test 6 varying 
properties 

 

Figure 3.52: Variations of Test 6 simulations with respect 
to the numerical reference 

 
Figure 3.53: Test 6 results by varying the alpha shape 

 

 
Figure 3.54: Variations of Test 6 with respect to the 

references by varying the alpha shape 
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In an attempt to find out what has happened in Test 6, it was simulated again by decreasing both the time 
step value and the mesh size, refining it (Figure 3.51 and Figure 3.53). This is the same as in the re-
simulation of Test 3, there are hardly any variations with respect to the reference simulation. 
 

3.2.1.5.4. Fluid 4 
 
Equal conditions in terms of mechanical and geometrical properties except for the H value, shown in Table 
3.7. 
 

 𝐻	[𝑚] 𝜌	 ¡
𝑘𝑔
𝑚3¢ 𝜅	[𝑃𝑎] 𝑘	[𝑃𝑎 ∙ 𝑠+] 𝑛	[−] 𝜏-	[𝑃𝑎] 

Test 9 0,1 
1000 2,1·109 4,55 0,470 31,366 

Test 10 0,13 
Table 3.7: Properties of fluid 4 in Herschel-Bulkley validation simulations 

 

 

Figure 3.55: Test 9 results 

 

 

Figure 3.56: Variation of results between Test 9 and 
reference 

 

Figure 3.57: Test 10 results 

 

 

Figure 3.58: Variation of results between Test 10 and 
reference 

The two numerical references are quite close to the results obtained in the laboratory; however, the 
simulations recreated with PFEM overestimate these results. There are even variations in the data of more 
than 20%. 
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3.2.1.5.5. Fluid 5 
 
Equal conditions in terms of mechanical and geometrical properties except for the H value, shown in Table 
3.8. 
 

 𝐻	[𝑚] 𝜌	 ¡
𝑘𝑔
𝑚3¢ 𝜅	[𝑃𝑎] 𝑘	[𝑃𝑎 ∙ 𝑠+] 𝑛	[−] 𝜏-	[𝑃𝑎] 

Test 11 0,07 

1000 2,1·109 7,263 0,446 39,170 Test 12 0,10 

Test 13 0,13 

Table 3.8: Properties of fluid 5 in Herschel-Bulkley validation simulations 

 

 
Figure 3.59: Test 11 results 

 
Figure 3.60: Variation of results between Test 11 and 

reference 

 

 
Figure 3.61: Test 12 results 

 
Figure 3.62: Variation of results between Test 12 and 

reference 

 
In these simulations, something similar happens again as in the case of fluid 2. For a height of 0.07 meters, 
the results deviate by more than 22% from the numerical reference data. However, for greater heights, 
the variations with respect to the reference are decreasing. But, contrary to fluid 2, the results still show 
some differences in the results. 
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Figure 3.63: Test 13 results 

 
Figure 3.64: Variation of results between Test 13 and 

reference 

 

3.2.2. Results in 2D 
 
The following figures show the results obtained at the end of the simulation of Test 1 (fluid 1). Both Figure 
3.65 and Figure 3.66 show variables result iteratively in the numerical calculation. 
 
The following Figure 3.67, Figure 3.68, Figure 3.69 and Figure 3.70 show an approximate comparison of 
the variation of movement, both in the experimental reference (with grid), in the numerical reference 
(black) and in the simulation proposed by this work (blue). 
 
The movement and, therefore, the speed of the system, is produced, above all, on the right side, just 
where the dam break occurs. This behavior can be better visualized in the Figure 3.71 where the velocity 
vector field is shown according to the fluid region of Test 5. 
 

 
Figure 3.65: Velocity field of Test 1 at time step 1.5 s 

The pressure presented by the simulation is somewhat lower than the hydrostatic pressure (the density 
of the calculated fluids is the same as that of water as well). 
 

 
Figure 3.66: Pressure field of Test 1 at time step 1.5 s 
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Figure 3.67: Comparison at t = 0s between experimental, numerical [21] and own references 

 

 

 
Figure 3.68: Comparison at t = 0.2s between experimental, numerical [21] and own references. 

 

    

    
Figure 3.69: Comparison at t = 0.6s between experimental, numerical [21] and own references. 
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Figure 3.70: Comparison at t = 1s between experimental, numerical [21] and own references. 

 
It is observed that the flow represented by both the references and the calculations themselves are close 
to each other and even to the experimental data. 
 
It can be seen in the evolution of the displacement as the initial peak is preserved but progressively 
decreasing its fluid size. This may be due to the consistency it presents. 
 
In this occasion, modeling the fluids with Herschel-Bulkley, the sticking on the fluid wall follows quite 
closely the behavior of the numerical reference and even the experimental one, being this opposite in the 
Bingham modeling. 
 
In [21], it is provided several results, of which are added in this work for comparison. In Figure 3.71 the 
vector field of several initial stages of Test 5 is shown. In Figure 3.72 the same type of field can be observed 
but with the simulations performed with PFEM. 
 
 

 
Figure 3.71: Test 5 reference velocity vectors field [21] 

Numerical Experimental Comparison of Dam Break Flows with non-Newtonian Fluids 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright ©©©© 2012 by ABCM April-June 2012, Vol. XXXIV, No. 2 / 175 

 
Figure 8. Initial velocity field of Test 5 (CFX results). 

 
Wave front velocity  

Now, it is important to focus on the beginning of the flow. With 
the “instantaneous” removal of the barricade the fluid motion is 
initiated by the pressure gradient. The flow is in the inertial regime, 
which means that the dynamics are governed by a balance between 
inertia and pressure gradient force terms. A very big transient 
behavior happens and the velocity field is almost vertical. This can 
be seen in Fig. 8. 

It can be confirmed that at the beginning of the flow, there is a 
significant vertical velocity. With time, the horizontal velocity 
components tend to become increasingly significant and, of course, 
the local aspect ratio will be smaller. It can be concluded that the 
application of shallow water equation at the beginning of the flow 
introduces errors that propagate with time. 
 

Effect of yield stress apparent viscosity 

Analyzing the numerical results of Table 2 it is possible to 
observe that the tests with fluid 3 have reached the arrested state 
earlier followed by fluids 5, 4, 1 and 2.  In a preliminary analysis it 
is plausible to conclude that such behavior is the result of the yield 
stress. However, by examining the behavior of the apparent 
viscosity with the strain rate showed in Fig. 9, we can observe that 
fluid 3 has the biggest apparent viscosity, followed by fluids 5, 4, 1 
and 2.  

The Herschel-Bulkley model is nonlinear so, to analyze the 
conjugate effect of yield stress and the other parameters, more tests 
would be necessary using hypothetic fluids. Although possible to 
use the experimental apparatus presented here, such analysis is 
outside the scope of this work. 

 

 
Figure 9. Apparent viscosity X strain rate. 
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    𝑡 = 0.05	𝑠 

    𝑡 = 0.1	𝑠 

    𝑡 = 0.2	𝑠 

    𝑡 = 0.3	𝑠 
Figure 3.72: Velocity vector field of Test 5 performed with PFEM 

 
The pressures in the initial stages of Test 5, both reference (Figure 3.73) and simulated (Figure 3.74), are 
also added. 
 

 
Figure 3.73: Pressures of Test 5 (validation reference) [21] 

 
Both the lower and upper values of the two simulations are remarkably close. There are hardly any 
differences in values. However, there are some differences in the spatial distribution of these calculations. 
 

Roberta Brondani Minussi and Geraldo de Freitas Maciel 

176 / Vol. XXXIV, No. 2, April-June 2012  ABCM 

 
Figure 10. Initial strain rate field of Test 5 (CFX results). 

 
Strain rate field 

Figure 10 shows the strain rate field of test 5 for some time 
intervals.  

Although there are small viscosities, one can infer that a big 
amount of fluid stays at rest. It can also be seen that, in the front 
vicinity, the fluid is almost totally sheared and, with time, a plug 
zone begins to be more and more significant. This result agrees 
with Ancey and Cochard (2009). But the asymptotic nature of the 
flow raises difficulties in the numerical code, when the yield stress 
is achieved and creates a very big local viscosity. The usage of 
limiting the strain rates, Eq. (14), prevents the solution from 

diverging, though for physical times of order of 1 s more 
computational time spent was observed. 

Hydrostatic pressure condition  

It is also necessary to verify if the hydrostatic pressure condition 
has been respected. Figure 11 shows the pressure field at the 
beginning of Test 5 flow. 

The pressure field is not hydrostatic, mainly in the front wave, but 
the major part of the flow, has an almost hydrostatic pressure field. 

 
 

 
Figure 11. Initial pressure field of Test 5 (CFX results). 
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These variations are present at the fluid flow front. In the numerical reference they show more pressure 
inside the front than in the PFEM simulations. 
 
 

    𝑡 = 0.00	𝑠 

    𝑡 = 0.05	𝑠 

    𝑡 = 0.1	𝑠 

    𝑡 = 0.2	𝑠 
Figure 3.74: Test 5 pressures results obtained in the simulation with PFEM 
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3.2.3. Three dimensions validation 
 
All three-dimensional test simulations were performed using a computer cluster provided by CIMNE. This 
is due to the high computational load of the 3D resolution of the validation examples. A cluster is a set of 
computers that work together so that they can be interpreted as a single system. 
 
Tests 6, 7, 11 and 12 were chosen to be simulated because their movement slowed down quickly and they 
stopped soon after the simulation (due to the properties of the fluid). This would reduce the 
computational cost of each of the simulations. They are also tests with a relevant difference between the 
simulation and the reference values. 
 
Attempts of 0.01, 0.005, 0.004 meters in the size of the medium discretization mesh were studied using 
the cluster. Smaller mesh size could not be analyzed due to the excessive computational cost of the 
analyses. 
 
 

3.2.3.1. Test 6 
 
The Figure 3.75 shows, once again, the movement of the horizontal front of the fluid measured in 
millimeters (ordinate axis) while the abscissa axis represents the advance in time measured in seconds of 
the calculated simulation. Within it several curves are plotted: the advance of the front according to both 
Bingham and Herschel-Bulkley models in two and three dimensions while keeping plotting the numerical 
reference data for further comparison. This description is also valid for the Figure 3.77, Figure 3.79 and 
Figure 3.81. 
 
 

 

Figure 3.75: Test 6 results in 3D 

 

 

Figure 3.76: Variation of results between Test 6 in 3D and 
experimental reference 

 
The variations between the simulations in two and three dimensions of both models (Herschel-Bulkley 
and Bingham) are shown in Figure 3.76 in order to see the influence of adding the third dimension in the 
resolution of the numerical calculation. This description is also valid for the Figure 3.78, Figure 3.80 and 
Figure 3.82 
 
It goes without saying that the addition of an extra dimension generates a much higher computational 
cost. These were simulations where the calculation took more than 6 days per test performed. 
 
In this test it can be seen how the extra dimension influences the slowing down of the movement and, as 
a consequence, the stopping of the movement earlier than in the two-dimensional case. In the case of 
Bingham modeling a similar behavior occurs. This may be due to the friction of the side walls, which causes 
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a generalized drag on the whole front of the movement (similar to what happens in a flow through a pipe). 
Even so, it does not quite fit the numerical contrast reference nor the experimental data, remaining above 
the values. 
 

3.2.3.2. Test 7 
 
This test represents the data obtained from the numerical simulation of Test 7. It can be seen that, as in 
the calculation of Test 6, the three-dimensional Bingham model offers values below the two-
dimensional case. However, in the Herschel-Bulkley case the same thing happens but with a notable 
difference: the results are below the values of the numerical reference. 
 

 

 

Figure 3.77: Test 7 results in 3D 

 

 

Figure 3.78: Variation of results between Test 7 in 3D and 
experimental reference 

Figure 3.78 shows variations of more than 13% from the two-dimensional to the three-dimensional step. 
 
 
 

3.2.3.3. Test 11 
 
The same behavior occurs in this test as in Test 6. The movement is slowed down but the results are above 
the reference data. 
 

 

Figure 3.79: Test 11 results in 3D 

 

 

Figure 3.80: Variation of results between Test 11 in 3D 
and experimental reference 
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3.2.3.4. Test 12 
 
The results of Test 12 show the same type of behavior as in the three-dimensional case of the results of 
Test 7. 
 
The Herschel-Bulkley model returns lower results than the numerical reference data. The Bingham model, 
once again, follows the same three-dimensional behavior as in the previous 3 tests. 
 

 

Figure 3.81: Test 12 results in 3D 

 
 

 

Figure 3.82: Variation of results between Test 12 in 3D 
and experimental reference 

3.2.4. Results in 3D 
 
The evolution of the speed of Test 7 in three dimensions is attached. In the Figure 3.83, it can be observed 
that the last 5 seconds of simulation the velocity data hardly change, which also implies a null 
displacement, already visualized previously in the Figure 3.77. 
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𝑡 = 0.6	𝑠 

 

𝑡 = 1.0	𝑠 
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𝑡 = 1.5	𝑠 
Figure 3.83: Test 7 velocity field in three dimensions at different time steps. 

 
It is clearly observed that the friction of the side walls causes friction between the particles of the system 
thus slowing down the whole movement. 
 
In the Figure 3.84 and Figure 3.85 it can see the effects produced by the three-dimensional simulation of 
the same case. The motion stops earlier and the velocity field is slightly different because of this. The 
results are even lower than the two-dimensional numerical reference values. 
 
 

 
Figure 3.84: Test 7 velocity field in three dimensions at the end of the simulation (split in half) 

 

 
Figure 3.85: Test 7 velocity field in two dimensions at the end of the simulation 

 
Even if the same upper limitation of the velocity of the fluid motion front exists, it is not distributed in the 
same way. 
 
In the three-dimensional case, velocities along the expansion wave are lower than in the two-dimensional 
case. This is, as previously commented, due to the friction of the side walls, which exert forces in the 
opposite direction to the movement, thus slowing down the movement of the fluid in general. This also 
translates to the fact that progress over a given period of time is lower in 3D. 
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4. Conclusion and future lines of research 
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4.1. Conclusions 
 
The objective of the present work was the implementation with subsequent validation by means of 
contrasting examples found in the literature of the Herschel-Bulkley constitutive law model of fluid 
mechanics in the Kratos Multiphysics program solved by means of the PFEM formulation. In order to avoid 
numerical calculation problems, this constitutive law has been regularized by the Papanastasiou 
parameter, thus facilitating the implementation of the law in computation.  
 
Not only the Herschel-Bulkley model but also the Bingham model has been used, both in two and three 
dimensions. This has been done basing on the previous implementation of the Bingham model in the 
Kratos Multiphysics software in order to make the pertinent modifications to the programming code and 
transform it into a more generalized law.  
 
Before performing the Herschel-Bulkley validations, convergence analyses of the mesh size, the time step, 
the final computation time and the Papanastasiou regulator parameter have been carried out in order to 
understand and visualize to what extent their values influence the numerical results. 
 
It is concluded that both the mesh size and the step time variation, the smaller their values, the closer 
they are to the contrast examples. However, their price to pay is the computational cost associated with 
the decrease of their values. In the numerical analyses, it has been shown how the cost increases as the 
step time increases. The opposite happens when the Papanastasiou parameter is varied. There comes a 
point, a value, that from then on, referring to increasing its value, produces hardly any substantial 
variations to the final results except, of course, to the computational time used, thus increasing the 
computational cost to values that are not practical for simulations. 
 
It has been observed that, at relatively small motion inertias, the value of the yield stress dictates the 
stopping of the fluid motion in parameters of position variation either by applying one law or the other, 
differing only in the time required for this. 
 
The validations present slight variations with the numerical reference values. This may be due to the mass 
conservation law used when simulating, since the references use the incompressibility of the fluid and 
here, we start from the quasi-incompressibility of the medium. But even so, it can be seen that it depends 
on the case treated, because although in lower fluid heights when simulating the breakage of the dam, 
the results present a greater variation, when it comes to higher heights the differences are negligible.  
 
In the formulation proposed by PFEM, use is made of the bulk modulus that defines the compressibility 
of the medium. This parameter is related to the propagation velocity of a wave in the fluid in question. It 
is used because it is better adjusted to the reality of fluids when it comes to their dynamics. 
 
When comparing the two-dimensional simulations with the three-dimensional simulations, the effect of 
the walls and their slowing down on the movement and therefore the stopping of the movement can be 
seen, significantly reducing the variations of the results with the numerical examples extracted from the 
literature. 
 
All the validation plots have been executed using MatLab software having collected the GiD post-
processing data in Excel sheets for a sorting of the data. Qualitative plots such as Figure 2.3 and Figure 2.6 
have also been plotted using MatLab to better visualize the theoretical explanation of the model 
discussed.  
 
It can be assured that the Herschel-Bulkley model still has a long way to go when applied by PFEM, testing 
different regularization parameters that can compensate for the difference in initial mechanical 
formulations. 
 
 



Conclusion and future lines of research  

Timur Tomas Pozo 

57 

 
The main contributions of this work are: 
 

- Implementation of the Herschel-Bulkley constitutive law in the PFEM code of Kratos 
Multiphysics. 

 
- Calibration of simulation parameters by convergence analysis. 

 
- Validation of the Herschel-Bulkley against Bingham, numerical and experimental data. 

 
- Matching of both models with two-dimensional and three-dimensional cases. 

 
 
 

4.2. Future lines of research 
 
As future lines of research it is proposed to continue contrasting the model by means of more literature 
of the same.  
 
In order to make a closer approximation to the reality of the model, it is proposed to couple 
thermodynamics to the mechanics of motion, since articles such as [23] is state the need to detail 
variables of the Herschel-Bulkley model by means of temperature-dependent functions, such as the 
consistency index (5.1) (or dynamic viscosity in the particular case of Bingham) or the yield stress itself. In 
[23]  is proposed that the variation with respect to temperature of the parameter is directly proportional 
to itself. 
 

𝑑𝑘
𝑑𝜃 = −𝛼𝑘						 → 						𝑘(𝜃) = 𝑘-	𝑒N(P!(P) (5.1) 

 
Where “𝑘-” is the viscosity at “𝜃-” temperature. 
 
The code has been left open for the implementation of the same model but temperature-dependent, 
making the implementation within the code of the heat equation in the practical case of null convective 
terms necessary due to the use of the Lagrangian description of the motion, thus reducing the 
computational cost of all the simulations and being able to better represent the deformations of the 
system. 
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A-A.1. Kronecker delta 
 
 

 

𝜹 = 𝜹𝒊𝒋 =
𝝏𝒙𝒊

𝝏𝒙𝒋 =
𝝏𝒙𝒋

𝝏𝒙𝒊 =	�		
𝟎			𝒊𝒇	𝒊 ≠ 𝒋

	
𝟏			𝒊𝒇	𝒊 = 𝒋

 

It is a symmetric matrix: 
 

𝛿!" = 𝛿"! 
 
Its inverse is itself: 
 

[𝛿(,]!" = 𝛿!" 
 
By the above property, it is also an orthogonal matrix: 
 

[𝛿(,]!" = 𝛿"! 
 
For completeness, the definition of the Kronecker delta in covariant, contravariant and mixed way are the same: 
 

𝛿!" = 𝛿!" = 𝛿!
" = 𝛿!" 

 
 
Example in three dimensions: 
 

𝛿 = 𝛿!" = ±
1 0 0
0 1 0
0 0 1

² 

 
 
A-A.2. Levi-Civita Tensor. Permutation symbol 
 
 

 

𝜖!"…!# =

⎩
⎪
⎨

⎪
⎧
	

+1			𝑖𝑓	(𝑎,, … , 𝑎+)	𝑖𝑠	𝑎𝑛	𝑒𝑣𝑒𝑛	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	(1, … , 𝑛)
	

−1			𝑖𝑓	(𝑎,, … , 𝑎+)	𝑖𝑠	𝑎𝑛	𝑜𝑑𝑑	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	(1, … , 𝑛)
	

0				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																												

 

 
The definition of the Levi-Civita symbol in covariant and contravariant way are the same: 
 

𝜖!"…!# = 𝜖!"…!#  
 

 
 
Differential operators of the Permutation Symbol: 
 

𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕			 → 			 𝛁	𝝐 = 𝜖"$?,! =
𝜕𝜖"$?
𝜕𝑥!

= 𝕆!"$? =
𝜕𝜖!"$
𝜕𝑥?

= 𝜖!"$,? = 𝜖	∇ 

 
 

𝑫𝒊𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆			 → 			 𝛁 · 𝝐 = 𝜖!"$,! =
𝜕𝜖!"$
𝜕𝑥!

= 𝕆"$ = 𝕆!" =
𝜕𝜖!"$
𝜕𝑥$

= 𝜖!"$,$ = 𝜖 · ∇ 
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𝑪𝒖𝒓𝒍		 → 			𝛁 × 𝝐 = 𝜖!"$𝜖$?)," = 𝜖!"$
𝜕𝜖$?)
𝜕𝑥"

= 𝕆!?) 

 
 
Where “𝕆!"”, “𝕆!"$” and “𝕆!"$?” are the second, third and fourth order tensor respectively with all its 
components equal to zero. 
 
Example in three dimensions: 
 

 
 
 
𝜖 	= 	 𝜖!"$ 	= 

 
Figure A-A.0.1:Levi-Cita Tensor. Source: [24] 

A-A.3. Scalar/Dot product 
 
 
Scalar/Dot Product between two vectors: 
 

𝑎 · 𝑏 = 𝑏 · 𝑎 = 𝛿!" 	𝑎! 	𝑏" 
 
An interesting property is: 
 

𝑎 · 𝑏 = 𝑡𝑟8𝑎 ⊗ 𝑏< 

 
A-A.4. Double index contraction 
 
A-A.4.1. Double (vertical) dot product 
 
 

𝑨 ∶ 𝑩 = 𝒕𝒓 2𝑨 ∙ 𝑩𝑻5 = 𝑡𝑟 2𝐴9 ∙ 𝐵5 = 𝑡𝑟 2𝐵9 ∙ 𝐴5 = 𝑡𝑟 2𝐵 ∙ 𝐴95 = 𝐵 ∶ 𝐴 

 
 

𝑨 ∶ 𝑩 = 𝐴!" 	𝐵!" = ±
𝐴,, 𝐴,. 𝐴,3
𝐴., 𝐴.. 𝐴.3
𝐴3, 𝐴3. 𝐴33

² ∶ ±
𝐵,, 𝐵,. 𝐵,3
𝐵., 𝐵.. 𝐵.3
𝐵3, 𝐵3. 𝐵33

² 

 
 

1 TENSORS 

'UDIW������������������������������������%\��(GXDUGR�:��9��&KDYHV������� 

7

8QLYHUVLW\�RI�&DVWLOOD�/D�0DQFKD�

&LXGDG�5HDO���6SDLQ�

iiijkijkkjijk aa ������  �  � aaaa
&&&&

..  

b) �������   .. ikjijk EEE  

Problem 1.10 
Get the value of the following expressions: 

a) kjiijk ��� EEE.  

b) jpiqjqippqkijk EEEE � ..  for the following cases: 

 b.1) �����     pqji  

 b.2) ���     pjqi  

c) ���� �� ibtbasaistiqkqpjpijk EE �� F$F$F$F$ ..  

where ijk.  is the permutation symbol, (see Figure 1.6), and ijE  is the Kronecker delta. 

Reminder: Permutation symbol 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6 
Solution: 

a) �������   .. kjiijk EEE ;  

b.1) �������������������������������  u�u��u �� ........ kk  

b.2) ������������������������������� � �u�u�u �� ........ kk  

1 

2 3 

 � ijk.  

 �� ijk.  

 � k  

 �ij.  

 �ij.  

 �ij.  

 � k  

 � k  

 � i  
 � i  
 � i  

 � j  
 � j   � j    0 

  0 

   0 

  0 

  0 

  0 
  0 
   1 

  -1 

 � i  
 � i  
 � i  

 � j  
 � j   � j    0 

  0 

   0 

  0 

  1 

  0 
  -1 
   0 

  0 

 � i  
 � i  
 � i  

 � j  
 � j   � j    0 

  0 

   0 

  -1 

  0 

  1 
  0 
   0 

  0 

 i  

 j   k  

 kijjkiijk ...    
 jikkjiikjijk .... � � �  
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𝑨 ∶ 𝑩 = 𝐴!" 	𝐵!" = 𝐴,,𝐵,, + 𝐴,.𝐵,. + 𝐴,3𝐵,3 + 𝐴.,𝐵., + 𝐴..𝐵.. + 𝐴.3𝐵.3 + 𝐴3,𝐵3, + 𝐴3.𝐵3. + 𝐴33𝐵33 
 
 

A-A.4.2. Double (horizontal) dot product 
 
 

𝑨 ⋅⋅ 𝑩 = 𝒕𝒓 2𝑨 · 𝑩5 = 𝒕𝒓 2𝑩 · 𝑨5 = 𝑩 ⋅⋅ 𝑨 
 
 

𝐴 ⋅⋅ 𝐵 = 𝐴!" 	𝐵"! = ±
𝐴,, 𝐴,. 𝐴,3
𝐴., 𝐴.. 𝐴.3
𝐴3, 𝐴3. 𝐴33

² ∶ ±
𝐵,, 𝐵., 𝐵3,
𝐵,. 𝐵.. 𝐵3.
𝐵,3 𝐵.3 𝐵33

² 

 
 
𝑨 ⋅⋅ 𝑩 = 𝐴!" 	𝐵"! = 𝐴,,𝐵,, + 𝐴,.𝐵., + 𝐴,3𝐵3, + 𝐴.,𝐵,. + 𝐴..𝐵.. + 𝐴.3𝐵3. + 𝐴3,𝐵,3 + 𝐴3.𝐵.3 + 𝐴33𝐵33 
 
Relation between the both types of double index contraction: 
 
 

𝐴 ∶ 𝐵 	= 		𝐴 ⋅⋅ 𝐵 						↔ 			 𝐴 = 𝐴9			𝑜𝑟			𝐵 = 𝐵9 
 

𝐼𝑓		𝐴!" = 𝐴"! 		𝑎𝑛𝑑		𝐵!" = −𝐵"! 		→ 		𝐴!" 	𝐵!" =	𝐴 ∶ 𝐵 = 0 
 

A-A.5. Norm 
 
The "norm" of a second order tensor (matrix) is defined [6]: 
 

𝑨 = È𝑨È = 2𝑨 ∶ 𝑨5
𝟏
𝟐 												𝐴 = �𝐴!"� = 8𝐴!" 	𝐴!"<

,
. 

 
Example in three dimensions: 
 

𝐴 = È𝐴È = s𝐴 ∶ 𝐴 = c(𝐴,,). + (𝐴,.). + (𝐴,3). + (𝐴.,). + (𝐴..). + (𝐴.3). + (𝐴3,). + (𝐴3.). + (𝐴33). 

 
 
Symmetric second order tensor norm: 
 

𝐼𝑓		𝐴!" = 𝐴"! 			→ 			 �𝐴!"� = c(𝐴,,). + (𝐴..). + (𝐴33). + 2(𝐴,.). + 2(𝐴,3). + 2(𝐴.3). 
 
 

A-A.6. Differential Operators 
 
 

A-A.6.1. Scalars 
 
 

A-A.6.1.1. Gradient 
 

𝒂	𝛁 = 𝑎⨂∇= 𝑎⨂∇!= [𝑎]⨂[𝛻]! = [𝑎	𝛻]! = [𝑎⨂𝛻]! =
𝝏𝒂
𝝏𝒙𝒊

= 𝑎,! 
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Example in three dimensions in cartesian coordinates: 
 

𝑎	∇=

⎝

⎜
⎜
⎜
⎛

𝜕𝑎
𝜕𝑥,	
𝜕𝑎
𝜕𝑥.	
𝜕𝑎
𝜕𝑥3⎠

⎟
⎟
⎟
⎞

 

 
The commutative property is satisfied: 
 

𝛁	𝒂 = ∇⨂𝑎 = ∇!⨂𝑎 = [𝛻]!⨂[𝑎] = [𝛻	𝑎]! = [𝛻⨂𝑎]! =
𝝏𝒂
𝝏𝒙𝒊

= 𝑎,! = 𝑎	∇ 

 
∇	𝑎 = 𝑎	∇ 

A-A.6.1.2. Divergence 
 
It does not exist. 
 
A-A.6.1.3. Rotational 
 
It does not exist. 
 
 
A-A.6.2. Vectors 
 

A-A.6.2.1. Gradient 
 

𝒂	𝛁 = 𝑎⨂∇= 𝑎!⨂∇"= [𝑎]!⨂[𝛻]" = [𝑎	𝛻]!" = [𝑎⨂𝛻]!" =
𝝏𝒂𝒊
𝝏𝒙𝒋

= 𝑎!," 

 
Example in three dimensions in cartesian coordinates: 
 

𝑎	∇= ±
𝑎,
𝑎.
𝑎3
²f

𝜕
𝜕𝑥,

𝜕
𝜕𝑥.

𝜕
𝜕𝑥3

g =

⎝

⎜
⎜
⎜
⎛

𝜕𝑎,
𝜕𝑥,

𝜕𝑎,
𝜕𝑥.

𝜕𝑎,
𝜕𝑥3

𝜕𝑎.
𝜕𝑥,

𝜕𝑎.
𝜕𝑥.

𝜕𝑎.
𝜕𝑥3

𝜕𝑎3
𝜕𝑥,

𝜕𝑎3
𝜕𝑥.

𝜕𝑎3
𝜕𝑥3⎠

⎟
⎟
⎟
⎞

 

 
Jacobian matrix: 
 

*	

	𝐽 = 𝑎	𝛻
	
	

𝐽!" = 𝑎!,"

 

 
 

A-A.6.2.2. Transpose vector gradient 
 

𝜵	𝒂 = 8𝑎	∇<9 = ∇⨂𝑎 = ∇!⨂𝑎" = [∇]!⨂[𝑎]" = [𝛻	𝑎]!" = [𝛻⨂𝑎]!" =
𝝏𝒂𝒋
𝝏𝒙𝒊

= 𝑎",! 
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Example in three dimensions in cartesian coordinates: 
 

∇	𝑎 =

⎝

⎜
⎜
⎜
⎛

𝜕
𝜕𝑥,
𝜕
𝜕𝑥.
𝜕
𝜕𝑥3⎠

⎟
⎟
⎟
⎞
(𝑎, 𝑎. 𝑎3) =

⎝

⎜
⎜
⎜
⎛

𝜕𝑎,
𝜕𝑥,

𝜕𝑎.
𝜕𝑥,

𝜕𝑎3
𝜕𝑥,

𝜕𝑎,
𝜕𝑥.

𝜕𝑎.
𝜕𝑥.

𝜕𝑎3
𝜕𝑥.

𝜕𝑎,
𝜕𝑥3

𝜕𝑎.
𝜕𝑥3

𝜕𝑎3
𝜕𝑥3⎠

⎟
⎟
⎟
⎞

 

 
A-A.6.2.3. Laplacian 
 

Ñ		
𝛻 ∙ 8𝛻	𝑎< = 𝛻.	𝑎 = ∆	𝑎

	
	8𝑎",!<,! = 𝑎",!!

 

 
 
Example in three dimensions in cartesian coordinates: 
 

∆	𝑎 = Ò
𝜕.

𝜕𝑥,.
𝜕.

𝜕𝑥..
𝜕.

𝜕𝑥3.
Ó · ±

𝑎,
𝑎.
𝑎3
² =

𝜕.𝑎,
𝜕𝑥,

. +
𝜕.𝑎.
𝜕𝑥.

. +
𝜕.𝑎3
𝜕𝑥3

.  

 
 

A-A.6.2.4. Divergence 
 

𝜵	𝒂 ∶ 𝜹 = 𝜵 · 𝒂 = 𝛻! · 𝑎! = [𝛻]! · [𝑎]! = [𝛻 · 𝑎] =
𝝏𝒂𝒊
𝝏𝒙𝒊

= 𝑎!,! 

 

𝒂	𝜵 ∶ 𝜹 = 𝒂 · 𝜵 = 𝑎! · 𝛻! = [𝑎]! · [𝛻]! = [𝑎 · 𝛻] =
𝝏𝒂𝒊
𝝏𝒙𝒊

= 𝑎!,! 

 
Example in three dimensions in cartesian coordinates: 
 

𝜵 · 𝒂 = f
𝜕
𝜕𝑥,

𝜕
𝜕𝑥.

𝜕
𝜕𝑥3

g · ±
𝑎,
𝑎.
𝑎3
² =

𝜕𝑎,
𝜕𝑥,

+
𝜕𝑎.
𝜕𝑥.

+
𝜕𝑎3
𝜕𝑥.

 

 
There are texts (clear examples are books on Differential Geometry [24]) where it is defined: 
 

𝑎 · 𝛻 = 𝑎!
𝜕
𝜕𝑥!

= 𝑎,
𝜕
𝜕𝑥,

+ 𝑎.
𝜕
𝜕𝑥.

+ 𝑎3
𝜕
𝜕𝑥3

 

 
However, in this wording the order of the divergence of a vector is used interchangeably. 
 
 

A-A.6.2.5. Curl 
 
Also known as Rotational [6]: 
 
 

𝜵 × 𝒂 = 𝜵 ∧ 𝒂 = 𝝐𝒊𝒋𝒌
𝝏𝒂𝒌
𝝏𝒙𝒋

= 𝜖!"$	𝑎$," 
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Example in three dimensions in cartesian coordinates: 
 

𝛻 × 𝑎 =

⎝

⎜
⎜
⎜
⎛

𝜕𝑎3
𝜕𝑥.

−
𝜕𝑎.
𝜕𝑥3

𝜕𝑎,
𝜕𝑥3

−
𝜕𝑎3
𝜕𝑥,

𝜕𝑎.
𝜕𝑥,

−
𝜕𝑎,
𝜕𝑥.⎠

⎟
⎟
⎟
⎞

 

 
The anticommutative property is satisfied: 
 

𝒂 × 𝜵 =
𝝏𝒂𝒊
𝝏𝒙𝒋

𝝐𝒊𝒋𝒌 = −𝜵 × 𝒂 

 
 
A-A.6.3. Matrixes 
 

A-A.6.3.1. Gradient 
 

𝜵	𝑨 = 𝛻⨂𝐴 = 𝛻!⨂𝐴"$ = [𝛻]!⨂[𝐴]"$ = [𝛻	𝐴]!"$ = [𝛻⨂𝐴]!"$ = 𝐴"$,! =
𝝏𝑨𝒋𝒌
𝝏𝒙𝒊

 

 
 

𝑨	𝜵 = 𝐴⨂𝛻 = 𝐴!"⨂𝛻$ = [𝐴]!"⨂[𝛻]$ = [𝐴	𝛻]!"$ = [𝐴⨂𝛻]!"$ = 𝐴!",$ =
𝝏𝑨𝒊𝒋
𝝏𝒙𝒌

 

 
Example in three dimensions in cartesian coordinates: 
 
 

𝛻	𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

	

⎝

⎜
⎜
⎜
⎛

𝜕𝐴,,
𝜕𝑥,

𝜕𝐴.,
𝜕𝑥,

𝜕𝐴3,
𝜕𝑥,

𝜕𝐴,,
𝜕𝑥.

𝜕𝐴.,
𝜕𝑥.

𝜕𝐴3,
𝜕𝑥.

𝜕𝐴,,
𝜕𝑥3

𝜕𝐴.,
𝜕𝑥3

𝜕𝐴3,
𝜕𝑥3 ⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

𝜕𝐴,.
𝜕𝑥,

𝜕𝐴..
𝜕𝑥,

𝜕𝐴3.
𝜕𝑥,

𝜕𝐴,.
𝜕𝑥.

𝜕𝐴..
𝜕𝑥.

𝜕𝐴3.
𝜕𝑥.

𝜕𝐴,.
𝜕𝑥3

𝜕𝐴..
𝜕𝑥3

𝜕𝐴3.
𝜕𝑥3 ⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

𝜕𝐴,3
𝜕𝑥,

𝜕𝐴.3
𝜕𝑥,

𝜕𝐴33
𝜕𝑥,

𝜕𝐴,3
𝜕𝑥.

𝜕𝐴.3
𝜕𝑥.

𝜕𝐴33
𝜕𝑥.

𝜕𝐴,3
𝜕𝑥3

𝜕𝐴.3
𝜕𝑥3

𝜕𝐴33
𝜕𝑥3 ⎠

⎟
⎟
⎟
⎞
	

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 

𝐴	𝛻 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

	

⎝

⎜
⎜
⎜
⎛

𝜕𝐴,,
𝜕𝑥,

𝜕𝐴,.
𝜕𝑥,

𝜕𝐴,3
𝜕𝑥,

𝜕𝐴.,
𝜕𝑥,

𝜕𝐴..
𝜕𝑥,

𝜕𝐴.3
𝜕𝑥,

𝜕𝐴3,
𝜕𝑥,

𝜕𝐴3.
𝜕𝑥,

𝜕𝐴33
𝜕𝑥, ⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

𝜕𝐴,,
𝜕𝑥.

𝜕𝐴,.
𝜕𝑥.

𝜕𝐴,3
𝜕𝑥.

𝜕𝐴.,
𝜕𝑥.

𝜕𝐴..
𝜕𝑥.

𝜕𝐴.3
𝜕𝑥.

𝜕𝐴3,
𝜕𝑥.

𝜕𝐴3.
𝜕𝑥.

𝜕𝐴33
𝜕𝑥. ⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

𝜕𝐴,,
𝜕𝑥3

𝜕𝐴,.
𝜕𝑥3

𝜕𝐴,3
𝜕𝑥3

𝜕𝐴.,
𝜕𝑥3

𝜕𝐴..
𝜕𝑥3

𝜕𝐴.3
𝜕𝑥3

𝜕𝐴3,
𝜕𝑥3

𝜕𝐴3.
𝜕𝑥3

𝜕𝐴33
𝜕𝑥3 ⎠

⎟
⎟
⎟
⎞
	

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 

A-A.6.3.2. Divergence 
 

𝜵	𝑨 ∶ 𝜹 = 𝜵 · 𝑨 = 𝛻! · 𝐴!" = [𝛻]! · [𝐴]!" = [𝛻 · 𝐴]" =
𝝏𝑨𝒊𝒋
𝝏𝒙𝒊

= 𝐴!",! 

 
 
 

𝑨	𝜵 ∶ 𝜹 = 𝒅𝒊𝒗 2𝑨5 = 𝑨 · 𝜵 = 𝐴!" · 𝛻" = [𝐴]!" · [𝛻]" = [𝐴 · 𝛻]! =
𝝏𝑨𝒊𝒋
𝝏𝒙𝒋

= 𝐴!"," 
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Example in three dimensions in cartesian coordinates: 
 

𝛻 · 𝐴 =�
𝜕𝐴!"
𝜕𝑥!

3

!X,

=
𝜕𝐴,"
𝜕𝑥,

+
𝜕𝐴."
𝜕𝑥.

+
𝜕𝐴3"
𝜕𝑥3

= f
𝜕
𝜕𝑥,

𝜕
𝜕𝑥.

𝜕
𝜕𝑥3

g · ±
𝐴,, 𝐴,. 𝐴,3
𝐴., 𝐴.. 𝐴.3
𝐴3, 𝐴3. 𝐴33

² =

⎝

⎜
⎜
⎜
⎛

𝜕𝐴,,
𝜕𝑥,

+
𝜕𝐴.,
𝜕𝑥.

+
𝜕𝐴3,
𝜕𝑥3

𝜕𝐴,.
𝜕𝑥,

+
𝜕𝐴..
𝜕𝑥.

+
𝜕𝐴3.
𝜕𝑥3

𝜕𝐴,3
𝜕𝑥,

+
𝜕𝐴.3
𝜕𝑥.

+
𝜕𝐴33
𝜕𝑥3 ⎠

⎟
⎟
⎟
⎞

 

 
 

𝐴 · 𝛻 =�
𝜕𝐴!"
𝜕𝑥"

3

"X,

=
𝜕𝐴!,
𝜕𝑥,

+
𝜕𝐴!.
𝜕𝑥.

+
𝜕𝐴!.
𝜕𝑥.

= ±
𝐴,, 𝐴,. 𝐴,3
𝐴., 𝐴.. 𝐴.3
𝐴3, 𝐴3. 𝐴33

² ·

⎝

⎜
⎜
⎜
⎛

𝜕
𝜕𝑥,
𝜕
𝜕𝑥.
𝜕
𝜕𝑥3⎠

⎟
⎟
⎟
⎞
=

⎝

⎜
⎜
⎜
⎛

𝜕𝐴,,
𝜕𝑥,

+
𝜕𝐴,.
𝜕𝑥.

+
𝜕𝐴,3
𝜕𝑥3

𝜕𝐴.,
𝜕𝑥,

+
𝜕𝐴..
𝜕𝑥.

+
𝜕𝐴.3
𝜕𝑥3

𝜕𝐴3,
𝜕𝑥,

+
𝜕𝐴3.
𝜕𝑥.

+
𝜕𝐴33
𝜕𝑥3 ⎠

⎟
⎟
⎟
⎞

 

 
 
Relationship between one operator order or another: 
 

Ñ			
𝐴 = 𝐴9 			↔ 				 𝛻 · 𝐴 = 𝐴 · 𝛻

	
𝐴!" = 𝐴"! 		↔ 				 𝐴!",! = 𝐴!","

 

 
 

 
Since the Cauchy Stress Tensor is a symmetric one, then it could be done: 
 

𝒅𝒊𝒗 2𝝈5 = 𝝈 · 𝛁 = 𝛁 · 𝝈 = 	𝝈𝒊𝒋,𝒊 = 𝝈𝒊𝒋,𝒋 
 

 
 

A-A.6.3.3. Curl 
 

𝜵 × 𝑨 = 𝝐𝒊𝒋𝒌
𝝏𝑨𝒌𝒍
𝝏𝒙𝒋

= 𝜖!"$	𝐴$?," 

 
 
Example in three dimensions in cartesian coordinates: 
 

𝛻 × 𝐴 =

⎝

⎜
⎜
⎜
⎛
f
𝜕𝐴3,
𝜕𝑥.

−
𝜕𝐴.,
𝜕𝑥3

g f
𝜕𝐴3.
𝜕𝑥.

−
𝜕𝐴..
𝜕𝑥3

g f
𝜕𝐴33
𝜕𝑥.

−
𝜕𝐴.3
𝜕𝑥3

g

f
𝜕𝐴,,
𝜕𝑥3

−
𝜕𝐴3,
𝜕𝑥,

g f
𝜕𝐴,.
𝜕𝑥3

−
𝜕𝐴3.
𝜕𝑥,

g f
𝜕𝐴,.
𝜕𝑥3

−
𝜕𝐴33
𝜕𝑥,

g

f
𝜕𝐴.,
𝜕𝑥,

−
𝜕𝐴,,
𝜕𝑥.

g f
𝜕𝐴..
𝜕𝑥,

−
𝜕𝐴,.
𝜕𝑥.

g f
𝜕𝐴.3
𝜕𝑥,

−
𝜕𝐴,.
𝜕𝑥.

g
⎠

⎟
⎟
⎟
⎞

 

 
A relationship to take into account due to its use in the development of the compatibility equations in of 
continuous media mechanics (relationship between the medium motion equations and its undergoing 
strain tensor): 
 

𝐴 × 𝛻 =
𝜕𝐴"$
𝜕𝑥!

𝜖$!? = −2𝛻 × 𝐴95
9
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A-A.7. Integral theorems 
 

A-A.7.1. Gauss Divergence Theorem 
 
 

Ü 𝓧𝒊𝒋…𝒌𝒍𝒎 · 𝒅𝜞𝒎

	

𝜞≡𝝏𝜴

= Ü 𝒳!"…$) · 𝑛)	𝑑𝛤
	

^≡_`

= Ü
𝝏𝓧𝒊𝒋…𝒌𝒎

𝝏𝒙𝒎
𝒅𝜴

	

𝜴

 

 
Example: 
 

Ü𝐴 · 𝑑𝛤
	

_`

= Ü𝐴 · 𝑛	𝑑𝛤
	

_`

= Ü𝐴 · 𝛻	𝑑𝛺
	

`

 

 
 

A-A.7.2. Generalized theorems 
 
Generalizing the theorems of differential integration, it is obtained: 
 

Ü𝝎
	

𝝏𝜴

= Ü𝒅𝝎
	

𝜴

 

 
 

Ü 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
	

a-A+C/<b	C-)/!+

= Ü 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠	𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛
	

c-)/!+

 

 
 

A-A.8. Special tensors 
 

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐	𝑇𝑒𝑛𝑠𝑜𝑟	𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟			 → 			𝕍 	= 	𝕍!"$? =
1
3	𝕀!"$? =

1
3 8𝛿!" 	𝛿$?< 

 
 
𝐷𝑒𝑣𝑖𝑎𝑡𝑜𝑟𝑖𝑐	𝑇𝑒𝑛𝑠𝑜𝑟	𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟			 → 			ℙ 	= 	ℙ!"$? = 𝕀!"$? − 𝕍!"$? 

 
The main property of these two new operators is the capacity of decomposition of a tensor: 
 
 

𝑺𝒑𝒉𝒆𝒓𝒊𝒄𝒂𝒍	𝒑𝒂𝒓𝒕			 → 			 Ñ			
𝐴B:> = 𝕍 ∶ 𝐴									

	
𝐴!"B:> = 𝕍!"$? 	𝐴$?

															&																𝑫𝒆𝒗𝒊𝒂𝒕𝒐𝒓𝒊𝒄	𝒑𝒂𝒓𝒕			 → 			 Ñ		
𝐴# = ℙ ∶ 𝐴										

	
𝐴!"# = ℙ!"$? 	𝐴$?	

 

 
 
For any second-order tensor, can be split in 2 parts: the spherical part (or component) and the deviatoric 
part: 
 
 

Ñ		
𝐴 = 𝐴B:> + 𝐴#								

	
𝐴!" = 𝐴!"B:> + 𝐴!"#
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The spherical part is defined as: 
 

⎩
⎪
⎨

⎪
⎧
		
𝐴B:> =

1
3 	𝑡𝑟 2𝐴5 1 =

1
3	2𝐴 ∶ 151	

𝐴!"B:> =
1
3	𝐴$$	𝛿!" 																										

				→ 				 𝐴B:> =
(𝐴,, + 𝐴.. + 𝐴33)

3 	±
1 0 0
0 1 0
0 0 1

² 

 
The deviatoric part can be defined as: 
 

Ñ			
𝐴# = 𝐴 − 𝐴B:>								

	
𝐴!"# = 𝐴!" − 𝐴!"B:>

			→ 			 𝐴# = é
𝐴,,# 𝐴,.# 𝐴,3#

𝐴.,# 𝐴..# 𝐴.3#

𝐴3,# 𝐴3.# 𝐴33#
ê 

 

 
A-A.9. Invariants 
 

A-A.9.1. Total 2nd order tensor invariants I 
 

 

𝑰𝟏 = 𝑡𝑟 2𝐴5 = 𝐴 ∶ 1 = 𝐴!" 	𝛿!" = 𝐴!! = 𝐴"" = 𝐴,, + 𝐴.. + 𝐴33 
 

 

𝑰𝟐 =
1
2 2𝐼,

. − 𝐴 ∶ 𝐴5 =
1
2
[2	𝐴,,𝐴.. + 2	𝐴,,𝐴33 + 2	𝐴..𝐴33 − (𝐴,.). − (𝐴,3). − (𝐴.,). − (𝐴.3). − (𝐴3,). − (𝐴3.).] 

 
 

𝑰𝟑 = 𝑑𝑒𝑡 2𝐴5 = 𝑑𝑒𝑡8𝐴!"< =
1
6 𝜖!"$𝜖:e<𝐴:!𝐴e"𝐴<$ = 𝐴,,𝐴..𝐴33 + 𝐴.,𝐴3.𝐴,3 + 𝐴3,𝐴,.𝐴.3 − 𝐴,3𝐴..𝐴3, − 𝐴.3𝐴3.𝐴,, − 𝐴33𝐴,.𝐴., 

 
 

 
Symmetric total 2nd order tensor invariants I: 

 
𝑰𝟏 = 𝐴,, + 𝐴.. + 𝐴33 

 
𝑰𝟐 = 𝐴,,𝐴.. + 𝐴,,𝐴33 + 𝐴..𝐴33 − (𝐴,.). − (𝐴,3). − (𝐴.3). 
 
𝑰𝟑 = 𝐴,,𝐴..𝐴33 + 2	𝐴.,𝐴3.𝐴,3 − 𝐴..(𝐴,3). − 𝐴,,(𝐴.3). − 𝐴33(𝐴,.). 
 

 

A-A.9.2. Total 2nd order tensor invariants J 
 
 
𝑱𝟏 = 𝐼, = 𝐴!! = 𝐴,, + 𝐴.. + 𝐴33 
 
 

𝑱𝟐 =
1
2 8𝐼,

. + 2𝐼.< =
1
2 2𝐴 ∶ 𝐴5 =

1
2 8𝐴!" 	𝐴!"< =

1
2 8𝐴,,

. + 𝐴,.. + 𝐴,3. + 𝐴.,. + 𝐴... + 𝐴.3. + 𝐴3,. + 𝐴3.. + 𝐴33.< 
 

 

𝑱𝟑 =
1
3 	𝑡𝑟 2𝐴 · 𝐴 · 𝐴5 =

1
3	2𝐴 · 𝐴 · 𝐴5 ∶ 1 =

1
3	𝐴!" 	𝐴"$	𝐴$?	𝛿!? =

1
3	𝐴!"𝐴"$𝐴$! 
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𝑱𝒊 =
𝟏
𝒊 	𝒕𝒓 2𝑨

𝒊5 

 
 

 
Symmetric total 2nd order tensor invariants J: 

 
𝑱𝟏 = 𝐴,, + 𝐴.. + 𝐴33 

 

𝑱𝟐 =
1
2 8𝐴,,

. + 𝐴... + 𝐴33. + 2	𝐴,.. + 2	𝐴,3. + 2	𝐴.3.< 
 

 
 

A-A.9.3. Deviatoric 2nd order tensor invariants I 
 

 
𝑰#𝟏 = 𝑡𝑟 2𝐴#5 = 𝐴!!# = 0 
 
 

𝑰#𝟐 =
1
22𝐴

# ∶ 𝐴# − 𝐼#,
.5 =

1
2 2𝐴

# ∶ 𝐴#5 =
1
2 8𝐴!"

#𝐴!"#< 
 
 

𝑰#𝟑 = 𝑑𝑒𝑡 2𝐴#5 = 𝑑𝑒𝑡8𝐴!"#< =
1
3𝐴!"

#𝐴"$#𝐴"!# 
 
 

A-A.9.4. Deviatoric 2nd order tensor invariants J 
 
 

𝑱#𝟏 = 𝐼#, = 0 
 
 

𝑱#𝟐 = 𝐼#. =
1
2 8𝐴!"

#𝐴!"#< 
 
 

𝑱#𝟑 = 𝐼#3 =
1
3𝐴!"

#𝐴"$#𝐴"!# 
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A-B.1. Description of motion 
 
The mathematical description of the particle properties can be done in two ways [6]: 
 

1) Material (Lagrangian) description, normally used in solid mechanics, described in terms of the 
material coordinates and time. 

Non-deformed or Reference configuration: 
 

í𝑋ï = [𝑋!] =

⎩
⎪
⎨

⎪
⎧
	

𝑋,
	
𝑋.
	
𝑋3

	

⎭
⎪
⎬

⎪
⎫
=

⎩
⎨

⎧
	

𝑋
	
𝑌
	
𝑍

	

⎭
⎬

⎫
= 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑐𝑜𝑜𝑟𝑑𝑖𝑎𝑛𝑡𝑒𝑠 

 
2) Spatial (Eulerian) description, normally used in fluid mechanics, described in terms of the spatial 

coordinates and time. 
Deformed or Present configuration: 
 

í𝑥ï = [𝑥!] = *	

𝑥,
	
𝑥.
	
𝑥3

	@ = *	

𝑥
	
𝑦
	
𝑧

	@ = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙	𝑐𝑜𝑜𝑟𝑑𝑖𝑎𝑛𝑡𝑒𝑠 

 
 

A-B.1.1. Time derivatives 
 
The time derivative of a given property can be defined based on the: 
 

1) Material description Γ	8𝑋, 𝑡< → Total or Material derivative: partial time derivative of the 
material description of the property. 

 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 ≡
𝜕Γ8𝑋, 𝑡<
𝜕𝑡  

 
2) Spatial description γ	8𝑥, 𝑡< → Local or Spatial derivative: partial time derivative of the spatial 

description of the property. 
 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙	𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 ≡
𝜕γ8𝑥, 𝑡<
𝜕𝑡  

 
The material derivative of whatever function can be computed in terms of spatial descriptions: 
 

 
TIME DERIVATIVE 

 
𝒅𝒇8𝒙, 𝒕<
𝒅𝒕	

⋯⋯⋯⋯⋯
↓

𝑴𝒂𝒕𝒆𝒓𝒊𝒂𝒍	𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

=	
	
		

𝝏𝒇8𝒙, 𝒕<
𝝏𝒕	

⋯⋯⋯⋯⋯
↓

𝑺𝒑𝒂𝒕𝒊𝒂𝒍	𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

+	
	
		

𝒗8𝒙, 𝒕< · 𝜵	𝒇8𝒙, 𝒕<
	

⋯⋯⋯⋯⋯⋯⋯⋯
↓

𝑪𝒐𝒏𝒗𝒆𝒄𝒕𝒊𝒗𝒆	𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

 

 
Using the indices (Einstein) notation: 
 

𝒇	̇ 𝒊 = 𝒇𝒊,𝒕 + 𝒗𝒋	𝒇𝒊,𝒋 
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A-B.1.2. Velocity and acceleration 
 

A-B.1.2.1. Velocity 
 
It is the time derivative of the motion equations 
 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛			 → 			𝑽8𝑿, 𝒕< =
𝝏𝒙8𝑿, 𝒕<
𝝏𝒕  

 
 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙	𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛			 → 			 𝑣8𝑥, 𝑡< = 𝑉8𝑋8𝑥, 𝑡<, 𝑡< 
 
 

A-B. 1.2.2. Acceleration 
 
It is the time derivative of the velocity field 
 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛			 → 			 𝐴8𝑋, 𝑡< =
𝜕𝑉8𝑋, 𝑡<
𝜕𝑡  

 
 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙	𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛			 → 			 𝒂8𝒙, 𝒕< =
𝒅𝒗8𝒙, 𝒕<
𝒅𝒕 =

⎩
⎪
⎨

⎪
⎧
		

𝐴8𝑋8𝑥, 𝑡<, 𝑡<																																																																															
	

𝝏𝒗8𝒙, 𝒕<
𝝏𝒕 + 𝒗8𝒙, 𝒕< · 𝜵	𝒗8𝒙, 𝒕< = 	

𝜕𝑣
𝜕𝑡 + 𝑣 · 𝑙 =

𝜕𝑣
𝜕𝑡 +

1
2𝛻

(𝑣.)
 

 
 
 

A-B.1.2.3. Stationarity 
 
A property is stationarity (or steady-state) when its spatial description is not dependent on time: 
 

𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦			 → 			𝑓8𝑥, 𝑡< = 𝑓8𝑥< 			↔ 			
𝜕𝑓8𝑥, 𝑡<
𝜕𝑡 = 0 

 
It cannot be assumed that the time independence in the spatial description implies time independence in 
the material description. 
 

𝑓8𝑥, 𝑡< = 𝑓8𝑥< 			↮ 			𝐹8𝑋, 𝑡< = 𝐹8𝑋< 
 
 

A-B. 1.2.4. Uniformity 
 
A property is uniform when its spatial description is not dependent on the spatial coordinates: 
 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦			 → 			𝑓8𝑥, 𝑡< = 𝑓(𝑡) 			↔ 			
𝜕𝑓8𝑥, 𝑡<
𝜕𝑥 = 𝛻	𝑓8𝑥, 𝑡< = 0 

 
On this occasion, it can be assumed that if its spatial description does not depend on the coordinates, 
neither does its material one: 
 

𝑓8𝑥, 𝑡< = 𝑓(𝑡) 			↔ 			𝐹8𝑋, 𝑡< = 𝐹(𝑡) 
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A-B.2. Deformation and Strain 
 
Deformation is the transformation of a body from a reference configuration to a current configuration. It 
includes changes of size and shape. 
 
 

A-B.2.1 Material deformation gradient tensor 
 
It is a primary measure of deformation 
 

⎩
⎪
⎨

⎪
⎧

		

𝐹8𝑋, 𝑡< = 𝑥	∇=
𝜕𝑥8𝑋, 𝑡<
𝜕𝑋	

	

𝐹!" =
𝜕𝑥!
𝜕𝑋"

						→ 						
𝒅𝒙 = 𝑭 · 𝒅𝑿

	
𝒅𝒙𝒊 = 𝑭𝒊𝒋	𝒅𝑿𝒋

 

 
Example in three dimensions cartesian coordinates: 
 

⎝

⎜
⎛
𝑑𝑥,
	

𝑑𝑥.
	

𝑑𝑥3⎠

⎟
⎞
=

⎝

⎜
⎜
⎜
⎛

𝜕𝑥,
𝜕𝑋,

𝜕𝑥,
𝜕𝑋.

𝜕𝑥,
𝜕𝑋3

𝜕𝑥.
𝜕𝑋,

𝜕𝑥.
𝜕𝑋.

𝜕𝑥.
𝜕𝑋3

𝜕𝑥3
𝜕𝑋,

𝜕𝑥3
𝜕𝑋.

𝜕𝑥3
𝜕𝑋3⎠

⎟
⎟
⎟
⎞
·

⎝

⎜
⎛
𝑑𝑋,
	

𝑑𝑋.
	

𝑑𝑋3⎠

⎟
⎞

 

 

A-B.2.2. Strain tensors 
 
Strain is a normalized measure of deformation which characterizes the changes of distances and angles 
between particles. It reduces to zero when there is no change of distances and angles between particles.  
 
 

A-B.2.2.1. Euler-Almansi or Spatial Strain Tensor 
 

⎩
⎪
⎨

⎪
⎧

		

𝑒8𝑥, 𝑡< =
1
22𝛿 − 𝐹

(9 · 𝐹(,5
	
	

𝑒!" =
1
28𝛿!" − 𝐹$!

(,	𝐹$"(,< =
1
2 í𝑢	𝛻 + 𝛻	𝑢 − 8𝑢	𝛻< ∙ 8𝛻	𝑢<ï

 

 
Where “𝑢” is the spatial description (Eulerian form) of the displacements 
 
It is a symmetric tensor: 
 

𝑒!" = 𝑒"! 
 
 

A-B.2.2.2. Green-Lagrange or Material Strain Tensor 
 

⎩
⎪
⎨

⎪
⎧

		

𝐸8𝑋, 𝑡< =
1
2 2𝐹

9 · 𝐹 − 𝛿5 =
1
2 í𝑈	𝛻 + 𝛻	𝑈 + 8𝑈	𝛻< ∙ 8𝛻	𝑈<ï	
	

𝐸!" =
1
2 8𝐹$!	𝐹$" − 𝛿!"< =

1
2Ò
𝜕𝑈!
𝜕𝑋"

+
𝜕𝑈"
𝜕𝑋!

+
𝜕𝑈$
𝜕𝑋!

𝜕𝑈$
𝜕𝑋"

Ó
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Where “𝑈” is the material description (Lagrangian form) of the displacements 
 
It is a symmetric tensor: 
 

𝐸!" = 𝐸"! 
 
Example in three dimensions cartesian coordinates: 
 

 

𝐸$% =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝜕𝑈&
𝜕𝑋&

+
1
2
,-
𝜕𝑈&
𝜕𝑋&

.
'

+ -
𝜕𝑈'
𝜕𝑋&

.
'

+ -
𝜕𝑈(
𝜕𝑋&

.
'

/
	
	

1
2
-
𝜕𝑈&
𝜕𝑋'

+
𝜕𝑈'
𝜕𝑋&

+
𝜕𝑈&
𝜕𝑋&

𝜕𝑈&
𝜕𝑋'

+
𝜕𝑈'
𝜕𝑋&

𝜕𝑈'
𝜕𝑋'

+
𝜕𝑈(
𝜕𝑋&

𝜕𝑈(
𝜕𝑋'

.
	
	

1
2
-
𝜕𝑈&
𝜕𝑋(

+
𝜕𝑈(
𝜕𝑋&

+
𝜕𝑈&
𝜕𝑋&

𝜕𝑈&
𝜕𝑋(

+
𝜕𝑈'
𝜕𝑋&

𝜕𝑈'
𝜕𝑋(

+
𝜕𝑈(
𝜕𝑋&

𝜕𝑈(
𝜕𝑋(

.
	
	

1
2
-
𝜕𝑈'
𝜕𝑋&

+
𝜕𝑈&
𝜕𝑋'

+
𝜕𝑈&
𝜕𝑋'

𝜕𝑈&
𝜕𝑋&

+
𝜕𝑈'
𝜕𝑋'

𝜕𝑈'
𝜕𝑋&

+
𝜕𝑈(
𝜕𝑋'

𝜕𝑈(
𝜕𝑋&

.
	
	

𝜕𝑈'
𝜕𝑋'

+
1
2
,-
𝜕𝑈&
𝜕𝑋'

.
'

+ -
𝜕𝑈'
𝜕𝑋'

.
'

+ -
𝜕𝑈(
𝜕𝑋'

.
'

/
	
	

1
2
-
𝜕𝑈'
𝜕𝑋(

+
𝜕𝑈(
𝜕𝑋'

+
𝜕𝑈&
𝜕𝑋'

𝜕𝑈&
𝜕𝑋(

+
𝜕𝑈'
𝜕𝑋'

𝜕𝑈'
𝜕𝑋(

+
𝜕𝑈(
𝜕𝑋'

𝜕𝑈(
𝜕𝑋(

.
	
	

1
2
-
𝜕𝑈(
𝜕𝑋&

+
𝜕𝑈&
𝜕𝑋(

+
𝜕𝑈&
𝜕𝑋(

𝜕𝑈&
𝜕𝑋&

+
𝜕𝑈'
𝜕𝑋(

𝜕𝑈'
𝜕𝑋&

+
𝜕𝑈(
𝜕𝑋(

𝜕𝑈(
𝜕𝑋&

.
1
2
-
𝜕𝑈(
𝜕𝑋'

+
𝜕𝑈'
𝜕𝑋(

+
𝜕𝑈&
𝜕𝑋(

𝜕𝑈&
𝜕𝑋'

+
𝜕𝑈'
𝜕𝑋(

𝜕𝑈'
𝜕𝑋'

+
𝜕𝑈(
𝜕𝑋(

𝜕𝑈(
𝜕𝑋'

.
𝜕𝑈(
𝜕𝑋(

+
1
2
,-
𝜕𝑈&
𝜕𝑋(

.
'

+ -
𝜕𝑈'
𝜕𝑋(

.
'

+ -
𝜕𝑈(
𝜕𝑋(

.
'

/
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 
 

A-B.2.2.3. Infinitesimal Strain Tensor 
 
The infinitesimal strain theory (also called small strain theory) is based on the simplifying hypothesis: 
 
 

1) Displacements are very small 
 

2) Displacements gradients re infinitesimal 
 
 
These assumptions lead to the material and spatial coordinates coincide, no difference between the 
material and spatial differential operators and local and material time derivatives coincide. 
 
 

⎩
⎪
⎨

⎪
⎧

		

𝜀 =
1
28𝑢	𝛻 + 𝛻	𝑢< = 𝛻B	𝑢

	
	

𝜀!" =
1
2Ò
𝜕𝑢!
𝜕𝑥"

+
𝜕𝑢"
𝜕𝑥!

Ó =
1
2Ò
𝜕𝑈!
𝜕𝑋"

+
𝜕𝑈"
𝜕𝑋!

Ó

 

 
 
Example in three dimensions cartesian coordinates: 
 
 

𝜀!" = ±
𝜀,, 𝜀,. 𝜀,3
𝜀., 𝜀.. 𝜀.3
𝜀3, 𝜀3. 𝜀33

² =

⎝

⎜
⎜
⎛

𝜀,
1
2𝛾,.

1
2𝛾,3

1
2𝛾., 𝜀.

1
2𝛾.3

1
2𝛾3,

1
2𝛾3. 𝜀3 ⎠

⎟
⎟
⎞
=

⎝

⎜
⎜
⎜
⎛

𝜕𝑢,
𝜕𝑥,

1
2 f
𝜕𝑢,
𝜕𝑥.

+
𝜕𝑢.
𝜕𝑥,

g
1
2 f
𝜕𝑢,
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥,

g

1
2 f
𝜕𝑢.
𝜕𝑥,

+
𝜕𝑢,
𝜕𝑥.

g
𝜕𝑢.
𝜕𝑥.

1
2f
𝜕𝑢.
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥.

g

1
2 f
𝜕𝑢3
𝜕𝑥,

+
𝜕𝑢,
𝜕𝑥3

g
1
2 f
𝜕𝑢3
𝜕𝑥.

+
𝜕𝑢.
𝜕𝑥3

g
𝜕𝑢3
𝜕𝑥3 ⎠

⎟
⎟
⎟
⎞
= [−] 
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A diagram will help the understanding of these three types of tensioners: 
 

 
Figure A-B.0.1: Strain Tensor plot. Source: [6] 

 
 

A-B.2.3. Strain rate 
 

A-B.2.3.1. Spatial velocity gradient tensor 
 

⎩
⎪
⎨

⎪
⎧

		

𝑙8𝑥, 𝑡< = 𝑣	𝛻 	= 8𝛻	𝑣<9 =
𝜕𝑣8𝑥, 𝑡<
𝜕𝑥	

	

𝑙!" =
𝜕𝑣!
𝜕𝑥"

= 𝑣!,"

						→ 						
𝒅𝒗 = 𝒍 · 𝒅𝒙

	
𝒅𝒗𝒊 = 𝒍𝒊𝒋	𝒅𝒙𝒋

 

 
 
Example in three dimensions cartesian coordinates: 
 

⎝

⎜
⎛
𝑑𝑣,
	

𝑑𝑣.
	

𝑑𝑣3⎠

⎟
⎞
=

⎝

⎜
⎜
⎜
⎛

𝜕𝑣,
𝜕𝑥,

𝜕𝑣,
𝜕𝑥.

𝜕𝑣,
𝜕𝑥3

𝜕𝑣.
𝜕𝑥,

𝜕𝑣.
𝜕𝑥.

𝜕𝑣.
𝜕𝑥3

𝜕𝑣3
𝜕𝑋,

𝜕𝑣3
𝜕𝑥.

𝜕𝑣3
𝜕𝑥3⎠

⎟
⎟
⎟
⎞
·

⎝

⎜
⎛
𝑑𝑥,
	

𝑑𝑥.
	

𝑑𝑥3⎠

⎟
⎞

 

 
 
The spatial velocity gradient tensor can be split into a symmetrical and skew-symmetrical tensor: 
 

𝑙!" = 𝑠𝑦𝑚	8𝑙!"< + 𝑠𝑘𝑒𝑤	8𝑙!"< =
1
2 8𝑙!" + 𝑙"!< +

1
2 8𝑙!" − 𝑙"!< = 𝑑!" +𝑤!" 

 
 

A-B.2.3.2. Strain rate tensor 
 

⎩
⎪
⎨

⎪
⎧

		

𝑑8𝑥, 𝑡< =
1
2 8𝑣	𝛻 + 𝛻	𝑣< = 𝛻B	𝑣

	
	

𝑑!" =
1
2Ò
𝜕𝑣!
𝜕𝑥"

+
𝜕𝑣"
𝜕𝑥!

Ó

 

 
 

Unit 4 - Solution 

xxE xxε

xxe
1
2

t
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Example in three dimensions cartesian coordinates: 
 

𝑑!" = ±
𝑑,, 𝑑,. 𝑑,3
𝑑., 𝑑.. 𝑑.3
𝑑3, 𝑑3. 𝑑33

² =

⎝

⎜
⎜
⎜
⎛

𝜕𝑣,
𝜕𝑥,

1
2f
𝜕𝑣,
𝜕𝑥.

+
𝜕𝑣.
𝜕𝑥,

g
1
2 f
𝜕𝑣,
𝜕𝑥3

+
𝜕𝑣3
𝜕𝑥,

g

1
2 f
𝜕𝑣.
𝜕𝑥,

+
𝜕𝑣,
𝜕𝑥.

g
𝜕𝑣.
𝜕𝑥.

1
2 f
𝜕𝑣.
𝜕𝑥3

+
𝜕𝑣3
𝜕𝑥.

g

1
2 f
𝜕𝑣3
𝜕𝑥,

+
𝜕𝑣,
𝜕𝑥3

g
1
2 f
𝜕𝑣3
𝜕𝑥.

+
𝜕𝑣.
𝜕𝑥3

g
𝜕𝑣3
𝜕𝑥3 ⎠

⎟
⎟
⎟
⎞
= ¡

1
𝑠¢ 

 
An interesting property to note is: 
 

𝜵 ∙ 𝒗 = 𝒕𝒓 2𝒅5 = 𝑑 ∶ 𝛿 = 𝑑!" 	𝛿!" = 𝑑!! =
𝜕𝑣!
𝜕𝑥!

= 𝑣!,! =
𝜕𝑣,
𝜕𝑥,

+
𝜕𝑣.
𝜕𝑥.

+
𝜕𝑣3
𝜕𝑥3

 

 
 
If the infinitesimal strain tensor time derivative is computed: 
 
 

𝑑𝜀!"
𝑑𝑡 = 𝜀 ̇ = 𝜺̇𝒊𝒋 =

1
2
𝑑
𝑑𝑡 8𝑢!," + 𝑢",!< =

1
2 8𝑢!," + 𝑢",!<,2 =

1
2 8𝑢!,"2 + 𝑢",!2< =

1
2 8𝑣!," + 𝑣",!< = 𝒅𝒊𝒋 = 𝑑 

 
 
In engineering notation, it is usual to use this type of symbology for the strain rate tensor: 
 

𝛾̇ = 𝛾̇!" = 8𝑣	∇ + ∇	𝑣< = Ò
𝜕𝑣!
𝜕𝑥"

+
𝜕𝑣"
𝜕𝑥!

Ó = ¡
1
𝑠¢ 

 
It is from here that one notation or another is justified: 
 

⎩
⎪
⎨

⎪
⎧

		

𝑑 = 𝜀 ̇ =
1
2 𝛾̇	

	

𝑑!" = 𝜀!̇" =
1
2 𝛾̇!"

 

 
 

A-B.2.3.3. Rotation rate (or Spin) tensor 
 

⎩
⎪
⎨

⎪
⎧

		

𝑤8𝑥, 𝑡< =
1
2 8𝑣	𝛻 − 𝛻	𝑣< = 𝛻/	𝑣

	
	

𝑤!" =
1
2Ò
𝜕𝑣!
𝜕𝑥"

−
𝜕𝑣"
𝜕𝑥!

Ó

 

 
Example in three dimensions cartesian coordinates: 
 
 

𝑤!" = ±
𝑤,, 𝑤,. 𝑤,3
𝑤., 𝑤.. 𝑤.3
𝑤3, 𝑤3. 𝑤33

² =

⎝

⎜
⎜
⎜
⎛

0
1
2 f
𝜕𝑣,
𝜕𝑥.

−
𝜕𝑣.
𝜕𝑥,

g
1
2 f
𝜕𝑣,
𝜕𝑥3

−
𝜕𝑣3
𝜕𝑥,

g

1
2f
𝜕𝑣.
𝜕𝑥,

−
𝜕𝑣,
𝜕𝑥.

g 0
1
2f
𝜕𝑣.
𝜕𝑥3

−
𝜕𝑣3
𝜕𝑥.

g

1
2f
𝜕𝑣3
𝜕𝑥,

−
𝜕𝑣,
𝜕𝑥3

g
1
2 f
𝜕𝑣3
𝜕𝑥.

−
𝜕𝑣.
𝜕𝑥3

g 0 ⎠

⎟
⎟
⎟
⎞
= ¡

1
𝑠¢ 
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An interesting property to note is: 
 

𝒕𝒓 2𝒘5 = 𝑤 ∶ 𝛿 = 𝑤!" 	𝛿!" = 𝑤!! = 𝟎 
 
Therefore: 
 

𝒕𝒓 2𝒍5 = 𝑡𝑟 2𝑑5 + 𝑡𝑟 2𝑤5 = 𝜵 · 𝒗 
 
 

𝑑𝑣 = 𝑺𝒕𝒓𝒆𝒕𝒄𝒉	𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚	 + 	𝑹𝒐𝒕𝒂𝒕𝒊𝒐𝒏	𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 = 2𝑑 · 𝑑𝑥5 + 2𝑤 · 𝑑𝑥5 
 
 

A-B.3. Balance Principles 
  
These principles are always valid, regardless the material type and the displacements or deformation 
range. 
 

A-B.3.1. Conservation of mass 
 
It is postulated that during a motion there are neither mass sources nor mass sinks, so the mass of a 
continuum body is a conserved quantify (for any part of the body). 
 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦			 → 			𝜌 =
𝑑𝑚
𝑑𝑉 			→ 			𝑚 = Ü𝜌	𝑑𝑉
	
	

𝑴𝒂𝒔𝒔	𝒄𝒐𝒏𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏			 → 			
𝒅𝒎
𝒅𝒕 = 𝟎

		

⎭
⎪
⎬

⎪
⎫

			→ 			
𝑑
𝑑𝑡Ü𝜌	𝑑𝑉 = 0 

 

A-B.3.1.1. Spatial form: 
 

𝐺𝑙𝑜𝑏𝑎𝑙	𝑜𝑟	𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙	𝑠𝑝𝑎𝑡𝑖𝑎𝑙	𝑓𝑜𝑟𝑚			 → 			
𝑑
𝑑𝑡 Ü𝜌	𝑑𝑉

	

f

= Ü¡
𝑑𝜌
𝑑𝑡 + 𝜌8𝛻 · 𝑣<¢ 𝑑𝑉

	

f

= 0 

 
 

𝐿𝑜𝑐𝑎𝑙	𝑜𝑟	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙	𝑠𝑝𝑎𝑡𝑖𝑎𝑙	𝑓𝑜𝑟𝑚			 → 			

⎩
⎨

⎧
		

𝒅𝝆
𝒅𝒕 + 𝝆8𝜵 · 𝒗< =

𝜕𝜌
𝜕𝑡 + 𝛻 · 8𝜌	𝑣< = 𝟎
	
	

𝝆̇+ 𝝆	𝒗𝒊,𝒊 = 𝜌,2 + (𝜌	𝑣!),! = 𝟎

									∀𝑥 ∈ 𝑉	,			∀𝑡 ∈ ℝ5 

 
 
A very interesting way to rewrite the equation and which will be used in this work is in pressure “𝑝” terms: 
 

 
Mass Conservation Equation (Quasi-Incompressible Formulation): 
 

𝑩𝒖𝒍𝒌	𝑴𝒐𝒅𝒖𝒍𝒖𝒔			 → 			𝜿 = 𝝆
𝒅𝒑
𝒅𝝆 =

[𝑃𝑎] 

 
𝑑𝜌
𝑑𝑡 + 𝜌8∇ · 𝑣< = 0			 → 		

𝑑𝜌
𝑑𝑝
𝑑𝑝
𝑑𝑡 + 𝜌8∇ · 𝑣< = 0			 → 			

𝑑𝜌
𝑑𝑝 𝑝̇ + 𝜌8∇ · 𝑣< = 0			 → 			

1
	𝜌
𝑑𝜌
𝑑𝑝 𝑝̇ + ∇ · 𝑣 = 0			 → 			

𝟏
𝜿 𝒑̇ + 𝛁 · 𝒗 = 𝟎 
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Many of the studies in the fluid dynamics field have treated its behavior as incompressible:  
 
 

𝑰𝒏𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒃𝒍𝒆	𝒎𝒆𝒅𝒊𝒖𝒎				 ↔ 			

⎩
⎪
⎨

⎪
⎧
		

𝒅𝝆8𝒙, 𝒕<
𝒅𝒕 = 𝟎

	
	

𝝆̇ = 𝟎

 

 
Hence, the mass continuity equation is simplified as: 
 

𝑴𝒂𝒔𝒔	𝒄𝒐𝒏𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏	𝒇𝒐𝒓	𝒊𝒏𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒃𝒍𝒆	𝒎𝒆𝒅𝒊𝒖𝒎			 → 			

⎩
⎨

⎧
		
	𝛁 · 𝒗 = 𝒕𝒓 2𝒅5 = 𝟎

	
𝝏𝒗𝒊
𝝏𝒙𝒊

= 𝒅𝒊𝒊 = 𝟎
			→ 							 𝒅𝒔𝒑𝒉 = 𝟎		→ 		𝒅 = 𝒅# 

 
 

A-B.3.1.2. Material form: 
 

𝐺𝑙𝑜𝑏𝑎𝑙	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑓𝑜𝑟𝑚			 → 			Ü
𝜕
𝜕𝑡 2𝝆 *𝑭*5𝑑𝑉-

	

f

= 0 

 
 

𝐿𝑜𝑐𝑎𝑙	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑓𝑜𝑟𝑚			 → 		 	𝝆𝒐 = 𝝆(	𝒕𝒐) = 	𝝆𝒕 *𝑭*
𝒕
= 𝝆(𝒕) *𝑭*

𝒕
 

 
 

A-B.3.2. Linear momentum balance 
 
The Cauchy’s motion equations proceed from the development of Newton's second law (the resulting 
force acting on the medium). 
 

⎩
⎪
⎨

⎪
⎧
		
𝜵 · 𝝈	+ 	𝝆	𝒃 	= 	𝝆

𝒅𝒗
𝒅𝒕	

	
𝝈𝒊𝒋,𝒋 	+ 	𝝆	𝒃𝒊 	= 	𝝆𝒗̇𝒊

										∀𝑥 ∈ 𝑉	,			∀𝑡 ∈ ℝ5 

 
Where “𝑏” is the spatial description of the vector field of the body forces per unit of mass. It can be 
taken as: 
 

𝑏8𝑥, 𝑡< = ±
0
0
−𝑔

² 											𝑤ℎ𝑒𝑟𝑒		𝑔 = 9,81 ©
𝑚
𝑠.ª 

 
 

A-B.3.3. Angular momentum balance 
 
This balance proceeds from the development of Newton's second law (the resulting torque acting on 
the medium). This results in symmetry of the Cauchy stress tensor: 
 

*		
𝝈 = 𝝈𝑻

	
	

𝝈𝒊𝒋 = 𝝈𝒋𝒊
								∀𝑥 ∈ 𝑉	,			∀𝑡 ∈ ℝ5 
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A-B.4. Constitutive equations in fluids 
 
Pascal law establish that in a confined fluid at rest (no shear stresses), pressure acts equally in all 
directions at a given point. 
 
The stress in a fluid at rest is isotropic (has the same properties in all directions) and must be of the form: 
 

�			
𝜎 = −𝑝-	𝛿					

	
𝜎!" = −𝑝-	𝛿!"

 

 
Where “𝑝-” is the hydrostatic pressure, the normal compressive stress exerted on a fluid in equilibrium. 
 
 

𝑀𝑒𝑎𝑛	𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒			 → 			 𝑝) = 𝑝 = −𝜎) =

⎩
⎪
⎨

⎪
⎧

			

−
1
3 𝑡𝑟 2𝜎5 =

1
3	2𝜎 ∶ 𝛿5	

	

−
1
3𝜎!" 	𝛿!" =

1
3𝜎!! 										

 

 
 
𝑇ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐	𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒			 → 			𝑝 = 𝑓(𝜌, 𝑝, 𝜃) 
 
 

A-B.4.1. Constitutive equations 
 
The general form of thermo-mechanical constitutive equation for a viscous fluid: 
 

⎩
⎪
⎨

⎪
⎧
			

𝜎 	= 	−𝑝	𝛿 + 𝜏 	= 	−𝑝	𝛿 + 𝑓 2𝑑, 𝜌, 𝜃5 	= 	−𝑝	𝛿 +	𝕂 ∶ 𝑑																						
	
	

𝜎!" 	= 	−𝑝	𝛿!" +	𝜏!" 	= 	𝑝	𝛿!" +	𝑓!"8𝑑!" , 𝜌, 𝜃< 	= 	−𝑝	𝛿!" 	+	𝕂!"$? 	𝑑$?

 

 
 
Where “	𝑝” is the thermodynamic pressure, “	𝜏” is viscous stress tensor and “𝑓”  is a symmetrical tensor 

function: 
 

𝑓 ∶ ℝ3 ×ℝ5 	→ 	ℝ+	×	+ 

 
 

Type Description 

Stokesian / Non-Newtonian fluid 𝑓 is a non-linear function of its arguments 

Newtonian fluid 𝑓 is a linear function of its arguments 

Perfect / Non-Viscous fluid 𝑓 is null 

 
An interesting relation extracted from the calculation of the deflection trace of the above stress tensor is: 
 

*			
𝑝 = 𝑝 +𝒦	𝑡𝑟 2𝑑5 = 𝑝 +𝒦2𝑑 ∶ 15 = 𝑝 +𝒦8∇ · 𝑣<

	
	

	𝑝 = 𝑝 +𝒦	𝑑!! = 𝑝 +𝒦	𝑣!,!
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Newtonian Fluid 

 
If the fluid is Newtonian and also isotropic, the following definition can be used: 
 

𝐺𝑒𝑛𝑒𝑟𝑖𝑐	𝐼𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐	𝑇𝑒𝑛𝑠𝑜𝑟			 → 			*			
𝔸 = 𝑎,	𝕀 + 𝑎.	𝕀 + 𝑎3	𝕀																																

	
𝔸!"$? = 𝑎,	𝛿!"𝛿$? + 𝑎.	𝛿!$𝛿"? + 𝑎3	𝛿!?𝛿"$

 

 
At the time, the following fourth order tensor was proposed to model the constitutive law: 
 

⎩
⎨

⎧
			

𝕂 = 𝜆	𝛿⨂𝛿 + 2𝜇	𝐼																				
	
	

𝕂!"$? = 𝜆𝛿!"𝛿$? + 𝜇8𝛿!$𝛿"? + 𝛿!?𝛿"$<

 

 
Therefore: 
 

𝕂!"$? 	𝑑$? = 𝜆	𝑑$$	𝛿!" + 2	𝜇	𝑑!" 
 
Then the stress tensor in an isotropic Newtonian fluid: 
 

*		
𝝈 = −𝒑	𝟏	+ 𝝀 2𝒅 ∶ 𝟏5𝟏 + 𝟐	𝝁	𝒅

	
	

𝝈𝒊𝒋 = −𝒑	𝜹𝒊𝒋 + 𝝀	𝒅𝒌𝒌	𝜹𝒊𝒋 + 𝟐	𝝁	𝒅𝒊𝒋

 

 
Where “𝜆” and the “𝜇” are coefficients. They are not necessarily constant, both could be function of “𝑝” 
and “𝜃”, for instance. 
 
 
From it, it follows that: 
 

𝐼𝑓	𝑖𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑙𝑒	𝑚𝑒𝑑𝑖𝑢𝑚			 → 			𝑝 = 𝑝 = 𝑝- 
 
Another way to  
 

*			
𝝈 = 	𝝈𝒔𝒑𝒉 + 𝝈# =	−𝒑	𝜹 + 𝟐	𝝁	𝒅# =	−𝒑	𝜹 + 𝝉				

	
	

𝝈𝒊𝒋 =	𝝈𝒊𝒋𝒔𝒑𝒉 	+	𝝈𝒊𝒋	# =	−𝒑	𝜹𝒊𝒋 + 𝟐	𝝁	𝒅𝒊𝒋# =	−𝒑	𝜹𝒊𝒋 + 𝝉𝒊𝒋

 

 
 
Where “𝜇” is the viscosity, measure in [𝑃𝑎 ∙ 𝑠] 
 
The viscosity is the molecules’ ability to move relative to each other. It’s the flow resistance. There exist 
two kinds of viscosities: 
 

1) Absolute or Dynamic viscosity 

𝜇 = [𝑃𝑎 ∙ 𝑠] = ¡
𝑘𝑔
𝑚 ∙ 𝑠¢ 

 
2) Kinetic viscosity 

𝝂 =
𝐷𝑦𝑛𝑎𝑚𝑖𝑐	𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦
𝐹𝑙𝑢𝑖𝑑	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =

𝝁
𝝆 = 3

𝑚.

𝑠 4 
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A-B.5. Fluid mechanics 
 
 

A-B.5.1. Energy equation 
 
The energy equations for Newtonian fluids arise from the union of the internal energy balance with the 
definition of the stress tensor for Newtonian fluids: 

 
 

⎩
⎪
⎨

⎪
⎧
			
𝝆
𝒅𝓾
𝒅𝒕 = −𝒑8𝜵 · 𝒗< + 𝝆𝒓 + 𝜵 · 2𝑲	𝜵𝜽5 +𝒦	8𝜵 · 𝒗<𝟐 + 𝟐	𝝁 2𝒅# ∶ 𝒅#5

	
	

𝝆	𝓾̇ = −𝒑	𝒗𝒊,𝒊 + 𝝆𝒓 + 8𝑲𝒊𝒋	𝜽,𝒋<,𝒊 +𝒦	8𝒗𝒊,𝒊<
𝟐 + 𝟐	𝝁	𝒅𝒊𝒋

#	𝒅𝒊𝒋
#

									∀𝑥 ∈ 𝑉	,			∀𝑡 ∈ ℝ5 

 
 

A-B.5.2. Navier-Stokes equations 
 
The Navier-Stokes equations arise from the union of the linear momentum balance with the definition of 
the stress tensor for Newtonian fluids: 
 
 

⎩
⎪
⎨

⎪
⎧
		
−𝜵𝒑 + 𝜵𝝀	8𝜵 · 𝒗< + (𝝀+ 𝝁)	𝜵8𝜵 · 𝒗< + 𝜵𝝁 · 8𝒗	𝜵 + 𝜵	𝒗< + 𝝁	𝜵𝟐	𝒗 + 𝝆𝒃 = 𝝆

𝒅𝒗
𝒅𝒕	

	
−𝒑,𝒊 + 𝝀,𝒊	𝒗𝒋,𝒋 + (𝝀+ 𝝁)𝒗𝒋,𝒋𝒊 + 𝝁,𝒋8𝒗𝒊,𝒋 + 𝒗𝒋,𝒊< + 𝝁	𝒗𝒊,𝒋𝒋 + 𝝆𝒃𝒊 = 𝝆𝒗̇𝒊

									∀𝑥 ∈ 𝑉	,			∀𝑡 ∈ ℝ5 

 
 
Where “𝜆” is the second viscosity, composed by the bulk viscosity “𝒦” (do not confuse with bulk modulus 
“𝜅”) and the dynamic viscosity “𝜇”: 
 

𝝀 =𝓚−
𝟐
𝟑𝝁 =

[𝑷𝒂 · 𝒔] 
 

Example in three dimensions cartesian coordinates, with second and bulk viscosity as constants: 
 
 

−
𝜕𝑝
𝜕𝑥,

+ (𝜆 + 𝜇)Ò
𝜕.𝑣,
𝜕𝑥,

. +
𝜕.𝑣.
𝜕𝑥,𝜕𝑥.

+
𝜕.𝑣3
𝜕𝑥,𝜕𝑥3

Ó + 𝜇 Ò
𝜕.𝑣,
𝜕𝑥,

. +
𝜕.𝑣,
𝜕𝑥.

. +
𝜕.𝑣,
𝜕𝑥3

.Ó + 𝜌𝑏, = 𝜌 f
𝜕𝑣,
𝜕𝑡 + 𝑣,

𝜕𝑣,
𝜕𝑥,

+ 𝑣.
𝜕𝑣,
𝜕𝑥.

+ 𝑣3
𝜕𝑣,
𝜕𝑥3

g = ¡
𝑁
𝑚3¢ 

 
 

−
𝜕𝑝
𝜕𝑥.

+ (𝜆 + 𝜇)Ò
𝜕.𝑣,
𝜕𝑥.𝜕𝑥,

+
𝜕.𝑣.
𝜕𝑥.

. +
𝜕.𝑣3
𝜕𝑥.𝜕𝑥3

Ó + 𝜇 Ò
𝜕.𝑣.
𝜕𝑥,

. +
𝜕.𝑣.
𝜕𝑥.

. +
𝜕.𝑣.
𝜕𝑥3

.Ó + 𝜌𝑏. = 𝜌f
𝜕𝑣.
𝜕𝑡 + 𝑣,

𝜕𝑣.
𝜕𝑥,

+ 𝑣.
𝜕𝑣.
𝜕𝑥.

+ 𝑣3
𝜕𝑣.
𝜕𝑥3

g = ¡
𝑁
𝑚3¢ 

 
 

−
𝜕𝑝
𝜕𝑥3

+ (𝜆 + 𝜇)Ò
𝜕.𝑣,
𝜕𝑥3𝜕𝑥,

+
𝜕.𝑣.
𝜕𝑥3𝜕𝑥.

+
𝜕.𝑣3
𝜕𝑥3

.Ó + 𝜇 Ò
𝜕.𝑣3
𝜕𝑥,

. +
𝜕.𝑣3
𝜕𝑥.

. +
𝜕.𝑣3
𝜕𝑥3

.Ó + 𝜌𝑏3 = 𝜌f
𝜕𝑣3
𝜕𝑡 + 𝑣,

𝜕𝑣3
𝜕𝑥,

+ 𝑣.
𝜕𝑣3
𝜕𝑥.

+ 𝑣3
𝜕𝑣3
𝜕𝑥3

g = ¡
𝑁
𝑚3¢ 

 
 
As can be seen, it begins to be really complex to determine any result of these partial derivative equations. 
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A-C.1. Computational engineering 
 
Plenty of problems arising in mathematics and engineering cannot be solved analytically, for example, 
equations systems, Ordinary Differential Equations (O.D.E.), Partial Differential Equations (P.D.E.), 
computing roots functions, eigenvalues, integrals, etc. The main objective of numerical modeling/analysis 
(modeling + numerical solution + result analysis) is to provide effective methods to solve problems. The 
fact that numerical methods can be implemented on a digital computer makes it an essential tool in 
today's numerical studies. Thus, the use of the computer to solve scientific and engineering problems is 
increasing, and solutions are obtained from mathematical models that represent real concrete situations. 
 
When computational engineering faces a new scientific-technological challenge resolution, it is guided by 
the following scheme: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Idealization is the process of capturing a physical phenomenon in a mathematical model, ideally as close 
as possible to the real world. 
What does it mean to discretize (discretization) a medium? In Annex B you can see the modeling of 
physical realities such as mechanics and thermodynamics. However, all this theory is based on a 
fundamental principle: the continuity of the system, i.e., the whole medium is the same "body". 
Representing and calculating this computationally is not possible today. Hence the need to discretize the 
medium. It is nothing more than dividing the body into elements composed of edges and nodes (as if it 
were a graph). A machine is capable of understanding this and, moreover, it knows very well how to treat 
it. In the Solution section is where the numerical method for solving the discrete problem is applied. There 
are many methods of numerical computation. A classification of them is presented below. 
 

 
Explicit method 

 
It is based on the calculation of the state of a system at a previous time than the state of the system at the current 
time. 
 
It consists of obtaining the unknown nodal variable for the new time, by means of the variables known in the 
previous time. Therefore, the calculation of the unknown variables is direct and independent of the value of the 
variable in neighboring nodes for the new calculated time. 
 

�
𝐺𝑜𝑎𝑙		 → 		𝑌(𝑡 + ∆𝑡)																																																																																																																																

	
	𝑀𝑒𝑡ℎ𝑜𝑑	 → 			𝐵𝑦	𝑚𝑒𝑎𝑛𝑠	𝑜𝑓	𝑎	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑡ℎ𝑎𝑡	𝑖𝑚𝑝𝑙𝑖𝑒𝑠	𝑡ℎ𝑒	𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠	𝑠𝑡𝑒𝑝	𝑡𝑜	𝑡ℎ𝑒	𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑑	𝑜𝑛𝑒

 

 
𝑌(𝑡 + ∆𝑡) = 𝑓	[𝑌(𝑡)] 

 
 

Mathematical 
Model 

Physical 
System 

Discrete 
Model 

Discrete 
Solution 

Idealization Discretization Solution 

Solution error 
Discretization + Solution error 

Modeling + Discretization + Solution error 

Reliability of the solution: 
 

Validation & Verification 
Interpretation / Prediction / Decision 

Post-process 
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Implicit Method 

 
It finds the solution by solving an equation involving both the current state of the system and the last one. 
 
It consists of evaluating all the variables at the same time in the new time, instead of using the previous time as in 
the explicit method. Therefore, the value of a variable at a node and at a given time instant will depend on the 
variables of the contiguous nodes which, in general, are unknown, which makes it necessary to solve the system of 
equations simultaneously to obtain the solution. 
 

�
𝐺𝑜𝑎𝑙		 → 		𝑌(𝑡 + ∆𝑡)																																																																																																																																																			

	
	𝑀𝑒𝑡ℎ𝑜𝑑		 → 			𝐵𝑦	𝑚𝑒𝑎𝑛𝑠	𝑜𝑓	𝑎	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔	𝑡ℎ𝑒	𝑝𝑟𝑖𝑜𝑟	𝑠𝑡𝑒𝑝		𝑡𝑜	𝑡ℎ𝑒	𝑜𝑛𝑒		𝑎𝑛𝑑	𝑡ℎ𝑒	𝑜𝑛𝑒	𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑑	𝑓𝑜𝑟

 

 
𝑓	[𝑌(𝑡), 𝑌(𝑡 + ∆𝑡)] = 0 

 
 

 
Iterative Method 

 
It is a mathematical procedure with the aim of approximating the solution to an equation or set of equations. It is 
based on an "initial estimation" and from it, it begins to develop, in an iterative (successive, repeating) way, an 
approximate solution that for each iteration (repetition) gets closer to the real solution. 
 
As many iterations as needed are made so that the calculation error committed is lower than the tolerance value 
pre-set by oneself. Once the error is lower, then you go from "step" (which represents the time variable). 
 

 
1st procedure   →   Iterations 
2nd procedure  →   Tolerance check 
3rd procedure  →   Next step 

 
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠	 ∈ 	𝑆𝑡𝑒𝑝𝑠 

 
A 

 
The Validation & Verification section is an essential part of this branch of engineering, because although 
it compiles a program and provides results, to this day, it is still up to the human mind to determine 
whether the model is accurate and meets the needs. 
 

A-C.2. Variational Calculus 
 
In computational mechanics problems (computational engineering branch) are solved by cooperation of 
mechanics, computers and numerical methods. This provides an additional approach to problem-solving, 
besides the theoretical and experimental science. It includes disciplines such as solid mechanics, fluid 
dynamics, thermodynamics and electromagnetics.  
 
Variational calculus is a mathematical tool that allows working with the so called integral or weak form 
of the governing differential equations of a problem (stated in Annex B). Given a differential equation 
system, which must be verified in local form (point by point, strong from or differential form) of a certain 
domain, the variational principles allow obtaining an integral formulation (global in the domain), whose 
imposition, nonetheless, guarantees that the aforementioned differential equations are satisfied. Integral 
formulations are of particular interest when treating and solving the problem by means of numerical 
methods. 
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In the traditional mechanics literature, any physical fact can be expressed as the integral of the domain of the Lagrangian of 
the function (resulting from the difference of the kinetic energy and the potential energy): 
 

	𝒮 = $ ℒ&𝑥, 𝑥̇, 𝑡+𝑑𝑡

!!

!"

		 

 
By the Principle of Least Action, we can proceed in such a way that: 𝜹𝓢 = 𝟎 
 

𝛿𝒮 = $ 𝛿ℒ&𝑥, 𝑥̇, 𝑡+	𝑑𝑡

!!

!"

= $1𝛻		#ℒ&𝑥, 𝑥̇, 𝑡+𝛿𝑥 + 𝛻		#̇ℒ&𝑥, 𝑥̇, 𝑡+𝛿𝑥̇ + ℒ̇&𝑥, 𝑥̇, 𝑡+𝛿𝑡4𝑑𝑡

!!

!"

= 0 

 
Developing the integral by parts and applying the boundary conditions regarding the time variable, the expression becomes 
the well-known Fundamental Equation of Classical Mechanics (also known as Euler-Lagrange Equations) 
 

𝒅
𝒅𝒕 &𝜵		𝒙̇	𝓛+ = 𝜵		𝒙	𝓛 

 
 

 
Variational Principal 

 

𝛿𝔽8𝑢; 𝛿𝑢< = Ü𝔼 ∙ 𝛿𝑢	𝑑𝛺
	

`

+ Ü𝕋 ∙ 𝛿𝑢	𝑑𝛤
	

)̂

= 0			,						∀	𝛿𝑢	"	𝛿𝑢?
i∈ *̂

= 0 

 
 

 
Fundamental Theorem of Variational Calculus 

The expression  
 

Ü𝔼 2𝑥, 𝑢8𝑥<, 𝛻	𝑢8𝑥<5 ∙ 𝛿𝑢	𝑑𝛺
	

`

+ Ü𝕋 2𝑥, 𝑢8𝑥<, 𝛻	𝑢8𝑥<5 ∙ 𝛿𝑢	𝑑𝛤
	

)̂

= 0														∀𝛿𝑢	"	𝛿𝑢?
i∈ *̂

= 0 

 
 
is satisfied if and only if: 

 
 

⎩
⎪
⎨

⎪
⎧
		

𝔼 2𝑥, 𝑢8𝑥<, 𝛻	𝑢8𝑥<5 = 0			∀𝑥 ∈ 𝛺					 → 					𝑬𝒖𝒍𝒆𝒓 − 𝑳𝒂𝒈𝒓𝒂𝒏𝒈𝒆	𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔
	
	

𝕋 2𝑥, 𝑢8𝑥<, 𝛻	𝑢8𝑥<5 = 0			∀𝑥 ∈ 𝛤k 					→ 					𝑁𝑎𝑡𝑢𝑟𝑎𝑙 − 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦	𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

 

 
 
Where “𝛿𝑢” is the virtual displacements. 
 
Applying the theorem to Continuum mechanics: 
 

⎩
⎪
⎨

⎪
⎧

		

𝔼 =
𝑑
𝑑𝑡
2𝛻		𝑥̇	ℒ5− 𝛻		𝑥	ℒ = 0			∀𝑥 ∈ 𝛺					 → 					𝐸𝑢𝑙𝑒𝑟 − 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒	𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠

	
	

𝕋 = 2𝛻		𝑥̇	ℒ5*𝑥	=	𝜕`
= 0			∀𝑥 ∈ 𝛤k 					→ 					𝑁𝑎𝑡𝑢𝑟𝑎𝑙	(𝑁𝑒𝑤𝑚𝑎𝑛𝑛)	𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
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A-C.2.1. Virtual Work Principal (VWP) 
 
The VWP is a variational principle frequently applied in solid mechanics that can be interpreted as the 
search of an extrema of a functional of a displacement field “𝕎8𝑢<”, not necessarily known in its explicit 
form, whose variation (Gateaux derivative) “𝛿𝕎8𝑢; 𝛿𝑢<” is known and is given by variational calculus 
fundamental theorem. Since the Euler-Lagrange equations of the VWP are the Cauchy’s equation nd the 
equilibrium condition at the boundary, its imposition is completely equivalent (yet more convenient when 
solving the problem through numerical methods) to the imposition in local form of the aforementioned 
equation and receives the name of the weak form of these equations. 
 
The constitutive equation does not intervene in the VWP formulation and the type of kinetics considered 
(finite or infinitesimal strains) is not distinguished either. Thus, the application of the VWP is not restricted 
by the type of constitutive equation chosen (elastic, elastoplastic, fluid, etc.) noy by kinematics (finite or 
infinitesimal strains) considered. 
 
 

 
VIRTUAL WORK PRINCIPAL 

 
 

𝜹𝕎8𝒖;𝜹𝒖<	
⋯⋯⋯⋯⋯

↓
𝑻𝒐𝒕𝒂𝒍	𝑉𝑖𝑟𝑡𝑢𝑎𝑙	𝑊𝑜𝑟𝑘

=								
	
		

Ü𝝆8𝒃 − 𝒗̇< ∙ 𝜹𝒖	𝒅𝑽
	

𝑽

+ Ü𝒕∗ ∙ 𝜹𝒖	𝒅𝜞
	

𝜞𝝈	
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

↓
𝑬𝒙𝒕𝒆𝒓𝒏𝒂𝒍	𝑉𝑖𝑟𝑡𝑢𝑎𝑙	𝑊𝑜𝑟𝑘

						
−							
	
		

Ü𝝈 ∶ 𝛁𝒔𝜹𝒖	𝒅𝑽
	

𝑽 	
		⋯⋯⋯⋯⋯⋯⋯⋯⋯

↓
𝑰𝒏𝒕𝒆𝒓𝒏𝒂𝒍	𝑉𝑖𝑟𝑡𝑢𝑎𝑙	𝑊𝑜𝑟𝑘

=				
	
		

	𝟎	
	
		

 

 
 
In very summarized notation, it is as follows: 
 

𝜹𝕎	 = 	𝜹𝕎𝒆𝒙𝒕 	− 	𝜹𝕎𝒊𝒏𝒕 	= 	𝟎											∀	𝜹𝒖 ∈ 𝕍𝒐 
 

 
 
 
 
 

 
Figure A-C.0.1: Summary of classification of variational methods. Source: [26] 

 
 

Direct Variational 
Methods

Ritz method

General Boundary-Value 
Problems

Weighted-Residual 
Method

Galerkin Method

Least Square Method

Collocation Method

Eigenvalue and Time-
dependent Problems 
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A-C.2.2. Galerkin Method 
 
In [25] explain that the weighted-residual methods are those in which it seeks approximate solutions using 
weighted-integral statement of the equations. 
 
Various special cases of the weighted-residual method differ from each other due to the choice of the 
wight function. The most commonly used weight functions are: 
 

1) The Petrov-Galerkin 
2) Galerkin method 
3) Least-squares method 
4) Collocation method 

 
The Galerkin method is a special case of the Petrov-Galerkin method in which the approximation functions 
and the weighted functions are the same. Hence, the Galerkin integral is given by: 
 

Ü𝜙! 	ℛ+8𝑥, {𝑐}, {𝜙}, 𝑓<	𝑑𝑥
	

o

= 0											𝑖 = 1,… , 𝑛 

 
Where “ℛ+” is the residual term of the equations. 
 

𝑮𝒂𝒍𝒆𝒓𝒌𝒊𝒏	𝑴𝒆𝒕𝒉𝒐𝒅			 → 			𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠		𝜙! 	= 	𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠		𝜓! 
 
 
If the Galerkin method is used for second-order or higher-order equations, it would involve the use of 
higher-order coordinate functions and the solution of nonsymmetric equations. 
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A-C.3. Finite Element Method (FEM) 
 
The finite element method is a procedure that uses the philosophy of the traditional variational methods 
to derive the equations relating undetermined coefficients. However, the method differs in two ways 
from traditional variational methods in generating the equations of the problem. First, the approximation 
functions are often algebraic polynomials that are developed using ideas from interpolation theory; 
second, the approximation functions are developed for subdomains into which a given domain is divided. 
The subdomains, called finite elements, are geometrically simple shapes that permit a systematic a 
systematic construction of the approximation functions over the element.  
 
The division of the whole domain into finite elements not only simplifies the task of generating the 
approximation functions, but also allows representation of the solution over individual elements. Thus, 
geometric and/or material discontinuities can be naturally included. Further, since the approximation 
functions are algebraic polynomials, the computation of the coefficients matrices of the approximation 
can be automated on a computer. 
 
The construction of the approximation functions is systematic, and the process is independent of the 
boundary conditions and data of the problem. In short, the finite element method is a piecewise 
application of classical variational methods. The undetermined parameters often, but not always, 
represent values of the dependent variables at a finite number of preselected points, whose number and 
locations are dictated the degree and the form of the approximation functions used. The method is 
modular and therefore well suited for electronic computation and the development of general-purpose 
computer programs.  
 
 
The domain is divided into a number of subdomains or intervals (finite elements). This is necessitated by 
one or both of the following reasons: 
 

1) It is easier to represent the solution function, irrespective of the degree of its variation with its 
independent variables, by a polynomial of a desired degree over each element than to use a 
single polynomial to approximate the function over the entire domain. 

 
 

↑ 𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔	 =	↓ 	𝒆𝒓𝒓𝒐𝒓	𝒃𝒆𝒕𝒘𝒆𝒆𝒏	𝒕𝒉𝒆	𝒕𝒓𝒖𝒆	𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏	𝒂𝒏𝒅	𝒕𝒉𝒆	𝒑𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆	𝒍𝒊𝒏𝒆𝒂𝒓	𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 
 

 
2) The actual solution is defined piecewise because of the geometric and/or material 

discontinuities. 
 
The collection of the elements is called the finite element mesh. The number of divisions is analogous to 
the number of parameters in the traditional variational methods, Therefore, the larger the number of 
elements, the more accurate the solution will be. The minimum number of subdivisions is equal to the 
number of subdivisions crated by the discontinuities n the data of the problem. An element or interval in 
one-dimensional problems is a line of finite length. An element or interval in two-dimensional problems 
is a surface of finite area. The same is true for three-dimensional problems. 
 
The elements in a finite element mesh are connected to neighboring elements at a finite number of points, 
called global nodes. The word “global” refers to the whole problem as opposed to an element. The end 
points of individual elements are called element nodes, and they match with a pair of global nodes. 
 
The interpolation functions “𝑁	!

(7)” are defined over the element “Ω(7)”, and they are equal to zero 
outside the element. Hence, they are said to have compact support. The interpolation in which only the 
functions alone is interpolated – and not its derivative – is known as the Lagrange interpolation, and the 
corresponding functions are termed the Lagrange interpolation functions.  
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In the appendices attached to this appendix, the numerical operation of the FEM is developed in a generic 
way. 
 

A-C.3.1. Advantages 
 

• Possibility of using unstructured meshes: domains with irregular contours (adaptability) 
 

• The boundary conditions are imposed as follows systematically (without casuistry) 
 

• It allows general routines: systematic calculation of everything, describing properly the data of 
the problem (geometry, boundary conditions, initial conditions, etc.) a single FEM code allows to 
solve several boundary problems. 
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A-D.1. GiD 
 
GiD has been developed by the CIMNE. It’s a universal (ideal for generating all the information required 
for the analysis of any problem in science and engineering using numerical methods), adaptive (extremely 
easy to adapt to any numerical simulation code, input and output formats can be customized and made 
compatible with any existing software) and user-friendly (development focused on the user´s needs, 
provides with simplicity, speed and effectiveness for users) pre and post processor for numerical 
simulations in science and engineering. It has been designed to cover all the common needs in the 
numerical simulations field from pre- to post-processing: 
 

• Geometrical modeling (CAD) 
• Mesh generation 
• Definition of analysis data 
• Data transfer to analysis software 
• Postprocessing operations 
• Visualization of results 

 
 

 
Figure A-D.1: Source: [27] 

 
 

A-D.2. Kratos 
 
Kratos is a free multi-physic Finite Element C++ open-source code. One of the main topics in engineering 
nowadays is the combination of different analysis (thermal, fluid dynamic, structural) with optimizing 
methods in one global software package with just one user interface and, even more, the possibility to 
extend the implemented solution to new problems. 
 
Kratos is designed as an Open-Source framework for the implementation of numerical methods for the 
solution of engineering problems. It is written in C++ and is designed to allow collaborative development 
by large teams of researchers focusing on modularity as well as on performance. The Kratos features a 
"core" and "applications" approach where "standard tools" (databases, linear algebra, search structures, 
etc...) come as a part of the core and are available as building blocks in the development of "applications" 
which focus on the solution of the problems of interest. Its ultimate goal is to simplify the development 
of new numerical methods. 
 
 
 

 
Figure A-D.2: Source: [28] 
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A-D.2.1. First challenges on the IT side 
 
The first challenge that had to be faced was the fact that the GiD program is not very advanced in the 
Macintosh operating system in terms of the Kratos problem type. The process of downloading, installing 
and licensing the program is described in the following table: 
 

Summary of steps to follow: 
 

1) Install XCode (integrated development environment, IDE, for macOS that contains a set of tools 
created by Apple for software development for macOS, iOS, watchOS and tvOS). 

 
2) Install Clang with OMP support. 

 
3) Install Python 3 (an interpreted high-level general-purpose programming language) 

 
4) Install Boost (it provides free peer-reviewed portable C++ source libraries). 

 
5) Install CMake (open-source, cross-platform family of tools designed to build, test and package 

software). 
 

6) Download Kratos. 
  

7) Compile Kratos. 
 

8) Set up the shell environment. 
 

9) Test Kratos. 
 

 

A-D.2.2. File formats 
 
Once the geometry is created, characterized with its mechanical properties, the boundary and initial 
conditions are imposed, the type of calculation is programmed with its properties and the mesh is 
generated, the following files are generated when the program is saved. 
 

 
Extension files: 

 
. 𝒄𝒏𝒅		𝑓𝑖𝑙𝑒	 = 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛	𝑐𝑜𝑚𝑚𝑜𝑛𝑙𝑦	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝑀𝑒𝑙𝑐𝑜	𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑑	𝐸𝑚𝑏𝑟𝑜𝑖𝑑𝑒𝑟𝑦	𝐹𝑜𝑟𝑚𝑎𝑡	𝑓𝑖𝑙𝑒𝑠 
 
. 𝒈𝒆𝒐		𝑓𝑖𝑙𝑒	 = 3𝐷	𝐶𝐴𝐷	𝑓𝑖𝑙𝑒	𝑠𝑎𝑣𝑒𝑑	𝑖𝑛	𝐺𝐸𝑂	𝑓𝑜𝑟𝑚𝑎𝑡	(𝑖𝑛𝑐𝑙𝑢𝑑𝑒	𝑐𝑜𝑛𝑡𝑜𝑢𝑟	𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑏𝑒𝑛𝑑	𝑑𝑎𝑡𝑎,𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑎𝑛𝑑	𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) 
 
.𝒎𝒔𝒉		𝑓𝑖𝑙𝑒	 = 3𝐷	𝑚𝑜𝑑𝑒𝑙	𝑐𝑟𝑒𝑎𝑡𝑒𝑑	𝑏𝑦	𝐺𝑜𝑑𝑜𝑡	𝐸𝑛𝑔𝑖𝑛𝑒 
 
. 𝒑𝒏𝒈		𝑓𝑖𝑙𝑒	 = 𝑖𝑚𝑎𝑔𝑒	𝑠𝑎𝑣𝑒𝑑	𝑖𝑛	𝑡ℎ𝑒	𝑃𝑜𝑟𝑡𝑎𝑏𝑙𝑒	𝑁𝑒𝑡𝑤𝑜𝑟𝑘	𝐺𝑟𝑎𝑝ℎ𝑖𝑐	(𝑃𝑁𝐺)	𝑓𝑜𝑟𝑚𝑎𝑡 
 
. 𝒑𝒓𝒋		𝑓𝑖𝑙𝑒	 = 𝑑𝑎𝑡𝑎	𝑓𝑖𝑙𝑒𝑠	𝑤ℎ𝑖𝑐ℎ	𝑎𝑟𝑒	𝑢𝑠𝑒𝑑	𝑏𝑦	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒	𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠	𝑡𝑜	𝑠𝑎𝑣𝑒	𝑝𝑟𝑜𝑗𝑒𝑐𝑡	𝑑𝑎𝑡𝑎	𝑎𝑛𝑑	𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠 
 
. 𝒔𝒑𝒅		𝑓𝑖𝑙𝑒	 = 𝑐𝑜𝑛𝑡𝑎𝑖𝑛	𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠	𝑎𝑛𝑑	𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠	𝑡ℎ𝑎𝑡	𝑎𝑟𝑒	𝑢𝑠𝑒𝑑	𝑏𝑦	𝐴𝑑𝑜𝑏𝑒	𝑃𝑜𝑠𝑡𝑆𝑐𝑟𝑖𝑝𝑡	𝑝𝑟𝑖𝑛𝑡𝑒𝑟𝑠 
 
. 𝒕𝒓𝒆𝒆		𝑓𝑖𝑙𝑒	 = 𝑓𝑖𝑙𝑒	𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛	𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠	𝑡𝑜	𝑦𝑜𝑢𝑟	𝑑𝑒𝑣𝑖𝑐𝑒	𝑤ℎ𝑖𝑐ℎ	𝑎𝑝𝑝	𝑐𝑎𝑛	𝑜𝑝𝑒𝑛	𝑡ℎ𝑒	𝑓𝑖𝑙𝑒 
 
. 𝒗𝒗		𝑓𝑖𝑙𝑒	 = 𝑣𝑖𝑟𝑡 − 𝑣𝑖𝑒𝑤𝑒𝑟	𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛	𝑓𝑖𝑙𝑒 
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Once the calculation button is pressed within the pre-processing of the program interface, the following 
files appear: 
 

 
Extension files: 

 
. 𝒆𝒓𝒓		𝑓𝑖𝑙𝑒	 = 𝑡𝑒𝑥𝑡	𝑓𝑖𝑙𝑒	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝐸𝑟𝑟𝑜𝑟	𝐿𝑜𝑔	𝐹𝑜𝑟𝑚𝑎𝑡	𝑓𝑖𝑙𝑒𝑠	𝑡ℎ𝑎𝑡	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠	𝑒𝑟𝑟𝑜𝑟	𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑	𝑏𝑦	𝑎	𝑝𝑟𝑜𝑔𝑟𝑎𝑚	
 
. 𝒊𝒏𝒇𝒐		𝑓𝑖𝑙𝑒	 = 𝑔𝑒𝑛𝑒𝑟𝑖𝑐	𝑡𝑒𝑥𝑡	𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝑓𝑖𝑙𝑒	𝑡ℎ𝑎𝑡	𝑚𝑎𝑦	𝑏𝑒	𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑	𝑤𝑖𝑡ℎ	𝑣𝑎𝑟𝑖𝑜𝑢𝑠	𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒	𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠	𝑜𝑟	𝑓𝑖𝑙𝑒	𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠 
 
.𝒎𝒅𝒑𝒂		𝑓𝑖𝑙𝑒	 = 𝑀𝑜𝑑𝑒𝑙	𝑃𝑎𝑟𝑡	(𝐾𝑟𝑎𝑡𝑜𝑠	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑖𝑛𝑝𝑢𝑡	𝑑𝑎𝑡𝑎	𝑎𝑟𝑐ℎ𝑖𝑣𝑒) 
 
. 𝒃𝒂𝒔		𝑓𝑖𝑙𝑒	 = 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚	𝑤𝑟𝑖𝑡𝑡𝑒𝑛	𝑖𝑛	𝐵𝑎𝑠𝑖𝑐	𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 
 
. 𝒄𝒑𝒑		𝑓𝑖𝑙𝑒	 = 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚	𝑤𝑟𝑖𝑡𝑡𝑒𝑛	𝑖𝑛	𝐶 + +		𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 
 
. 𝒉		𝑓𝑖𝑙𝑒	 = ℎ𝑒𝑎𝑑𝑒𝑟	𝑓𝑖𝑙𝑒	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑	𝑏𝑦	𝑎	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡	𝑤𝑟𝑖𝑡𝑡𝑒𝑛	𝑖𝑛	𝐶, 𝐶 + +, 𝑜𝑟	𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 − 𝐶	𝑠𝑜𝑢𝑟𝑐𝑒	𝑐𝑜𝑑𝑒 
 
. 𝒑𝒚		𝑓𝑖𝑙𝑒	 = 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚	𝑤𝑟𝑖𝑡𝑡𝑒𝑛	𝑖𝑛	𝑃𝑦𝑡ℎ𝑜𝑛	𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 
 

 
𝑴𝒂𝒊𝒏𝑲𝒓𝒂𝒕𝒐𝒔. 𝒑𝒚		𝑓𝑖𝑙𝑒		 

 
 
. 𝒋𝒔𝒐𝒏		𝑓𝑖𝑙𝑒	 = 	𝑓𝑖𝑙𝑒	𝑡ℎ𝑎𝑡	𝑠𝑡𝑜𝑟𝑒𝑠	𝑠𝑖𝑚𝑝𝑙𝑒	𝑑𝑎𝑡𝑎	𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠	𝑎𝑛𝑑	𝑜𝑏𝑗𝑒𝑐𝑡𝑠	𝑖𝑛	𝐽𝑎𝑣𝑎	𝑆𝑐𝑟𝑖𝑝𝑡	𝑂𝑏𝑗𝑒𝑐𝑡	𝑁𝑜𝑡𝑎𝑡𝑖𝑜𝑛	(𝐽𝑆𝑂𝑁)	𝑓𝑜𝑟𝑚𝑎𝑡 
 

 
𝑷𝑭𝑬𝑴𝑭𝒍𝒖𝒊𝒅𝑴𝒂𝒕𝒆𝒓𝒊𝒂𝒍𝒔. 𝒋𝒔𝒐𝒏		𝑓𝑖𝑙𝑒 

 
𝑷𝒓𝒐𝒋𝒆𝒄𝒕𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔. 𝒋𝒔𝒐𝒏		𝑓𝑖𝑙𝑒 

 
c 

 
Once all the calculations necessary to solve the model have been performed, the following files are 
created: 
 

 
Extension files: 

 
. 𝒃𝒊𝒏		𝑓𝑖𝑙𝑒	 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑	𝑏𝑖𝑛𝑎𝑟𝑦	𝑓𝑖𝑙𝑒𝑠	𝑡ℎ𝑎𝑡	𝑎𝑟𝑒	𝑢𝑠𝑒𝑑	𝑓𝑜𝑟	𝑣𝑎𝑟𝑖𝑒𝑑	𝑝𝑢𝑟𝑝𝑜𝑠𝑒𝑠	𝑏𝑦	𝑚𝑎𝑛𝑦	𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟	𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 
 
. 𝒑𝒐𝒔𝒕		𝑓𝑖𝑙𝑒	 = 𝐷𝑎𝑡𝑎	𝑓𝑖𝑙𝑒	𝑐𝑟𝑒𝑎𝑡𝑒𝑑	𝑏𝑦	𝐿𝐼𝐺𝐻𝑇, 𝑡ℎ𝑎𝑡	𝑒𝑛𝑎𝑏𝑙𝑒𝑠	𝑢𝑠𝑒𝑟𝑠	𝑡𝑜	𝑟𝑒𝑐𝑜𝑟𝑑, 𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑒, 𝑎𝑛𝑑	𝑠ℎ𝑎𝑟𝑒	𝑡ℎ𝑒𝑖𝑟	𝑙𝑖𝑓𝑒	𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑠 
 
. 𝒑𝒐𝒔𝒕. 𝒃𝒊𝒏		𝑓𝑖𝑙𝑒	 =		. 𝒑𝒐𝒔𝒕		 ∪		. 𝒃𝒊𝒏 
 
. 𝒍𝒔𝒕		𝑓𝑖𝑙𝑒	 = 𝑇𝑒𝑥𝑡	𝑓𝑖𝑙𝑒	𝑡ℎ𝑎𝑡	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠	𝑎	𝑙𝑖𝑠𝑡	𝑜𝑓	𝑑𝑎𝑡𝑎 
 
. 𝒊𝒔𝒐		𝑓𝑖𝑙𝑒	 = 𝐹𝑖𝑙𝑒	𝑡ℎ𝑎𝑡	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠	𝑎𝑛	𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙	𝑐𝑜𝑝𝑦	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑓𝑜𝑢𝑛𝑑	𝑜𝑛	𝑎𝑛	𝑜𝑝𝑡𝑖𝑐𝑎𝑙	𝑑𝑖𝑠𝑐	(𝐶𝐷	𝑜𝑟	𝐷𝑉𝐷) 
 
. 𝒕𝒙𝒕		𝑓𝑖𝑙𝑒	 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑡𝑒𝑥𝑡	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡	𝑡ℎ𝑎𝑡	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠	𝑝𝑙𝑎𝑖𝑛	𝑡𝑒𝑥𝑡 
 

 
𝑷𝒕𝒐𝒕𝒂𝒍𝑽𝒐𝒍𝒖𝒎𝒆𝑩𝒆𝒇𝒐𝒓𝒆𝑴𝒆𝒔𝒉𝒊𝒏𝒈. 𝒕𝒙𝒕		𝑓𝑖𝑙𝑒	 
 

s 
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A-E.1. herschel_bulkley_2D_law.cpp 
 
//------------------------------------------------------------- 
//         ___  __           ___ _      _    _ 
//  KRATOS| _ \/ _|___ _ __ | __| |_  _(_)__| | 
//        |  _/  _/ -_) '  \| _|| | || | / _` | 
//        |_| |_| \___|_|_|_|_| |_|\_,_|_\__,_|DYNAMICS 
// 
//  BSD License:    PfemFluidDynamicsApplication/license.txt 
// 
//  Collaborator:  Timur Tomas 
// 
//------------------------------------------------------------- 
// 
 
// System includes 
#include <iostream> 
 
// External includes 
#include <cmath> 
 
// Project includes 
#include "custom_constitutive/fluid_laws/herschel_bulkley_2D_law.h" 
#include "includes/checks.h" 
#include "includes/properties.h" 
#include "pfem_fluid_dynamics_application_variables.h" 
 
namespace Kratos 
{ 
    
//********************************CONSTRUCTOR********************************* 
    
//**************************************************************************** 
 
    HerschelBulkley2DLaw::HerschelBulkley2DLaw() : PfemFluidConstitutiveLaw() 
{} 
 
//******************************COPY CONSTRUCTOR****************************** 
    
//**************************************************************************** 
 
    HerschelBulkley2DLaw::HerschelBulkley2DLaw(const HerschelBulkley2DLaw 
&rOther) : PfemFluidConstitutiveLaw(rOther) {} 
 
    
//***********************************CLONE************************************ 
    
//**************************************************************************** 
 
    ConstitutiveLaw::Pointer HerschelBulkley2DLaw::Clone() const { return 
Kratos::make_shared<HerschelBulkley2DLaw>(*this); } 
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//*********************************DESTRUCTOR********************************* 
    
//**************************************************************************** 
 
    HerschelBulkley2DLaw::~HerschelBulkley2DLaw() {} 
 
    ConstitutiveLaw::SizeType HerschelBulkley2DLaw::WorkingSpaceDimension() { 
return 2; } 
 
    ConstitutiveLaw::SizeType HerschelBulkley2DLaw::GetStrainSize() { return 
3; } 
 
    void HerschelBulkley2DLaw::CalculateMaterialResponseCauchy(Parameters 
&rValues) 
    { 
        Flags &r_options = rValues.GetOptions(); 
 
        const Properties &r_properties = rValues.GetMaterialProperties(); 
 
        Vector &r_strain_vector = rValues.GetStrainVector(); 
        Vector &r_stress_vector = rValues.GetStressVector(); 
 
        const double dynamic_viscosity = this-
>GetEffectiveDynamicViscosity(rValues); 
        const double yield_shear = this->GetEffectiveYieldShear(rValues); 
        const double adaptive_exponent = r_properties[ADAPTIVE_EXPONENT]; 
        double effective_dynamic_viscosity; 
        const double flow_index = this->GetFlowIndex(rValues); 
 
        const double equivalent_strain_rate = 
            std::sqrt(2.0 * r_strain_vector[0] * r_strain_vector[0] + 2.0 * 
r_strain_vector[1] * r_strain_vector[1] + 
                      4.0 * r_strain_vector[2] * r_strain_vector[2]); 
 
        // Ensuring that the case of equivalent_strain_rate = 0 is not 
problematic. 
        const double tolerance = 1e-8; 
        if (equivalent_strain_rate < tolerance) 
        { 
            effective_dynamic_viscosity = yield_shear * adaptive_exponent; 
        } 
        else 
        { 
            //Se tomará el índice de consistencia como la dynamic_vicosity 
            double regularization = 1.0 - std::exp(-adaptive_exponent * 
equivalent_strain_rate); 
            double aux_flow_index = flow_index - 1; 
            effective_dynamic_viscosity = dynamic_viscosity * 
std::pow(equivalent_strain_rate,aux_flow_index) + regularization * yield_shear 
/ equivalent_strain_rate; 
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        } 
 
        const double strain_trace = r_strain_vector[0] + r_strain_vector[1]; 
 
        //This stress_vector is only deviatoric 
        // d' = d - I * tr(d)/3 
        r_stress_vector[0] = 2.0 * effective_dynamic_viscosity * 
(r_strain_vector[0] - strain_trace / 3.0); 
        r_stress_vector[1] = 2.0 * effective_dynamic_viscosity * 
(r_strain_vector[1] - strain_trace / 3.0); 
        r_stress_vector[2] = 2.0 * effective_dynamic_viscosity * 
r_strain_vector[2]; 
 
        if (r_options.Is(ConstitutiveLaw::COMPUTE_CONSTITUTIVE_TENSOR)) 
        { 
            this-
>EffectiveViscousConstitutiveMatrix2D(effective_dynamic_viscosity, 
rValues.GetConstitutiveMatrix()); 
        } 
    } 
 
    std::string HerschelBulkley2DLaw::Info() const { return 
"HerschelBulkley2DLaw"; } 
 
//******************CHECK CONSISTENCY IN THE CONSTITUTIVE LAW***************** 
    
//**************************************************************************** 
 
    int HerschelBulkley2DLaw::Check(const Properties &rMaterialProperties, 
const GeometryType &rElementGeometry, 
                            const ProcessInfo &rCurrentProcessInfo) 
    { 
 
        KRATOS_CHECK_VARIABLE_KEY(DYNAMIC_VISCOSITY); 
        KRATOS_CHECK_VARIABLE_KEY(YIELD_SHEAR); 
        KRATOS_CHECK_VARIABLE_KEY(ADAPTIVE_EXPONENT); 
        KRATOS_CHECK_VARIABLE_KEY(BULK_MODULUS); 
        KRATOS_CHECK_VARIABLE_KEY(FLOW_INDEX); 
 
        if (rMaterialProperties[DYNAMIC_VISCOSITY] < 0.0) 
        { 
            KRATOS_ERROR << "Incorrect or missing DYNAMIC_VISCOSITY provided 
in process info for HerschelBulkley2DLaw: " 
                         << rMaterialProperties[DYNAMIC_VISCOSITY] << 
std::endl; 
        } 
 
        if (rMaterialProperties[YIELD_SHEAR] < 0.0) 
        { 
            KRATOS_ERROR << "Incorrect or missing YIELD_SHEAR provided in 
process info for HerschelBulkley2DLaw: " 
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                         << rMaterialProperties[YIELD_SHEAR] << std::endl; 
        } 
 
        if (rMaterialProperties[ADAPTIVE_EXPONENT] < 0.0) 
        { 
            KRATOS_ERROR << "Incorrect or missing ADAPTIVE_EXPONENT provided 
in process info for HerschelBulkley2DLaw: " 
                         << rMaterialProperties[ADAPTIVE_EXPONENT] << 
std::endl; 
        } 
 
        if (rMaterialProperties[BULK_MODULUS] <= 0.0) 
        { 
            KRATOS_ERROR << "Incorrect or missing BULK_MODULUS provided in 
process info for HerschelBulkley2DLaw: " 
                         << rMaterialProperties[BULK_MODULUS] << std::endl; 
        } 
 
        if (rMaterialProperties[FLOW_INDEX] <= 0.0) 
        { 
            KRATOS_ERROR << "Incorrect or missing FLOW_INDEX provided in 
process info for HerschelBulkley2DLaw: " 
                         << rMaterialProperties[FLOW_INDEX] << std::endl; 
        } 
 
        return 0; 
    } 
 
    double 
HerschelBulkley2DLaw::GetEffectiveViscosity(ConstitutiveLaw::Parameters 
&rParameters) const 
    { 
        return rParameters.GetConstitutiveMatrix()(2, 2); 
    } 
 
    double 
HerschelBulkley2DLaw::GetEffectiveDensity(ConstitutiveLaw::Parameters 
&rParameters) const 
    { 
        return rParameters.GetMaterialProperties()[DENSITY]; 
    } 
 
    double 
HerschelBulkley2DLaw::GetEffectiveDynamicViscosity(ConstitutiveLaw::Parameters 
&rParameters) const 
    { 
        return rParameters.GetMaterialProperties()[DYNAMIC_VISCOSITY]; 
    } 
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    double 
HerschelBulkley2DLaw::GetEffectiveYieldShear(ConstitutiveLaw::Parameters 
&rParameters) const 
    { 
        return rParameters.GetMaterialProperties()[YIELD_SHEAR]; 
    } 
 
    double HerschelBulkley2DLaw::GetFlowIndex(ConstitutiveLaw::Parameters 
&rParameters) const 
    { 
        return rParameters.GetMaterialProperties()[FLOW_INDEX]; 
    } 
 
    void HerschelBulkley2DLaw::save(Serializer &rSerializer) const 
    { 
        KRATOS_SERIALIZE_SAVE_BASE_CLASS(rSerializer, 
PfemFluidConstitutiveLaw) 
    } 
 
    void HerschelBulkley2DLaw::load(Serializer &rSerializer) 
    { 
        KRATOS_SERIALIZE_LOAD_BASE_CLASS(rSerializer, 
PfemFluidConstitutiveLaw) 
    } 
 
} // Namespace Kratos 
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A-E.2. herschel_bulkley_2D_law.h 
 
//------------------------------------------------------------- 
//         ___  __           ___ _      _    _ 
//  KRATOS| _ \/ _|___ _ __ | __| |_  _(_)__| | 
//        |  _/  _/ -_) '  \| _|| | || | / _` | 
//        |_| |_| \___|_|_|_|_| |_|\_,_|_\__,_|DYNAMICS 
// 
//  BSD License:    PfemFluidDynamicsApplication/license.txt 
// 
//  Collaborator:  Timur Tomas 
// 
//------------------------------------------------------------- 
// 
 
#if !defined(KRATOS_HERSCHEL_BULKLEY_LAW_2D_H_INCLUDED) 
#define KRATOS_HERSCHEL_BULKLEY_LAW_2D_H_INCLUDED 
 
// System includes 
 
// External includes 
 
// Project includes 
#include "fluid_constitutive_law.h" 
 
namespace Kratos { 
/** 
 * Defines a 2D Herschel Bulkley non-Newtonian constitutive law 
 * This material law is defined by the parameters: 
 * 1) DYNAMIC_VISCOSITY 
 * 2) YIELD_SHEAR 
 * 3) ADAPTIVE_EXPONENT 
 * 4) FLOW_INDEX 
 */ 
class KRATOS_API(PFEM_FLUID_DYNAMICS_APPLICATION) HerschelBulkley2DLaw : 
public PfemFluidConstitutiveLaw { 
   public: 
    /** 
     * Type Definitions 
     */ 
    typedef ProcessInfo ProcessInfoType; 
    typedef ConstitutiveLaw BaseType; 
    typedef std::size_t SizeType; 
 
    /** 
     * Counted pointer of HerschelBulkley2DLaw 
     */ 
    KRATOS_CLASS_POINTER_DEFINITION(HerschelBulkley2DLaw); 
 
    /** 
     * Life Cycle 
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     */ 
 
    /** 
     * Default constructor. 
     */ 
    HerschelBulkley2DLaw(); 
 
    /** 
     * Clone function (has to be implemented by any derived class) 
     * @return a pointer to a new instance of this constitutive law 
     */ 
    ConstitutiveLaw::Pointer Clone() const override; 
 
    /** 
     * Copy constructor. 
     */ 
    HerschelBulkley2DLaw(const HerschelBulkley2DLaw& rOther); 
 
    /** 
     * Destructor. 
     */ 
    ~HerschelBulkley2DLaw() override; 
 
    /** 
     * Operators 
     */ 
 
    /** 
     * Operations needed by the base class: 
     */ 
 
    /** 
     * @return Working space dimension constitutive law 
     */ 
    SizeType WorkingSpaceDimension() override; 
 
    /** 
     * @return Size of the strain vector (in Voigt notation) for the 
constitutive law 
     */ 
    SizeType GetStrainSize() override; 
 
    void CalculateMaterialResponseCauchy(Parameters& rValues) override; 
 
    /** 
     * This function is designed to be called once to perform all the checks 
needed 
     * on the input provided. Checks can be "expensive" as the function is 
designed 
     * to catch user's errors. 
     * @param rMaterialProperties 
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     * @param rElementGeometry 
     * @param rCurrentProcessInfo 
     * @return 
     */ 
    int Check(const Properties& rMaterialProperties, const GeometryType& 
rElementGeometry, 
              const ProcessInfo& rCurrentProcessInfo) override; 
 
    /** 
     * Input and output 
     */ 
 
    /** 
     * Turn back information as a string. 
     */ 
    std::string Info() const override; 
 
   protected: 
    ///@name Protected static Member Variables 
    ///@{ 
    ///@} 
    ///@name Protected member Variables 
    ///@{ 
    ///@} 
    ///@name Protected Operators 
    ///@{ 
    ///@} 
    ///@name Protected Operations 
    ///@{ 
 
    /// Get the effective viscosity (in dynamic units -- Pa s) for the fluid. 
    double GetEffectiveViscosity(ConstitutiveLaw::Parameters& rParameters) 
const override; 
 
    /// Get the effective density for the fluid. 
    double GetEffectiveDensity(ConstitutiveLaw::Parameters& rParameters) const 
override; 
 
    /// Get the effective yield shear for the fluid. 
    double GetEffectiveYieldShear(ConstitutiveLaw::Parameters& rParameters) 
const; 
 
    /// Get the effective dynamic viscosity for the fluid. 
    double GetEffectiveDynamicViscosity(ConstitutiveLaw::Parameters& 
rParameters) const; 
 
    /// Get the flow index for the fluid. 
    double GetFlowIndex(ConstitutiveLaw::Parameters& rParameters) const; 
 
    ///@} 
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   private: 
    ///@name Static Member Variables 
    ///@{ 
 
    ///@} 
    ///@name Member Variables 
    ///@{ 
 
    ///@} 
    ///@name Private Operators 
    ///@{ 
 
    ///@} 
    ///@name Private Operations 
    ///@{ 
    ///@} 
 
    ///@} 
    ///@name Private  Access 
    ///@{ 
    ///@} 
 
    ///@} 
    ///@name Serialization 
    ///@{ 
    friend class Serializer; 
 
    void save(Serializer& rSerializer) const override; 
 
    void load(Serializer& rSerializer) override; 
    ///@} 
 
};  // Class HerschelBulkley2DLaw 
 
}  // namespace Kratos. 
 
#endif  // KRATOS_HERSCHEL_BULKLEY_LAW_2D_H_INCLUDED  defined 
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A-E.3. herschel_bulkley_3D_law.cpp 
 
//------------------------------------------------------------- 
//         ___  __           ___ _      _    _ 
//  KRATOS| _ \/ _|___ _ __ | __| |_  _(_)__| | 
//        |  _/  _/ -_) '  \| _|| | || | / _` | 
//        |_| |_| \___|_|_|_|_| |_|\_,_|_\__,_|DYNAMICS 
// 
//  BSD License:    PfemFluidDynamicsApplication/license.txt 
// 
//  Collaborator:  Timur Tomas 
// 
//------------------------------------------------------------- 
// 
 
// System includes 
#include <iostream> 
 
// External includes 
#include <cmath> 
 
// Project includes 
#include "custom_constitutive/fluid_laws/herschel_bulkley_3D_law.h" 
#include "includes/checks.h" 
#include "includes/properties.h" 
#include "pfem_fluid_dynamics_application_variables.h" 
 
namespace Kratos 
{ 
 
    
//********************************CONSTRUCTOR********************************* 
    
//**************************************************************************** 
 
    HerschelBulkley3DLaw::HerschelBulkley3DLaw() : PfemFluidConstitutiveLaw() 
{} 
 
    //******************************COPY CONSTRUCTOR************************** 
    //************************************************************************ 
 
    HerschelBulkley3DLaw::HerschelBulkley3DLaw(const HerschelBulkley3DLaw 
&rOther) : PfemFluidConstitutiveLaw(rOther) {} 
 
    
//***********************************CLONE************************************ 
    
//**************************************************************************** 
 
    ConstitutiveLaw::Pointer HerschelBulkley3DLaw::Clone() const { return 
Kratos::make_shared<HerschelBulkley3DLaw>(*this); } 
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//*********************************DESTRUCTOR********************************* 
    
//**************************************************************************** 
 
    HerschelBulkley3DLaw::~HerschelBulkley3DLaw() {} 
 
    ConstitutiveLaw::SizeType HerschelBulkley3DLaw::WorkingSpaceDimension() { 
return 3; } 
 
    ConstitutiveLaw::SizeType HerschelBulkley3DLaw::GetStrainSize() { return 
6; } 
 
    void HerschelBulkley3DLaw::CalculateMaterialResponseCauchy(Parameters 
&rValues) 
    { 
 
        Flags &r_options = rValues.GetOptions(); 
 
        const Properties &r_properties = rValues.GetMaterialProperties(); 
 
        Vector &r_strain_vector = rValues.GetStrainVector(); 
        Vector &r_stress_vector = rValues.GetStressVector(); 
 
        const double dynamic_viscosity = this-
>GetEffectiveDynamicViscosity(rValues); 
        const double yield_shear = this->GetEffectiveYieldShear(rValues); 
        const double adaptive_exponent = r_properties[ADAPTIVE_EXPONENT]; 
        double effective_dynamic_viscosity; 
        const double flow_index = this->GetFlowIndex(rValues); 
 
        const double equivalent_strain_rate = 
            std::sqrt(2.0 * r_strain_vector[0] * r_strain_vector[0] + 2.0 * 
r_strain_vector[1] * r_strain_vector[1] + 
                      2.0 * r_strain_vector[2] * r_strain_vector[2] + 4.0 * 
r_strain_vector[3] * r_strain_vector[3] + 
                      4.0 * r_strain_vector[4] * r_strain_vector[4] + 4.0 * 
r_strain_vector[5] * r_strain_vector[5]); 
 
        // Ensuring that the case of equivalent_strain_rate = 0 is not 
problematic 
        const double tolerance = 1e-8; 
        if (equivalent_strain_rate < tolerance) 
        { 
            effective_dynamic_viscosity = yield_shear * adaptive_exponent; 
        } 
        else 
        { 
            double regularization = 1.0 - std::exp(-adaptive_exponent * 
equivalent_strain_rate); 



Annex E 

Implementation and validation of a Herschel-Bulkley PFEM model in Kratos Multiphysics 

116 

            effective_dynamic_viscosity = dynamic_viscosity * 
pow(equivalent_strain_rate,flow_index - 1) + regularization * yield_shear / 
equivalent_strain_rate; 
        } 
 
        const double strain_trace = r_strain_vector[0] + r_strain_vector[1]; 
 
 
 
        const double strain_trace = r_strain_vector[0] + r_strain_vector[1] + 
r_strain_vector[2]; 
 
        r_stress_vector[0] = 2.0 * effective_dynamic_viscosity * 
(r_strain_vector[0] - strain_trace / 3.0); 
        r_stress_vector[1] = 2.0 * effective_dynamic_viscosity * 
(r_strain_vector[1] - strain_trace / 3.0); 
        r_stress_vector[2] = 2.0 * effective_dynamic_viscosity * 
(r_strain_vector[2] - strain_trace / 3.0); 
        r_stress_vector[3] = 2.0 * effective_dynamic_viscosity * 
r_strain_vector[3]; 
        r_stress_vector[4] = 2.0 * effective_dynamic_viscosity * 
r_strain_vector[4]; 
        r_stress_vector[5] = 2.0 * effective_dynamic_viscosity * 
r_strain_vector[5]; 
 
        if (r_options.Is(ConstitutiveLaw::COMPUTE_CONSTITUTIVE_TENSOR)) 
        { 
            this-
>EffectiveViscousConstitutiveMatrix3D(effective_dynamic_viscosity, 
rValues.GetConstitutiveMatrix()); 
        } 
    } 
 
    std::string HerschelBulkley3DLaw::Info() const { return 
"HerschelBulkley3DLaw"; } 
 
    //******************CHECK CONSISTENCY IN THE CONSTITUTIVE LAW************* 
    
//**************************************************************************** 
 
    int HerschelBulkley3DLaw::Check(const Properties &rMaterialProperties, 
const GeometryType &rElementGeometry, 
                            const ProcessInfo &rCurrentProcessInfo) 
    { 
 
        KRATOS_CHECK_VARIABLE_KEY(DYNAMIC_VISCOSITY); 
        KRATOS_CHECK_VARIABLE_KEY(YIELD_SHEAR); 
        KRATOS_CHECK_VARIABLE_KEY(ADAPTIVE_EXPONENT); 
        KRATOS_CHECK_VARIABLE_KEY(BULK_MODULUS); 
        KRATOS_CHECK_VARIABLE_KEY(FLOW_INDEX); 
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        if (rMaterialProperties[DYNAMIC_VISCOSITY] < 0.0) 
        { 
            KRATOS_ERROR << "Incorrect or missing DYNAMIC_VISCOSITY provided 
in process info for HerschelBulkley3DLaw: " 
                         << rMaterialProperties[DYNAMIC_VISCOSITY] << 
std::endl; 
        } 
 
        if (rMaterialProperties[YIELD_SHEAR] < 0.0) 
        { 
            KRATOS_ERROR << "Incorrect or missing YIELD_SHEAR provided in 
process info for HerschelBulkley3DLaw: " 
                         << rMaterialProperties[YIELD_SHEAR] << std::endl; 
        } 
 
        if (rMaterialProperties[ADAPTIVE_EXPONENT] < 0.0) 
        { 
            KRATOS_ERROR << "Incorrect or missing ADAPTIVE_EXPONENT provided 
in process info for HerschelBulkley3DLaw: " 
                         << rMaterialProperties[ADAPTIVE_EXPONENT] << 
std::endl; 
        } 
 
        if (rMaterialProperties[BULK_MODULUS] <= 0.0) 
        { 
            KRATOS_ERROR << "Incorrect or missing BULK_MODULUS provided in 
process info for HerschelBulkley3DLaw: " 
                         << rMaterialProperties[BULK_MODULUS] << std::endl; 
        } 
 
        if (rMaterialProperties[FLOW_INDEX] <= 0.0) 
        { 
            KRATOS_ERROR << "Incorrect or missing FLOW_INDEX provided in 
process info for HerschelBulkley3DLaw: " 
                         << rMaterialProperties[FLOW_INDEX] << std::endl; 
        } 
 
        return 0; 
    } 
 
    double 
HerschelBulkley3DLaw::GetEffectiveViscosity(ConstitutiveLaw::Parameters 
&rParameters) const 
    { 
        return rParameters.GetConstitutiveMatrix()(5, 5); 
    } 
 
    double 
HerschelBulkley3DLaw::GetEffectiveDensity(ConstitutiveLaw::Parameters 
&rParameters) const 
    { 
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        return rParameters.GetMaterialProperties()[DENSITY]; 
    } 
 
    double 
HerschelBulkley3DLaw::GetEffectiveDynamicViscosity(ConstitutiveLaw::Parameters 
&rParameters) const 
    { 
        return rParameters.GetMaterialProperties()[DYNAMIC_VISCOSITY]; 
    } 
 
    double 
HerschelBulkley3DLaw::GetEffectiveYieldShear(ConstitutiveLaw::Parameters 
&rParameters) const 
    { 
        return rParameters.GetMaterialProperties()[YIELD_SHEAR]; 
    } 
 
    double HerschelBulkley3DLaw::GetFlowIndex(ConstitutiveLaw::Parameters 
&rParameters) const 
    { 
        return rParameters.GetMaterialProperties()[FLOW_INDEX]; 
    } 
 
    void HerschelBulkley3DLaw::save(Serializer &rSerializer) const 
    { 
        KRATOS_SERIALIZE_SAVE_BASE_CLASS(rSerializer, 
PfemFluidConstitutiveLaw) 
    } 
 
    void HerschelBulkley3DLaw::load(Serializer &rSerializer) 
    { 
        KRATOS_SERIALIZE_LOAD_BASE_CLASS(rSerializer, 
PfemFluidConstitutiveLaw) 
    } 
 
} // Namespace Kratos 
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A-E.4. herschel_bulkley_3D_law.h 
 
//------------------------------------------------------------- 
//         ___  __           ___ _      _    _ 
//  KRATOS| _ \/ _|___ _ __ | __| |_  _(_)__| | 
//        |  _/  _/ -_) '  \| _|| | || | / _` | 
//        |_| |_| \___|_|_|_|_| |_|\_,_|_\__,_|DYNAMICS 
// 
//  BSD License:    PfemFluidDynamicsApplication/license.txt 
// 
//  Collaborator:  Timur Tomas 
// 
//------------------------------------------------------------- 
// 
 
#if !defined(KRATOS_HERSCHEL_BULKLEY_LAW_3D_H_INCLUDED) 
#define KRATOS_HERSCHEL_BULKLEY_LAW_3D_H_INCLUDED 
 
// System includes 
 
// External includes 
 
// Project includes 
#include "fluid_constitutive_law.h" 
 
namespace Kratos { 
/** 
 * Defines a 3D Herschel Bulkley non-Newtonian constitutive law 
 * This material law is defined by the parameters: 
 * 1) DYNAMIC_VISCOSITY 
 * 2) YIELD_SHEAR 
 * 3) ADAPTIVE_EXPONENT 
 * 4) FLOW_INDEX 
 */ 
class KRATOS_API(PFEM_FLUID_DYNAMICS_APPLICATION) HerschelBulkley3DLaw : 
public PfemFluidConstitutiveLaw { 
   public: 
    /** 
     * Type Definitions 
     */ 
    typedef ProcessInfo ProcessInfoType; 
    typedef ConstitutiveLaw BaseType; 
    typedef std::size_t SizeType; 
 
    /** 
     * Counted pointer of HerschelBulkley3DLaw 
     */ 
    KRATOS_CLASS_POINTER_DEFINITION(HerschelBulkley3DLaw); 
 
    /** 
     * Life Cycle 
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     */ 
 
    /** 
     * Default constructor. 
     */ 
    HerschelBulkley3DLaw(); 
 
    /** 
     * Clone function (has to be implemented by any derived class) 
     * @return a pointer to a new instance of this constitutive law 
     */ 
    ConstitutiveLaw::Pointer Clone() const override; 
 
    /** 
     * Copy constructor. 
     */ 
    HerschelBulkley3DLaw(const HerschelBulkley3DLaw& rOther); 
 
    /** 
     * Destructor. 
     */ 
    ~HerschelBulkley3DLaw() override; 
 
    /** 
     * Operators 
     */ 
 
    /** 
     * Operations needed by the base class: 
     */ 
 
    /** 
     * @return Working space dimension constitutive law 
     */ 
    SizeType WorkingSpaceDimension() override; 
 
    /** 
     * @return Size of the strain vector (in Voigt notation) for the 
constitutive law 
     */ 
    SizeType GetStrainSize() override; 
 
    void CalculateMaterialResponseCauchy(Parameters& rValues) override; 
 
    /** 
     * This function is designed to be called once to perform all the checks 
needed 
     * on the input provided. Checks can be "expensive" as the function is 
designed 
     * to catch user's errors. 
     * @param rMaterialProperties 



Codes  

Timur Tomas Pozo 

121 

     * @param rElementGeometry 
     * @param rCurrentProcessInfo 
     * @return 
     */ 
    int Check(const Properties& rMaterialProperties, const GeometryType& 
rElementGeometry, 
              const ProcessInfo& rCurrentProcessInfo) override; 
 
    /** 
     * Input and output 
     */ 
 
    /** 
     * Turn back information as a string. 
     */ 
    std::string Info() const override; 
 
   protected: 
    ///@name Protected static Member Variables 
    ///@{ 
    ///@} 
    ///@name Protected member Variables 
    ///@{ 
    ///@} 
    ///@name Protected Operators 
    ///@{ 
    ///@} 
    ///@name Protected Operations 
    ///@{ 
 
    /// Get the effective viscosity (in dynamic units -- Pa s) for the fluid. 
    double GetEffectiveViscosity(ConstitutiveLaw::Parameters& rParameters) 
const override; 
 
    /// Get the effective density for the fluid. 
    double GetEffectiveDensity(ConstitutiveLaw::Parameters& rParameters) const 
override; 
 
    /// Get the effective yield shear for the fluid. 
    double GetEffectiveYieldShear(ConstitutiveLaw::Parameters& rParameters) 
const; 
 
    /// Get the effective dynamic viscosity for the fluid. 
    double GetEffectiveDynamicViscosity(ConstitutiveLaw::Parameters& 
rParameters) const; 
 
    /// Get the flow index for the fluid. 
    double GetFlowIndex(ConstitutiveLaw::Parameters& rParameters) const; 
 
    ///@} 
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   private: 
    ///@name Static Member Variables 
    ///@{ 
 
    ///@} 
    ///@name Member Variables 
    ///@{ 
 
    ///@} 
    ///@name Private Operators 
    ///@{ 
 
    ///@} 
    ///@name Private Operations 
    ///@{ 
    ///@} 
 
    ///@} 
    ///@name Private  Access 
    ///@{ 
    ///@} 
 
    ///@} 
    ///@name Serialization 
    ///@{ 
    friend class Serializer; 
 
    void save(Serializer& rSerializer) const override; 
 
    void load(Serializer& rSerializer) override; 
    ///@} 
 
};  // Class HerschelBulkley3DLaw 
 
}  // namespace Kratos. 
 
#endif  // KRATOS_HERSCHEL_BULKLEY_LAW_3D_H_INCLUDED  defined 
 
 
 
 


