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Given a quartic Galois extension L/Q of number fields and a Hopf-Galois structure 
H on L/Q, we study the freeness of the ring of integers OL as module over 
the associated order AH in H. For the classical Galois structure Hc, we know 
by Leopoldt’s theorem that OL is AHc

-free. If L/Q is cyclic, it admits a unique 
non-classical Hopf-Galois structure, whereas if it is biquadratic, it admits three 
such Hopf-Galois structures. In both cases, we obtain that freeness depends on the 
solvability in Z of certain generalized Pell equations. We shall translate some results 
on Pell equations into results on the AH -freeness of OL.
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1. Introduction

Let L/K be a Galois extension of number fields with group G. We know by Normal Basis Theorem that 
L/K has always a normal basis, that is, a basis formed by the Galois conjugates of a single element of L
(see for example [6, Theorem 3.2.12]). Classical Galois module theory is then motivated by the problem 
of finding a normal basis of the ring of integers OL of L, i.e. a normal integral basis. This amounts to 
determining whether OL is free of rank one as OK [G]-module. A partial answer is provided by Noether’s 
theorem (see [17]), which in its global form states that OL is OK [G]-locally free if L/K is (at most) tamely 
ramified. Here the locally freeness property of OL over OK [G] means that the completed valuation ring 
OL,P := OL ⊗OK

OK,P at any prime ideal P of OK is free as module over OK,P [G] := OK [G] ⊗OK
OK,P .

In order to study wildly ramified extensions, Leopoldt noted that the unique OK-order over which OL

can be free is its associated order
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AK[G] = {λ ∈ K[G] |λ · OL ⊆ OL}

in K[G], which by definition is the maximal OK-order in K[G] acting on OL by means of the Galois action ·. 
However, in general OL is not free over its associated order, and determining the structure of OL as module 
over AK[G] is a problem of long-standing interest. Among the most celebrated results, Leopoldt’s theorem 
asserts that the ring of integers of an abelian extension of Q is free over its associated order (see [14]).

In [5], Childs obtained results on the Galois module structure of a ring of integers based on the Hopf 
algebra structure of K[G]. This motivated the introduction of Hopf-Galois theory in the study of the module 
structure of OL, which actually generalizes the setting provided by classical Galois module theory. A Hopf-
Galois structure on a finite extension of fields L/K is a finite-dimensional cocommutative K-Hopf algebra 
H together with a K-linear action · of H on L endowing L with left H-module algebra, such that the map

j : L⊗K H −→ EndK(L)
x⊗ h −→ j(x⊗ h)(y) = x(h · y)

is a K-linear isomorphism. If L/K admits a Hopf-Galois structure (H, ·), we say that L/K is H-Galois. 
For a Galois extension with group G, K[G] together with the classical Galois action on L is a Hopf-Galois 
structure, called the classical Galois structure of L/K. Accordingly, any other Hopf-Galois structure (H, ·)
on L/K is called non-classical.

The Hopf-Galois structures on L/K can be classified and described by making use of Greither-Pareigis 
theorem (see [8]). This result is valid for arbitrary separable extensions, but since we are not dealing with 
non-Galois extensions in this paper, we will state it in the Galois case. Concretely, it establishes a one-to-one 
correspondence between Hopf-Galois structures on L/K and subgroups of Perm(G) whose action on G is 
simply transitive and that are normalized by conjugation by G. Here, G is embedded in Perm(G) by means 
of its left regular representation λ : G −→ Perm(G), defined by λ(σ)(τ) = στ . If N is such a subgroup of 
Perm(G), the Hopf algebra of the corresponding Hopf-Galois structure is given by

H := L[N ]G = {x ∈ L[N ] |λ(σ)xλ(σ)−1 = x for all σ ∈ G},

i.e., the K-subalgebra of L[N ] fixed by the action of G on L[N ], defined by the classical Galois action on L
and by conjugation with elements of G on N .

The approach provided by Hopf-Galois theory in the setting of Galois module theory consists in consid-
ering the structure of OL as module over its associated order

AH = {h ∈ H |h · OL ⊆ OL}

in H, which in complete analogy with the Galois case is the maximal OK -order in H acting on OL, and 
the unique one over which OL can be free. When it is so, letting a basis of AH act on a generator of such 
a module yields an analog of a normal integral basis of a Galois extension. We see then that AH plays 
the role of AK[G] as a ground ring of the module structure of OL. Among the questions provided by this 
approach, one may consider a Galois extension L/K and explore the behaviour of OL as AH -module as 
H runs through the different Hopf-Galois structures on L/K. Research has shown that there is no general 
answer to this problem, see for example the papers [3] and [5] or the final comment of the book [4].

This is the context we work with in this paper. Concretely, we consider an absolute quartic Galois 
extension L/Q of number fields and study the module structure of OL over the associated order in the 
Hopf-Galois structures on L/Q. By the already mentioned Leopoldt’s theorem, OL is indeed free over its 
associated order in the classical Galois structure of L/Q, so we shall focus in the non-classical Hopf-Galois 
structures. The classification of these is due to [3, Theorem 2.5]: if the Galois group of L/Q is cyclic, there 
is a unique non-classical Hopf-Galois structure, whereas if it is elementary abelian, there are three. We 
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will see their explicit form in Section 3. To study the module structure of OL in both cases, we will use 
the techniques introduced in [9]. The key ingredient of this method is a matrix M(H, L) that encodes full 
information about the action of H on L, which we call the matrix of the action. This procedure will be 
called the reduction method in the sequel. As it is rather computational, it is very well suited for extensions 
of low degree.

In Sections 4 and 5, we will use the reduction method to study the freeness in the unique non-classical 
Hopf-Galois structure of cyclic quartic extensions of Q and in the three non-classical Hopf-Galois structures 
of biquadratic extensions of Q, respectively. In both cases, we will obtain that the freeness depends on the 
solvability in the integers of at least one of a pair of Diophantine equations of the form x2 − Ny2 = D in 
Z, which are particular cases of the commonly known as generalized Pell equations. This fact was already 
known for tamely ramified biquadratic extensions of Q due to a result of Truman (see [18, Proposition 6.1]). 
The connection of the freeness of OL over AH with the solvability of generalized Pell equations is explored in 
detail in Section 6. It is remarkable that our techniques provide results on the freeness for a global extension 
without necessity of knowing the behaviour of its completions. In Section 7, we give an example of a cyclic 
quartic extension L/Q such that OL is AH -locally free but not AH -free.

We have omitted the huge computations in Sections 4.2, 5.2.1, 5.3.1 and 5.4.1, which consist in finding 
the Hermite normal form of 16 ×4 matrices with rational coefficients (according to the definition of Hermite 
normal form in the paragraph following Theorem 2.3).

2. Matrices and Galois module structure

In this section we recall and reformulate the results in [9, Section 4] to describe the Hopf-Galois module 
structure of an H-Galois extension L/K such that K is the fraction field of a PID. For simplicity, we will 
take K = Q, so we can think of our extension just as a number field. Concretely, we establish the criterion 
and the subsequent procedure we will use so as to study the freeness of the ring of integers OL as AH -module. 
The results obtained can be naturally translated to the general case.

2.1. Matrix of the action

In this approach, we regard the elements of H as the endomorphisms of L induced by their action on L. 
Namely, we consider the Q-linear representation

ρH : H −→ EndQ(L)
h −→ (x �→ h · x)

of the Hopf algebra H corresponding to the structure of L as H-module. Note that ρH is just the restriction 
of the map j : H ⊗Q L −→ EndQ(L) to H ⊗Q 1L ∼= H.

The main object we will consider is the matrix of ρH as linear map. In order to define it correctly, let us 
fix Q-bases W = {wi}ni=1 and B = {γj}nj=1 of H and L. The choice of the basis B of L fixes an identification 
of EndQ(L) with Mn(Q). Let us fix the canonical basis {Eij}ni,j=1 of Mn(Q), given by Eij = (δikδjl)nk,l=1
for every 1 ≤ i, j ≤ n, where δab is the Kronecker delta. Then, we can consider the corresponding Q-
basis Φ = {ϕi}n

2

i=1 of EndQ(L), whose elements are described as follows: For every 1 ≤ i ≤ n2, there are 
1 ≤ k, j ≤ n such that i = k + (j − 1)n. Then, let ϕi be the map that sends γj to γk and the other γl to 0.

Definition 2.1. The matrix of the action of H on L with respect to the bases W and B is the matrix 
M(HW , LB) of the linear map ρH : H −→ EndQ(L) arising from the choice of the basis W in H and the 
basis Φ in EndQ(L).
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When there is no ambiguity, we will write M(HW , LB) = M(H, L). The definition above is completely 
equivalent to the one given in [9, Definition 3.1]. Concretely, if we write

Mj(H,L) :=
( | | . . . |

(w1 · γj)B (w2 · γj)B . . . (wn · γj)B
| | . . . |

)
∈ Mn(Q), (1)

for every 1 ≤ j ≤ n, then the matrix of the action is

M(H,L) =

⎛
⎝M1(H,L)

· · ·
Mn(H,L)

⎞
⎠ ∈ Mn2×n(Q).

This expression is suitable to visualize the dependence of M(H, L) on the basis of H. Indeed, if W ′ is 
another Q-basis of H, then Mj(HW ′ , LB) = Mj(HW , LB)PW ′

W for every 1 ≤ j ≤ n. With regard to the 
dependence on the basis of L, it is more convenient to use another matrix from which M(H, L) can be 
recovered.

Definition 2.2. We define the Gram matrix of H on L with respect to the bases W and B as the matrix

G(HW , LB) =

⎛
⎜⎜⎝

w1 · γ1 w1 · γ2 . . . w1 · γn
w2 · γ1 w2 · γ2 . . . w2 · γn

...
...

. . .
...

wn · γ1 wn · γ2 . . . wn · γn

⎞
⎟⎟⎠ ∈ Mn(L).

Again, we will usually write G(H, L) = G(HW , LB). Note that to recover M(H, L) is enough to identify 
the entries with the column vectors of the coordinates of its entries with respect to B. Now, if B′ is another 
Q-basis of L, we have the relation G(HW , LB′) = G(HW , LB)PB′

B , which gives a practical procedure to 
change the basis of L in M(H, L).

2.2. Reduced matrices

With the previous setting in mind, let us assume that B is an integral basis of L. Then, the image of 
AH by ρH coincides with EndZ(OL). Note that this is equivalent to the statement of [9, Theorem 3.3], as 
the element ρH(h) is obtained from applying the matrix M(H, L) to the vector of coordinates of h with 
respect to W . This means that M(H, L) allows us to test membership of the associated order for elements 
of H. Now, the key idea is that we can reduce integrally the matrix M(H, L) to an invertible n × n matrix. 
Namely:

Theorem 2.3. There is a matrix D ∈ Mn(Q) and a unimodular matrix U ∈ GLn2(Z) with the property that

UM(H,L) =
(
D

O

)
,

where O is the zero matrix of M(m−n)×n(Q).

Proof. By [13, Theorem 3.2], every 2 × 1 matrix with coefficients in a PID can be reduced by means of a 
unimodular matrix to a matrix of the same size whose lower entry is 0 (i.e., every PID is a Hermite ring 
in the sense of Kaplansky). By [13, Theorem 3.5], the statement holds for matrices with coefficients in Z, 
which is a PID. Actually, this is not enough for our purposes, since the coefficients in M(H, L) lie in Q (not 
necessarily in Z). But we can think of M(H, L) as a polynomial with n2 variables, so it has well defined 
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content c and primitive part M , and we apply the aforementioned result to the primitive part, which is a 
matrix with coefficients in OL, giving the existence of U ∈ GLn2(Z) and D′ ∈ Mn(Z) such that

UM =
(
D′

O

)
.

Now, since M(H, L) = cM , if we call D = cD′ ∈ Mn(Q), then

UM(H,L) =
(
D

O

)
,

as stated. �
A matrix D as in the previous statement will be called a reduced matrix. Clearly, it is not unique, as 

multiplication by a unimodular matrix of order n gives another reduced matrix. Note that [13, Theorem 
3.5] also gives that we can choose D to be triangular. Actually, in practice, we will prefer a concrete type of 
triangular matrix: the Hermite normal form of M(H, L). Since the coefficients of M(H, L) are not necessarily 
integer numbers, we define its Hermite normal form as its content times the Hermite normal form of its 
primitive part.

Another important remark is that a reduced matrix is always invertible. This follows directly from the 
fact that the matrix M(H, L) has rank n, which at the same time is due to the injectivity of ρH . Now, we 
know that M(H, L) can be reduced to an invertible matrix using only elementary transformations such that 
they and their inverses preserve the ring structure (so that their concatenation is a unimodular matrix). 
This is what we meant before with integral reduction. Moreover, the reduction being integral implies that a 
reduced matrix also tests membership of the associated order among elements of H as M(H, L) does. Using 
this fact, we can prove the following:

Theorem 2.4. A reduced matrix D of M(H, L) is a change of basis matrix from a basis of AH to the basis W .

This is an alternative way to write the statement of [9, Theorem 3.5]. It gives directly a constructive 
method to determine a basis of the associated order AH and also allows us to study the AH -freeness of OL.

2.3. Freeness over the associated order

Let β =
∑n

j=1 βjγj ∈ OL be a potential AH-generator of OL. In particular, β must be a generator of L as 
H-module (there is such a β because L is H-free of rank one, see for instance [4, (2.16)]). In [9, Proposition 
4.2], we proved that β is a free generator if and only if the matrix 

∑n
j=1 βjMj(H, L)D−1 is unimodular, 

that is, its determinant is 1 or −1. Since Z is a PID, it is not difficult to see that the latter is a generator of 
the generalized module index [OL : AH · β], which is an ideal of Z (see [7, Section II.4] or [12, Section 4]). 
Then, the former equivalence can be read as the fact that β is a free generator if and only if that index is 
the trivial ideal.

The criterion above is enough in order to solve the problem of the freeness, but it requires a basis of 
AH . Actually, we can provide an answer to the question of the freeness without necessity of determining 
explicitly such a basis (but we still need to carry out the reduction of M(H, L)). Let H = 〈w1, . . . , wn〉Z
be the Z-module generated by the basis W , which is a full Z-lattice in H. Note that H is not necessarily 
contained in AH . In any case, we can consider the generalized module indexes [AH : H] and [AH · β : H · β]. 
Now, we have:

[OL : H · β] = [OL : AH · β] [AH · β : H · β],
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and the last factor is equal to [AH : H] (this follows from the Q-linear map h ∈ H �→ h · β ∈ H · β being 
invertible). Recall that D is the change basis matrix from a basis of AH to W , which is a basis of H. Then,

[AH : H] = 〈det(D)〉. (2)

In particular, det(D) does not depend on the reduced matrix D up to sign (this fact may be checked 
independently and follows from the Hermite normal form being an invariant of the reduced matrices). We 
call the positive one the index of H with respect to W , denoted by IW (H, L). Carrying this to (2), we obtain:

[OL : H · β] = [OL : AH · β]〈IW (H,L)〉.

Let Dβ(H, L) be any generator of [OL : H · β]. Then:

Proposition 2.5. β is a free generator of OL as AH-module if and only if

|Dβ(H,L)| = IW (H,L).

Since B is chosen to be an integral basis, the number IW (H, L) is (up to sign) the determinant of any 
reduced matrix of M(HW , LB). As for Dβ(H, L), it is the determinant of the matrix

Mβ(H,L) =
n∑

j=1
βjMj(H,L),

where β =
∑n

j=1 βjγj . Indeed, given the expression (1) of the blocks Mj(H, L), we see that

Mβ(H,L) =
( | | . . . |

(w1 · β)B (w2 · β)B . . . (wn · β)B
| | . . . |

)
.

Remark 2.6. If for some β ∈ OL we have Dβ(H, L) = 0, it means that β is not even an H-generator of L.

To sum up, the practical procedure we use to study the AH-freeness of OL is as follows:

1. We calculate the Gram matrix G(H, L), where in H we fix any basis W and in L we fix an integral basis 
B.

2. We build the matrix M(H, L) from G(H, L), and for every β ∈ OL, the matrix Mβ(H, L).
3. We reduce the matrix M(H, L) by means of a unimodular matrix to determine IW (H, L).
4. For every β ∈ OL, we compute the determinant Dβ(H, L) of Mβ(H, L) in terms of the coordinates (βi)ni=1

of β with respect to B.
5. We find conditions on the elements βi so that |Dβ(H, L)| = IW (H, L).

In practice, we do not make explicit the second step as the specific form of the matrices M(H, L) is not 
relevant for our purposes.

3. Hopf-Galois structures on a quartic Galois extension

The description of the Hopf-Galois structures of a quartic Galois extension L/K was carried out by Byott 
in [3, Theorem 2.5], in the more general context of Galois extensions of degree p2. We follow his approach 
for p = 2. Namely, let T = 〈τ〉 be an order 2 subgroup of G and let σ ∈ G − T such that σ2 = 1G if 
G ∼= C2 × C2 and σ2 = τ otherwise. Then, we have a presentation of G as follows:
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G = 〈σ, τ |σ2 = γ, τ2 = 1G, στ = τσ〉, (3)

where γ = 1G if G ∼= C2 × C2 and γ = τ otherwise.
By Greither-Pareigis theorem, Hopf-Galois structures of L/K are in one-to-one correspondence with 

regular G-stable subgroups of Perm(G). The one corresponding to the classical Galois structure is λ(G)
(this does not hold if G is not abelian, see [4, (6.10)] for the general choice). As for non-classical Hopf-Galois 
structures, we have:

Theorem 3.1. The regular subgroups of Perm(G) normalized by λ(G) other than λ(G) are those of the form

NT = 〈μ, ηT 〉,

where T = 〈τ〉 runs through the order 2 subgroups of G and, fixing a presentation of G as in (3),

μ(σkτ l) = σkτ l−1,

ηT (σkτ l) = σk−1τ l+k−1.

The action of G on the previous permutations is given by

g(μ) = μ for all g ∈ G, σ(ηT ) = μηT , τ(ηT ) = ηT .

Remark 3.2. Actually, the classical Galois structure can be included in this classification by setting a pa-
rameter in the definition of the second generator. Concretely, it corresponds to the group N = 〈μ, η0〉 with 
η0(σkτ l) = σk−1τ l (regardless of the choice of T ), and we reflect all cases in ηT,d(σkτ l) = σk−1τ l+(k−1)d

with d ∈ {0, 1}.

It follows immediately from the theorem that μ = λ(τ) = (1G, τ)(σ, στ). As for the other generator, we 
have:

ηT =
{

(1G, σ)(τ, στ) if G ∼= C4,

(1G, στ, τ, σ) if G ∼= C2 × C2.

η2
T =

{
Id if G ∼= C4,

μ if G ∼= C2 × C2.

That is, if G ∼= C4, NT
∼= C2 × C2, and otherwise, NT

∼= C4.
If G ∼= C4, L/K has a unique non-classical Hopf-Galois structure given by NT,1. Otherwise, if G ∼= C2×C2, 

there are two other non-classical Hopf-Galois structures, which arise from replacing T1 := T by T2 := 〈σ〉
and σ by τ for one of them, and T1 by T3 := 〈στ〉 (and keeping σ) for the other one. Let us determine 
the corresponding permutation subgroups NTi

for i ∈ {2, 3}. For i = 2, NT2 = 〈μ2, ηT2〉. Following the 
definition,

μ2(σkτ l) = σk−1τ l,

whence μ2 = λ(σ). On the other hand,

ηT2(σkτ l) = σk+l−1τ l−1,

so ηT2 = (1G, στ, σ, τ). Finally, for i = 3, we have NT3 = 〈μ3, ηT3〉. We compute the generators:
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μ3(σkτ l) = μ3(σk−l(στ)l) = σk−l(στ)l−1 = σk−1τ l−1,

ηT3(σkτ l) = ηT3(σk−l(στ)l) = σk−l−1(στ)l+k−l−1 = σ−l+2(k−1)τk−1 = σlτk−1.

We deduce that μ3 = λ(στ) = (1, στ)(σ, τ) and ηT3 = (1G, τ, στ, σ).
Once the permutation subgroups are computed, we determine the corresponding Hopf algebras of those 
non-classical Hopf-Galois structures. We follow [3, Lemma 2.10] to find a basis of the corresponding K-Hopf 
algebra. Let Hi be the K-Hopf algebra of the Hopf-Galois structure corresponding to Ti, where i = 1 if G
is cyclic and i ∈ {1, 2, 3} otherwise. Then the reference above gives

Hi = K[μi, aziηTi
],

where zi ∈ Ei := LTi is such that σ(z1) = −z1 (resp. τ(z2) = −z2, resp. σ(z3) = −z3) and

azi = Id + μi

2 + zi
Id − μi

2 .

Then, the second generating element is

aziηTi
= ηTi

+ μiηTi
+ zi(ηTi

− μiηTi
)

2 .

Replacing zi with −zi, we get an alternative generating element, and the sum and difference of that one 
with the one above produce two elements of Hi

ηTi
+ μiηTi

, zi(ηTi
− μiηTi

),

such that, together with Id and μi, form a K-basis of Hi. Thus, we have obtained:

Proposition 3.3. A cyclic quartic extension L/K has two Hopf-Galois structures: the classical Galois struc-
ture, of type C4 and algebra Hc, and a non-classical Hopf-Galois structure of type C2 × C2 with algebra H
having K-basis

{Id, μ, ηT + μηT , z(ηT − μηT )} ,

where z is the square root in L of a non-square element in K.

Proposition 3.4. Let L/K be a quartic elementary abelian extension with Galois group G and let E1/K, 
E2/K and E3/K be its quadratic subextensions. The Hopf-Galois structures on L/K are the classical one, 
of type C2 × C2 and algebra Hc, and three non-classical Hopf-Galois structures of type C4 with algebras 
{Hi}3

i=1 such that for every 1 ≤ i ≤ 3, a K-basis of Hi is

{Id, μi, ηTi
+ μiηTi

, zi(ηTi
− μiηTi

)} ,

where zi ∈ Ei −K and z2
i ∈ K.

We will sometimes say that Hi is the Hopf-Galois structure given by zi or corresponding to zi.

4. Cyclic quartic extensions of Q

Let L/Q be a Galois quartic extension. By [10, Theorem 1], L/Q is a cyclic quartic extension if and only 

if L = Q 
(√

a(d + b
√
d)

)
, where:
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• a ∈ Z is odd square-free and b ∈ Z>0;
• d = b2 + c2 for some c ∈ Z>0 and d is square-free;
• gcd(a, d) = 1.

Note that the second condition is equivalent to d being the product of different primes, none of them 
congruent to 3 mod 4.

4.1. Integral bases and Hopf actions

As already mentioned, we know by Leopoldt’s theorem that OL is free over its associated order in the 
classical Galois structure Hc. In order to study the analogous question for the non-classical Hopf-Galois 
structure H, we will follow the procedure described just at the end of Section 2.3. In particular, we need the 
matrix of the action M(H, L) where in L we fix an integral basis. Therefore, we need to know an integral 
basis of L and the action of H on this basis. As for the first of these, we have the following result (see [11]):

Theorem 4.1. Let L/Q be a cyclic quartic extension and let a, b, c, d ∈ Z as above. Define z =
√

a(d + b
√
d)

and w =
√

a(d− b
√
d). Then, an integral basis of K is given as follows:

1. If d ≡ 0 (mod 2), B = {1, 
√
d, z, w}.

2. If d ≡ 1 (mod 2) and b ≡ 1 (mod 2), B =
{

1, 1+
√
d

2 , z, w
}
.

3. If d ≡ 1 (mod 2), b ≡ 0 (mod 2) and a + b ≡ 3 (mod 4), B =
{

1, 1+
√
d

2 , z+w
2 , z−w

2

}
.

4. If d ≡ 1 (mod 2), b (mod 2), a + b ≡ 1 (mod 4) and a ≡ c (mod 4),

B =
{

1, 1 +
√
d

2 ,
1 +

√
d + z + w

4 ,
1 −

√
d + z − w

4

}
.

5. If d ≡ 1 (mod 2), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and a ≡ −c (mod 4),

B =
{

1, 1 +
√
d

2 ,
1 +

√
d + z − w

4 ,
1 −

√
d + z + w

4

}
.

In order to find the suitable Gram matrix we compute the matrix G(H, LBc
) where Bc = {1, 

√
d, z, w}, 

and then we carry out the computation G(H, LB) = G(H, LBc
)PB

Bc
, where B is an integral basis in Theo-

rem 4.1. From now on, we call Bc = {e1, e2, e3, e4} and B = {γ1, γ2, γ3, γ4}.
The irreducible polynomial of z is f(x) = x4 − 2adx2 + a2c2d and its roots are ±z, ±w. We can take 

σ = (z, w, −z, −w) as generator of G. Let us choose {1G, σ, σ2, σ3} as basis for Hc. This gives rise to the 
Gram matrix

G(Hc, LBc
) =

⎛
⎜⎝
e1 e2 e3 e4
e1 −e2 e4 −e3
e1 e2 −e3 −e4
e1 −e2 −e4 e3

⎞
⎟⎠ .

By Proposition 3.3, H has Q-basis {Id, μ, ηT + μηT , z(ηT − μηT )}. We have to determine the action of this 
basis on Bc. First, μ = λ(σ2), which acts on L as λ(σ2)−1(1G) = σ2. Then, its action on Bc is given by the 
third row of G(Hc, LBc

). On the other hand, we have that ηT = (1G, σ)(σ2, σ3) and μηT = (1G, σ3)(σ, σ2), 
which act on L as σ and σ3 respectively. Then, the action of ηT + μηT on Bc is given by the sum of the 
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second and the fourth rows of G(Hc, LBc
). We determine the action of z(ηT − μηT ) on Bc in a similar way. 

Therefore, the Gram matrix of H where in L we fix the basis Bc is

G(H,LBc
) =

⎛
⎜⎝

e1 e2 e3 e4
e1 e2 −e3 −e4
2e1 −2e2 0 0
0 0 2w

√
d −2z

√
d

⎞
⎟⎠ .

We have zw = ac
√
d and

1
z

= − 1
a2c2d

z3 + 2
ac2

z,
√
d = 1

ab
z2 − d

b
,

so that

z
√
d = 1

ab
z3 − d

b
z = bz + cw, w

√
d = − 1

ac
z3 + 2d

c
z = cz − bw.

Hence, the Gram matrix becomes

G(H,LBc
) =

⎛
⎜⎝

e1 e2 e3 e4
e1 e2 −e3 −e4
2e1 −2e2 0 0
0 0 2ce3 − 2be4 −2be3 − 2ce4

⎞
⎟⎠ .

Let us observe that it is independent from the twisting element a, so that the freeness of OL over AH will 
also be independent of a.

4.2. The reduction step

For each of the cases in Theorem 4.1, we compute G(H, LB) = G(H, LBc
)PB

Bc
. The knowledge of the 

Gram matrix G(H, LB) at each case allows to construct the matrix of the action M(H, LB). Then, we may 
find the Hermite normal form of M(H, LB) to compute the index I(H, L).

4.2.1. Case 1: d ≡ 0 (mod 2)
Since γi = ei for all i, the Gram matrix is

G(H,LB) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 γ2 −γ3 −γ4
2γ1 −2γ2 0 0
0 0 2cγ3 − 2bγ4 −2bγ3 − 2cγ4

⎞
⎟⎠

and we can reduce the matrix M(H, L) to

⎛
⎜⎜⎜⎝

1 1 2 0
0 2 2 −2c
0 0 4 0
0 0 0 2b
0 0 0 4c

⎞
⎟⎟⎟⎠ .

Using Bézout’s identity with the last two rows we get a nonzero fourth row with gcd(2b, 4c) in the diagonal 
entry. Since d is even and square-free, b and c must be odd and coprime. Namely, gcd(2b, 4c) = 2. Then, we 
can reduce the third row and obtain the Hermite normal form
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D(H,L) =

⎛
⎜⎝

1 1 2 0
0 2 2 0
0 0 4 0
0 0 0 2

⎞
⎟⎠

and I(H, L) = 16.

4.2.2. Case 2: d ≡ 1 (mod 2) and b ≡ 1 (mod 2)
We obtain

G(H,L) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 γ2 −γ3 −γ4
2γ1 2γ1 − 2γ2 0 0
0 0 cγ3 − bγ4 −bγ3 − cγ4

⎞
⎟⎠ .

In this case, we can reduce the matrix of the action to
⎛
⎜⎜⎜⎝

1 1 0 0
0 2 0 −2c
0 0 2 0
0 0 0 2b
0 0 0 4c

⎞
⎟⎟⎟⎠

and arguing as in the previous one, we obtain the Hermite normal form

D(H,L) =

⎛
⎜⎝

1 1 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎠ ,

which gives I(H, L) = 8.

4.2.3. Case 3: d ≡ 1 (mod 2), b ≡ 0 (mod 2) and a + b ≡ 3 (mod 4)
The Gram matrix is

G(H,L) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 γ2 −γ3 −γ4
2γ1 2γ1 − 2γ2 0 0
0 0 2cγ3 + 2bγ4 −2bγ3 + 2cγ4

⎞
⎟⎠ .

We obtain exactly the same Hermite normal form as in the previous case, so I(H, L) = 8.

4.2.4. Case 4: d ≡ 1 (mod 2), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and a ≡ c (mod 4)
The Gram matrix is

G(H,L) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 γ2 γ2 − γ3 γ1 − γ2 − γ4
2γ1 2γ1 − 2γ2 γ1 − γ2 γ2
0 0 h h′

⎞
⎟⎠ ,

where h = −cγ1 + (b + c)γ2 − 2bγ3 + 2cγ4, and h′ = −bγ1 + (b − c)γ2 + 2cγ3 + 2bγ4. In this case, we reduce 
M(H, L) to

⎛
⎜⎜⎜⎝

1 0 0 −b
0 1 0 −b
0 0 1 c
0 0 0 2c

⎞
⎟⎟⎟⎠ .
0 0 0 2b
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Since b and c are coprime, b is even and c is odd, we obtain Hermite normal form

D(H,L) =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 2

⎞
⎟⎠

and I(H, L) = 2.

4.2.5. Case 5: d ≡ 1 (mod 2), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and a ≡ −c (mod 4)
The Gram matrix is

G(H,L) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 γ2 γ2 − γ3 γ1 − γ2 − γ4
2γ1 2γ1 − 2γ2 γ1 − γ2 γ2
0 0 h h′

⎞
⎟⎠ ,

where h = −cγ1 + (−b + c)γ2 + 2bγ3 + 2cγ4, and h′ = bγ1 − (b + c)γ2 + 2cγ3 − 2bγ4. We reduce M(H, L) to
⎛
⎜⎜⎜⎝

1 0 0 −b
0 1 0 −b
0 0 1 c
0 0 0 2c
0 0 0 2b

⎞
⎟⎟⎟⎠ .

Arguing as in Case 4, we find that the Hermite form is the same, so again I(H, L) = 2.

4.3. Characterizations of the freeness

For each β ∈ OL, we compute the determinant Dβ(H, L) of the matrix Mβ(H, L). The following table 
summarizes the results at each of the 5 cases.

Case I(H,L) Dβ(H,L)
1 16 16β1β2(bβ2

3 + 2cβ3β4 − bβ2
4)

2 8 8β2(2β1 + β2)(bβ2
3 + 2cβ3β4 − bβ2

4)
3 8 −8β2(2β1 + β2)(cβ2

3 + 2bβ3β4 − cβ2
4)

4 2 −2(2β2 + β3 − β4)(4β1 + 2β2 + β3 + β4)(cβ2
3 + 2bβ3β4 − cβ2

4)
5 2 −2(2β2 + β3 − β4)(4β1 + 2β2 + β3 + β4)(cβ2

3 − 2bβ3β4 − cβ2
4)

We see from the table that Dβ(H, L) is a product of I(H, L), linear polynomials on β1, β2, β3, β4 with 
coprime coefficients, and a quadratic polynomial on β3 and β4.

We can give a quite uniform treatment for all five cases. Recall that β is a generator if and only if 
|Dβ(H, L)| = I(H, L).

Lemma 4.2. The linear factors of Dβ(H, L) do not add any restriction on the AH-freeness of OL. More 
accurately, there are βi ∈ Z such that |Dβ(H, L)| = I(H, L) if and only if there are βi ∈ Z for which the 
quadratic factor is 1 or −1.

Proof. The left to right implication is trivial. For the first three cases, the converse is trivial as well, as 
there are β1, β2 ∈ Z such that the linear factors become ±1, and they do not depend on β3 and β4.

We focus on cases 4 and 5. If we want the two linear factors to be 1, then we obtain

β1 = −β4
, β2 = β4 − β3 + 1

.
2 2
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If we want the first one to be 1 and the second one to be −1, we obtain

β1 = −β4 + 1
2 , β2 = β4 − β3 + 1

2 .

At least one of these pairs (β1, β2) lie in Z2 if and only if β3 − β4 is odd.
Now, the quadratic factor is

cβ2
3 ± 2bβ3β4 − cβ2

4 ≡ c(β2
3 − β2

4) (mod 2).

If this is 1 or −1, since c is odd, we obtain that β2
3 − β2

4 is odd, that is, β3 − β4 is odd. Then choosing one 
of the pairs (β1, β2) above, we obtain that |Dβ(H, L)| = I(H, L), as we wanted. �

Note that at least one of b and c must be odd. If we choose b to be odd (so we exchange b and c in Cases 
3, 4 and 5), then the last factor of Dβ(H, L) is the same up to sign and rearrangements of β3 and β4. Under 
this consideration, we obtain:

Theorem 4.3. Let L/Q be a cyclic quartic extension and let H be its non-classical Hopf-Galois structure. 
The following are equivalent:

1. OL is AH-free.
2. The quadratic form [b, 2c, −b] represents 1.
3. The equation x2 − dy2 = b is solvable in Z and has some solution (x, y) such that b divides x − cy.

Moreover, in that case, OL has an AH-generator

β = β1γ1 + β2γ2 + β3γ3 + β4γ4,

where the values of βi ∈ Z are given in the following table, where x′ = x−cy
b and y′ = y−x′+1

2 .

Case(s) β1 β2 β3 β4

1 1 1 x′ y

2, 3 0 1 x′ y

4 −
y/2� y′ x′ y

5 −
y/2� y′ y x′

Proof. By the previous lemma, it is enough to work with the quadratic factor. That is, there is some β ∈ OL

such that |Dβ(H, L)| = I(H, L) if and only if there is some β3, β4 ∈ Z such that

bβ2
3 + 2cβ3β4 − bβ2

4 = ±1.

We can always choose β1, β2 ∈ {−1, 1}, so the AH-freeness of OL is equivalent to the existence of β3, β4 ∈ Z

such that

bβ2
3 + 2cβ3β4 − bβ2

4 = s,

where s ∈ {−1, 1}. Since

bU2 + 2cUV − bV 2 = 1 ⇐⇒ −bU2 − 2cUV + bV 2 = −1 ⇐⇒ bV 2 + 2c(−U)V − b(−U)2 = −1,
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we have the equivalence between 1 and 2. For the equivalence between 2 and 3, it is enough to check if 
bU2 + 2cUV − bV 2 = 1 has an integral solution. Since

U = −cV ±
√
dV 2 + b

b
,

this is equivalent to the existence of integers x, y such that dy2 + b = x2 and b divides x − cy.
The explicit expression of an AH-generator of OL at each case follows from a straightforward computa-

tion. �
Remark 4.4. Since b, c > 0, the quadratic form q = [b, 2c, −b] is indefinite and reduced in the sense of [2, 
Definition 6.2.1.]. The proper cycle of q (see [2, Definition 6.10.2]) is obtained by the iterated application of 
the normalization of q (see [2, (6.11)]) and, by [2, Proposition 6.10.3.], it consists in all reduced quadratic 
forms properly equivalent to q. This gives rise to an algorithm to determine the AH-freeness of OL.

Remark 4.5. In order to have a free generator, b has to be a square modulo d. When b = 1 we have the 
trivial solution x = 1, y = 0 which provides a free generator.

On the other hand, since x2 − c2y2 − b2y2 = b, if there is a solution, then b divides the product (x +
cy)(x − cy). If b is prime, it must divide one of the factors and from a solution of x2 − dy2 = b we always 
get a free generator for OL.

Example 4.6.
In the following table, we provide examples of application of the criteria to specific cyclic quartic exten-

sions of Q. By solution of a Pell equation x2−dy2 = b, we mean a solution (x, y) such that x −cy is divisible 
by b.

Case L Equation Solution Free Generator
1 Q(

√
106 + 9

√
106) x2 − 106y2 = 9 −103, 10 γ1 + γ2 − 17γ3 + 10γ4

1 Q(
√

10 + 3
√

10) x2 − 10y2 = 3 � �

1 Q(
√

274 + 15
√

274) x2 − 274y2 = 15 � �

2 Q(
√

13 + 3
√

13) x2 − 13y2 = 3 4,−1 γ2 + 2γ3 − γ4

3 Q(
√

5 + 2
√

5) x2 − 5y2 = 1 1, 0 γ2 + γ3

4 Q(
√

39 + 6
√

13) x2 − 13y2 = 3 4,−1 −γ2 + 2γ3 − γ4

5 Q(
√

15 + 6
√

5) x2 − 5y2 = 1 1, 0 γ4

In the second example the nonexistence derives from the fact that 3 is not a square modulo 10. In the 
third one, the equation x2−274y2 = 15 has integral solutions. For instance, x = ±17, y = ±1. But for these 
values we don’t get x − 7y divisible by 15. In fact, if we compute the cycle of the reduced indefinite binary 
quadratic form [15, 14, −15] we obtain the forms

[−15, 16, 14], [14, 12,−17], [−17, 22, 9], [9, 32,−2], [−2, 32, 9], [9, 22,−17], [−17, 12, 14], [14, 16,−15].

Since we don’t get the principal form, the form [15, 14, −15] does not represent 1. Therefore, OL is not 
AH -free.

5. Biquadratic extensions of Q

Let L/Q be a biquadratic extension. The top field is of the form L = Q(
√
m, 

√
n ), for square-free 

m, n ∈ Z and we know from Proposition 3.4 that the Hopf-Galois structures on L/Q are in one-to-one 
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correspondence with its three intermediate fields E1, E2 and E3, which are Q(
√
m ), Q(

√
n ) and Q(

√
mn ). 

Let us call d = gcd(m, n), and let k = mn
d2 . Then, the third intermediate field is Q(

√
k ). Under this 

consideration, m, n and k are completely exchangeable: each of them is recovered from the other two as 
product of coprime parts. In this section, just as in the cyclic case, we use the procedure described in 
Section 2.3 to study the AH -freeness of OL.

5.1. Integral bases and action

The following result gives an integral basis of L/Q (see [16, Exercise 2.43]).

Proposition 5.1. An integral basis B of L/Q is given as follows:

1. If m ≡ 3 (mod 4) and n, k ≡ 2 (mod 4), B =
{

1,
√
m,

√
n,

√
n+

√
k

2

}
.

2. If m ≡ 1 (mod 4) and n, k ≡ 2 or 3 (mod 4), B =
{

1, 1+
√
m

2 ,
√
n,

√
n+

√
k

2

}
.

3. If m, n, k ≡ 1 (mod 4), B =
{

1, 1+
√
m

2 , 1+
√
n

2 ,
(

1+
√
m

2

)(
1+

√
k

2

)}
.

Note that the previous cases cover all possible situations because m, n and k can be exchanged 
conveniently. We translate the strategy and the notation of the case G ∼= C4 to this one: for each non-
classical Hopf-Galois structure H on L/Q we first compute the Gram matrix G(H, LBc

) where in L we 
fix the basis Bc = {1, √m, 

√
n, 

√
k}, and then change to an integral basis B of Proposition 5.1. We call 

Bc = {e1, e2, e3, e4} and B = {γ1, γ2, γ3, γ4}.
We fix the presentation of the Galois group G = 〈σ, τ | σ2 = 1, τ2 = 1〉 and call T1, T2, T3 as in Section 3. 

We assume without loss of generality that Q(
√
m) = L〈τ〉, Q(

√
n) = L〈σ〉 and Q(

√
k) = L〈στ〉 (otherwise 

we would reorder suitably m, n and k). Then, the bases of the non-classical Hopf-Galois structures H1, H2
and H3 are, respectively,

{
Id, μ1, ηT1 + μ1ηT1 ,

√
m(ηT1 − μ1ηT1)

}
,{

Id, μ2, ηT2 + μ2ηT2 ,
√
n(ηT2 − μ2ηT2)

}
,{

Id, μ3, ηT3 + μ3ηT3 ,
√
k(ηT3 − μ3ηT3)

}
.

In order to compute G(H, LBc
), we first need the Gram matrix G(Hc, LBc

) of the classical Galois struc-
ture, i.e. the action of G on the basis Bc, which is

σ(
√
m) = −√

m, σ(
√
n) =

√
n, σ(

√
k) = −

√
k,

τ(
√
m) =

√
m, τ(

√
n) = −√

n, τ(
√
k) = −

√
k,

στ(
√
m) = −√

m, στ(
√
n) = −√

n, στ(
√
k) =

√
k.

Therefore, we have

G(Hc, LBc
) =

⎛
⎜⎝
e1 e2 e3 e4
e1 −e2 e3 −e4
e1 e2 −e3 −e4
e1 −e2 −e3 e4

⎞
⎟⎠ .

Note that we take {1G, σ, τ, στ} as basis for Hc, so the i-th row in G(Hc, LBc
) corresponds to the action of 

the i-th element of this basis on Bc. To find the Gram matrix G(Hi, LBc
) for i ∈ {1, 2, 3} from G(Hc, LBc

), 
we use that μi, ηTi

+ μiηTi
and z(ηTi

− μiηTi
) act as:



16 D. Gil-Muñoz, A. Rio / Journal of Pure and Applied Algebra 226 (2022) 107045
• τ , σ + στ and z(σ − στ) respectively, if i = 1.
• σ, τ + στ and z(τ − στ) respectively, if i = 2.
• τσ, σ + τ and z(σ − τ) respectively, if i = 3.

In this procedure, we take 
√
m
√
k = m

d

√
n, 

√
n
√
k = n

d

√
m, 

√
m
√
n = d

√
k. Then, we apply the reduction 

method systematically with the three possible types of biquadratic extension listed in 5.1, which we call 
biquadratic extensions of first, second and third type henceforth. Note that, by [18, Proposition 2.1], the 
biquadratic extensions of third type are the tamely ramified ones.

5.2. Biquadratic extensions of first type

In this case, the integral basis B has elements γ1 = e1, γ2 = e2, γ3 = e3, γ4 = e3 + e4

2 , and the Gram 

matrix of the classical Galois structure is

G(Hc, LB) =

⎛
⎜⎝
γ1 γ2 γ3 γ4
γ1 −γ2 γ3 γ3 − γ4
γ1 γ2 −γ3 −γ4
γ1 −γ2 −γ3 −γ3 + γ4

⎞
⎟⎠ .

Then, for the non-classical Hopf-Galois structures, we have

G(H1, L) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 γ2 −γ3 −γ4
2γ1 −2γ2 0 0
0 0 −2dγ3 + 4dγ4 (−m

d − d)γ3 + 2dγ4

⎞
⎟⎠ ,

G(H2, L) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 −γ2 γ3 γ3 − γ4
2γ1 0 −2γ3 −γ3
0 −2dγ3 + 4dγ4 0 −n

d γ2

⎞
⎟⎠ ,

G(H3, L) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 −γ2 −γ3 −γ3 + γ4
2γ1 0 0 γ3 − 2γ4
0 −2m

d γ3
2n
d γ2

n
d γ2

⎞
⎟⎠ .

5.2.1. Reduced matrices
The matrix M(H1, L) can be reduced to

⎛
⎜⎜⎜⎝

1 1 2 0
0 2 2 2d
0 0 4 0
0 0 0 d + m

d
0 0 0 4d

⎞
⎟⎟⎟⎠ .

With the last two rows we can use Bézout’s identity to get g = gcd(d + m
d , 4d) in one row and 0 in the other 

one. We claim that g = 4. Indeed, since m ≡ 3 (mod 4) and m = dm
d , one of d and md is 3 mod 4 and the 

other one is 1 mod 4. Then, d + m
d ≡ 0 (mod 4). On the other hand, since m is squarefree, gcd(d + m

d , d) = 1. 
Finally, we reduce the non-zero entry of the column to 2d mod 4, which is 2, since d is odd. Thus, M(H1, L)
has Hermite normal form

D(H1, L) =

⎛
⎜⎝

1 1 2 0
0 2 2 2
0 0 4 0

⎞
⎟⎠ .
0 0 0 4
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This leads to the index I(H1, L) = 32.
For H2, we can reduce M(H2, L) to

⎛
⎜⎜⎜⎝

1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 n

d
0 0 0 −2d

⎞
⎟⎟⎟⎠ .

Now we use gcd(2d, nd ) = 2 since n is even, d is odd and d and nd are coprime. Then, the Hermite normal 
form is

D(H2, L) =

⎛
⎜⎝

1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 2

⎞
⎟⎠

and the index is I(H2, L) = 8.
For the third non-classical Hopf-Galois structure, we may reduce M(H3, L) to the matrix

⎛
⎜⎜⎜⎝

1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 n

d
0 0 0 2m

d

⎞
⎟⎟⎟⎠

and then use that gcd(nd , 2
m
d ) = 2 to get Hermite normal form

D(H3, L) =

⎛
⎜⎝

1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 2

⎞
⎟⎠ ,

and I(H3, L) = 8.

5.2.2. Freeness over the associated order
Now, we study the freeness of OL over its associated orders in H1, H2 and H3. Given β ∈ OL,

Dβ(H1, L) = −32β1β2

(
dβ2

3 + dβ3β4 + 1
4

(
d + m

d

)
β2

4

)
,

Dβ(H2, L) = 8β1(2β3 + β4)
(
2dβ2

2 + n

2dβ
2
4

)
,

Dβ(H3, L) = 8β1β4

(
2m
d
β2

2 + 2n
d
β2

3 + 2n
d
β3β4 + n

2dβ
2
4

)
.

Proposition 5.2. For i ∈ {1, 2, 3}, OL is AHi
-free if and only if there exist integers x, y ∈ Z such that at 

least one of the following equations is satisfied:

1. x2 + my2 = ±4d, if i = 1.
2. x2 + ny2 = ±2d, if i = 2.
3. x2 + ky2 = ±2n , if i = 3.
d
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If that is the case, then a free generator of OL as AHi
-module is

β =

⎧⎪⎪⎨
⎪⎪⎩
γ1 + γ2 + x−dy

2d γ3 + y γ4 if i = 1
γ1 + x

2d γ2 + 1−y
2 γ3 + y γ4 if i = 2

γ1 + y
2 γ2 + xd−n

2n γ3 + γ4 if i = 3

Proof. We proceed at each case as in Section 4.

1. OL is AH -free if and only if

β1β2

(
dβ2

3 + dβ3β4 + 1
4

(
d + m

d

)
β2

4

)
= s,

where s ∈ {−1, 1}. We can always choose β1, β2 ∈ Z such that β1β2 = ±1, so it is enough to consider 
the quadratic factor

dβ2
3 + dβ3β4 + 1

4

(
d + m

d

)
β2

4 = s.

We regard this as a quadratic equation in β3 with parameter β4 = y. The condition of the discriminant 
being a square gives −my2 +4ds = x2. Then, β3 = −dy±x

2d . The equation is solvable in Z if and only if 2d
divides at least one of −dy± x. Let us see that this happens if and only if it divides both. Since m ≡ −1
(mod 4), we have x2 ≡ y2 (mod 4) and therefore x ≡ y (mod 2). Since d is odd, this gives −dy±x even. 
On the other hand, since d divides m, we have x2 ≡ 0 (mod d). Since d is square free, it divides x and 
therefore −dy ± x.

2. In this case, the equation we must consider is

2dβ2
2 + n

2dβ
2
4 = s.

Namely, 4d2β2
2 +nβ2

4 = 2ds, whence x = 2dβ2 and y = β4. Note that, for any solution of −ny2+2ds = x2, 
since 2d divides n and it is squarefree, it also divides x. On the other hand, the equation gives 2y2 ≡ 2
(mod 4) and therefore y odd. The remaining linear factor 2β3 + β4 becomes 1 for β3 = 1−y

2 .
3. Here the situation is slightly different since

2n
d
β2

3 + 2n
d
β3β4 + 2m

d
β2

2 + n

2dβ
2
4 = s,

is a ternary quadratic form. But β4 is a factor of Dβ(H3, L) and it must be ±1. We may assume that 
β4 = 1 since it does not affect the discriminant, which is 4 

(
−4kβ2

2 + 2n
d s

)
. With x, y as in the statement, 

β2 = y

2 and β3 =
−2n

d ± 2x
4n
d

= −n± dx

2n . From x2 + ky2 = 2n
d s and n ≡ k ≡ 2 (mod 4) we obtain that 

x and y are even. Equally, since nd divides k and it is squarefree, we have that it divides x. �
Remark 5.3. Note that the equations and generators may also be written as

1. du2 + m

d
y2 = ±4, β = γ1 + γ2 + u− y

2 γ3 + y γ4,

2. du2 + n

d
y2 = ±2, β = γ1 + u

2 γ2 + 1 − y

2 γ3 + y γ4,

3. n
u2 + m

y2 = ±2, β = γ1 + y
γ2 + u− 1

γ3 + γ4,

d d 2 2
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by replacing x = du in cases 1 and 2, and x = n

d
u in case 3.

Remark 5.4. If m, n are positive and coprime, OL is always AH1-free with generator γ1 + γ2 + γ3. For 
i ∈ {2, 3}, OL is AHi

-free if and only if n = 2. In that case, γ1 + γ4 is a generator.

5.3. Biquadratic extensions of second type

We have

γ1 = e1, γ2 = e1 + e2

2 , γ3 = e3, γ4 = e3 + e4

2 ,

and then

G(Hc, LB) =

⎛
⎜⎝
γ1 γ2 γ3 γ4
γ1 γ1 − γ2 γ3 γ3 − γ4
γ1 γ2 −γ3 −γ4
γ1 γ1 − γ2 −γ3 −γ3 + γ4

⎞
⎟⎠ .

Thus, for the non-classical Hopf-Galois structures, one computes

G(H1, L) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 γ2 −γ3 −γ4
2γ1 2γ1 − 2γ2 0 0
0 0 −2dγ3 + 4dγ4 (−m

d − d)γ3 + 2dγ4

⎞
⎟⎠ ,

G(H2, L) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 γ1 − γ2 γ3 γ3 − γ4
2γ1 γ1 −2γ3 −γ3
0 −dγ3 + 2dγ4 0 n

d γ1 − 2n
d γ2

⎞
⎟⎠ ,

G(H3, L) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 γ1 − γ2 −γ3 −γ3 + γ4
2γ1 γ1 0 γ3 − 2γ4
0 −m

d γ3 −2n
d γ1 + 4n

d γ2 −n
d γ1 + 2n

d γ2

⎞
⎟⎠ .

5.3.1. Reduced matrices
For H1, we may reduce the matrix of the action to

⎛
⎜⎜⎜⎝

1 1 0 0
0 2 0 2d
0 0 2 0
0 0 0 m

d + d
0 0 0 4d

⎞
⎟⎟⎟⎠ .

We have gcd(md + d, 4d) = 2 since d and nd are coprime and m = dm
d ≡ 1 (mod 4), so d ≡ m

d (mod 4), and 
then d + m

d ≡ 2 (mod 4). Therefore, the Hermite normal form in this case is

D(H1, L) =

⎛
⎜⎝

1 1 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎠ ,

and I(H1, L) = 8. We reduce M(H2, L) and M(H3, L) to
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⎛
⎜⎜⎜⎝

1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 n

d
0 0 0 d

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 m

d
0 0 0 n

d

⎞
⎟⎟⎟⎠

respectively. Since d and nd are coprime, and the same happens for md and nd , in both cases we get Hermite 
normal form

D(Hi, L) =

⎛
⎜⎝

1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 1

⎞
⎟⎠

and index I(Hi, L) = 2.

5.3.2. Freeness over the associated order
Let us study the freeness. Given β ∈ OL,

Dβ(H1, L) = −8β2(2β1 + β2)
(
2dβ2

3 + 2dβ3β4 + 1
2
(
d + m

d

)
β2

4
)
,

Dβ(H2, L) = 4(2β1 + β2)(2β3 + β4)
(
dβ2

2 + n
dβ

2
4
)
,

Dβ(H3, L) = 4β4(2β1 + β2)
(
m
d β

2
2 + 4n

dβ
2
3 + 4n

dβ3β4 + n
dβ

2
4
)
.

We see that 4 divides Dβ(Hi, L) for i ∈ {2, 3} while I(Hi, L) = 2 for i ∈ {1, 2}. Hence, OL is neither 
AH2-free nor AH3-free. We are left with H1.

Proposition 5.5. OL is AH1-free if and only if there exist integers x, y ∈ Z such that at least one of the 
equations x2 + my2 = ±2d is satisfied. If it is so, a free generator of OL as AH1-module is

β = γ1 − γ2 + x− dy

2d γ3 + y γ4.

Proof. For s ∈ {−1, 1}, the equation to consider is

2dβ2
3 + 2dβ3β4 + 1

2

(
d + m

d

)
β2

4 = s.

Taking β4 = y, the discriminant of the equation is 4(−my2 + 2ds), so this being a square is equivalent to 
the existence of x and y as in the statement. Then, β3 = −dy±x

2d . From x2 + my2 = 2ds we deduce that d
divides x and also that x2 + y2 ≡ 2 (mod 4), which implies that both are odd. Since d is odd, −dy ± x is 
even.

Remark 5.6. Note that by replacing x = du the equation and generator may also be written as

du2 + m

d
y2 = ±2, β = γ1 − γ2 + u− y

2 γ3 + y γ4. �
5.4. Biquadratic extensions of third type: the tame case

The integral basis B is formed by

γ1 = e1, γ2 = e1 + e2
, γ3 = e1 + e3

, γ4 = 1
e1 + 1

e2 + m
e3 + 1

e4,
2 2 4 4 4d 4
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and then

G(Hc, LB) =

⎛
⎜⎝
γ1 γ2 γ3 γ4
γ1 γ1 − γ2 γ3

d−m
2d γ1 + m

d γ3 − γ4
γ1 γ2 γ1 − γ3 γ2 − γ4
γ1 γ1 − γ2 γ1 − γ3

d+m
2d γ1 − γ2 − m

d γ3 + γ4

⎞
⎟⎠ .

Then, the Gram matrices of the non-classical Hopf-Galois structures are

G(H1, L) =

⎛
⎜⎝

γ1 γ2 γ3 γ4
γ1 γ2 γ1 − γ3 γ2 − γ4
2γ1 2γ1 − 2γ2 γ1 γ1 − γ2
0 0 x y

⎞
⎟⎠ ,

G(H2, L) =

⎛
⎜⎜⎝

γ1 γ2 γ3 γ4
γ1 γ1 − γ2 γ3

( 1
2 − m

2d
)
γ1 + m

d γ3 − γ4

2γ1 γ1 2γ1 − 2γ3
(m+d)γ1−2mγ3

2d
0 z 0 t

⎞
⎟⎟⎠ ,

G(H3, L) =

⎛
⎜⎜⎝

γ1 γ2 γ3 γ4
γ1 γ1 − γ2 γ1 − γ3

d+m
2d γ1 − γ2 − m

d γ3 + γ4
2γ1 γ1 γ1

d−m
2d γ1 + γ2 + m

d γ3 − 2γ4
0 m

d γ1 − 2m
d γ3 −n

d γ1 + 2n
d γ2

(
− m

2d2 + m
2d
)
γ1 + m

d2 γ2 − m
d γ3

⎞
⎟⎟⎠ ,

where

x = mγ1 − 2dγ2 − 2mγ3 + 4dγ4, y = m(m + 1)
2d γ1 −mγ2 −

m(m + 1)
d

γ3 + 2mγ4,

z = mγ1 − 2dγ2 − 2mγ3 + 4dγ4, t =
( n

2d + m

2

)
γ1 −

(
d + n

d

)
γ2 −mγ3 + 2dγ4.

5.4.1. Reduced matrices
The matrix of the action M(H1, L) reduces to

⎛
⎜⎜⎜⎜⎝

1 0 0 m
(
m+1
2d − 1

)
0 1 0 −m

(
m+1
2d − 1

)
0 0 1 −m(m+1)

2d
0 0 0 m

d (m + 1)
0 0 0 2d

⎞
⎟⎟⎟⎟⎠

and we have to compute gcd
(
m
d (m + 1), 2d

)
. Since m

d is odd and coprime with d, it is equal to 
gcd (m + 1, 2d), which is 2 since m ≡ 1 (mod 4) and d divides m.

Then, the matrix above is equivalent to
⎛
⎜⎜⎝

1 0 0 m
(
m+1
2d − 1

)
0 1 0 −m

(
m+1
2d − 1

)
0 0 1 −m(m+1)

2d
0 0 0 2

⎞
⎟⎟⎠ .

The entries above 2 in the fourth column reduce to 0 or 1 depending on their parity. Therefore, the Hermite 
normal form of M(H1, L) is:

D(H1, L) =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 1

⎞
⎟⎠ .
0 0 0 2
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Then, I(H1, L) = 2.
For the second one, we reduce the matrix of the action to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 3m2+n
2d

0 1 0 −9m2+n
2d

0 0 1 −2md−3m2−n
2d

0 0 0 d + n
d

0 0 0 m + d
0 0 0 2n

d
0 0 0 2d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the greatest common divisor of 2d and 2n
d is 2, arguing as in previous cases, we obtain the same 

Hermite normal form D(H2, L) = D(H1, L) and therefore also I(H2, L) = 2.
Finally, we reduce M(H3, L) to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 nd2+m(m−n)d−m2n
2d3

0 1 0 nd2+m(m−n)d−m2n
2d3

0 0 1 nd2−m(m−n)d+m2n
2d3

0 0 0 m2

d2 (d− n)
0 0 0 m+d

d
m
d

0 0 0 m+n
d

0 0 0 2n
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us focus in the last two entries. Since m and n are 1 mod 4, m + n is 2 mod 4, just as 2n. Then, 
gcd(m + n, 2n) = 2gcd(m + n, n) = 2d. Thus, gcd(m+n

d , 2nd ) = 2. Then, the Hermite normal form and the 
index are exactly the same as before.

5.4.2. Freeness over the associated order
Let β ∈ OL. Then, we have

Dβ(H1, L) = −2(2β2 + β4)(4β1 + 2β2 + 2β3 + β4)
(
2dβ2

3 + 2mβ3β4 + m
d

m+1
2 β2

4
)
,

Dβ(H2, L) = 2
(
2β3 + m

d β4
)
(4β1 + 2β2 + 2β3 + β4)

(
2dβ2

2 + 2dβ2β4 + 1
2
(
d + n

d

)
β2

4
)
,

Dβ(H3, L) = 2β4(4β1 + 2β2 + 2β3 + β4)q3(β1, β2, β3, β4),

where

q3(β1, β2, β3, β4) = 2m
d
β2

2 + 2m
d
β2β4 + 2n

d
β2

3 + 2kβ3β4 + m

d

k + 1
2 β2

4 .

Proposition 5.7. For i ∈ {1, 2, 3}, OL is AHi
-free if and only if there exist integers x, y ∈ Z such that at 

least one of the following equations is satisfied:

1. x2 + my2 = ±2d, if i = 1.
2. x2 + ny2 = ±2d, if i = 2.
3. x2 + ky2 = ±2n , if i = 3.
d
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In that case, a generator of OL as AHi
-module is

β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
my − x

2d − ε

)
γ1 + 1 − y

2 γ2 + x−my

2d γ3 + y γ4 if i = 1, ε = x−my
2d (mod 2);

1
4

(
my − x

d
− ε

)
γ1 + x− yd

2d γ2 + d−my

2d γ3 + y γ4 if i = 2, ε = my−x
d (mod 4);

1
4

(
k − x

n
d

− y + ε

)
γ1 + y − 1

2 γ2 + x− k

2n
d

γ3 + γ4 if i = 3, ε = (k−x
n
d

− y) (mod 4).

Proof. First, note that if x and y are integers that satisfy any of the equalities above, then x and y are 
necessarily odd, since x2 + y2 ≡ 2 (mod 4).

1. We proceed as in the previous cases. The equation to consider is

2dβ2
3 + 2mβ3β4 + m

d

m + 1
2 β2

4 = s,

with discriminant 4(−mβ2
4 +2ds). Therefore, β4 = y and β3 = −my±x

2d . Both values are integer because d
divides both x and m, and −my+x is even. Once we have found β3 and β4 representing ±1 we need the 

linear factors to be also ±1. Solving 2β2+β4 = 1 and 4β1+2β2+2β3+β4 = 1, we get β2 = 1 − β4

2 = 1 − y

2
and β1 = −β3

2 . It is integer when β3 is even. But solving 2β2 + β4 = 1 and 4β1 + 2β2 + 2β3 + β4 = −1, 

we get β2 = 1 − y

2 and β1 = −1 − β3

2 , which is integer when β3 is odd.
2. In the second case, the quadratic equation is

2dβ2
2 + 2dβ2β4 + 1

2

(
d + n

d

)
β2

4 = s

and the discriminant is 4(−ny2 + 2ds). We get solutions β4 = y and β2 = −dy±x
2d . Once we have β2 and 

β4, we determine the linear factors to be unities. Taking β3 = 1
2 (1 − m

d y) =
d−my

2d the first one becomes 
1. The equations 4β1 + 2β2 + 2β3 + β4 = ±1 lead to 4β1 = my−x

d − ε with ε being 0 or 2. Since my−x
d is 

even, we always have a choice which makes the second term congruent to 0 (mod 4).
3. Finally, we must consider the equation

2m
d
β2

2 + 2m
d
β2β4 + 2n

d
β2

3 + 2kβ3β4 + m

d

k + 1
2 β2

4 = s,

and we choose unknown β3 and parameters β2 and β4, with β4 = ±1 since it is a factor of Dβ(H3, L). 
The discriminant is 4((2β2 + β4)2k + 2n

d s). We take 2β2 + β4 = y and then β3 = −kβ4±x
2n

d
, which are 

integers since nd divides both k and x and the numerator is even. We can safely take β4 = 1, β2 = y−1
2 , 

β3 = x−k
2n

d
. The remaining condition 4β1 + 2β2 + 2β3 + β4 = ±1 leads to 4β1 = ±1 − y + k−x

n
d

. Since the 
second summand is odd, there is always a choice of sign which makes the right term divisible by 4. �

Remark 5.8. The criteria obtained in Proposition 5.7 were proved by Truman in [18, Proposition 6.1] using 
the theory of idèles. In his case, he works indistinctly with a non-classical Hopf-Galois structure of a tame 
biquadratic extension Q(

√
m, 

√
n)/Q and obtains the same condition in terms of the chosen numbers m

and n. This fits with our result because m, n, k being 1 mod 4 allows to exchange them indistinctly, and 
n
d = gcd(n, k). Our Propositions 5.2 and 5.5 show that OL presents a similar behaviour as AHi

-module in 
case L/Q is wildly ramified.
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5.5. Summary of results

Theorem 5.9. Let L/Q be a biquadratic extension of number fields and let H1, H2, H3 be its non-classical 
Hopf-Galois structures. The following table summarizes the freeness of OL as AHi

-module for i ∈ {1, 2, 3}.

Mod 4 OL as AHi
-module

m n H1 H2 H3

1 1 Free ⇐⇒ Free ⇐⇒ Free ⇐⇒
∃x, y ∈ Z : ∃x, y ∈ Z : ∃x, y ∈ Z :

x2 + my2 = ±2d x2 + ny2 = ±2d x2 + ky2 = ±2n
d

1 �= 1 Free ⇐⇒ Not free Not free
∃x, y ∈ Z :

x2 + my2 = ±2d
3 2 Free ⇐⇒ Free ⇐⇒ Free ⇐⇒

∃x, y ∈ Z : ∃x, y ∈ Z : ∃x, y ∈ Z :
x2 + my2 = ±4d x2 + ny2 = ±2d x2 + ky2 = ±2n

d

6. The connection with generalized Pell equations

The conditions obtained in Theorem 4.3 and Propositions 5.2, 5.5 and 5.7 refer to the solvability in 
Z of equations of the form x2 − Dy2 = N . This is known as the generalized Pell equation or the Pell-
Fermat equation. The equations of this type have been widely studied and algorithms of resolution have 
been developed (see for example [6, Section 6.3.5]). In [18, Section 7], Truman takes advantage from this 
fact to obtain results on the behaviour of OL when L/Q is tame biquadratic. Namely, he gives examples of 
tame biquadratic extensions L/Q such that OL is free over the associated order in 0, 1 or 2 non-classical 
Hopf-Galois structures, and proves that there is no one with freeness in the three of them.

In this section, we aim to translate the theory of generalized Pell equations to Hopf-Galois theory so 
as to find results for any quartic Galois extension of Q. Moreover, in the biquadratic cases, Hopf-Galois 
structures can be exchanged to obtain results on the solvability of the Pell equations themselves.

6.1. Cyclic quartic Galois extensions of Q

Let us take a cyclic quartic extension L/Q defined by a, b, c and d. In this section, we follow the convention 
fixed in Section 4.3, i.e. that b is odd, and then OL is AH -free if and only if at least one of the equations 
x2 − dy2 = ±b is solvable and b divides x − cy for some solution (x, y) (see Theorem 4.3).

When the independent term is 1, we recover a classical Pell equation, which has the trivial solution 
(x, y) = (1, 0).

Corollary 6.1. If b = 1, then OL is AH-free.

Another quick fact is inspired by Example 4.6, where for the second extension we used that 3 is not a 
square mod 10 to conclude non-freeness.

Proposition 6.2. Let L = Q(
√

a(d + b
√
d)) be a cyclic quartic field. If d is odd and we have Jacobi symbol (

b
)

= −1 or d is even and 
(

b
)

= −1 then OL is not AH-free.

d d/2
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Proof. Under the hypothesis, there is an odd prime p | d such that 
(
b

p

)
= −1. Then b is not a quadratic 

residue mod p and x2 − dy2 = b is not solvable in Z, so OL is not AH -free. �
Additionally, results on the non solvability of certain Pell equation can now be read as results on the non 

freeness of OL over the associated order.

Proposition 6.3. Let N = m2n with n ∈ Z square-free. If p is prime and p ≡ n ≡ 3 (mod 4), the equation 
x2 − py2 = N is not solvable.

Proof. See [1, Theorem 4.2.5]. �
Corollary 6.4. Assume that b = m2n with n ∈ Z square-free. If d is prime and d ≡ n ≡ 3 (mod 4), then 
x2 − dy2 = b is not solvable and OL is not AH-free.

Theorem 6.5. If p is prime and 
(
p

q

)
= −1 for some odd prime divisor q of N , then x2 − py2 = N is not 

solvable.

Proof. See [1, Theorem 4.2.8 and Corollary 4.2.9]. �

Corollary 6.6. Assume that d is prime. If 
(
d

q

)
= −1 for some odd prime divisor q of b, then x2 − dy2 = b

is not solvable and OL is not AH-free.

6.2. Wildly ramified biquadratic extensions of first type

We continue by exploring the family of wildly ramified biquadratic extensions L/Q of first type, that is 
L = Q(

√
m, 

√
n) with m ≡ 3 (mod 4) and n ≡ 2 (mod 4). Recall that for H1, H2, H3, freeness of OL over 

the associated order is given by the existence of integer solutions of the equations

du2 + m

d
y2 = ±4, du2 + n

d
y2 = ±2, n

d
u2 + m

d
y2 = ±2,

respectively. Let us study what happens when m, n or k are positive.

Proposition 6.7. Let L = Q(
√
m, 

√
n) be a biquadratic extension of Q with m ≡ 3 (mod 4) and n ≡ 2

(mod 4). Let d = gcd(m, n) and k = mn
d2 .

1. If m > 0, OL is not AH1-free unless m and n are coprime or m divides n.
2. If n > 0, then OL is not AH2-free unless n = 2d.
3. If k > 0, then OL is not AH3-free unless |n| = 2d.

Proof. 1. Since m and d are positive, we are looking for integer solutions of du2 + m

d
y2 = 4. The only 

possibilities are 0 + 4, which implies m
d

= 1; 1 + 3, which implies d = 1, m = 3, and 4 + 0 which implies 
d = 1. Since m = d = gcd(m, n) implies m divides n, we are done.

2. Since n and d are positive, we are looking for integer solutions of du2 + n

d
y2 = 2. Since d is odd and 

n �= 1, the only possibility is 0 + 2, which implies n = 2.

d
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3. We are looking for integer solutions of n
d
u2 + m

d
y2 = ±2 where the coefficients of the left hand side have 

the same sign. Since it is not possible m = n = d or m = n = −d, and m is odd, the only possibilities 
are 2 + 0 or −2 + 0, namely n = ±2d. �

Remark 6.8. Actually, the two exceptions of non-freeness in H1 are essentially the same. Indeed, m and n are 
coprime if and only if m divides k, and we have also the corresponding equivalence obtained by exchanging 
n and k.

If we impose that m, n and k are positive, we should obtain an extension L/Q such that OL is free over 
the associated order in all Hopf-Galois structures, whenever the exceptions obtained in Proposition 6.7 are 
compatible. We see that this happens exactly when n = 2 or k = 2.

Corollary 6.9. The unique totally real biquadratic extensions L = Q(
√
m, 

√
n) of Q with m ≡ 3 (mod 4)

and n ≡ 2 (mod 4) for which OL is AHi
-free for all i ∈ {1, 2, 3} are those of the form L = Q(

√
m, 

√
2).

Proof. Since L/Q is totally real, m, n, k > 0. By Proposition 6.7, OL is AH1-free only if m and n are coprime 
or m divides n. Now, OL is AH2-free and AH3-free only for n = 2d, which in the first case gives n = 2. But 
m odd dividing 2d gives m = d, and then k = 2. �

Proposition 6.7 shows that freeness in a non-classical Hopf-Galois structure is not common for totally 
real extensions, in the sense that it does not hold with some exceptions. In fact, we can see that under these 
exceptions, there is always freeness, regardless of the sign of m, n or k.

Corollary 6.10.

1. If m and n are coprime or m divides n, then OL is AH1-free.
2. If n = ±2d, then OL is AH2-free and AH3-free.

Proof. 1. If m and n are coprime, the first equation becomes u2+my2 = 4, which has solution (u, y) = (2, 0). 
If m divides n, then m = d and the equation becomes du2 + y2 = 4, which has solution (u, y) = (0, 2).

2. If n = ±2d, then the equation du2 ± 2y2 = ±2 is satisfied for u = 0 and y = 1. Moreover, the third
equation becomes ±2x2 + m

d y
2 = ±2, which is satisfied for x = 1 and y = 0. �

In particular, if |m| is prime, then m and n are coprime or m divides n, so OL is AH1-free.
We can think again of extensions L/Q that satisfy all the conditions in Corollary 6.10 simultaneously, so 

that OL is AH -free for all non-classical Hopf-Galois structures H. Since we impose that m is coprime with 
one of n or k (so it divides the other one) and n = ±2d, necessarily n = ±2 or k = ±2. Then, we have:

Corollary 6.11. If n = ±2 or k = ±2, then OL is AH-free for every Hopf-Galois structure H of L/Q.

Proof. Since n and k are exchangeable, it is enough to prove the statement for n = ±2. Then, m and n
are coprime, so OL is AH1-free. Moreover, this also means that n = ±2d as d = 1, so OL is AH2 -free and 
AH3-free. �

Now, we study the AH2-freeness of OL for a couple of n < 0 (recall that such an study for H3 is completely 
analog). We know by Corollary 6.11 that OL is AH2 -free for n = −2.

Example 6.12. Assume that n = −6, so L = Q(
√
m, 

√
−6). Then, OL is AH2-free. Additionally, assume that 

m < 0. Then, OL is AH3 -free if and only if 3 divides m.
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Proof. By Proposition 5.2, in order to prove that OL is AH2-free, it is enough to check that at least one of 
the equations x2 − 6y2 = ±2d is solvable. Since m is odd, it must be d ∈ {1, 3}. For d = 1, the equation 
x2 − 6y2 = −2 has solution (x, y) = (2, 1), and for d = 3, we are done by Corollary 6.10 as n = −2d (or 
alternatively, the equation x2 − 6y2 = −6 has solution (x, y) = (0, 1)).

On the other hand, if m < 0, since k = −6m
d2 > 0 we know by Proposition 6.7 that OL is AH3-free if and 

only if |n| = 2d. Since n = −6 and d ∈ {1, 3}, this happens if and only if d �= 1. �
We have seen that the behaviour of OL in the Hopf-Galois structures H2 and H3 is pretty similar, which 

is coherent with the fact that they are given by square root of numbers of the same class mod 4. However, 
Example 6.12 gives a bunch of extensions L/Q such that OL is free in one and it is not in the other; namely, 
L = Q(

√
m, 

√
−6) with m < 0, m ≡ 3 (mod 4) and m coprime with 6.

Additionally, Example 6.12 also provides an example of extension L/Q for which OL is AH2-free but it 
does not satisfy the conditions of Corollary 6.10. Indeed, if we choose m = −1, for L = Q(

√
−1, 

√
−6), we 

have that OL is AH2 -free but n �= ±2d.
The situation is slightly different for n = −10.

Example 6.13. Assume that n = −10, so L = Q(
√
m, 

√
−10). Then, OL is AH2-free if and only if m and n

are not coprime. Additionally, assume that m < 0. Then, OL is also AH3-free if and only if m and n are not 
coprime.

Proof. By Proposition 5.2, it suffices to check the equations x2 − 10y2 = ±2d. If d = 5, then n = −2d, so 
OL is AH2 -free. If d = 1, since ±2 are not squares mod 10, the equations are not solvable in Z, so OL is not 
AH2-free.

If m < 0, then k = −10m
d2 > 0, and OL is AH3-free if and only if |n| = 2d. Since n = −10 and m is odd, 

d ∈ {1, 5}, so |n| = 2d if and only if d = 5. �
Finally, we study the solvability of the Pell equations determining the freeness in Hi for i ∈ {1, 2, 3}. 

Since n and k are congruent mod 4, we can exchange them in Proposition 5.2. This gives:

Corollary 6.14. Let m ≡ 3 (mod 4), n ≡ 2 (mod 4), d = gcd(m, n) and k = mn
d2 .

1. At least one of the equations x2 +my2 = ±4d has solutions in Z if and only if so has at least one of the 
equations x2 + my2 = ±4m

d .
2. At least one of the equations x2 + ny2 = ±2d has solutions in Z if and only if so has at least one of the 

equations x2 + ny2 = ±2n
d .

3. At least one of the equations x2 + ky2 = ±2n
d has solutions in Z if and only if so has at least one of the 

equations x2 + ky2 = ±2m
d .

Proof. Let L = Q(
√
m, 

√
n) and let H1, H2 and H3 be its non-classical Hopf-Galois structures denoted 

as usual. By Proposition 5.2, at least one of the equations x2 + my2 = ±4d is solvable if and only if OL

is AH1-free. Now, since n, k ≡ 2 (mod 4), we can exchange them, and we obtain that AH1-freeness is also 
equivalent to the solvability of at least one of the equations x2 + my2 = ±4m

d , proving 1.
The argument for the second and the third statement is slightly different. If we exchange n and k, then √
n gives the same Hopf-Galois structure H2 but in third place, so the new criterion for the freeness in H2

is given by exchanging n and k in the original criterion for the freeness in H3, obtaining the equivalence 
stated. As for the proof of 3, after the replacement of n by k, 

√
k gives the Hopf-Galois structure H3 in 

second place, so to obtain the new criterion we exchange n and k in the original criterion for H2. �
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6.3. Biquadratic extensions of second and third type

Now, we consider wildly ramified biquadratic extensions of second type and tamely ramified biquadratic 
extensions. The main reason to join these two families is that the criteria for the freeness obtained in 
Propositions 5.5 and 5.7 can be reunited in the following:

Proposition 6.15. Let L/Q be a biquadratic extension and let a, b ∈ Z be square-free integers with a ≡ 1
(mod 4) such that L = Q(

√
a, 
√
b). Let H be the non-classical Hopf-Galois structure of L/Q given by a. Let 

g = gcd(a, b). Then, OL is AH-free if and only if at least one of the equations x2 + ay2 = ±2g is solvable.

This indeed contains both results because if b ≡ 1 (mod 4), then L/Q is tamely ramified, and otherwise, 
it is wildly ramified of second type.

As already mentioned, Truman obtained some results using the characterization for the freeness in tamely 
ramified biquadratic extensions. We summarize them in the following:

Theorem 6.16 (Truman). Let L/Q be a tame biquadratic extension. Then:

1. If L = Q(√p, 
√
q) with p, q prime numbers such that p ≡ q ≡ 1 (mod 4), then OL is not AH-free for all 

non-classical Hopf-Galois structures H.
2. If L = Q(

√−p, 
√−q) with p, q prime numbers such that p ≡ q ≡ 3 (mod 4), then OL is free over the 

associated order in exactly two of the non-classical Hopf-Galois structures.
3. If L = Q(

√−p, 
√−qr) with p, q, r prime numbers such that p ≡ q ≡ 3 (mod 4) and r ≡ 1 (mod 8), then 

OL is free over the associated order in exactly one of the non-classical Hopf-Galois structures.
4. OL is not simultaneously free over the associated order in all non-classical Hopf-Galois structures.

Proofs of these statements can be consulted in [18, Example 7.1, Example 7.2, Example 7.3 and Theorem 
7.4]. The first and the last ones are immediate consequences of the following result, which also holds for the 
wild case:

Lemma 6.17. Let H be the non-classical Hopf-Galois structure of L/Q given by 
√
a. If a > 1, then OL is 

not AH-free.

Proof. Assume that OL is AH -free, so there are x, y ∈ Z such that x2 + ay2 = 2g, where g = gcd(a, b). 
Now, x2 = 2g− ay2 gives ay2 ≤ 2g, and since y is non-zero, necessarily a ≤ 2g. Since a is odd and divisible 
by g, necessarily a = g. But then x2 + gy2 = 2g gives y = ±1 and x2 = g, which is only possible if g = 1, 
which contradicts a = g. �

Now, we are interested in the cases corresponding to a < 0. We can simplify the criteria for the freeness 
in Proposition 5.7 by discarding one of the equations.

Lemma 6.18.

1. If D ≡ 3 (mod 8) and N ≡ 2 (mod 8), then x2 −Dy2 = N is not solvable.
2. If D ≡ 7 (mod 8) and N ≡ 6 (mod 8), then x2 −Dy2 = N is not solvable.

Proof. In both cases, we check that the equation x2−Dy2 = N is not solvable in Z/8Z, so it is not solvable 
in Z. Indeed, since the squares mod 8 are 0, 1 and 4, if D ≡ 3 (mod 8), the possible values of x2 − Dy2

mod 8 are 0, 1, 4, 5 and 6. On the other hand, if D ≡ 7 (mod 8), the possible values of x2 −Dy2 mod 8
are 0, 1, 2, 4 and 5. �
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Proposition 6.19. Let L = Q(
√
a, 
√
b) be a biquadratic extension of Q with a ≡ 1 (mod 4) and let H be the 

non-classical Hopf-Galois structure of L/Q given by 
√
a. Denote g = gcd(a, b).

1. If a ≡ 1 (mod 8) and g ≡ 1 (mod 4) or a ≡ 5 (mod 8) and g ≡ 3 (mod 4), then x2 + ay2 = −2g is not 
solvable in Z. Hence, OL is AH-free if and only if x2 + ay2 = 2g is solvable.

2. If a ≡ 1 (mod 8) and g ≡ 3 (mod 4) or a ≡ 5 (mod 8) and g ≡ 1 (mod 4), then x2 + ay2 = 2g is not 
solvable. Hence, OL is AH-free if and only if x2 + ay2 = −2g is solvable.

Proof. 1. If a ≡ 1 (mod 8) and g ≡ 1 (mod 4), then −a ≡ 7 (mod 8) and −2g ≡ 6 (mod 8), so the 
equation x2 + ay2 = −2g is not solvable by the second statement of Lemma 6.18. Identical conclusion is 
obtained if a ≡ 5 (mod 8) and g ≡ 3 (mod 4) by applying the first statement of Lemma 6.18.

2. It is completely analogous to the above. �
We can study easily the behaviour of OL as AH -module for low values of |a|.

Example 6.20. Let b ∈ Z be a square-free integer and let L = Q(
√
a, 
√
b) with a ∈ {−3, −7}. Let H be the 

non-classical Hopf-Galois structure of L/Q given by 
√
a. Then, OL is AH -free.

Proof. Let g = gcd(a, b). Since a ≡ 1 (mod 4), by Proposition 6.15, OL is AH -free if and only if at least 
one of the equations x2 + ay2 = ±2g is solvable.

Assume that a = −3, so g ∈ {1, 3}. For g = 1, the equation x2 − 3y2 = −2 is satisfied for (x, y) = (1, 1), 
and for g = 3, the equation x2 − 3y2 = 6 is satisfied for (x, y) = (3, 1).

Now, assume that a = −7. In this case, we have g ∈ {1, 7}. The equation x2 − 7y2 = 2 is satisfied for 
(x, y) = (3, 1), and the equation x2 − 7y2 = −14 is satisfied for (x, y) = (7, 3). �

In general, the results in this part show that freeness is much less common in these cases than in the 
previous one, biquadratic extensions of first type. The main reason is that, for those extensions, the presence 
of 4, which is a square, in the independent term of the first equation in Proposition 5.2 permitted to obtain 
solutions of the Pell equations under more general conditions.

Let us change the approach and focus on the Pell equations themselves. The consistency of Proposi-
tions 5.5 and 5.7 gives the following result on the solvability:

Corollary 6.21. Let m, n be square-free integers with m ≡ 1 (mod 4), d = gcd(m, n) and k = mn
d2 . Then:

1. At least one of the equations x2 +my2 = ±2d has solutions in Z if and only if so has at least one of the 
equations x2 + my2 = ±2m

d .

If we additionally assume that n ≡ 1 (mod 4), then:

2. At least one of the equations x2 + ny2 = ±2d has solutions in Z if and only if so has at least one of the 
equations x2 + ny2 = ±2n

d .
3. At least one of the equations x2 + ky2 = ±2n

d has solutions in Z if and only if so has at least one of the 
equations x2 + ky2 = ±2m

d .

Proof. Let L = Q(
√
m, 

√
n) and let H1, H2, H3 be its non-classical Hopf-Galois structures as before. Since 

n ≡ k (mod 4), they can be exchanged in Propositions 5.5 and 5.7. Moreover, when n ≡ 1 (mod 4), m, n
and k can be reordered indistinctly in Proposition 5.7.
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1. We know that OL is AH1-free if and only if at least one of the equations x2 + my2 = ±2d is solvable in 
Z. Now, we exchange n and k, so the AH1-freeness of OL is also equivalent to the solvability in Z of at 
least one of the equations x2 + my2 = ±2m

d . This implies immediately the statement.
2. In this case, we use the AH2-freeness criterion as link for the two conditions, from which the result follows, 

as exchanging m and k in the equations x2 + ny2 = ±2d gives x2 + ny2 = ±2n
d .

3. Exchanging m and n in the equations x2 + ky2 = ±2n
d gives x2 + ky2 = ±2m

d , so the result follows from 
the consistency of the criteria given for the AH3-freeness of OL. �

7. AH -locally free extensions that are not AH -free

It is remarkable that, for the intended classes of extensions in this paper, our techniques allow to com-
pletely determine the freeness of the ring of integers in the different Hopf-Galois structures in the global 
context, i.e. for extensions of number fields. Normally, this is a tough problem which is studied through the 
local freeness. Namely, if L/K is an H-Galois extension of number fields, we say that OL is AH -locally free 
if OL,P is AH,P -locally free for every prime ideal P of OK , where

OL,P := OL ⊗OK
OK,P ,

AH,P := AH ⊗OK
OK,P ,

and OK,P is the P -adic completion of OK .
In this section, we give account of the local context in the problem we have studied in order to illustrate 

that local freeness does not imply global freeness. Namely, we will give an example of quartic extension L/Q
such that for a non-classical Hopf-Galois structure H of L/Q, OL is AH -locally free but OL is not AH -free. 
It will be easier (and possible) to restrict ourselves to the tame case. Indeed, among the quartic extensions 
of Q, the tamely ramified ones are those for which all ramified rational primes are odd. Now, we have the 
following result due to Truman (see [19, Theorem 6.2]):

Theorem 7.1. Let L/K be a tamely ramified abelian extension of number fields, and let H = L[N ]G be a 
Hopf-Galois structure on L/K. Assume that H is commutative. Then OL is OL[N ]G-locally free.

One can easily construct examples of biquadratic extensions with the already mentioned properties from 
the work of Truman. Indeed, if L/Q is a tamely ramified biquadratic extension, by Theorem 6.16, there is 
some Hopf-Galois structure H on L/Q such that OL is not AH -free. However, we know by Theorem 7.1
that OL is AH -locally free.

Using our results, we may construct an example of quartic cyclic extension with this behaviour.

Example 7.2. We consider L = Q(
√

65 + 4
√

65), which is cyclic of degree 4 with a = 1, b = 4, c = 7
and d = 65, hence corresponds to Case 5 in Section 4. This number field corresponds to the identifier [15, 
Number field 4.4.274625.2] in the LMFDB database. We can see that its ramified primes are 5 and 13, so 
it is tamely ramified and hence AH -locally free for every Hopf-Galois structure H on L/Q.

Let us check that OL is not (globally) AH-free. By Theorem 4.3, OL is AH -free if and only if the quadratic 
form [7, 8, −7] represents 1. But the cycle of indefinite reduced forms of this quadratic form is

[7, 8,−7], [−7, 6, 8], [8, 10,−5], [−5, 10, 8],

which does not contain the principal form. Hence [7, 8, −7] does not represent 1 and OL is not AH -free.
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