
Bachelor Thesis

A Monitoring system for a LoRa
mesh network

Student Director

Alejandro Capella del Solar Felix Freitag

Tutor

Joan Sardà Ferrer

April 18, 2022

Information Technologies

Abstract

The internet of things(IoT) has been a pushing technology in the last years. As
time goes by, the little devices have become more powerful and capable of doing
more complex calculus. Among all these technologies one particularly has be-
come quite mainstream in the field, these are the LoRa devices suitable to build
low power wide area network (LPWAN). Phd. Roger Pueyo Centelles designed
a protocol for LoRa mesh networks, and the Bachelor Sergi Miralles build a first
approach of the protocol, afterwards Joan Miquel Solé made a stable version of it.
Now we need to know more about the behaviour of this protocol over the field.
In this Bachelor Thesis we created a whole monitoring system that will help us in
the future doing analysis of a lot of experimental research with less effort
Keywords— IoT,LoRaWAN,mesh networks, monitoring

Dedication

To my beloved father, Jesús Capella Moner 1922 -2012 †
You live in me.

1

Acknowledgements

I want to thank deeply the time that my thesis director Professor Felix Freitag
dedicated for the guidance of this work and for encouraging me to follow my cri-
teria in the way of carrying out the statistical research that brought me finally
to develop a whole monitoring system for LoRa mesh networks. Without your
support and assitance that wouldn’t have reached to a satisfying end.

I want to thank as well my comrade Joan Miquel Solé for improving the code qual-
ity of the given code that made my job a lot easier because in the very beginning
I was absolutely unable to understand the code I was handling and I really feared
of not reaching my academic goals.

I don’t want to forget about Eloi Cruz Harillo who finished his TFG the previous
January and helped me a lot to connect the boards via Wifi, when I was getting
used to platformio and everything seemed so new and difficult for me and no of
my attempts seemed to work the way they were supposed to .

I want to acknowledge as well the great job that Roger Pueyo did with the concept
and design of the LoRaMesher, for placing in my way all these wonderful people
that awake in me the passion of the research labour. I always will remember your
role as a counsellor and guide to the world of LoRa communications which was an
unknown world for me.

At last but not least I want to thank all the people that trusted in me in this
22 years journey that took me until this moment when I’m out to get my degree,
despite all the times I failed or even got expelled from this faculty due to several
health issues. Specially I want to thank computer science department Professor
Luis Antonio Belanche who always encouraged me to finish my degree though
I was about to reach 40 years old and still with a lot of subjects to be passed
. I also have to mention my dear friend Alex Jurado Leyda, FIB engineer and
statistics professor in the ETTAC, who always thought I was smart enough to get
an Informatics engineering degree. I’m also thankful with all the people I met in

2

Bachelor Thesis TFG

the way, in the FIB and outside it, friends, girlfriend, sisters and mother. I learned
a lot from every of you guys.

3

Contents

List of Figures 8

List of Tables 10

1 Context and Scope 11
1.1 Introduction . 11
1.2 Context . 12
1.3 Justification . 14

1.3.1 Problem to solve . 15
1.3.2 Main Concepts . 16

1.3.2.1 LoRa . 16
1.3.2.2 IoT . 16
1.3.2.3 Mesh networks . 16
1.3.2.4 Multihop . 16
1.3.2.5 LPWAN . 16
1.3.2.6 LoRAWAN . 17
1.3.2.7 Data preprocessing 17
1.3.2.8 Data collection . 17
1.3.2.9 Edge computing 17
1.3.2.10 Data cleansing . 17
1.3.2.11 Data Mining . 17

1.3.3 Implied Metrics . 18
1.3.3.1 Time on Air(ToA) 18
1.3.3.2 Routing tables . 18

1.4 Project Scope . 18
1.4.1 Methodology . 19
1.4.2 Risks . 19
1.4.3 Goals . 21

1.4.3.1 Functional requirements 21
1.4.3.2 Non-Functional requirements 21

1.4.4 Main elements . 22

4

Bachelor Thesis TFG

1.4.4.1 Hardware . 22
1.4.4.2 Software . 23

2 Time Planning 25
2.1 Task description . 26
2.2 Project Management . 26
2.3 Previous Work . 27
2.4 Developing . 28

2.4.1 Integrating parts . 28
2.4.2 Data collection . 28
2.4.3 Data preprocessing . 29
2.4.4 Graphics . 29

2.5 Resources . 29
2.6 Human resources . 29
2.7 Material Resources . 30
2.8 Risk Management . 30
2.9 Project deviations . 32

2.9.1 Time deviations . 32
2.9.2 Cost deviations . 32
2.9.3 Initial conditions deviation 33
2.9.4 Goals deviation . 33

3 Economic Management and Sustainability 34
3.1 Budget . 34

3.1.1 Staff costs . 34
3.1.2 Generic costs . 34

3.2 Contingence Plan . 35
3.2.1 Unexpected issues . 37
3.2.2 Total costs . 38

3.3 Control Management . 39
3.4 Sustainability . 40

3.4.1 Self Evaluation . 40
3.4.2 Economic dimension . 40
3.4.3 Environmental dimension 41
3.4.4 Social dimension . 41

3.5 Legal considerations . 41
3.5.1 LoRa . 41
3.5.2 General Data Protection Regulation 42
3.5.3 Intelectual Property . 43

5

Bachelor Thesis TFG

4 Analysis of the LoRaMesher library 44
4.1 Types of packets . 45
4.2 FreeRTOS . 47

5 Design of the monitoring system 49
5.1 Keeping up FreeRTOS stability . 49
5.2 Options to build the data flow to the server, client side 50

5.2.1 coreHTTP . 50
5.2.2 Arduino’s HTTPClient . 51

5.2.2.1 Using the HTTPClient 52
5.3 Wifi connection . 53

5.3.1 Our Network LoRa Module 53
5.4 Server side . 55

5.4.1 Node.js . 55
5.4.2 Mongo . 55

5.4.2.1 Dockerizing the server 55
5.4.3 Monitoring tools . 57

5.4.3.1 Monitoring mesh networks:state-of-art 57
5.4.3.2 Grafana . 58
5.4.3.3 Our proposal : ElasticSearch 59
5.4.3.4 Kibana . 60

5.4.4 Dockerizing our Elastic Stack 60
5.4.5 The Javascript Elastic client 63
5.4.6 Integration of the different parts of the server 65

5.5 Our final monitoring architecture design 68

6 Usage of the monitoring system 70
6.1 Kibana setup . 70
6.2 Flashing boards . 72
6.3 Plotting Dashboards . 72
6.4 First Experiments . 73

6.4.1 Longer-Term monitoring experiments 75

7 Deploying to a public IP 79
7.1 First Test Deployment . 79
7.2 Securized deployment . 80

7.2.1 First steps . 81
7.2.2 ELK stack security features 81
7.2.3 Securizing the ELK Stack 82
7.2.4 Loading the whole system 90

6

Bachelor Thesis TFG

8 Conclusions 92
8.1 Technical conclusions . 92
8.2 Personal conclusions about the work and other comments 93
8.3 Future work . 93

8.3.1 Monitoring system stress experiments 93
8.3.2 Experiments about the best fit in the priority task scale . . . 94
8.3.3 Measuring monitoring systems overheads 94

8.3.3.1 Power Consumption overheads 94
8.3.3.2 Post Requests Overheads 95

8.3.4 Securize the node server . 98
8.3.5 Finish the ELK stack securization 98

Appendices 99

A Obstacles 100
A.0.1 Issues with the platformio IDE 100
A.0.2 Using platformio external libraries instead of Arduino Libraries100
A.0.3 Conflicts with RadioLib and HTTPClient 101
A.0.4 The error called guru meditation error core 0 panic’ed (load-

prohibited). exception was unhandled 101
A.0.5 Platformio doesn’t flash more than one board at the same

time . 102
A.0.6 Sensibility of the ELK stack to different versions between

components and with the javascript client 103
A.0.7 The amount of virtual memory 104
A.0.8 The confusing placement of the documentation of Elastic

Stack . 105

B Initial Gantt Diagram 106

C New Gantt Diagram 108

D Working with the new code 110

E Repos 111

Bibliography 112

7

List of Figures

1 Arduino uno rev3 original . 12
2 Example of negative values dropped out by the serial port, source

:PlatformIO IDE . 14
3 TTGO T-Beam ESP32 Datasheet,source: TTGO T-Beam docu-

mentation . 22

4 Javascript ElasticSearch client working schema, source:Elastic site . 64
5 Connections pool working schema,source:Elastic site 64
6 Monitoring System architecture,source:own creation 69

7 Dev tools menu location . 72
8 Relation between received and sent packets in four boards,source:kibana 74
9 Relation between received and sent packets in four boards in a bar

diagram, source: kibana . 74
10 Relation between sent packets and in four boards and sent hello

packets, source: kibana . 75
11 Relation between sent packets and received packets in board B1A4,

including routing and data packets, source: kibana 76
12 Relation between sent packets and received packets in board B1A4,

including routing and data packets(ZOOM IN), source: kibana . . . 77
13 Pie chart representing sent packets and received packets along all

the nodes, including routing and data packets, source: kibana . . . 78
14 Vertical stacked bar chart representing sent packets and received

packets along all the nodes, including routing and data packets,
source: kibana . 78

15 Elastic security overview,source:Elastic site 82

16 Digital usb multimeter . 94
17 LoRaMesher tcpdump trace, source: wireshark gui 96
18 LoRaMesher tcpdump trace, source: wireshark gui 96
19 LoRaMesher tcpdump trace, source: wireshark gui 97

8

Bachelor Thesis TFG

20 TCP structure segment schema, source: wireshark gui 98

21 core 0 panic’ed (loadprohibited). exception was unhandled error
screenshot,source: PlatformioIDE 102

9

List of Tables

1 LoRa parameters,source :[18] . 13
2 Multi hop distance-vector routing protocol options, source : [18] . . 15

3 List of tasks, including dependences, resources and time. Roles:
PM stands for Project Manager, D for developer, T for tester, S
for statistic, DVOPS for DEV OPS, R for researcher, source:own
elaboration . 31

4 Table of extra expenses,source:own elaboration 33

5 Staff costs, source:glassdoor.com . 35
6 SI stands for Social Insurance,Roles are Project Manager, Researcher,

Developer,Statistic, Tester, DevOps.source: Own elaboration 36
7 Software expenses,source:own elaboration 36
8 Costs from hardware resources,source: own elaboration 37
9 Contingence table of 15% per type of cost,source: own elaboration . 37
10 Costs overrun, source: own elaboration 38
11 Total cost of the project,own elaboration 39
12 LoRa Frequencies by Country. Source: “Frequency Plans by Coun-

try”, 2021[11] . 42

13 Node EOL versions,source: [9] . 104
14 Compatibility matrix . 104

10

Chapter 1

Context and Scope

1.1 Introduction

One of the most trending concepts in the IT world in the last years has been
the internet of things (IoT). For this specific task, there is a pushing technology
called LoRa in the field of Low Power Wide Area Networks(LPWAN).Colloquially
speaking, an LPWAN is supposed to be to the IoT what WiFi was to consumer
networking: offering radio coverage over a (very) large area by way of base sta-
tions and adapting transmission rates, transmission power,modulation, duty cy-
cles, etc., such that end-devices incur a very low energy consumption due to their
being connected[17]. LoRa is based on Long Range spread spectrum modulation
derived from Chirp Spread Spectrum(CSS) technology.Most often it is used as
part of the LoRaWAN architecture with a star-of-stars topology, but it can also
be operated standalone, with a more flexible mesh network topology [18]. We have
to be aware that when we are talking about LoRa communications, we may refer
to two distinct layers, on one side we have the previous mentioned Chirp Spread
Sprectrum technique, and on the other side a MAC layer protocol even though the
LoRa communication system implies a specific network architecture.
The long-range and low-power nature of LoRa makes it an interesting candidate for
smart sensing technology in civil infrastructures (such as health monitoring, smart
metering, environment monitoring, etc.), as well as in industrial applications[17].
Since putting all the computing tasks on the cloud has been proved to be an ef-
ficient way for data processing, on the other hand the bandwidth of the network
has come to a standstill, with the growing quantity of data generated at the edge,
speed of data transportation is becoming the bottleneck for the cloud-based com-
puting paradigm [25]. That’s why when we are talking about the IoT world, we
can not avoid going into the concept of edge computing. We mean by that al-
lowing computation to be performed at the edge of the network in order to safe

11

Bachelor Thesis TFG

Figure 1: Arduino uno rev3 original

bandwith and not having to go to the cloud to get the data we want. Here we
define “edge” as any computing and network resources along the path between
data sources and cloud data centers [25]. In order to satisfy this demmand of
technologies with greater computing capabilities a whole family of new microcon-
trollers broke into market. From the very first single threaded Arduino in fig 1, a
new shipment of programmable multi-threaded devices arrived. These were able
of running machine learning algorithms, mesh network protocols or any kind of
pervasive computing. They usually run code over a RTOS with a scheduler and
they are able of distributing the load between the different cores.

1.2 Context

This Bachelor Thesis is the last step for the acomplishment of the needed credits
to get my degree in Informatics Engineering with specialization on Information
Technologies. Hence I will explain the story behind this work.

The UPC Phd student Roger Pueyo Centelles developed the theoretical basis of
a minimalistic distance-vector routing protocol for LoRa mesh networks. To go
a little bit deeper inside the details about this protocol I will say that it had a
physical layer presenting multiple configurable parameters 1 :
The idea behind the pshysical layer that takes advantatge from previous multi-

12

Bachelor Thesis TFG

Configurable parameter Values
Radio Band 169, 433, 868, 915 MHz
Bandwith 62.5, 125, 250, 500 kHz
Transmission Power 14 dBm (EU), 27 dBm (USA)
Spreading Factor 6 to 12
Fec Rate 4/5, 4/6, 4/7, 4/8

Table 1: LoRa parameters,source :[18]

hop, mesh and routing for LoRa and LoRaWAN proposals is taking benefit from
LoRa’s Spread Factors’ different range and orthogonality properties which allow for
concurrent transmissions between different pairs of nodes, and introduces a novel
multi-SF-aware ToA metric calculation that minimizes the total transmission time
for a packet to reach the destination[18] Among all the features of this protocol
we can focus in the following assets:

• Distance vector: best routes are calculated in a distributed way among nodes
based on cumulative metric.

• Concurrent ,overlaid network, several "virtual" layered networks can operate
on the same radio channel improving global throughput thanks to LoRa’ SFs
orthogonal properties

• ToA metric: based on the end-to-end packet transmission time, taking multi-
SF capability into account.

• Layer 2 +3 hybrid: taking both layers as one makes easier to satisfy the low
power requirements for embedded LoRa devices.

• Pro-active: the nodes of the network are periodically broadcasting new routes
no matter how much data traffic are transmitting, refreshing routes and
keeping them up to date readily available [18]

• Duty cicle-aware: this means that time on air limitations are enforced in
the form of duty cicles, very important thing to have in mind when you are
operating in ISM bands.

• Flexible and configurable : metrics, packet timing as well as other aspects
can be fine tuned in order to fit specific use cases.

Taking this idea of LoRa mesh network protocol as a starting point, there has
been done recently a FIB TFG which did a first implementation of it on c++ to
be run on a board called TTGO T-Beam ESP32. This library though apparently

13

Bachelor Thesis TFG

Figure 2: Example of negative values dropped out by the serial port, source :Plat-
formIO IDE

seemed to work, after some time of being deployed some negative values suddenly
appeared for no reason by the serial port which means that something wrong is
going on out there as we see on figure 21.
My first task on this Bachelor Thesis will be to find out what’s wrong with this
first implementation.Once I have fixed this, I will have to deploy a server to collect
data from all the boards through a Wifi connection about all packets they transmit
, maybe the content of the routing tables, still I have to think what metrics will
meet better my goals. Next step will be to make a data pre processing and get
some graphics and conclusions about. And repeat this experiments in different
scenarios, distance, obstacles etc so we can figure out what is its performance .
So we will have the UPC as our main stakeholder because this study will be the first
approach on field about this product 100% born in this house, as a collaboration
between two faculties, the ETSETB and the FIB all gathered in the AC research
department.

1.3 Justification

In IoT world, as well as in edge computing, is important having communication
protocols that can function at Long Range maintining the resistance to multipath
fading and to noisy environments.Thanks to LoRa systems have some configurable
parameters and a Forward Error correction that makes them a good choice for noisy
situations, for there is a trade off between speed transmission and communication
range, being available the chance of demodulating the signal in the receivers, since

14

Bachelor Thesis TFG

Scope Parameter Range Default
Lora Minimum SF SF7, . . . SF_max SF7
Routing Maximum SF SF_min, . . . SF12 SF12
Routing Metric ToA, HC, ETX, RSSI ToA
Routing AVG routes broadcast period(SF_min) 0 . . . ∞ 60s
Routing Routes expiry time (SF_min) 0 . . . ∞ 300s
Routing Max. routes to a node 0 . . . 2 2
Routing Max. total routes 0 . . . 1024 1024
Routing Routing/Data traffic prior. n:1 10:1
Routing Forward/Local traffic prior. n:1 10:1
Regulation Duty cycle (%) 0.1-100 100

Table 2: Multi hop distance-vector routing protocol options, source : [18]

they are using different and quasi orthogonal spread factors [18] Besides this there
are some parameters , concretely the ones in table 2, that can be fine tuned to
adapt it to different scenarios and we have to know extra info about more extreme
conditions and see what happens and what can be improved.

1.3.1 Problem to solve

This brand new protocol has never been implemented properly nor tested in a
real field work environment . We do not have any clue about its real performance
and we don not know wether it needs to be fine tuned or modified to enhance its
usability for the real world. For this reason we must make a first approach to its
behaviour in a real use case and check the routing tables being formed if possible,
and track all the packets throug the whole network to get some conclusions about.
In more technical words we have the following explanation: since direct commu-
nication between a pair of nodes can occur at different SFs, they are indicated by
the fastest (i.e., the lowest) SF possible. Communication between distant nodes
that are not directly connected is made by multi-hop packet forwarding, using the
routes calculated by the routing protocol. While most of the links in the diagram
are symmetric, a few of them require different SFs in each direction to achieve a
successful communication. This case can happen in scenarios with heterogeneous
hardware or environmental conditions, either temporary or permanent[18]. For all
this reasons a complete on-field work is needed.

15

Bachelor Thesis TFG

1.3.2 Main Concepts

1.3.2.1 LoRa

LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system,
promoted as an infrastructure solution for the Internet of Things: end-devices use
LoRa across a single wireless hop to communicate to gateway(s), connected to the
Internet and which act as transparent bridges and relay messages between these
end-devices and a central network server.[17]

1.3.2.2 IoT

Internet of Things is the Connections of embedded technologies that contained
physical objects and is used to communicate and intellect or interact with the inner
states or the external surroundings.Rather than people to people communication,
IoT emphasis on machine to machine communication.[28] The Internet of Things
(IoT), being a “network of networks”, promises to allow billions of humans and
machines to interact with each other. Owing to this rapid growth, the deployment
of IoT-oriented networks based on mesh topologies is very attractive, thanks to
their scalability and reliability (in the presence of failures)[19]

1.3.2.3 Mesh networks

In mesh topologies, network nodes are directly and dynamically connected in a
non-hierarchical way, thus allowing many-to-many communications (among nodes
cooperating with each other) to efficiently route data from a generic source to a
generic destination[19]

1.3.2.4 Multihop

Multihop mechanisms propose intermediate nodes to forward messages from other
end-devices. The intermediate nodes in each hop could be either an end-device or a
gateway, performing simple relay functions or complex routing protocols, forming
different mesh topologies[20].

1.3.2.5 LPWAN

Low Power Wide Area Networks were developed to provide a feasible solution for
applications that require a wide area coverage and energy efficiency [20]

16

Bachelor Thesis TFG

1.3.2.6 LoRAWAN

Long RangeWide Area Network (LoRaWAN) networks are one of the most stud-
ied and implemented LPWAN technologies, due to the facility to build private
networks with an open standard. Typical LoRaWAN networks are single-hop in
a star topology, composed of end-devices that transmit data directly to gateways.
Recently, several studies proposed multihop LoRaWAN networks, thus forming
wireless mesh network [20]

1.3.2.7 Data preprocessing

Refers to manipulation or dropping of data before it is used in order to ensure or
enhance performance, and is an important step in the data mining process[23].

1.3.2.8 Data collection

Data collection is the process of gathering and measuring information on targeted
variables in an established system, which then enables one to answer relevant ques-
tions and evaluate outcomes. Data–gathering methods are often loosely controlled,
resulting in out–of–range values (e.g., Income: –100), impossible data combinations
(e.g. , Sex: Male, Pregnant: Yes), and missing values, etc

1.3.2.9 Edge computing

Edge computing is a bridge for realizing the convergence between physical space
and cyber space. Large numbers of physical objects produce a huge amount of
data that needs to be efficiently processed in the edge side.Edge computing moves
the capacities of computing, communication, storage, services and control to the
system edge in close proximity to the end devices and users. So that it can provide
smart edge services with low latency, high reliability high bandwidth efficient and
high security[22]

1.3.2.10 Data cleansing

Data cleansing is the process of fixing or removing incorrect, corrupted, incorrectly
formatted, duplicate, or incomplete data within a dataset

1.3.2.11 Data Mining

Data Mining is a process of extracting and discovering patterns in large data sets
involving methods at the intersection of machine learning, statistics, and database
systems [27]

17

Bachelor Thesis TFG

1.3.3 Implied Metrics

In order to get usable information from our experiments we will identify and select
metrics which will help us to understand the protocol performance.

1.3.3.1 Time on Air(ToA)

The SF is a key element of the LoRa radio technology, as it poses a trade-off
between the transmission reach and the time required to send a packet. Roughly,
switching to a SF one step higher (e.g., SF7→SF8) doubles the transmission time
(or halves the transmission speed, roughly), while increasing distance around ×1,
4. Throughput, or transmission time, also have a direct relation with the power
required to transmit a packet, which is specially critical in battery powered devices.
This is usually the case in the context of LPWAN for the IoT domain, where radio
channel occupation and power (i.e., energy) are scarce resources[18]
According to this metric the protocol calculates the distance between nodes,thus
the routing tables follow the same logic. We have to know not only how good is
the performance of the routing tables in a real scenario, but ensure the durability
of the battery if possible.

1.3.3.2 Routing tables

All the nodes in the mesh network are periodically receiving updates from neigh-
bour nodes. Being a DV protocol, the table consists of a list of all the nodes known
to be in the network, the neighbor through which to reach them, the path cost
and the route expiry time. We have to know how trustful are these routing tables
to know the real behaviour of the protocol. For this reason we will set up different
scenarios to test how this routing tables are formed.

1.4 Project Scope

Currently the performance of LoRa mesh has only be simulated in the PhD thesis
of Roger Pueyo. In my TFG we aim to experiment the performance of the LoRa
mesh with real devices. In other words we will say
that this work will cover the validation of the LoRa mesh protocol implementation
and its evaluation on field experiments. To do so we will create a mesh network out
of 4 TTGO T-Beam esp32 boards and we will try try to have them transmitting
packets for a couple of hours. We will try it in indoor environment and outdoor
with different distances. We have the choice of taking off the antennas to simulate
long distances and reduce the power and scope of the signal.

18

Bachelor Thesis TFG

1.4.1 Methodology

This work is aiming to be a proof of quality of a new protocol devoloped by one
of our students.

1.4.2 Risks

In section 2.8 there’s a list about all the risks I might find along the way of
this research and several alternative plans just in case one of this obstacles were
unavoidable, nevertheless in this section we will do a little review about what
obstacles we might have

• Since I will be working directly with the implementation of the protocol a
deep knowledge about how this works is needed.

• Dealing with someone else code is always tough .

• I have no idea about how the RTOS the TTGO T-Beam boards works
with.Task management may become an important issue since the hardware
won’t be only transmitting data packets between them, but sending peri-
odically data through the wifi connection to the server. If I have technical
issues I will have to ask for help. Some things like connecting the boards to
the wifi are crucial. If I can not do it due to an error of the libraries, as I
point out in coming sections, that would mean around a whole week of extra
developing time.

• I have to develop a server. Maybe I can take an example from previous works
running over these boards but maybe it doesn’t work properly and I have to
do it again on my own.

• Data cleansing, data collecting and data preprocessing in a real field work
it’s something really new for me, and it would be hard enough to deserve a
whole Bachelor Thesis by their own. But in this case there’s quite a lot of
work to do before I reach that point.

• All the above reasons may delay our goals when we face meeting our dead-
lines.

• Personal issues: as I point on section 2.8 my health is delicate and the levels
of stress I can handle is limited so I will have to be very strict with my rest
and work timetable so I can unwind properly and get my mood balanced.
To sum up we are in the middle of pandemics and we have to stay alert with
our environment.

19

Bachelor Thesis TFG

• Lack of time in my everyday routines. As I point out in the following sections,
I’m in the middle of an internship, and I’m carrying out my last subject in
the informatics degree, all that time is time I can not dedicate to the thesis.

For all these reasons I will try to follow these steps carefully

1. Get the boards connected to a Wifi network.

2. Develop a server in node.js to collect the data.

3. Containerize the server with docker to make the deploy at home or maybe
in a FIB server.

4. Add the code to the boards to send the data I want to collect to the server.

5. Collect a few data for a sample and focus on the negative values to see what’s
wrong in the implementation.

6. Fix the implementation until there are no negative values anywhere.

7. First experiment with four boards exchanging data between them during a
couple of hours.

8. Take off the antennas of the boards and repeat the experiment.

9. Some additional experiment with other alternative scenarios ?

10. Data cleansing and Data pre processing with Elastic Search using LogStash
to load the data.

11. Data visualization with Elastic Search.

12. Write down conclusions.

It’s also essential having a realistic time plan and meeting the deadlines, for
It’s quite probable that unexpected issues may appear in the way and I can’t
afford any delay due to technical problems with the board, the server, the
integration of both parts or the data collection process since the statistical
study will also take its time.

20

Bachelor Thesis TFG

1.4.3 Goals

The main goal of this project is to measure the determine how trustful this Lo-
RaMesher protocol is. To acomplish this objective, we have a couple of sub goals
that need to be satisfied :

• Get an implementation of the LoRaMesher protocol usable and free of errors
and deploy it to a few boards.

• We must build a server to gather all the data from the logs coming from the
boards.

• Determine the metrics that will help us to quantify the fairness of the protocol
.

• Get a visual representation of the data most suitable for the conclusions that
we would like to reach.

1.4.3.1 Functional requirements

Besides the main goal of the study, which is defined in the lines above, we must
meet another requirements that we need for the proper working of the system to
make the statistical analysis.

• The implementation of the LoRaMesher has to be free of errors, no negative
values should appear as long as te boards will be turned on transmitting
data .

• The implementation must be trustful and portable to any ESP32 like archi-
tecture boards.

• The RTOS of the board must balance the work load among all the cores at
the time of transmitting the logs and sending the routing data packets

• The modifications that we will be making must follow the same idea of the
code we will inherit in order to not make a code made out of patches.

1.4.3.2 Non-Functional requirements

Next will be talking about non-functional requirements, that is to say, those re-
quirements we have to meet not being these strictly about the working of the whole
system we will be making the study about, but we should consider from the very
beginning to the correct development of the whole study we are aiming to carry
out.

21

Bachelor Thesis TFG

• The metrics from the statistical study must give us an idea of the performance
of the LoRaMesher.

• The visualization of the data must be informative and useful as a tool of
measurement of the protocol in different environments.

• The final code must allow future improvements and new functionalities to
be added.

1.4.4 Main elements

1.4.4.1 Hardware

ESP32 We will use this board in figure 3 with LoRa cappabilities to make
a deploy of the LoRaMesher library with the implementation of the multihop
distance vector routing protocol to transmit data packets and collect it through a
server.

Figure 3: TTGO T-Beam ESP32 Datasheet,source: TTGO T-Beam documenta-
tion

22

Bachelor Thesis TFG

1.4.4.2 Software

PlatformIO Professional collaborative platform for embedded development Fea-
tures

• A lightweight but powerful cross-platform source code editor.

• Smart code completions based on variable types, function definitions, and
library dependencies.

• Multi-projects workflow with easy navigation around project codebase, mul-
tiple panes, and themes support.

• Seamless integration with PlatformIO Home (UI) with board and library
managers.

• Intuitive project wizard and a wide range of example projects.

• Built-in Terminal with PlatformIO Core (CLI) and powerful Serial Port Mon-
itor.

Trello This is a collaboration tool that organizes your projects into boards.
Though this thesis is an individual work, I want to keep a record of the thing
to do and thing done to acomplish the objectives before the deadlines according
to the time planning.

Docker Docker is an open platform for developing, shipping, and running appli-
cations. To make the deploy of our server I’ll be using containers to avoid messing
out my host configuration which is something very probable since I’ll be working
with linux.

Node.js It’s a well known backend framework that I’ll use to develop a simple
server to collect all the data coming from the boards.

MongoDB It’s a NoSQL database which most characteristic feature would be
his flexibility and scalability. I’ll be using it to keep all the data and after that
export it to the following step.

ElasticSearch I’ll be using ElasticSearch to all the statistical visualization, In-
ference and whatever It may be useful for.

23

Bachelor Thesis TFG

Kibana It’s an UI to interact with my ElasticSearch engine and get the proper
visualizations of the data, and in general terms it gives access to the Elastic Stack
in a very user-friendly way.

LogStash It’s a Data processing pipeline from the server side. I’ll use it to feed
with data the ElasticSearch engine, it will help me with the data transformation
and probably with the data cleansing.

24

Chapter 2

Time Planning

To carry out this Bachelor Thesis we have scheduled the number of hours that I
have to dedicate daily to reach out the objectives in this work. We have forseen to
spend 4 hours daily, from Monday to Friday to TFG tasks such as programming
the board, developing the server or data collection. We will invest the time on
the weekends to retrieve any chunk of time during the week that for any reason I
was unable to work properly on the thesis because I have some other subjects that
need to be attended besides my studies.
Apart from my thesis, I’m also enrolled on my last subject on the degree and that
means that I will need some extra time to reach also the deliverables and commit-
ments with the people on this subject, so a very strict time planning is needed in
order not to get caught by the deadlines.

The project started the previous weeks, concretely September the 13th. Never-
theless, this first weeks of the current course I’ve been busy with the new subject
and writing the first deliverable and it took quite a lot to acomplish. From now
on I will follow strictly my timetable otherwise I won’t be able to fulfill muy goals.
The thesis will be delivered the Monday 17th of January of 2022, and the lecture
will take place the week of the 24th of January.

We will spend around 728 hours developing this work.That makes a mean of 20
hours a weeks, and in order to not loose the rythm of work we will keep a log of
hours worked. We have an advantatge that is that I’ve been working the summer
previous on it so many of the tasks of the project management and previous work
are already done, in the gantt diagram appeare like tasks done in parallel at the
beginning of the project.

25

Bachelor Thesis TFG

2.1 Task description

In this section we will enumerate and describe the tasks and subtasks needed to
acomplish the goals on this TFG. I have built a table with the details to make it
more understandable. In the following sections I will make a short comment about
every planned task.

2.2 Project Management

First of all we should define the scope and objectives of the project according to
the stakeholders needs, in this case the UPC. For this reason there was an initial
meeting with my director of this thesis. Therefore there has been a continous
communication channel between him and I to validate the scope of the project
and ensure that we were aiming for the same goals.

PM.1 Scope of the project

Since we are being given a project from some other student, first of all we had to
take a look to the code and see what parts were working and which ones were still
undone. This task lasted about 15 hours

PM.2 Time planning

We have to be very careful with the timings because there can be several issues
and delays during the whole process. If we don’t invest enough time to every task,
for sure we won’t acomplish the goals. If this wasn’t enough, in this document we
will talk about obstacles and possible solutions.
In this case we had to do a time planning in a few hours due to other issues during
my studies, it took about 10 hours.

PM.3 Budget

The main source of expenses will be on time of the researcher, my time. The
equipment needed to carry out this enterprise will be my laptop, the four boards,
the batteries and wires.The most difficult thing will be to calculate the power
consumed by all these hardware. Lets say this will take a day of work or maybe
less, about 4 hours.

26

Bachelor Thesis TFG

PM.4 Sustainability Report

For this task a little bit of research will be needed to forecast the social, economic
and enviromental impact for the planification, developing, data collection and
statistical study tasks. In one day full time will be ready, 4 hours.

PM.5 Meetings

To ensure that the thesis is going the right way I will have weekly meetings with
my director to receive guidelines and discuss the results and issues over the course
of the thesis. Every meeting will be about 30 min. 14 hours in total.

PM.6 Documentation

I will be writing the reports and all the documentation as I get through all the
steps along the research of this work. If we gather all the time I will spend writing
docs with latex they will be about 50 hours of the final result of time.

PM.7 Presentation

I will have to get ready for the final lecture, prepare some powerpoints with the
results and explanaitons of the process, It will take me the last 10 hours of the
estimated total time.

2.3 Previous Work

When we decided to start over with this project, there were some things that
needed to be done first.

PW.1 State of Art

Refering to the given code of the board from the previous TFG student I had
to look what were the errors coming out from the serial port and what were the
reasons behind this behaviour according to what was meant to be the protocol
LoRaMesher. Understanding the protocol was also essential to acomplish this
task. Its estimated duration is about 10 hours

PW.2 Setting up the work environment

Besides this previous task, there was also a time to get in touch with the developing
environment, the platformio IDE, the setup, and the boards and to get the previous

27

Bachelor Thesis TFG

code running in the same way as my predecessor had. Since there can be some
issues due to different Operative Systems setups, we forecast a whole week of work
to do this, 20 hours.

2.4 Developing

We have to develop several things in this project, we have among many other things
we have to finish the protocol implementations properly, we have to transmit the
logs to the server and we have to develop the server itself

D.1 Developing the Board

We have the following subtasks to reach out all the forecast tasks in this thesis.
These are

1. Fix the protocol :80 hours

2. Get the boards connected to the wifi.This maybe is easy maybe is not: 80
hours

3. Transmit the logs to the server.We don’t know wether It may appear syn-
chronization issues or any other kind,lets estimate 100 hours of work

D.2 Developing the server

To develop the server we will use node.js and It’s something that can be quickly ,
in a week of work(80 h) we could have a server done and usable.

2.4.1 Integrating parts

We have two main tasks here

1. Containerizing the server :40 hours

2. Test: we will collect a small chunk of data to see that we have a operative
data channel between the boards and the server. I estimate a week of work
:40 hours.

2.4.2 Data collection

If everything is working we will have a whole day doing data collection, maybe
two.20 hours of work.

28

Bachelor Thesis TFG

2.4.3 Data preprocessing

We have to clean up the data, select the data and in general terms, get the data
ready to make the graphics. 60 hours.

2.4.4 Graphics

We will spend the last 60 hours doing graphics of the metrics from all the exper-
iments and writing down conclusions but these last ones are included into docu-
mentation time .

2.5 Resources

2.6 Human resources

I’m afraid I’ll be the only one working on this project, nevertheless I must say
that the previous TFG student, Sergi Miralles, did already a good job with the
first implementation of the LoRaMesher, as well as the Phd Student Roger Pueyo
Centelles who left a good collection of bibliography talking about his protocol and
its state of art . But from this point I’ll be the one in charge of validating the
reliability of the LoRaMesher. Even though being the only one working on it I’ll
describe the six roles I’ll assume during this research

• Project Manager : the person in charge of the coordination and planification
of the project and the one who writes all the documentation.

• Researcher: Designs the experiments, methodology and techniques in order
to acomplish the goals of the thesis .Also contributes to the documentation.

• Developer: Programs the boards and the server .

• Dev ops : Helps to integrate the different parts of the product and improves
the quality of the final result.

• Statistic: Deals with the data preprocessing, data cleansing and gets infor-
mation out of the graphics and studies.

• Tester: Ensures the good working of every element of a system,software or
Hardware.

29

Bachelor Thesis TFG

2.7 Material Resources

Besides me, I’m going to enumerate what resources are available to carry on this
TFG

• My Laptop : Acer Nitro Intel Core I7,used for developing the server, fixing
the LoRaMesher, deal with the data and write down the documentation.

• 4 TT GO T-Beam boards used for deploying the implementation of the
protocol, transmit data packets, sending data to the server, they are the
main hardware element of this project.

• Wires and batteries to plug the boards into my computer and being flashed
and having the chance of moving around the boards without being plugged
in.

• platformio IDE: the choosen IDE to fix up the LoRaMesher implementation.

• Overleaf : to write down all the documentation.

• Gantter : to make gantt diagrams in an easy way on the cloud.

• Trello to keep a log of the things done and the things to do.

• Elastic Stack: essential tool to deal with data, data preprocessing and doing
graphical work with data.

Here in table 3 we have a record of the tasks with the resources, the amount of
hours dedicated to each task and the roles involved.

2.8 Risk Management

Several things can go wrong during the course of doing this TFG. In the following
lines we will a take a look at them and we will try to figure out what could we do
to avoid them and what would it be an alternative plan if there is any.

• Not meeting the deadlines. Some of the tasks are planned in a very optimistic
way but whoever who has ever worked with this kind of hardware knows how
difficult can be sometimes to get the things done the way it was planned. If
there is something that is not working properly and I’ve been through the
half of the forecasted time for that task the only way out would be asking for
help. Luckily I keep a very good relationship with every professor that I’ve
had in this college and besides my Bachelor Thesis director I think I would

30

Bachelor Thesis TFG

Id Task Time Dependences Resource Role
PM Project Management 107h Laptop, Overleaf,Trello PM
PM.1 Scope of the project 15h Laptop, Overleaf, Trello PM
PM.2 Time planning 10h Laptop, Overleaf, Gantter,Trello PM
PM.3 Budget 4h PM.2 Laptop, Overleaf,Trello PM
PM.4 Sustainability Report 4h PM.3 Laptop, Overleaf, Trello PM
PM.5 Meetings 14h Laptop PM,D,T,S,DVOPS,R
PM.6 Documentation 50h Laptop, Overleaf, Trello PM,R
PM.7 Presentation 10h DT.3 Laptop PM
PW Previous Work 30h Previously done R,D
PW.1 State of the Art 10h Previously done Laptop,Trello R
PW.2 Setting up the work environment 20h Previously done Laptop, Platformio, Trello D
D Development 340h PM.4 Laptop, Platformio
D.1 Development of the board 260h Laptop Platformio, TT Go T-beam board,wires, Trello D
D.1.1 Fix the protocol 80h I.2 Laptop Platformio, TT Go T-beam board,wires, Trello D
D.1.2 Connection of the Wifi 80h PW.2 Laptop Platformio, TT Go T-beam board,wires, Trello D
D.1.3 Transmit the logs 100h D.1.2 Laptop Platformio, TT Go T-beam board,wires,Trello D
D.2 Development of the server 80h D.1.3 Laptop, Trello D
I Integration 80h Laptop Platformio, TT Go T-beam board,wires, Trello
I.1 Containerizing the server 40h D.2 Laptop, Trello DEV OPS
I.2 Communication test 40h I.1 Laptop Platformio, TT Go T-beam board,wires,Trello DEV OPS ,T
DT Data Treatment 140h
DT.1 Data collection 20h D.1.1 Laptop,TTGO T-Beam, board, batteries, Trello S,R
DT.2 Data preprocessing 60h DT.1 Laptop, Elastic Stack, Kibana, Trello S
DT.3 Graphics 60h DT.2 Laptop, Elastic Stack, Trello S

Total 697H

Table 3: List of tasks, including dependences, resources and time. Roles: PM
stands for Project Manager, D for developer, T for tester, S for statistic, DVOPS
for DEV OPS, R for researcher, source:own elaboration

know exactly what should I ask to whom in case that there was something
not going the way I planned. So all these people would be my additional
resources.

• I’m through an Internship on a company. That means that I don’t have
all the time in the world to do this research.Probably my work there takes
away from me my most productive hours of the day increasing my stress and
damaging my well being.

• I have a 65% of disability due to mental health issues and I don’t know
wether I can handle out high levels of stress. I’m used to being stressed out
due to studies, but maybe this may become unbearable which is something
I don’t know right now. Lets cross fingers and I hope that I will be ok . To
prevent that I must be very strict with my sleeping time and find some time
every day to lose and enjoy otherwise It could be dangerous for me.

• Pandemics: Just like any other one in the planet I’m in the middle of the
covid 19 pandemic and though I’ll get fully vaccinated the coming weekend,
It’s definetly something that I must keep in mind so I must beware of going
into crowded places or big meetings. By now I would stay at home rather
than going to social activities.

31

Bachelor Thesis TFG

• Too ambitious goals: If I realize that the whole work is too much the approach
of the work may be slightly different. We must be aware that it’s not little
work what I’m trying to do here and many things may not go the way I
initially planned. If that happens I would ask to my Director what would
be the best thing that I could do to have something valuable in order to get
assessed. Maybe should I leave some experiments aside, maybe should I do
a deeply research about the obstacles I found and what are the solutions I’ve
been dismissing and why explaining deeply all the path I’ve been through.

2.9 Project deviations

This thesis was meant to be delivered at the end of January. Nevertheless due to
all my must do tasks, the last remaining subject at the FIB, my job as trainee IT
engineer and my limited abilities became in not being able to dedicate the amount
of hours I had to acomplish my goals at the right time. I couldn’t deliver results
for the previous report and I suffered from several delays. I will make a brief
description of the deviations of the initial project.

2.9.1 Time deviations

Since I was unable to meet the goals at the right time I had to rebuild a time
planning for the coming months taking profit from the extra time I had by the
end of January. Only having to attend to my job by the mornings, I had all the
evenings to dedicate to the thesis. That’s why I create a new Gantt diagram with
extra tasks showed in appendix C and new time planning for the remaining jobs
to get the desirable results.

2.9.2 Cost deviations

We are counting 20 hours a week of effective work. This will mean a certain costs
besides the initial budget. Here are the details 4
This is an aproximation because we were unable to execute all the previous job
hours, but it is a realistic record of all the hours we’ve been doing through all this
extra time . We had a contingence plan of 3895€ but in order to know what would
it be the final cost of the project we should make a readjustment of the whole task
division, as we will explain in the coming sections, the main goals of this thesis
has been modified briefly.

32

Bachelor Thesis TFG

2.9.3 Initial conditions deviation

When I started with this thesis I was working with a very precarious version of
LoRaMesher. I did what I could during that time but I did not meet the deadlines
properly. Luckily, after christmas, Joan Miquel Solé came out with a new version
and this was a very good new because his code was a lot more ordered, much more
easy reading code, more easily extendable, organized and well thought. And this
event was crucial for the right development of the thesis because I must admit that
whit the previous version I was totally working blindfolded . Once I had the new
code working I started being able to rethink what was about to do to get the data
out of the boards in an efficient way .

2.9.4 Goals deviation

Once I established a communication channel between the boards and our node
server I found myself trying to get the data out of the mongo container and I
found it quite messy doing all the process by hand and I thought that there must
be somehow of doing this automatically that would save a lot of time in the future
for extracting plots out of the data without any human action in the middle. So
I benefit from the Elastic Stack, I discovered the elastic javascript client and I
thought that this would fit my needs perfectly. Doing it like this would be a
lot easier than making a data cleansing, data transformation, loading the data
through logstash every time we wanted to make an experiment and a lot easier
and faster. So my thesis focus would change a little bit from getting results out of
the experiments with the boards, to build a real-time monitoring system that will
allow us to make experiments for longs periods of time, not only five minuts as we
were supposed to do in the very first moment. However we will try to make some
experiments as well and validate our monitoring system.

ID Task Work hours Roles COSTS COSTS+SI
S.1 Studying new code 20 R,D 740€ 962€
C.1 Coding the new task 20 D 440€ 572€
CN.1 Connection with node server in containerized environment 20 DVOPS 400€ 520€
CN.1.1 Connection test with node 14 DVOPS,T 490€ 637€
RK Research with ElasticSearch and Kibana 20 R 300€ 390€
D.1 Dockerization Kibana, ElasticSearch 20 DVOPS 400€ 520€
I.1 Integration node, mongo, ElasticSearch 20 DVOPS 400€ 520€
VE.1 Validation experiments 20 R,S 700€ 910€
DP.1 Deploying to a public Ip 42 DVOPS 840€ 1092€
AD.1 Additional documentation 257 PM 6682€ 8686€

Total additional costs 11392 € 14809 €

Table 4: Table of extra expenses,source:own elaboration

33

Chapter 3

Economic Management and
Sustainability

Once we have defined the risks and how can we avoid them and what would it be
their alternative ways of reaching our research goals, we must estimate the costs
needed for the correct development of the research.
We can identify several kinds of costs, coming out of personal , material, extra
expenses,work spaces or additional hardware.
Additionally we will set up a contingence plan in order to face off the possible the
obstacles and extra expenses. For that that reason we will plan a batch to assume
the unexpected issues that may appear during the thesis.

3.1 Budget

3.1.1 Staff costs

We have defined 6 main roles for the development of this project. We have made
an approach of the wage of every role taking info from the web page glassdoor.com
[1] that has a record of the wages of all around the world. We have taken the
means for the city of Barcelona for every role as we show in table 5
We have the details of the costs of the work hours per task on the table 6. Notice
that we have multiplied by 1.3 to get the value from the hours of work, plus the
costs of the social insurance.

3.1.2 Generic costs

From the time planning, we have divided the whole project into tasks considering
for every task the human resources . The work will be developed from Monday to

34

Bachelor Thesis TFG

Roles Cost per hour
Project Manager 26€
Researcher 15€
Dev ops 20€
Developer 22€
Tester 16€
Statistic 20€

Table 5: Staff costs, source:glassdoor.com

Friday in my home, so we have considered that my 6m2 room for the computer as
an office, the market price of a place like this in this neighbourhood costs about
25 € per m2 and we have multiplied by 5 which is the number of months that this
project will last. In addition we have considered the internet connection during
this five months, about 50€ per month.
We shall not forget the Software costs. We are using free and mostly open source
software, nevertheless some of them do have some cost that we must consider as
we show in table 7 Last but not least, I would like to write a resume about the
costs of the hardware I have used for this research including the boards, wires,
batteries, and my laptop. We will consider that a year has 220 work days a year,
8 hours a day, therefore cost per hour per device is

Device_cost/lifespan ∗ 220 ∗ 8 (3.1)

As we show in table 8 We estimate a lifespan of 4 years for the computer, and
the boards can last about 10 or 15 years without maintenance. We consider that
we charge the batteries one day every two days but we only use them in the data
collection task.But to lifespan effects we calculate one cycle every two days. The
result is 0.68 years. On the other hand the wires can last for 20 years in perfect
conditions if they all well stored or even more.

3.2 Contingence Plan

As any other project in the IT environment, we must have a well defined contin-
gence plan, with a calculation of the cost overruns due to obstacles or unexpected
issues with the devoloping of the different parts of the work. Since we are dealing
with technologies we haven’t work before, the possibility of finding problems along
the way to our goals is remarkable so we have made a forecast of an increasing of
15% over the total cost. To understand all this stuff a little bit better we have
build up the table 9

35

Bachelor Thesis TFG

ID Task Work Hours Roles Costs Costs+SI
PM Project Management 107h 4834€ 6284.2€
PM.1 Scope of the project 15h PM 390€ 507€
PM.2 Time Planning 10h PM 260€ 338€
PM.3 Budget 4h PM 104€ 135.2€
PM.4 Sustainability Report 4h PM 104€ 135.2€
PM.5 Meetings 14h PM,D,S,DVOPS,R,T 1666€ 2165.8€
PM.6 Documentation 50h PM,R 2050€ 2665€
PM.7 Presentation 10h PM 260€ 338€
PW Previous Work 30h 590€ 767€
PW.1 State of the Art 10h R 150€ 195€
PW.2 Setting up of the work environment 20h D 440€ 572€
D Development 340h 7480€ 9724€
D.1 Development of the board 260h D 5720€ 7436€
D.1.1 Fix the protocol 80h D 1760€ 2288€
D.1.2 Connection to Wifi 80h D 1760€ 2288€
D.1.3 Transmit the logs 100h D 2200€ 2860€
D.2 Development of the server 80h D 1760€ 2288€
I Integrating parts 80h 2240€ 2912 €
I.1 Containerizing the server 40h DVOPS 800€ 1040€
I.2 Communication test 40h DVOPS, T 1440€ 1872€
DT Data treatment 140h 3100€ 4030€
DT.1 Data collection 20h S,R 700€ 910€
DT.2 Data preprocessing 60h S 1200€ 1560€
DT.3 Graphics 60h S 1200€ 1560€

Total 697h 18244€ 23718€

Table 6: SI stands for Social Insurance,Roles are Project Manager, Researcher,
Developer,Statistic, Tester, DevOps.source: Own elaboration

Software Cost per month Months Total Cost
Plattformio IDE 0€ 5 0€
Overleaf 0€ 5 0€
Gantter 5€ 5 25€
Trello 0€ 5 0€
Elastic Stack 0€ 5 0€
Total - - 25€

Table 7: Software expenses,source:own elaboration

36

Bachelor Thesis TFG

Hardware Price Units Lifespan Hours Amortization
Laptop Acer Nitro 5 999€ 1 4 years 697h 98,90€
Board TTGO T-Beam 37.95€ 4 15 years 320h 1.84€
Wires 9.99€ 4 20 years 300h 0.34€
Batteries 7.95€ 4 0.68 years 20 h 0.53 €
Total - - - - 102€

Table 8: Costs from hardware resources,source: own elaboration

Type Cost Contingence
Place 1000€ 150€
Software 25€ 3.75€
Hardware 1223€ 184€
Staff 23718€ 3558€
Total 25965€ 3895€

Table 9: Contingence table of 15% per type of cost,source: own elaboration

3.2.1 Unexpected issues

Finally we must have in mind that some problems may appear during the develop-
ment of the project. The most likely things that can happen are troubles with the
development of the boards trying to send data to the server, or maybe some kind
of issues trying to get the boards connected to the wifi network . And these have
a quite high probability to happen. In the following lines we will try to quantify
how often this kind of issues may appear. At the end of the description in table
10 we have a list of every unexpected issue with its cost aside.

1. Increase of the boards’ development time. Since these board work with
an RTOS and they are absolutely unknown technology for me the chances
of finding any kind of problem during the process of connection to the wifi,
fixing the LoRaMesher or transmitting the data to the server are high, about
a 20% of probability. The development time would increase 25 hours and
probably that would mean an increase of the integration test time by 10
hours.

2. Increase of the server’s development time .Though it will be developed in a
technology I know a little, it may not work at glance. The chances of the
server not working the way I planned are high, about a 25% and maybe it
takes 20 extra hours of work plus 10 hours of integration testing.

3. Device failure. If the boards get wrecked I will need to get a new ones.

37

Bachelor Thesis TFG

Unexpected issue Cost Risk Total cost
Increase of board development time 710€ 20% 142€
Increase of server development time 600€ 25% 150€
Failure of laptop 1000€ 10% 100€
Failure on board 1 37.95€ 5% 1.89€
Failure on board 2 37.95€ 5% 1.89€
Failure on board 3 37.95€ 5% 1.89€
Failure on board 4 37.95€ 5% 1.89€
Failure on libraries 820€ 5% 41€
Total 3282€ - 441 €

Table 10: Costs overrun, source: own elaboration

Nevertheless, this would be quite strange.Its probability is around 5%. A
little bit more probable is to have any trouble with my laptop,about 10%
of chances,and that would be quite a big mess. Getting my laptop repaired
could mean a whole week of delay on the tasks time planning. That’s about
20 hours more at the task I would be developing.

4. Failure on the libraries. LoRaMesher is using a special radio libraries to
transmit data packets, as well as to get connected to the wifi.Though this
libraries have been tested and they are expected to work properly, there
is always a small chance that things were not designed to work with your
boards in the same way as they did the boards they did the tests with. It
would take about 30 hours of extra work and 10 hours of integration testing.
The risk of this to happen is around 5%

Finding Unexpected issues may cause a delay at the time of reaching our goals in
this research, whether if it is a development time issue tha I would mean about a
week of delay, or It’s a failure on libraries or even a health issue. Some of these
are easier to overcome, some of them are only a matter of time, some other may
become a real problem and there will be no good enough alternative plans. In that
case we could leave some of the sub goals aside or maybe change the point of view
of the whole research .

3.2.2 Total costs

Once we have introduced all the costs of the project, in the table 11 we have
written down the total cost of the project which is 30301€

38

Bachelor Thesis TFG

Type Cost
Place 1000€
Software 25€
Hardware 1223€
Staff 23718€
Contingence 3895€
Unexpected 441€
Total 30301€

Table 11: Total cost of the project,own elaboration

3.3 Control Management

Once we have defined the initial budget, we will define the control mechanism to
avoid deviations as well as numerical indicators that help to the control of the
whole thing. In the weekly meetings, every time a task will be finished, the budget
will be updated with the real time of effective work comparing them with the
estimated time.
In order to have the unexpected issues under control, when a task will be finished
the additional expenses will be written down, and they’ll be compared with the
unexpecteds’ forecast and the contingence plan. Following this methodology we
will be able of detecting any deviation or doing a forecast about any task to need
to be increased or reduced.
Now lets introduce the numerical indicators :

1. Deviation staff costs per task:
(estimated_cost− realcost) ∗ realworkhours

2. Task execution deviation
(estimated_work_hours− real_work_hours) ∗ realcosts

3. Total Deviation on task execution
(estimated_total_cost− realtotal_cost

4. Total estimated costs of unforseen
unforseen_estimated_cost− unforseen_real_cost

5. Total hours deviation
estimated_work_hours− real_work_hours

39

Bachelor Thesis TFG

3.4 Sustainability

In every project it’s important to do a sustainability analysis having in mind
the three dimensions: economic, social and environmental. In the coming lines the
author of the thesis will do a self evaluation about the domain of the sustainability
competence followed by an analysis of the three dimensions of the work based on
a compendium of questions.

3.4.1 Self Evaluation

Along the Informatics degree we have been taugh to consider the environmental
impact when you are about to start a project of any kind and what should we have
in mind when we are talking about sustainability .In spite of being taught about
sustainability It’s at the point when you are about to start a thesis like this when
you realize how essential this subject is.
From a very personal point of view, I have always considered the economical side
of every enterprise I get into in order to ensure the viability since when I get
enrolled into a project like this, we’ll be looking for an economic improvement of
an existent solution .
Nevertheless when we get to the point of analyzing the social point of view, we
don’t realize that much how essential this can be as well as the environmental side.
Searching along the whole internet I have realized that the improvements in the
IoT world must look after the environment and become also an improvement of
the whole society as well.
For all these reasons I strongly think that having an usable and efficient commu-
nication protocol for the upcoming IoT world can allow us to make an easier to
handle world which is one of the goals that technology was made for, improve the
life of the people on earth with the less environmental damaged.

3.4.2 Economic dimension

Considering that knowing the performance of this new protocol could bring us a
lot of benefits in the field of IoT.
Since until now there has been only solutions using single channel transceivers with
an iterative algorithm using different spread factors but none of this was thought
for multi hop algorithms, I think that a thesis to study the real possibilities of a
new algorithm for less than 35000€ is a very fair cost. And IoT and pervasive
computing is one of the most pushing technologies in the present, so any improve-
ment in the field will have lots of applications on the industry, the medicine or the
transport.

40

Bachelor Thesis TFG

3.4.3 Environmental dimension

The elaboration of the boards to deploy this protocol have an environmental im-
pact, just like any other electronic device just like the laptop I’ll be using to develop
the rest of the parts of the project. Hence we can not avoid using them since we
are in the Informatics degree and there will be a hardware to work with despite
all the environmental impact that it implies

On the other hand the uses of this boards may help to track helds of animals in
danger of extinction, or maybe sea mammals among many other uses caring for
our environment wild life which is something really priceless.
All the meetings will be held online, but I could do them in person due that my
home is 5 minuts by walking to the upc and for me It wouldn’t mean further prob-
lem. To carry on the whole thesis, the environmental impact will be as minimun
as possible to this kind of enterprise.

3.4.4 Social dimension

Having an usable implementation of this new communication protocol and know-
ing how good it works, may become in something really useful in our society. The
multiple uses of the IoT in our daily tasks in the industry world is unending.

The thing that catched my eye the most of this project was the data treat-
ment,considering that statistics was a field which I always wanted to know deeper,
and that It was about a protocol whose idea was from someone of the UPC I
have a colleague relationship with since 2007, which for me was kind of significant
meeting us again in this circumstances.

The project was born from the needs of quantifying the well working of this Lo-
RaMesher multi hop new made up protocol, bringing it from the theoretical idea
to the final implementation.

3.5 Legal considerations

3.5.1 LoRa

We have to be careful at the time we will be gathering data from the LoRa Mesh
network status . And it’s not about how many post request we are sending towards
the server since the spectrum for the wifi we will be using is free to use for private
goals, but the LoRa data that the boards we will be sending among the different
nodes has to follow certain rules in order to follow the current spanish legislation

41

Bachelor Thesis TFG

Region Frequency(MHz)
Asia 433
Europe, Rusia, India, Africa 863-870
US 902-928
Australia 915-928
Canada 779-787
China 779-787,470-510

Table 12: LoRa Frequencies by Country. Source: “Frequency Plans by Country”,
2021[11]

about usage of the radioelectric spectrum . Lets take a quick look at legislation
set up by the European Union in the case of Spain as we show in table 12 and in
other regions of the world .
Along all the experiments that we performed testing the monitoring system that
we finally built, not only we had to consider the Industrial Scientific and Medical
band that our LoRa modules would be working in, but the percentatge of the time
that we will be occupying during our long-term transmissions on a given channel
in order to meet the local laws requirements in order to not break the law referring
to spectrum usage for these kinds of scientific goals. In this particular case, in
Spain we are only allowed to transmit a 1% of the duty cycle although we could
avoid this using the Channel Activity Detection(CAD)[26]. The frequence of the
LoRa boards is given by the implementation of the LoRaMesher library, but the
usage of the duty cycle depends on the configuration which we flashed every board
to execute the experiments and gather the data. Maybe for small experiments we
can be more flexible with the legal considerations, but for long-term monitoring
experiments we must be careful with these kind of things and be fair with the
spectrum usage.

3.5.2 General Data Protection Regulation

We will be doing experiments in a controlled environment all the time and we are
not sending personal sensible information and our post requests towards the node
server are being sent in plain text since we are only doing experiments with a
raw implementation of the protocol and the boards are not binded to any person
or entity. If wanted to monitor in real time the behaviour of the protocol in a
real usage case over the field we would have to be very careful whether we will
be gathering data from a board which only belongs to someone or some kind of
institution . For that task we have already done some researchs on the Elastic
Stack in order to have a TLS security layer in order to avoid third people to read

42

Bachelor Thesis TFG

the content of the monitoring packets in order to meet the European directive
"General Data Protection Regulation" “Official Legal Text”[21], but by the time
this Bachelor Thesis was made, a full production version was not acomplished yet
but nearly done.

3.5.3 Intelectual Property

In the very beginning of the project, the initial idea was to make everything open
source, since there is not much code whithin.It has been more a matter of join-
ing different software and hardware components together and make them work.
However at the end of the thesis I was hired as research support tecnician to go
on with this work, and I have some clauses that obly me to not share any of this
material to third people without the permission of the UPC. So any license that
this code may have must be first agreed with the UPC.

43

Chapter 4

Analysis of the LoRaMesher library

Lets begin with the inner structure of the LoRaMesher library for the process
and packets management. Joan Miquel build a clear structure of priority queues
to handle all the packets travelling among the TTGO-Tbeam boards. For that
reason he wrote down a template with the following structure in list 4.1 .

1 class PacketQueue {
2 packetQueue < uint32_t >* first = nullptr ;
3 public :
4 void Add(packetQueue < uint32_t >* pq) ;
5 template <typename T>
6 packetQueue <T >* Pop () ;
7 size_t Size () ;
8 void Clear () ;
9 };

Listing 4.1: LoRaMesher Priority Queue template source : Joan Miquel Solé’s
Bachelor Thesis

Made out of this template, he built up three different kinds of queues for three
different objectives :

1. Received queue : this queue is for the received packets in order to not miss
any received packet they are put in this queue.

2. To send queue: this data structure holds all the packets that are meant to
be sent.

3. Received user packets: this queue is the place where we place all the packet
for the user that we receive from the process packet routine,this adds it to
its priority queue.

Then we have a number of routines that run among all the cores with specific goals
ech one. These are the following

44

Bachelor Thesis TFG

• On receive. The highest priority process. It’s supposed to be very light in
order no not lose any packet, it takes the packet and encapsulates it in a
packet queue and puts it into the queue of received packets.

• Send Hello Packet. This routine activates every 30 seconds creating a packet
and encapsulating in a paquet queue and puts it in the to send queue.

• Process packet. With this routine packets are processed, and it gets activated
every time a notification from the On receive routine arrives. Process the
first packet to arrive and it’s in charge of the packet forwarding and of the
routing protocol putting all the packets in the to send queue. Also handles
other protocols. This routine might be very useful for our goals.

• Send Packets. This routine sends packet every x time. It’s crucial for the
duty cycle and to acomplish the requirements of the wavelength that it’s
supposed to have to follow the laws of the legislation of the European stan-
dards.

• Receive users data. This routine receives a notification every time a node
receives a packet for the user of that node, basically it is a loop waiting for
notifications. It ’s implemented by the users

When a signal is created, the function that receives it gets maximum priority, the
packet is created and gets enqueued on Received queue that sends a signal to be
processed. This concrete process can be paused at any moment for the packets to
be keeped on arriving.

4.1 Types of packets

In the same way we must consider the three kinds of packets that LoRaMesher
has . On one side we have the generic packet showed in list 4.2

1 # pragma pack (push , 1)
2 template <typename T>
3 struct packet {
4 uint16_t dst ;
5 uint16_t src ;
6 uint8_t type ;
7 uint8_t payloadSize = 0;
8 T payload [];
9 };

10 # pragma pack (pop)

Listing 4.2: Generic Packet source Joan Miquel Solé’s Bachelor Thesis

45

Bachelor Thesis TFG

One of the smartest points of this declaration are the pragma instructions that
will align the size of the data structure to the architecture of the memory of the
board to fill the gaps. In this case is everything aligned to one byte size. At the
end of the declaration the alignment returns at its original size.
Coming up in the list 4.3 we have the second type of packet. Lets have a look at
it.

1 struct networkNode {
2 uint16_t address = 0;
3 uint8_t metric = 0;
4 };

Listing 4.3: Routing packet,source Joan Miquel Solé’s Bachelor Thesis

The total size of this packet is 3 bytes, it contains an address and a metric. And
finally we will describe the data packet which has the following structure in list
4.4 :

1 # pragma pack (push , 1)
2 template <typename T>
3 struct dataPacket {
4 uint16_t via ;
5 T payload [];
6 };
7 # pragma pack (pop)

Listing 4.4: Data Packet, Joan Miquel Solé’s Bachelor Thesis

It’s also aligned to 1 byte and follows the same pragma structure as the generic
packet. It contains a via field, and payload that can be as big as 248 bytes, since
He is using two bytes for the via attribute.
The last thing we must consider to start working on it will be the structure of
the packet queue showed in list 4.5 where the packets will be encapsulated to be
stored, sent or put in any of the queues.

1 # pragma pack (push , 1)
2 template <typename T>
3 struct packetQueue {
4 uint32_t timeout ;
5 uint8_t priority = DEFAULT_PRIORITY ;
6 LoraMesher :: packet <T >* packet ;
7 packetQueue <T >* next ;
8 };
9 # pragma pack (pop)

Listing 4.5: packetQueue structure Joan Miquel Solé’s Bachelor Thesis

The remarkable fields are the timeout that will be used to discard the packet when
finishes, the priority that tell us whick packet will be send, processed or stored
first, remembering that the higher value, higher the priority. Following the above

46

Bachelor Thesis TFG

described logic we have build the design of what will be the monitoring system,
trying no not interfere the correct working of the LoRaMesher.

4.2 FreeRTOS

All the code was scheduled by the FreeRTOS, for this reason Joan Miquel created
an individual task for every routine, as an example of it I will write down in list
4.6 the implementation of the highest priority task in my comrade code:

1 int res = xTaskCreate(
2 [](void* o) { static_cast <LoraMesher *>(o)->receivingRoutine ();

},
3 "Receiving routine",
4 4096,
5 this ,
6 4,
7 &ReceivePacket_TaskHandle);

Listing 4.6: Receiving routine task implementation, source: Joan Miquel Solé’s
Bachelor Thesis

In this 4.6 task we can see several parameters. The first one is the routine that
will be executed within the task, Receiving routine is just a name for the task,
4096 is the number of words (not bytes!) of the given task, this is the pointer to
the parameters passed into the task, 4 is the priority of the task, in this case the
task designed for receiving packets is the highest priority task. The last parameter
is a pointer to the taskhandle, this will be very useful in the destructor of the
class where we take the tasks out of the FreeRTOS scheduler. Besides this task
Joan Miquel build 4 more tasks, each task with a lower priority from 3 to 0 in
the following order : Sending routine, Hello Routine ,Process routine and Receive
user routine. . By default, FreeRTOS uses a fixed-priority preemptive scheduling
policy, with round-robin time-slicing of equal priority tasks:

• "Fixed priority" means the scheduler will not permanently change the pri-
ority of a task, although it may temporarily boost the priority of a task due
to priority inheritance.

• "Preemptive" means the scheduler always runs the highest priority RTOS
task that is able to run, regardless of when a task becomes able to run.
For example, if an interrupt service routine (ISR) changes the highest pri-
ority task that is able to run, the scheduler will stop the currently running
lower priority task and start the higher priority task - even if that occurs
within a time slice. In this case, the lower priority task is said to have been
"preempted" by the higher priority task.

47

Bachelor Thesis TFG

• "Round-robin" means tasks that share a priority take turns entering the
Running state.

• "Time sliced" means the scheduler will switch between tasks of equal priority
on each tick interrupt the time between tick interrupts being one time slice.
(The tick interrupt is the periodic interrupt used by the RTOS to measure
time.)

Joan Miquel avoided starvation of the lowest priority tasks because the highest
priority tasks is waiting for a notification with the following 4.7 instruction and
gets blocked:

1 TWres = xTaskNotifyWait(
2 pdFALSE ,
3 ULONG_MAX ,
4 NULL ,
5 portMAX_DELAY // The most amount of time possible
6);

Listing 4.7: Receiving Routine waiting implementation,source: Joan Miquel Solé’s
Bachelor Thesis

xTaskNotifyWait() waits, with an optional timeout, for the calling task to receive
a notification. If the receiving RTOS task was already Blocked waiting for a
notification when the notification it is waiting for arrives, the receiving RTOS task
will be removed from the Blocked state and the notification cleared. While this
routine is blocked, gives space to lower priority routines to reach the processor.
The second place in terms of priority is the sending routine, but this routine is
sleeping for 10 seconds so it will not be ocupying the processor all the time. The
following routine in priority terms is the process routine. This routine is also
waiting for a notification, but uses the instruction we show in list 4.8 which differs
from the previous one.

1 ulTaskNotifyTake(pdPASS , portMAX_DELAY);
2

Listing 4.8: process routine mutex implementation,source:Joan Miquel Solé’s
Bachelor Thesis

This is the standard form that FreeRTOS has of implementing a mutex. When
entering at the routine it takes the mutex until a notification is arrived.
And then the last routine in the priority scale that will have to wait to everyone
to be blocked or waiting will be the receive users routine.

48

Chapter 5

Design of the monitoring system

For the monitoring system we have considered using some extra data structures
and a couple of routines that will enqueue the packets to be send towards the
server and will unwrap the packets and get them ready to be sent through a post
request into different mongo models in our containerized server. But afterwards
we changed our mind and decided to do it as simple as possible, at least for this
first fully functional version. We will leave it as a simple task with a very simple
routine that will grab the processor every 30 seconds and will perform a post
request. Losing one of this messeges is not critical since all the info contained
in one message will be as well in the next one, so having a queue to send every
message towards the server would be counterproductive because it will only make
having older info in the server in case of packet loss and we want to have the newest
one. So if a post request for any reason doesn’t reach its destiny, don’t panic, wait
for the next one, the info will take a little bit longer to get updated but it will be
finally fine.

5.1 Keeping up FreeRTOS stability

All the inherited code from Joan Miquel thesis is built over a built-in FreeRTOS
system as we told before.Considering this we have only one more routine to add in
the scheduler and this is a clear advantatge comparing to other possible solutions
since we want to monitor the node traffic with the minimum overhead in the
scheduler. We have an aproximate idea of which priority we must assign to our
new routine. The added routine must get blocked or be waiting to leave processor
space to lower priority routines to keep on executing, as well as the routines with
the same priority reach the processor. Since the receiving routine is the most
prioritary we will leave it as it is because losing packets is critical for the good
working of the protocol. We dismiss as well the possibility of sharing priority with

49

Bachelor Thesis TFG

sendPackets routine because we think that this routine must not be interrupted if
possible. We have four main options left:

1. Leave the added routine at the same priority as send Hello Packet routine,
the priority number 2 and leave the scheduler to do its job between the two
tasks aiming for their piece of processor time. Send Hello packet routine is
not such a time dependent routine and its working it’s not that critical for
the whole protocol at the proper time.

2. Leave the added routine one step below in the priority scale, the number 1,
shared with the process packet routine. We could have a try setting the new
routine to this priority and see whether we see any improvement.

3. Set the priority to 0 just like the receive user routine. Lower priority tasks
may be in danger of inanition.

4. The last chance would be shifting all the priorities one position, and place
our new routine somewhere below the second highest priority.

To find the best priority fit we will have to do some experiments and observe
if there’s any packet losing event or any task that doesn’t reach the processor
properly. But due to the lack of time to do further researchs, we will start setting
the priority for the new task at two, observe the behaviour and if there’s some
extra time do some experiments considering other priorities.

5.2 Options to build the data flow to the server,
client side

To send the data from the boards towards the server we considered a couple of
libraries with these fucntionalities. Since we are working with FreeRTOS we heard
about the built it library of RTOS designed to establish an http connections to-
wards a server. This library is called corehttp.

5.2.1 coreHTTP

This is supposed to be the built-in library of FreeRTOS to build requests from an
IoT devices running this RTOS . It provides a subset of the HTTP 1.1 standard.The
HTTP standard provides a stateless protocol that runs on top of TCP/IP and is
often used in distributed, collaborative, hypertext information systems. This li-
brary has been optimized for a low memory footprint. The library provides a fully
synchronous API to allow applications to completely manage their concurrency.

50

Bachelor Thesis TFG

coreHTTP also operates only on fixed buffers, so that applications have complete
control of their memory allocation strategy providing a high-level simple API to
serialize request headers, send the request, and receive the response. It is decou-
pled from the underlying network drivers through a two-function send and receive
transport interface[4]. The application writer can select an existing transport in-
terface or implement their own, as appropriate for their application.The library
has proofs showing safe memory use and no heap allocation, making it suitable for
IoT microcontrollers, but also fully portable to other platforms.This library can
be freely used and is distributed under the MIT open source license.
Nevertheless, despite all these functionalities and optimizations, we found some
problems when we tried to use it. We will explain briefly what was all about when
using this library.

• The library has a very complex sintax. It’s meant to be used at a very
high explotaition of resources from the boards and to have a very good
performance in production for professional applications but this adds a thick
layer of using complexity .

• The using examples are quite scarce, and they were all designed to work with
aws, another technology wich I don’t know. It’s possible to use a server of
your own but the documentation I found was really unclear for the few data
I wanted to transmit and It was too difficult to adapt.

• All the documentation was specially focused on a windows environment and
I do work with a linux environment. Changing of environment or trying to
find the right info for Linux and PlatformIO was absolutely out of reach.

• In general terms it was a library full of features but too difficult to read,
understand and use for the home data transfer system that we wanted to
build and I had already a lot of job done from the server side and it was too
difficult to extract only the most interesting functionalities, and leave aside
all the rest.

For all these reasons we had to discard this data transfer library and look for better
and more simple options to take a few data out of the TTGO-TBeam boards which
is what we want to do for this thesis.

5.2.2 Arduino’s HTTPClient

HTTPClient is an arduino module specially thought to execute simple http re-
quests. Comparing to the previous library, this one has a lot of advantages.

• Very easy reading and using library

51

Bachelor Thesis TFG

• Very well documented and plenty of examples with a huge community

• Very flexible and easy to adapt to previous code

Maybe this library is not so well optimized but we will do our best to enhance his
performance working together with the LoRaMesher, and taking advantage of its
simplicity, we had a data flow between our node server and the boards in a very
little time.

5.2.2.1 Using the HTTPClient

To perform an HTTP POST request we needed very few steps.

1. We take the address of the endpoint to open the socket towards the server

2. We perform the socket connection with the code on 5.1

3. We add some headers to we add some headers to the POST request to de-
termine whether are we going to send, a JSON or urlencoded data

4. We prepare the buffer with the content of the request with the given values
with an sprintf

5. We execute the post request.

6. We close connection

1 micliente3.begin(host3.c_str());

Listing 5.1: Socket connection from Network.cpp,source own creation

Post request data flow format Just like any other web application, in this
case we had two ways of sending data towards the node server. We could have sent
a JSON instead of sending a URL enconded request but we decided by this last
way for simplicity. JSON was also a choice to consider, but after a few tries we
saw that was more prone to show off panic core errors, which means that there was
a buffer overflow or a segmentation fault somewhere in the memory so we finally
decided that we will do it the simplest way for this thesis. We had to be careful
also doing it like this because there’s also a buffer limit to perform the request and
we had a lot of fields to send. We had to shorten as much as possible the length
of the request and the name of the fields, otherwise the boards started to reboot
spontaneously and that was an unwanted behaviour. Sending JSON had also had
another problem because there are two ways of sending JSON, with a fixed size
buffer, or dinamic size buffer. Everything put together just added complexity to
the working of the whole system so by the moment we decided to do it the other
way and discard sending JSON .

52

Bachelor Thesis TFG

5.3 Wifi connection

To transfer the data between the LoRa boards and our server side we needed to
have an stable Wifi connection. We didn’t have many choices to do that with
an ESP32 environment so we choosed the simplest one, the one coming with the
arduino framework called WifiClient that executes a simple wifi connection with
a ssid and a password as only parameters. The setup with the platformio might
become a little bit tricky when you are not used to. But the code and the theory
of the connection has no further complications as we see from the code in list 5.2

1 Serial.print("Connecting to ");
2 Serial.println(ssid);
3 WiFi.disconnect ();
4 WiFi.begin(ssid , password);
5
6 while (WiFi.status () != WL_CONNECTED) {
7 delay (500);
8 Serial.print(".");
9 }

10
11 Serial.println("");
12 Serial.println("WiFi connected");

Listing 5.2: wifi connection with WifiClient,source:own creation

5.3.1 Our Network LoRa Module

Using the previous libraries we have built up a Network module in charge of doing
the Wifi connections from every board to the internet, and sending the post request
every 30 seconds with the updates of the state of the incoming and outcoming
packets of each kind. It is in charge of updating all the packet counters with
public methods that will be called from the LoRaMesher code every time a packet
is received or put in the queue to be send.So the Network module is minimally
invasive inside the LoRaMesher code,only a few calls to these public methods 5.3
from the Network module in the proper code line numbers. Lets make clear with
a brief description of every counter update method.

• Send Packets are the total number of packets that are being sent including
data and routing packets

• Rechellopackets are total of the received hello packets in the system

• Broadcast are the received packets which destination is the broadcast ad-
dress. Remember that data packets are sent via broadcast and only the
node shall keep the ones that has its destination the node itself.

53

Bachelor Thesis TFG

• Forwarded packets are the received packets that will be forwarded to other
node, that means that I have the destiny inside my routing table and the
packet will take its way .

• data packet for me are the number of received data packets which destiny is
this node and I should keep.

• I am via are the counter that keeps the record of the received packets that
are data packets and the via is this node.

• Destiny unreach are the packets that I will delete because the destiny is
unreachable.

• Sent hello packets, as its name says are the routing packets that are sent by
this node.

• The last counter are the data packets that I receive but they are not for me
so I shall delete them. This means that these packets are not any of the
previous kinds of packets.

1 void incReceivedPackets ();
2 void incSendPackets ();
3 void incRecHelloPackets ();
4 void incBroadcast ();
5 void incForwardedPackets ();
6 void incdataPacketforMe ();
7 void incIamVia ();
8 void incDestinyUnreach ();
9 void incSentHellopackets ();

10 void incNotForMe ();

Listing 5.3: Details of network.h,source:own creation

The next important thing is encapsulate this routine in a task to be inserted in
the scheduler with the code in 5.4

1 res = xTaskCreate(
2 [](void* o) { static_cast <Network*>(o)->sendData (); },
3 "Sending data Routine",
4 4096,
5 this ,
6 2,
7 &SendingData_TaskHandle);

Listing 5.4: Network module main task,source: own creation

The creation of the task had no further problems since I only had to follow the
examples on Joan Miquel code of task creating process. It has only a pointer

54

Bachelor Thesis TFG

to a data sending routine that sends info every 30 seconds, a size in words, and
a priority that we set to 2. We thought that 2 would be a good priority for the
beginning, of course this is not an absolute value, but we thought that this priority
couldn’t be much higher because the higher priority tasks are in charge of receiving
packets and send packets, so we thought that this routine could share priority with
the hello packet sender routine because it’s not a time critical routine because
interfere with higher priority routines may give as a result packet loss issues which
is not desirable. Nevertheless we will make some experiments to ensure the correct
working of the whole system.

5.4 Server side

First of all we needed to develop a server. We decided to use Node for no particular
reasons. One of them was my previous experience in the field, but we could have
used another language or framework, just like Python with Django, Java, php or
whatever. But in this case we will do it with node.

5.4.1 Node.js

We developed a node server taking a project from the AC department as an exam-
ple. The project was called Cow Localizer, a work developed over boards TTGO-
Tbeam to gather data about cows’ coordenades to a node server. We added some
more models, some more controllers,and some more routes to the server to adapt
them to the data we wanted to collect. In addition we added some exception
handling events for a better testing .

5.4.2 Mongo

Since the project I took as an example was already implemented using mongo as
a database, the straight way was keeping the same logic to add my models to
the server. It’s a very well known NO-SQL database and works very well along
with node thanks to mongoose, the library that connects the node environment
and the mongo database. It’s very flexible and scalable, widely used for plenty
of goals worldwide, and also will suit for this thesis. We could have used a file
as a persistence, but having almost all the server written down, the decision was
already taken.

5.4.2.1 Dockerizing the server

To enhance the portability and usability of the server we invested a little time
dockerizing the server and the database wich is something that the team of the

55

Bachelor Thesis TFG

CowLocalizer project didn’t do. The main issue doing this was that we needed to
dockerize the node server and the database separately. The dockerfile of the node
server was straight away as we show in list 5.5

1 FROM node:carbon as builder
2 WORKDIR /usr/src/app
3 COPY package *.json ./
4 RUN npm install
5 COPY . .
6 EXPOSE 8080
7 CMD ["npm","run","dev"]

Listing 5.5: node Dockerfile,source: own creation

It is based on a prebuild image of node took from the web page dockerhub using a
very light version of linux called carbon with the minimum features to run node.
To run both containers and establish a communication channel between them I
had to use docker-compose. The process of developing a docker-compose file, with
persistence layer, was a little bit tricky but I finally did it the right way, the file
goes like this docker-compose we show in list 5.6

1 version: "3"
2 #docker run -p 8080:8080 cowserver :1.0
3
4 services:
5 web:
6 container_name: myapp
7 restart: always
8 environment:
9 LORA_MONGODB_HOST : "mongo"

10 LORA_MONGODB_DATABASE : "lora -app"
11 ports:
12 - "8080:8080"
13 build: .
14
15 links:
16 - mongo
17 mongo:
18 container_name: mongo
19 image: mongo
20 volumes:
21 - ./todo -mongodb -data:/var/lib/mongodb
22 ports:
23 - "27017:27017"

Listing 5.6: node server docker-compose.yml,source:own creation

We see both containers, the web server, and the prebuild mongo container . In
volumes we see the path inside the container were the data will be stored and the
communication channel between them.

56

https://hub.docker.com/

Bachelor Thesis TFG

5.4.3 Monitoring tools

Since we are aiming to extract some graphics out of the metrics within the LoRa
boards we started thinking about what would it be the best way of getting the
data out of the board and plot the graphics. A very simple way would be doing
a Mongo export to a csv file and then using a high level language such as R o
python to visualize the graphics.This was the initial thing we planned. But doing
so we would have to do all the process manually . So we thought about a way of
doing that without any human action between which also was scalable and easily
customizable to new kinds of data and metrics, and able to monitor a network
status in real time . That’s why we thought that wouldn’t it be great if we had
a data server that allowed us to visualize all the data among the nodes using the
node server as a middleware, where the data flowed automatically towards the
data server in order to plot any kind of graphics in a very usable and simple way,
being able to gather big amounts of data in long experiments without not even
worry about extracting the raw data from the node server to the data center ?
That’s when we heard about several tools that could help us to do this. One was
the well known tool called Grafana and the other one is called ElasticSearch. We
will make a brief description of both of them and finally we will explain why we
have chosen Elastic Search for this concrete task.

5.4.3.1 Monitoring mesh networks:state-of-art

This won’t be the first time that a mesh network is being monitored.
In the last decade, mesh networks have been drawing considerable attention from
operators and service providers due to their potential for extending the coverage
of public hot-spots, corporate buildings or large-scale urban areas; enabling sav-
ings on cabling, deployment and maintenance costs. In this case, mesh networks
represent a continuation of the fixed/wireless networking infrastructure (Core and
Radio Access Network), with users being expected to demand similar services,
e.g., browsing, email, multimedia computing, collaborative networking applica-
tions. From a network management perspective, the challenge related to the de-
ployment of mesh networks lies in providing effective service provisioning despite
the unreliability caused by unpredictable addition, failure or removal of Network
Elements (NEs), and also network merging or partitioning. This requires provision
of adequate support for topology monitoring so as to enable applications, and/or
network administrators, to react in a timely way to any topology change. Note
that network monitoring is not restricted to this usage. On the contrary, network
monitoring may also be used for (i) providing statistics to pinpoint the sources
of network failure, (ii) verifying if the strategies adopted by (routing) protocols,
applications or middleware perform well, and (iii) locating potential bottlenecks

57

Bachelor Thesis TFG

so as to redimension the network. Traditional solutions for monitoring wire-line
networks provide poor performance in mesh networks due to several reasons. First,
unlike wired network, wireless mesh networks are characterised by the absence of
underlying infrastructure; the network being maintained by the combined effort of
the constituent hosts. Second, these hosts often operate under severe constraints
such as limited bandwidth for example. Third, mesh networks experience signif-
icant signal quality fluctuation caused by unreliable physical medium, obstacles,
interferences, hidden hosts and some varying conditions in the environment [24]
Previously researchers proposed a monitoring architecture based on a Topology
Controller (TC). A TC corresponds to a cluster head which is responsible for
building and maintaining a local view of its cluster(s) and the logical connections
between itself and the neighbouring cluster heads. A TC further acts as a me-
diation point and may also aggregate and correlate data for the cluster. TCs
co-operate with each other to build and maintain the network topology (i.e., the
entire network, or a particular level or a sub-tree of the topology). A full topology
consists of an aggregation of all local topology information for the TCs in that
topology. The monitoring service gathers measurement information from all, indi-
vidual, or even components of NEs. When the service on a NE receives a request
for information, it passes the request to all its subordinate nodes in parallel. Each
subordinate node, in turn, passes the request down the tree until the bottom of
the tree is reached. The data is then read by each node and passed up to the
superior nodes where it is aggregated and again passed upwards until the top of
the tree is reached.
Nevertheless, concerning to LoRa mesh networks there’s not much work about
monitoring systems gathering info using software tools, extracting data automati-
cally directly from the LoRa devices via http which is what we are going to try in
this thesis .

5.4.3.2 Grafana

Grafana open source software allows you to query, visualize, alert on, and un-
derstand your data no matter where it’s stored. With Grafana you can create,
explore and share all of your data through elegant, flexible dashboards [16] This
solution has several interesting features but Its purpose is slightly different than
the ElasticSearch one.Among them we have the following[5]:

• Unify your data, not your database
Grafana doesn’t require you to ingest data to a backend store or vendor
database. Instead, Grafana takes a unique approach to providing a “single-
pane-of-glass” by unifying your existing data, wherever it lives.

With Grafana, you can take any of your existing data- be it from your

58

Bachelor Thesis TFG

Kubernetes cluster, raspberry pi, different cloud services, or even Google
Sheets- and visualize it however you want, all from a single dashboard.

• Dashboards that anyone can use
Not only do Grafana dashboards give insightful meaning to data collected
from numerous sources, but you can also share the dashboards you create
with other team members, allowing you to explore the data together.

With Grafana, anyone can create and share dynamic dashboards to foster
collaboration and transparency.

• Data everyone can see
Grafana was built on the principle that data should be accessible to everyone
in your organization, not just the single Ops person.

By democratizing data, Grafana helps to facilitate a culture where data can
easily be used and accessed by the people that need it, helping to break down
data silos and empower teams.

• Flexibility and versatility
Translate and transform any of your data into flexible and versatile dash-
boards. Unlike other tools, Grafana allows you to build dashboards specifi-
cally for you and your team.

With advanced querying and transformation capabilities, you can customize
your panels to create visualizations that are actually helpful for you.

Besides all these features it has integration with several databases, including Elas-
ticSearch. Being this last tool a more powerful and complete solution we finally
decided that we would set up an elastic environment to gather all the data in the
same place, and we will keep the mongo initial database as a backup of all the
data. Doing so we will have not only the plots and the dashboards centralized,
but the data itself in a distributed search engine. To sum up it allows a future
integration with grafana if needed to.

5.4.3.3 Our proposal : ElasticSearch

Elasticsearch is a distributed, free and open search and analytics engine for all types
of data, including textual, numerical, geospatial, structured and non structured .
ElasticSearch has been developed out of Apache Lucene and was introduced by
first time in 2010 by ElasticSearch N.V. (now known as Elastic). It has a simple
API REST, it’s distributed, it’s fast and scalable and It’s the main component of
the Elastic Stack, a set of tools designed for the ingest,the enrichment, the storage,
the analysis, the visualization of big amount of data[3] . Commonly known as ELK

59

Bachelor Thesis TFG

Stack (standing for ElasticSearch, LogStash, Kibana), includes a great collection
of light agents known as Beats to send the data to ElasticSearch. In order to
not discard the already developed node server to gather the data, we will take
advantage from it and we will try to establish a data flow between the node server
and the ElasticSearch engine. For that task we will be using the Javascript client
for ElasticSearch

5.4.3.4 Kibana

Kibana is a free and open front end application that sits on the top of the Elastic
Stack, providing search and indexing capabilities for data indexed in ElasticSearch
[10] . We will be using Kibana as the user interface to monitor and manage
and ensure our cluster of the Elastic Stack . It was developed in 2013 by the
community of the Elastic Stack . It will allow us to plot any graphic we need
through dashboards. Or even would help us loading big amount of data through
LogStash if we weren’t unable to establish a data flow between the node server
and our search engine.

5.4.4 Dockerizing our Elastic Stack

When we decided to start using Elastic Search, we found ourselves in a dilemma.
Should we make a raw installation over our system or shouldn’t we find a quicker
and more simple solution ? Installing new Software in our Linux is always risky, it
is our main work tool and we need it to be stable as long as possible or we could get
in troubles . So we decided to download a dockerized version of the Elastic Stack,
and It was quite easy to find. After some searchs, we found a docker-compose file
that could be useful for our goals , we show it in the list 5.7 .Since we have begun
to know about how docker worked, adapting it to our own purposes would be now
something affordable.

1 version: ’2.2’
2 services:
3 es01:
4 image: docker.elastic.co/elasticsearch/elasticsearch :7.17.1
5 container_name: es01
6 environment:
7 - node.name=es01
8 - cluster.name=es -docker -cluster
9 - discovery.seed_hosts=es02 ,es03

10 - cluster.initial_master_nodes=es01 ,es02 ,es03
11 - bootstrap.memory_lock=true
12 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
13 ulimits:
14 memlock:

60

Bachelor Thesis TFG

15 soft: -1
16 hard: -1
17 volumes:
18 - data01 :/usr/share/elasticsearch/data
19 ports:
20 - 9200:9200
21 networks:
22 - elastic
23
24 es02:
25 image: docker.elastic.co/elasticsearch/elasticsearch :7.17.1
26 container_name: es02
27 environment:
28 - node.name=es02
29 - cluster.name=es -docker -cluster
30 - discovery.seed_hosts=es01 ,es03
31 - cluster.initial_master_nodes=es01 ,es02 ,es03
32 - bootstrap.memory_lock=true
33 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
34 ulimits:
35 memlock:
36 soft: -1
37 hard: -1
38 volumes:
39 - data02 :/usr/share/elasticsearch/data
40 networks:
41 - elastic
42 es03:
43 image: docker.elastic.co/elasticsearch/elasticsearch :7.17.1
44 container_name: es03
45 environment:
46 - node.name=es03
47 - cluster.name=es -docker -cluster
48 - discovery.seed_hosts=es01 ,es02
49 - cluster.initial_master_nodes=es01 ,es02 ,es03
50 - bootstrap.memory_lock=true
51 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
52 ulimits:
53 memlock:
54 soft: -1
55 hard: -1
56 volumes:
57 - data03 :/usr/share/elasticsearch/data
58 networks:
59 - elastic
60
61 kib01:
62 image: docker.elastic.co/kibana/kibana :7.17.1
63 container_name: kib01

61

Bachelor Thesis TFG

64 ports:
65 - 5601:5601
66 environment:
67 ELASTICSEARCH_URL: http://es01 :9200
68 ELASTICSEARCH_HOSTS: ’["http :// es01 :9200" ," http :// es02

:9200" ," http :// es03 :9200"] ’
69 networks:
70 - elastic
71
72 volumes:
73 data01:
74 driver: local
75 data02:
76 driver: local
77 data03:
78 driver: local
79
80 networks:
81 elastic:
82 driver: bridge
83 external: true
84 name: custom_network
85

84,4 Final

Listing 5.7: Elastic Stack docker-compose,first version,source:own creation

Notice that we have a little cluster of ElasticSearch made out of 3 elastic nodes,
es01,es02,es03, all exposed at port 9200, all with its layer of persistence. And finally
we have a service where Kibana works exposed at port 5601. All the services are
sharing the same network called elastic that will be using the bridge driver. One
more important thing. Since we have another two containerized services, the node
server and the mongo database, we decided to make the network external with the
name of custom_network in order to establish a communication channel through
this network. Therefore we will have to modify the previous docker-compose file
removing the link directive and replacing it by the networks directive and we will
be adding these last lines in list 5.8 to the docker-compose file:

1 networks:
2 myapp:
3 driver: bridge
4 external : true
5 name: custom_network

Listing 5.8: network docker-compose parameters

62

Bachelor Thesis TFG

Notice that our new network in this file will be called myapp. If there is any
connectivity problem possibly because the external network needs to be created
by running the command in list 5.4.4

1 docker network create -d bridge custom_network

The rest of the parameters are defining which are the master nodes, which are the
hosts, the name of the cluster among others.

5.4.5 The Javascript Elastic client

In order to make the connection between our node server and our search engine, we
could do two things. The first would be sending an average POST request towards
our ElasticSearch engine with the data in JSON format. Since ElasticSearch in-
dexes the data in JSON format that would be absolutely possible and there would
be no need of using further techniques . Nevertheless there is available a special
ElasticSearch client specially developed for using in JavaScript. We will make a
brief description of its inner working to understand how it manages connections
and asyncronous callings to reach scalability and enhance performance. This client
has the following features

• One-to-one mapping with REST API.

• Generalized, pluggable architecture

• Configurable, automatic discovery of cluster nodes.

• Persistent, Keep-Alive connections.

• Child client support.

• TypeScript support out of the box.

Besides this, we will have a look to the inner schema of the client in the fig 4
There’s an API available tha communicates directly with the transport layer where
the serialization and the parsing of the data takes place, and finally we have a
connections pool, one connection for every elastic node that we have available,
where the selector would choose a connection from the connection pool when it
gets the signal from the transport layer, it gives the connection to the transport
layer, transport runs the connection in order to send the request, and moves it to
the alive connections pool if it’s successful otherwise it will be moved to the dead
pool in order to retry the connection over time just like we see in the fig 5
Thanks to the API there’s only one more step to get our data indexed into our
elastic search engine, and this can be easily done from our node server with this

63

Bachelor Thesis TFG

Figure 4: Javascript ElasticSearch client working schema, source:Elastic site

Figure 5: Connections pool working schema,source:Elastic site

5.9 piece of code. This has several advantatges because with this middleware we
can manipulate data before ingest it into the engine, create new variables or do
whatever we need, any kind of calculus and leave to the minimum the overhead
between the boards and our node server. Of course there are other ways of doing
this, like a tool called pipelines available in the elastic environment that would
be like a kind of data pre processing, but this prevents us from learning further
features from the elastic engine if we are more used to node programming and
going straight forward.The most tricky issue of this call to the API was the local
address field because we wanted to keep it in hex format and I had no I idea of
what I needed to do that but I finally found the right way to do it as wee see at
line 15 in list 5.9

1 await Client.index ({
2 index: ’monitorization3 ’,
3
4 body: {
5 recpackets: rp,

64

Bachelor Thesis TFG

6 sendpackets: sp,
7 rechellopackets:rhp ,
8 sendhellopackets:shp ,
9 datapackme:dpm ,

10 broadcast:brd ,
11 fwdpackets:fwd ,
12 dstinyunreach:dst ,
13 notforme:nfm ,
14 iamvia: ivi ,
15 localaddress:ladd.toString(’utf -8’),
16 totalreceived:totalreceived ,
17 senddatapackets:senddatapackets ,
18 timestamp:today
19
20 }
21 })

Listing 5.9: PacketTraffic.controlers.js details, source :own creation

5.4.6 Integration of the different parts of the server

First of all lets place all the different docker-compose files in the same file to set
a quick and easy to use environment . This is not needed but we will do it like
this because otherwise we have to keep on using the external network parameter.
The bad side of doing this is the external network needs to be created first to
have the whole system running otherwise there will be no communication between
the containers. So we will build a whole new docker-compose with the different
services in the same dockerfile so it will have the look of the list 5.10. From now
on, there will be no need of creating any external network.

1 version: "3.6"
2 #docker run -p 8080:8080 cowserver :1.0
3
4 services:
5 web:
6 container_name: myapp
7 restart: always
8 environment:
9 - LORA_MONGODB_HOST=mongo

10 - LORA_MONGODB_DATABASE=lora -app
11 - ES_HOST=es01
12 - ELASTIC_URL=http://es01 :9200
13 - NODE_ENV=local
14 ports:
15 - "8080:8080"
16 build: .
17 links:

65

Bachelor Thesis TFG

18 - es01
19 depends_on:
20 - es01
21 - es02
22 - es03
23 networks:
24 - myappnetwork
25 mongo:
26 container_name: mongo
27 image: mongo
28 volumes:
29 - ./todo -mongodb -data:/var/lib/mongodb
30 ports:
31 - "27017:27017"
32
33 networks:
34 - myappnetwork
35 es01:
36 image: docker.elastic.co/elasticsearch/elasticsearch :7.17.1
37 container_name: es01
38 environment:
39 - node.name=es01
40 - cluster.name=es -docker -cluster
41 - discovery.seed_hosts=es02 ,es03
42 - cluster.initial_master_nodes=es01 ,es02 ,es03
43 - bootstrap.memory_lock=true
44 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
45 - xpack.security.enabled=false
46 ulimits:
47 memlock:
48 soft: -1
49 hard: -1
50 volumes:
51 - data01 :/usr/share/elasticsearch/data
52 ports:
53 - 9200:9200
54 networks:
55 - myappnetwork
56 es02:
57 image: docker.elastic.co/elasticsearch/elasticsearch :7.17.1
58 container_name: es02
59 environment:
60 - node.name=es02
61 - cluster.name=es -docker -cluster
62 - discovery.seed_hosts=es01 ,es03
63 - cluster.initial_master_nodes=es01 ,es02 ,es03
64 - bootstrap.memory_lock=true
65 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
66 - xpack.security.enabled=false

66

Bachelor Thesis TFG

67 ulimits:
68 memlock:
69 soft: -1
70 hard: -1
71 volumes:
72 - data02 :/usr/share/elasticsearch/data
73 networks:
74 - myappnetwork
75 es03:
76 image: docker.elastic.co/elasticsearch/elasticsearch :7.17.1
77 container_name: es03
78 environment:
79 - node.name=es03
80 - cluster.name=es -docker -cluster
81 - discovery.seed_hosts=es01 ,es02
82 - cluster.initial_master_nodes=es01 ,es02 ,es03
83 - bootstrap.memory_lock=true
84 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
85 - xpack.security.enabled=false
86 ulimits:
87 memlock:
88 soft: -1
89 hard: -1
90 volumes:
91 - data03 :/usr/share/elasticsearch/data
92 networks:
93 - myappnetwork
94
95 kib01:
96 image: docker.elastic.co/kibana/kibana :7.17.1
97 container_name: kib01
98 ports:
99 - 5601:5601

100 environment:
101 ELASTICSEARCH_URL: http://es01 :9200
102 ELASTICSEARCH_HOSTS: ’["http :// es01 :9200" ," http :// es02

:9200" ," http :// es03 :9200"] ’
103 networks:
104 - myappnetwork
105 volumes:
106 data01:
107 driver: local
108 data02:
109 driver: local
110 data03:
111 driver: local
112 networks:
113 myappnetwork:
114 driver: bridge

67

Bachelor Thesis TFG

115 external : false
116 name: custom_network

Listing 5.10: functional docker-compose file for local environment,own creation

Lets make a brief description of the main changes we did to have the whole system
working together at the same time in the same file. To set up the initial data
gathering monitoring system we should use environment variables inside the docker
compose file and we will reference to its value from inside the node server. That’s
why we should set up a number of environment variables in the node services. We
can see that there’s the ES_HOST variable for the connection to the container
with the ElasticSearch service, the ELASTIC_URL, we will reference this value
from inside our node server to declare the node client and fulfill the connection
between the client and the search engine, and the NODE_ENV to enable the
environment variables and make them accessible from inside our node server. It’s
remarkable the way we instantiated the node client because it was not an easy
solving issue. For further info look at list 5.11

1 const elasticUrl = process.env.ELASTIC_URL || "http :// localhost
:9200"

2 const client = new Client ({ node: elasticUrl });

Listing 5.11: instatiation of the ElasticSearch javascript client

This 5.11 must be donde like this because localhost between services do not see
each other otherwise no connection would be possible. Notice that all the services
are sharing the same network called myappnetwork.

5.5 Our final monitoring architecture design

The final proposal is a non-hierarchical, built in, decentralized monitoring system
that will send a packet counting data towards a node server and a mongo database,
connected with a cluster of thre nodes of ElasticSearch 6 to automatically gather
all the data and process it to process all the info and get multiple visualizations in
real time . It’s decentralized and non hierarchical since the mesh network is sending
data at the same time towards the server, there is no node gathering data from the
rest, because every node is autonomous from the rest. Once the data arrives to
the node server, this acts as a middleware, makes a little treatment process before
the data reaches the lower layer of the system where the ElasticSearch cluster is
for finally allowing us to create the visualizations and display them through the ui
of kibana.

68

Bachelor Thesis TFG

Figure 6: Monitoring System architecture,source:own creation

69

Chapter 6

Usage of the monitoring system

To start retrieving info from the boards, first of all we must acomplish some pre-
vious steps in our ElasticSearch server using the Kibana ui. Considering we are
working in a local environment, first of all we execute 6.1

1 docker -compose up

Listing 6.1: docker-compose up command

6.1 Kibana setup

To prepare the Elastic environment to start the data gathering coming from the
boards, first of all we should create the index in charge of storing all the values
in the search engine. To do so we have to go to the hamburguer menu in the top
left corner of the kibana ui and select dev tools as we point at figure 7. Then a
console will show up and we should introduce the following index create script 6.2
that calls the elastic search api in order to create the index which will store all the
info from the data traffic between the boards.

1 PUT /monitorization3
2 {
3
4 "mappings" : {
5 "properties" : {
6 "broadcast" : {
7 "type" : "integer"
8 },
9 "datapackme" : {

10 "type" : "integer"
11 },
12 "dstinyunreach" : {
13 "type" : "integer"

70

Bachelor Thesis TFG

14 },
15 "fwdpackets" : {
16 "type" : "integer"
17 },
18 "iamvia" : {
19 "type" : "integer"
20 },
21 "localaddress" : {
22 "type" : "keyword"
23 },
24 "notforme" : {
25 "type" : "integer"
26 },
27 "packetsforme" : {
28 "type" : "integer"
29 },
30 "rechellopackets" : {
31 "type" : "integer"
32 },
33 "recpackets" : {
34 "type" : "integer"
35 },
36 "sendhellopackets" : {
37 "type" : "integer"
38 },
39 "sendpackets" : {
40 "type" : "integer"
41 },
42 "totalreceived" : {
43 "type" : "integer"
44 },
45 "senddatapackets": {
46 "type": "integer"
47 },
48 "timestamp":{
49 "type": "date"
50 }
51 }
52 }
53 }

Listing 6.2: index creation api call script,source:own creation

The next two steps are going to analytics, in the same hamburguer menu and then
select manage in the righ top corner. Then look at the left side and there’s an
option called index patterns, then choose create index pattern and select monitor-
ization3 as the index pattern to be created. From now on the user is able to build
any dashboard with any of the available plots.

71

Bachelor Thesis TFG

Figure 7: Dev tools menu location

6.2 Flashing boards

You should think about what main code you want to flash on your LoRa boards.
For that task you can do it one by one using the Platformio IDE pressing the
arrow at the bottom of the visual code environment. The other way is executing
the script we show at list number A.1 at the end of this document while the boards
are plugged in to the usb ports of your pc.

6.3 Plotting Dashboards

The dashboards option is one of the first options on the hamburguer menu at the
left side of the screen. Then you should choose create a new visualization. Then
there are a lot types of plots as an option, a Kibana Query Language console
where the user can execute queries to filter data to visualize, and on the right side
of the dashboards interface there are the parameters of the plot. The user shall
choose the fields of the X axis, usually the timestamp, and the Y axis with a serie of
operations such as median, maximum, count and many more. And there is a break
by that it would match with the group by of a standard SQL query. Besides this
any kind of filters can be applied to the query in KQL(Kibana Query Language)
to obtain the right visualization of the data. In the top bar there is short menu
where there is the time interval the user wants to display and set up the refreshing
period to display new incoming data. There are as many visualizations as someone
would desire, and these can be stored into the same dashboard to check the status

72

Bachelor Thesis TFG

of the network wathching several parameters at the same time. The visualizations
can be edited at any moment. Once the desired dashboard configuration is set
up,save the dashboard and it will be available at any time.

6.4 First Experiments

To test all the set up, we planned an initial experiment. We grabbed four LoRa
boards with the following main program showed in list 6.3

1
2 if (radio ->getLocalAddress () == 0xC4F0 && dataCounter1 <= 60) {
3 Log.trace(F("Send packet %d" CR), dataCounter1);
4 helloPacket ->counter = dataCounter1 ++;
5
6 // Create packet and send it.
7 radio ->createPacketAndSend (0xD39C , helloPacket , 1);
8 }
9 if(radio -> getLocalAddress () == 0xD39C && dataCounter2 <= 60){

10 Log.trace(F("Send packet %d"CR),dataCounter2);
11 helloPacket ->counter = dataCounter2 ++;
12 radio ->createPacketAndSend (0x3A0C ,helloPacket ,1);
13 }
14 if(radio -> getLocalAddress () == 0x3A0C && dataCounter3 <= 60){
15 Log.trace(F("Send packet %d"CR),dataCounter3);
16 helloPacket ->counter = dataCounter3 ++;
17 radio ->createPacketAndSend (0xB1A4 ,helloPacket ,1);
18 }
19
20 if(radio -> getLocalAddress () == 0xB1A4 && dataCounter4 <=

60){
21 Log.trace(F("Send packet %d"CR),dataCounter4);
22 helloPacket ->counter = dataCounter4 ++;
23 radio ->createPacketAndSend (0xC4F0 ,helloPacket ,1);
24 }
25
26 //Wait 5 seconds to send the next packet
27 vTaskDelay (5000 / portTICK_PERIOD_MS);
28 Log.trace(F("Another while loop"CR));

Listing 6.3: main.cpp, source:own creation

Initial conditions:

• Number of boards involved: 4

• Duration of the experiment: 5 minuts

• Periodicity of data packets: 5 seconds

73

Bachelor Thesis TFG

Figure 8: Relation between received and sent packets in four boards,source:kibana

Figure 9: Relation between received and sent packets in four boards in a bar
diagram, source: kibana

• Periodicity of hello packets: 30 seconds

• Expected behaviour: in/out packet traffic moving in a linear way and see
how the number of send received packets match and there is no packet loss.

As we see it only consists of four boards sending a counter to a different board
each one every 5 seconds during five minuts. We will see the behaviour of it with
a couple of plots.
We can see in fig 9 the packets being received by the four boards, and the line
below are the packets being send. After five minuts the line slope decreases because
there are no more data packets to send . We have another graphic only for show
the possibilities of this system, the one in figure 9
In this last graphic showed in figure 10 we can see the relation in the four boards.
We can see clearly the traffic between the four boards, we can see even how the

74

Bachelor Thesis TFG

Figure 10: Relation between sent packets and in four boards and sent hello packets,
source: kibana

new boards are being incorporated to the network in the first bars. Notice that the
line below are the packets being send through the network, this matches with the
reality expected since the boards are communicating with the remaining boards,
so the received packets will be always a bigger number than the sent, since the
they are receiving packets from all the rest aproximately three times more packets
since one board is receiving packets from the remaining three boards. We don’t
see significant packet losses, however we could place the mouse over the lines and
kibana will show us the exact number of received packets and we can see exactly
whether a packet has been lost or not. We see the packet traffic is homogeneous
along the whole network as well, all the lines are one over the other, so we see no
difference among the nodes. In the third graphic we see the weight of the hello
packets in the total of sent packets. We clearly see after five minutes, the slope of
both lines is the same, only the hello packets are being transmitted what makes a
lot of sense.

6.4.1 Longer-Term monitoring experiments

Now as a proof of a long term monitoring experiment
Initial conditions:

• Number of boards involved: 4

• Duration of the experiment: 24 hours

• Periodicity of data packets: 30 seconds

• Periodicity of hello packets: 5 minuts

75

Bachelor Thesis TFG

Figure 11: Relation between sent packets and received packets in board B1A4,
including routing and data packets, source: kibana

• Expected behaviour: in/out packet traffic moving in a linear way and see how
the number of send received packets match and there is no packet loss.We will
also check the traffic of the main types of packets and see wether the traffic
is homogenous among all the nodes and see other kinds of visualizations
availables in kibana

The main program will be the same as the previous experiment. One board will
transmit a data packet to the other in circle, until the last board that will send
a packet to the first, and the network will remain like this during the whole ex-
periment. This time we will try to obtain a different view of the traffic of the
data trying to spot the relation between the sent hello packets and received hello
packets in one particular board, and we will do the same with the data packets.
For that task we have generated the dashboard in fig 11.
We can see that the time scope of this plot is the first 18 hours. We can see clearly
the time when we pressed the reset button on the boards, and from that moment
we have an increasing line along time. Notice the values and the relation between
the sent packets and the received packets, in both cases the sent packets are a
third from the received ones which matches with what we expected since we have
three boards trasnsmitting. Since the data packets are being sent more often than
the routing ones, the values of the data plot are a lot bigger than the values of
the hello packets what makes a lot of sense. From that moment the slope of the
line remains constant. We want to show one more thing about this kind of plot
because this take it’s difficult to appraise. That is why we will take a closer look
to a smaller time interval so we select with the mouse the interval we want to look
at and we obtain the image in figure 12.
In this last we do see how the period of the routing packet sending routine is far

76

Bachelor Thesis TFG

Figure 12: Relation between sent packets and received packets in board B1A4,
including routing and data packets(ZOOM IN), source: kibana

way bigger than data sending routine, that’s why we see this stairway disposition
of the line along the time corresponding every five minutes to one step higher but
we weren’t unable to see it from a plot with such a big interval in the previous
graphic in fig 11. Besides this tipical line plot along the time we would like to see
if the data and routing packets flow in a homogeneus way along all the nodes in
the mesh network, so we will find out what more visualizations options do we have
in kibana . So lets other ways of displaying data.
From the image in figure 13 we see that the traffic is homogeneous along the whole
network. All the nodes are one hop of distance so It matches with what we expect
from this network configuration. We will do a last visualization proposal. It’s
important to see wether has been a packet loss issue or not so we should figure out
what would be a good way of having that info in a quick outlook, or at least see
if a deep fall in the performance of the network is happening . For that milestone
we could plot a graphic like the coming one in figure 14.
We should check that in every node the received data packets are three times
bigger than the sent ones. To see if there has been a single packet loss issue we
could place the the mouse at any of these bars and check the exact value and do
the maths, but from this point of view we notice that all the green bars are three
times the blue ones, so we can say that our network has quite good health. Of
course there are plenty of ways of obtaining many kinds of plots and charts and
Kibana has an unending set of options and features but our goal in this Bachelor
Thesis is only give a little taste of some of them.

77

Bachelor Thesis TFG

Figure 13: Pie chart representing sent packets and received packets along all the
nodes, including routing and data packets, source: kibana

Figure 14: Vertical stacked bar chart representing sent packets and received packets
along all the nodes, including routing and data packets, source: kibana

78

Chapter 7

Deploying to a public IP

To deploy the monitoring server to a public IP, first of all it would be suitable to
enable the security of the Elastic Stack. But first of all we thought that we should
get used to the UPC server environment.

7.1 First Test Deployment

We had forseen that a moment like this was about to come, so we have been
developing the whole project in docker containers to once arrived this moment,
the deployment to a public IP can be as easy as possible. It was not that easy
though It took only a several steps :

1. Give my public key to the server system administrator in order to get access
granted via ssh

2. Install docker with the into the clean server with the next commands in list
7.1

1 sudo apt update
2 sudo apt install apt -transport -https ca-certificates curl

software -properties -common
3 curl -fsSL https :// download.docker.com/linux/ubuntu/gpg |

sudo apt -key add -
4 sudo add -apt -repository "deb [arch=amd64] https ://

download.docker.com/linux/ubuntu focal stable"
5 apt -cache policy docker -ce
6 sudo apt install docker -ce
7

Listing 7.1: Docker installation commands,source:[8]

3. Installing and docker-compose with the following commands in list 7.2

79

Bachelor Thesis TFG

1 mkdir -p ~/. docker/cli -plugins/
2 curl -SL https :// github.com/docker/compose/releases/download/

v2.2.3/ docker -compose -linux -x86_64 -o ~/. docker/cli -
plugins/docker -compose

3 chmod +x ~/. docker/cli -plugins/docker -compose
4 docker compose version
5

Listing 7.2: Intalling docker-compose commands,source: [7]

4. Install git

5. git clone https://github.com/pellax/micowlocalyzer.git to clone repository
into your directory

6. git fetch origin to fetch all remote branches

7. git checkout -b singlenode origin/singlenode

8. git pull

9. Perform step in section A.0.7

10. Execute docker-compose up

11. Wait for the message kibana is degraded in the log console, now your kibana
set up is ready.

12. In the Kibana application, enter to the dev tools and create the index with
the script in list 6.2

Now the system is deployed to a public IP and for a quick test would be enough,
but since this is accesible to anyone this can not be considered a stable deployment
so this needs to be properly securized in order to restrict access to unwanted guests.

7.2 Securized deployment

At the time we wanted to acomplish a securized version of our containerized Elastic
Stack we faced several previous questions.

80

Bachelor Thesis TFG

7.2.1 First steps

The initial dockerized version was working with the elastic 7.17.1 but in the way
of developing the server, the 8 release came out . Some security options remained
the same, but there were some new features and some other were deprecated. We
found ourselves in the tough decision of remaining in the old version or make a
breakthrough into the new one. The new version had the following security options
to be enabled. Lets take a quick overview of it

7.2.2 ELK stack security features

Security needs vary depending on whether the user is developing locally on his
laptop or securing all communications in a production environment. Regardless
of where the deploying the Elastic Stack ("ELK") is being carried out, running
a secure cluster is incredibly important to protect the data. That’s why security
is enabled and configured by default in Elasticsearch 8.0 and later. In our initial
version of ElasticSearch, the number 7.17.1, security was disabled by default. But
in a week period of time the version 8 release came out and this specific feature
was disabled so we had to add the following parameter in list 7.3 to our docker
compose file to disable the security explicitly for our local deployment.
If we configure security manually before starting our Elasticsearch nodes, the auto-
configuration process will respect the security configuration. We can adjust your
TLS configuration at any time, as well as updating node certificates[12].

1 xpack.security.enabled=false

Listing 7.3: docker-compose security parameter

There are two main options(fig 15) to configure security in the transport layer on
the Elastic Stack These is a brief description of both of them :

• Basic security (ElasticSearch + Kibana) This scenario configures TLS
for communication between nodes. This security layer requires that nodes
verify security certificates, which prevents unauthorized nodes from joining
our ElasticSearch cluster.

The external HTTP traffic between ElasticSearch and Kibana won’t be en-
crypted, but internode communication will be secured.

• Basic security plus secured HTTPS traffic (Elastic Stack) This sce-
nario builds on the one for basic security and secures all HTTP traffic with
TLS. In addition to configuring TLS on the transport interface of the Elas-
ticSearch cluster, the user configures TLS on the HTTP interface for both
ElasticSearch and Kibana.

81

Bachelor Thesis TFG

Figure 15: Elastic security overview,source:Elastic site

7.2.3 Securizing the ELK Stack

For the basic security we have to follow this steps so it’s something we have to do
anyway.

1. Generate the certificate authority We can add as many nodes as we want in
a cluster but they must be able to communicate with each other. The com-
munication between nodes in a cluster is handled by the transport module.
To secure our cluster, we must ensure that internode communications are
encrypted and verified, which is achieved with mutual TLS.

In a secured cluster, ElasticSearch nodes use certificates to identify them-
selves when communicating with other nodes.

The cluster must validate the authenticity of these certificates. The rec-
ommended approach is to trust a specific certificate authority (CA). When
nodes are added to our cluster they must use a certificate signed by the same
CA.[12]

For the transport layer, they recommend using a separate, dedicated CA in-
stead of an existing, possibly shared CA so that node membership is tightly
controlled. For this first deployment though we will use self signed certifi-
cates.

2. Encrypt internode communications with TLS

The transport networking layer is used for internal communication between
nodes in a cluster. When security features are enabled, we must use TLS to
ensure that communication between the nodes is encrypted.

82

Bachelor Thesis TFG

Now that we’ve generated a certificate authority and certificates, we’ll update
our cluster to use these files. [12]

That’s why we must modify our dockerfile. First of all we should generate all the
certificates that will be using to encrypt the internode communication . That’s why
we should implement another docker compose file to generate all the certificates.
In this case before generating the certificates, we will define the instances of our
elastic system in a file called instances.yml as we show in list 7.4

1 instances:
2 - name: es01
3 dns:
4 - es01
5 - localhost
6 ip:
7 - 127.0.0.1
8
9 - name: es02

10 dns:
11 - es02
12 - localhost
13 ip:
14 - 127.0.0.1
15
16 - name: es03
17 dns:
18 - es03
19 - localhost
20 ip:
21 - 127.0.0.1
22 - name: kib01
23 dns:
24 - kib01
25 - localhost

Listing 7.4: instances.yml, source : [2]

Once we have defined the instances, wa are able to execute the following docker-
compose file in list 7.5 to in fact, create the certificates for each one of these
instances.

1 version: ’2.2’
2
3 services:
4 create_certs:
5 container_name: create_certs
6 image: docker.elastic.co/elasticsearch/elasticsearch :7.17.1
7 command: >
8 bash -c ’

83

Bachelor Thesis TFG

9 if [[! -f /certs/bundle.zip]]; then
10 bin/elasticsearch -certutil cert --silent --pem --in

config/certificates/instances.yml -out /certs/bundle.zip;
11 unzip /certs/bundle.zip -d /certs;
12 fi;
13 chown -R 1000:0 /certs
14 ’
15 user: "0"
16 working_dir: /usr/share/elasticsearch
17 volumes: [’certs:/ certs’, ’.:/usr/share/elasticsearch/config/

certificates ’]
18
19 volumes: {"certs"}

Listing 7.5: create-certs.yml,source :[2]

After executing this container, we must set up some environment variables with the
following values, so the .env file located in the same folder as the docker-compose
file, should look like list 7.2.3:

1 COMPOSE_PROJECT_NAME=es
2 CERTS_DIR =/usr/share/elasticsearch/config/certificates
3 VERSION =7.17.1

So finally we will modify the docker-compose file adding the proper parameters.
We show the result in the list 7.6

1 version: "2.2"
2 #docker run -p 8080:8080 cowserver :1.0
3
4 services:
5 web:
6 container_name: myapp
7 restart: always
8 environment:
9 - LORA_MONGODB_HOST=mongo

10 - LORA_MONGODB_DATABASE=lora -app
11 - ES_HOST=es01
12 - ELASTIC_URL=http://es01 :9200
13 - NODE_ENV=local
14 ports:
15 - "8080:8080"
16 build: .
17 links:
18 - es01
19 depends_on:
20 - es01
21 - es02
22 - es03
23 networks:
24 - myappnetwork

84

Bachelor Thesis TFG

25 mongo:
26 container_name: mongo
27 image: mongo
28 volumes:
29 - ./todo -mongodb -data:/var/lib/mongodb
30 ports:
31 - "27017:27017"
32
33 networks:
34 - myappnetwork
35 es01:
36 image: docker.elastic.co/elasticsearch/elasticsearch:${VERSION

}
37 container_name: es01
38 environment:
39 - node.name=es01
40 - cluster.name=es -docker -cluster
41 - discovery.seed_hosts=es02 ,es03
42 - cluster.initial_master_nodes=es01 ,es02 ,es03
43 - bootstrap.memory_lock=true
44 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
45 - xpack.license.self_generated.type=trial
46 - xpack.security.enabled=true
47 - xpack.security.http.ssl.enabled=true
48 - xpack.security.http.ssl.key=$CERTS_DIR/es01/es01.key
49 - xpack.security.http.ssl.certificate_authorities=$CERTS_DIR

/ca/ca.crt
50 - xpack.security.http.ssl.certificate=$CERTS_DIR/es01/es01.

crt
51 - xpack.security.transport.ssl.enabled=true
52 - xpack.security.transport.ssl.verification_mode=certificate
53 - xpack.security.transport.ssl.certificate_authorities=

$CERTS_DIR/ca/ca.crt
54 - xpack.security.transport.ssl.certificate=$CERTS_DIR/es01/

es01.crt
55 - xpack.security.transport.ssl.key=$CERTS_DIR/es01/es01.key
56 ulimits:
57 memlock:
58 soft: -1
59 hard: -1
60 volumes:
61 - data01 :/usr/share/elasticsearch/data
62 - certs:$CERTS_DIR
63 ports:
64 - 9200:9200
65 networks:
66 - myappnetwork
67 healthcheck:
68 test: curl --cacert $CERTS_DIR/ca/ca.crt -s https://

85

Bachelor Thesis TFG

localhost :9200 >/dev/null; if [[$$? == 52]]; then echo 0;
else echo 1; fi

69 interval: 30s
70 timeout: 10s
71 retries: 5
72
73 es02:
74 image: docker.elastic.co/elasticsearch/elasticsearch:${VERSION

}
75 container_name: es02
76 environment:
77 - node.name=es02
78 - cluster.name=es -docker -cluster
79 - discovery.seed_hosts=es01 ,es03
80 - cluster.initial_master_nodes=es01 ,es02 ,es03
81 - bootstrap.memory_lock=true
82 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
83 - xpack.license.self_generated.type=trial
84 - xpack.security.enabled=true
85 - xpack.security.http.ssl.enabled=true
86 - xpack.security.http.ssl.key=$CERTS_DIR/es02/es02.key
87 - xpack.security.http.ssl.certificate_authorities=$CERTS_DIR

/ca/ca.crt
88 - xpack.security.http.ssl.certificate=$CERTS_DIR/es02/es02.

crt
89 - xpack.security.transport.ssl.enabled=true
90 - xpack.security.transport.ssl.verification_mode=certificate
91 - xpack.security.transport.ssl.certificate_authorities=

$CERTS_DIR/ca/ca.crt
92 - xpack.security.transport.ssl.certificate=$CERTS_DIR/es02/

es02.crt
93 - xpack.security.transport.ssl.key=$CERTS_DIR/es02/es02.key
94 ulimits:
95 memlock:
96 soft: -1
97 hard: -1
98 volumes:
99 - data02 :/usr/share/elasticsearch/data

100 - certs:$CERTS_DIR
101 networks:
102 - myappnetwork
103 es03:
104 image: docker.elastic.co/elasticsearch/elasticsearch:${VERSION

}
105 container_name: es03
106 environment:
107 - node.name=es03
108 - cluster.name=es -docker -cluster
109 - discovery.seed_hosts=es01 ,es02

86

Bachelor Thesis TFG

110 - cluster.initial_master_nodes=es01 ,es02 ,es03
111 - bootstrap.memory_lock=true
112 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
113 - xpack.license.self_generated.type=trial
114 - xpack.security.enabled=true
115 - xpack.security.http.ssl.enabled=true
116 - xpack.security.http.ssl.key=$CERTS_DIR/es03/es03.key
117 - xpack.security.http.ssl.certificate_authorities=$CERTS_DIR

/ca/ca.crt
118 - xpack.security.http.ssl.certificate=$CERTS_DIR/es03/es03.

crt
119 - xpack.security.transport.ssl.enabled=true
120 - xpack.security.transport.ssl.verification_mode=certificate
121 - xpack.security.transport.ssl.certificate_authorities=

$CERTS_DIR/ca/ca.crt
122 - xpack.security.transport.ssl.certificate=$CERTS_DIR/es03/

es03.crt
123 - xpack.security.transport.ssl.key=$CERTS_DIR/es03/es03.key
124 ulimits:
125 memlock:
126 soft: -1
127 hard: -1
128 volumes:
129 - data03 :/usr/share/elasticsearch/data
130 - certs:$CERTS_DIR
131 networks:
132 - myappnetwork
133 kib01:
134 image: docker.elastic.co/kibana/kibana:${VERSION}
135 container_name: kib01
136 depends_on: {"es01": {"condition": "service_healthy"}}
137 ports:
138 - 5601:5601
139 environment:
140 SERVERNAME: localhost
141 ELASTICSEARCH_URL: https://es01 :9200
142 ELASTICSEARCH_HOSTS: https://es01 :9200
143 ELASTICSEARCH_USERNAME: kibana_system
144 ELASTICSEARCH_PASSWORD: YU8K7Jrwuk9aVrGczzDe
145 ELASTICSEARCH_SSL_CERTIFICATEAUTHORITIES: $CERTS_DIR/ca/ca.

crt
146 SERVER_SSL_ENABLED: "true"
147 SERVER_SSL_KEY: $CERTS_DIR/kib01/kib01.key
148 SERVER_SSL_CERTIFICATE: $CERTS_DIR/kib01/kib01.crt
149 volumes:
150 - certs:$CERTS_DIR
151 networks:
152 - myappnetwork
153 volumes:

87

Bachelor Thesis TFG

154 data01:
155 driver: local
156 data02:
157 driver: local
158 data03:
159 driver: local
160 certs:
161 driver: local
162 networks:
163 myappnetwork:
164 driver: bridge
165 external : false
166 name: custom_network

Listing 7.6: modified docker-compose file, source: own creation

From the lines above we see that we have added several parameters to each node.
In the previous docker compose file we have generated all the certificate, so we had
to add an extra volume in each node to store these certificates.
We will make a brief explanation of the changes we have introduced in the docker
file to have the whole system working with the security enabled.

1. Add the cluster-name setting and enter a name for your cluster
1 - cluster.name=elasticsearch -cluster

2. We should add node name in every node of elasticsearch.
1 node.name=elasticsearch01

3. We must enable security in every node
1 - xpack.security.enabled=true

4. We must set certificated mode to required
1 - xpack.security.transport.ssl.verification_mode:

certificate
2

5. We define certificate key location
1 - xpack.security.http.ssl.key=$CERTS_DIR/es03/es03.key
2

6. We define certificate location
1 - xpack.security.http.ssl.key=$CERTS_DIR/es03/es03.crt
2

88

Bachelor Thesis TFG

7. We define as well certificate authorities location
1 - xpack.security.http.ssl.certificate_authorities=

$CERTS_DIR/ca/ca.crt
2

8. We define transport layer certificate key location
1 - xpack.security.transport.ssl.key=$CERTS_DIR/es03/es03.key
2

9. We define transport layer certificate location
1 - xpack.security.transport.ssl.certificate=$CERTS_DIR/es03/

es03.crt
2

10. We define as well transport layer certificate authorities location
1 - xpack.security.transport.ssl.certificate_authorities=

$CERTS_DIR/ca/ca.crt
2

11. Allow self generated certificates
1 - xpack.license.self_generated.type=trial
2
3

Concerning to the Kibana service we should add some parameters as well to the
kibana service

1. Enable security
1 - XPACK_SECURITY_ENABLED=true
2

2. Set the path to the location of the of the SSL certificate authorities
1 -ELASTICSEARCH_SSL_CERTIFICATEAUTHORITIES: $CERTS_DIR/ca/ca.

crt
2

3. Enable inbound connections
1 - SERVER_SSL_ENABLED=true
2

4. Give access to the certificate and the private key and certificate

89

Bachelor Thesis TFG

1 SERVER_SSL_KEY: $CERTS_DIR/kib01/kib01.key
2 SERVER_SSL_CERTIFICATE: $CERTS_DIR/kib01/kib01.crt

5. Set elastic credentials to set up the communication between kibana and elas-
tic engine consisting in username and generated password

1 ELASTICSEARCH_USERNAME: kibana_system
2 ELASTICSEARCH_PASSWORD: YU8K7Jrwuk9aVrGczzDe
3

The last thing we need is to change all the addresses of the hosts to https instead
of http. The other main change we have to do is in the server code, in the way we
instantiate the javascript elastic client in the constructor. Now we will do it as we
show in list 7.7

1 module.exports.getClient = function (){
2 const elasticUrl = process.env.ELASTIC_URL || "https :// localhost

:9200"
3 const client = new Client ({ node: elasticUrl ,auth:{ username: ’

elastic ’,password:’PleaseChangeMe ’
4 }
5 });

Listing 7.7: modded client instantiation,source:own creation

7.2.4 Loading the whole system

Now we have all the containers ready, the instances, the ELK container configu-
rated, the certificates creator container written we have to put it all together and
get it working. We have to carefully follow this steps [2]

1. Ensure we have at least 4 GiB of memory allocated.

2. Execute the following in list 7.8 docker-compose up command to create the
certificates

1 docker -compose -f create -certs.yml run --rm create_certs
2

Listing 7.8: Certificates creation,source:[2]

3. Lift the container with your ELK stack with a docker-compose up -d

4. Execute the following commands in list 7.9 that will execute the instructions
inside the container to generate the passwords to our ELK stack. We have
to keep these passwords somewhere safe because we will use them to connect

90

Bachelor Thesis TFG

the services between them. The kibana system will remain as the user for
the connect the kibana to the elastic engine and the elastic user will be for
loggin in into the kibana ui and submit requests to the Elastic Stack.

1 docker exec es01 /bin/bash -c "bin/elasticsearch -setup -
passwords \

2 auto --batch --url https :// es01 :9200"
3

Listing 7.9: Password creation command,source :[2]

5. Now we can set the ELASTIC_PASSWORD in the kibana service corre-
sponding to the kibana_system user generated password

6. Now we have to restart our docker container to reload the security configu-
ration so we have to execute the corresponding commands in list 6

1 docker -compose stop
2 docker -compose up -d
3

7. Now our cluster will be available at the address https://ourIP:5601

Trying to establish connection between the node client and the elastic server as it
is we saw that the system was complaining for trying to send plain traffic through
an https port . So we must set up a place to store the certificate in the node server
as well. But this will be a task for the future work, we will talk about it in the
conclusions.

91

Chapter 8

Conclusions

We will divide our conclusions in two parts, the technical and the personal.

8.1 Technical conclusions

We wanted to make an statistical study about the performance of LoRaMesher.
Instead of this we ended building a whole monitoring system that will allow us
to do experiments in an easier and faster way saving a lot of time for future re-
searchs and allowing to monitorize LoRaMesher in different scenarios. The system
seems to be minimum invasive and seems to work well with four boards and the
performance doesn’t look threatened while working with four boards. To sum up
we did a test deploy to a public IP and we left a future securization almost done
to prevent unwanted users to access to our system. We need to perform further
experiments as we point in section 8.3 to calculate the differents kinds of overhead,
as well as execute some more experiments to quantify exactly the behaviour of the
LoRaMesher combined with our monitoring system to ensure that there is no fall
on the protocol performance degree.As we will see in section 8.3 we have already
done some researchs about what things we should consider at the time we will be
doing the calculus of the post request, but it would be suitable to know the over-
head of the server response as well.However our system is the first step towards
a wireless real time monitoring system and it will be extremely useful to monitor
mesh networks, concretely this LoRaMesher protocol.

92

Bachelor Thesis TFG

8.2 Personal conclusions about the work and other
comments

At the beginning of the work I was given this initial library implementing a mesh
network protocol designed by UPC Phd. Roger Pueyo Centelles . The code was
a very initial implementation of this protocol, I was supposed to do some initial
experiments, fix the protocol and plot some final data extracted from the boards.
Due to several issues I couldn’t meet the deadlines in December and the new year
came in. Thats when my thesis suffered a great deviation.First of all I had a new
version of the LoRaMesher that made my way easier.To sum up I saw myself trying
to extract data from the mongo database and I found it quite messy. That’s why
I decided to take advantatge of the elastic javascript client that would allow us
to take our already build node server and make a data flow towards the search
engine automatically, and that was finally what this thesis was about. We tested
it in local and It worked, and then I was asked to do a public deployment. I did
a test deployment and I started a research about how would it be a full securized
deployment which I was unable to end but luckily I’ve been hired by the AC
department and with a little more time I’ll be in position of doing an stable and
longing full usable deployment to a server in the AC department.To measure the
goodness of this new mesh networks monitoring system there are some things that
still need to be done. We will talk about them in the coming section 8.3

8.3 Future work

8.3.1 Monitoring system stress experiments

To see how much intrusive is our monitoring system we should perform some more
experiments with some more boards and look harder whether there is a packet loss
or not. There can be several sources of packet loss issues, one can be the protocol
working process itself, and the other could be our monitoring sytem. We should
evaluate better our monitoring system in different scenarios. It reminds a little
bit to the Schrodinger paradox, we need a monitoring system to know if there
is a packet loss, but our monitoring system can cause a packet loss issue as well
and It’s difficult to say whose its fault. Of course there should be other ways of
less intrusive traffic monitoring through the logs, but you need the boards to be
plugged in to a computer and this is not the subject of this thesis.

93

Bachelor Thesis TFG

Figure 16: Digital usb multimeter

8.3.2 Experiments about the best fit in the priority task
scale

We have decided to set the task priority to 2 but this is not apodictically the best
choice. We should try other priorities and do some experiments and check which
one is in fact the best priority value to get the best performance.

8.3.3 Measuring monitoring systems overheads

Adding one the taks to an already built protocol implies several overheads at many
levels. We should estimate as close as possible the following overheads.

8.3.3.1 Power Consumption overheads

We have done already some experiments with the little USB power meter in figure
16
We face several problems trying to use this device. The main one is that the
power consumption doesn’t remains stable so we can’t have a fix value about the
consumption of the board. This multimeter allows data transmission through an
Android device or a PC via Blueetooth and a application. We tried the app for
android but we couldn’t establish data flow between botth devices. We were about
to try it with the pc and see wether we were able to obtain some kind of plot an
do a comparation between the plot with the additional task and without it and
see if there is any significative differences. The other option was taking out all the

94

Bachelor Thesis TFG

tasks from the scheduler and leave our post sending task alone in an infinite loop
and see wether we can get a stable value from it .

8.3.3.2 Post Requests Overheads

We should see which is the exact size of every post request between the boards and
the node server. And we could do the same with the requests from the Javascript
client to the elastic search engine. Luckily there are some tools that would allow us
to do this easily . The classic way of doing this would be storing a trace using the
well known tool TCPdump. Afterwards we should open the trace using wireshark
and calculate the packet size and the headers of an http request. But first of all
we must know what we understand by post request overhead.

What is the overhead The post request is divided in several parts. On one
side we have the payload which is data it self being sent through the request.
The request has a header which also occupies a fixed size. In this case we have
TCP header which is bigger than UDP for example. That’s why one of the things
that could be improved to reduce the size of the transfered data,which means that
UDP has smaller overhead. We understand by overhead, all the additional data
that we need to send in order to transmit our payload. TCP has bigger overhead,
among other reasons, TCP has a mechanism to ensure that all the data has been
received, has a number of sequence and other things that UDP doesn’t . In the
coming lines we will talk about some previous work that we have done to face the
future calculus of the overhead.

Obtaining the trace First of all,we will need to save the trace into the disk to
be analyzed afterwards with wireshark. Execute a command like the one in list
8.1 in the server where we have deployed our node server.

1 tcpdump -i eth0 port 8080 -nw mycapture.pcap

Listing 8.1: tcpdump command for extracting the trace,source:own creation

Analyzing the trace Once we have the trace generated we should analyze it
and see what kind of info we can obtain from. From figure 17 and figure 18 we
can see some packet sizes. Among them we have :

• Ip header size : 20 bytes

• IP total packet size: 125 bytes

• TCP header size: 20 bytes

95

Bachelor Thesis TFG

Figure 17: LoRaMesher tcpdump trace, source: wireshark gui

Figure 18: LoRaMesher tcpdump trace, source: wireshark gui

• TCP payload : 85 bytes

• Total frame length: 139 bytes

To calculate the theoretical overhead there are some previous concepts we will
have to consider.

• MSS: The Maximum Segment Size refers to size of the largest segment that
local host accepts within a single packet. It denotes largest amount of data
that host can accept in single TCP segment [13]. This value is the result of
the agreement between the sender and the receiver. During a TCP connec-
tion the sender may reduce the value of the MSS according to the receiver
requirements. It’s the way that TCP has to set a limit on the size of the

96

Bachelor Thesis TFG

Figure 19: LoRaMesher tcpdump trace, source: wireshark gui

received packets. We can see the value of this agreeement for this tcp session
is set to 1460 from figure 19 which is a very common value.

• MTU: The Maximum Transmission Unit is the largest packet size that can
be transmitted in a single entity in a network connection [14]. By default
this value is set to 1500 B.

We should keep in mind as well the fig 20 with the structure of a tcp packet.
All the theory behind the calculus of the overhead is quite easy. We have the
following theoretical overhead in every Ethernet packet is :

Overhead = 20B(IPHeader)+20B(TCPHeader)+14B(EthernetHeader)
+ 4B(FCS) + 12B(Interframegap) + 8B(Preamble) = 78

The payload it’s supposed to be the MTU- headers size that gives us as a result
the MSS value, 1460 bytes. However if we look at the figures 17 and 18 we see
that the tcp payload is much lower than the MSS, as well as the size of the whole
packet is smaller than the MTU, so we will have to consider all these things in
the future to see the real overhead percent. Other important thing we have to
ensure is the Ip fragmentation. If there was IP fragmentation would mean that
there would be more overhead since every packet has its own headers. Usually Ip
fragmentation happens when all the transmitted data doesn’t fit in one packet and
it has to be divided in several segments that will be reassembled by the layer 3. It
depends very much on the previous concepts of MSS and MTU. We will have to
be careful when watching at wireshark traces because some of the overheads fields,
like the FCS or th inter frame gap, are not showed by the wireshark frames. We
should calculate the overhead from the post request and from the response as well

97

Bachelor Thesis TFG

Figure 20: TCP structure segment schema, source: wireshark gui

because it may have overhead as well but it’s needed a deeper research to get the
values clear.

8.3.4 Securize the node server

By now the node server is open to anyone sending posts request through that
endpoint. The optimal way of doing so would be that anyone who wanted to send
data through it had to get through a previous authentication step through a user
and a password, and our sever would respond with a token or similar method to
get your board authenticated as a trusted client to our server.

8.3.5 Finish the ELK stack securization

As well as the node server securization, we must enable our kibana security features
for a full equiped deployment. Until now our securized version of the ELK stack is
halfway. Our stack is securized but still we have no connection to our node server
but we have figured out what steps woulb be needed to do so. Luckily this doesn’t
look like it will take a lot of time but in the last weeks we had to write an article
for the International Conference on distributed computer systems in Bologne that
delayed all the final task scheduling and finally was hard to acomplish.

98

Appendices

99

Appendix A

Obstacles

During the development of the project, almost in every task of it, several obstacles
have appeared. In the following lines we will make a brief resume of the most
relevant ones.

A.0.1 Issues with the platformio IDE

Many times along the development of the thesis I have been needing to make a
clean up of the libraries of the project. In the very beginning I didn’t know what
was the proper way to include library dependences, which derived in a very messed
up project filesystem. Having to reorganize the whole project brought us to states
where compiling the project was a tough job because deleting the dependences
most of the times was not enough to rebuild it the proper way, I had to delete
the library manually to let the platformio to fetch the right version again from
the github account written down on the platformio configuration files. Some other
times the platformio didn’t fetch the new repository library by itself, so that an
IDE restart was needed too. Until I understood this behaviour I lost a lot of time
struggling with the environment and It was quite difficult to understand what was
wrong with my code or the project.

A.0.2 Using platformio external libraries instead of Arduino
Libraries

This was a very common issue at the beginning. In the first weeks I had the
task of connecting via WiFi, the board to the Wifi, so inspired in a project from
the subject IT Project, called CowLocalizer, I searched the name of the library
on google and one platformio library appeared,then I installed it in my project,
but when I tried to use it with the same code that worked on CowLocalizer, the
connection never happened . I spend a lot of time trying different versions of

100

Bachelor Thesis TFG

the code without getting any result. Luckily a comrade from de AC department
who was working also with LoRaMesher on his TFG discovered where was our big
mistake. There was no need to install any special library, since all the library we
needed were already included in arduino framework, but having the same name
was very likely to install it by mistake. Even more considering that for the first
compilation you had to struggle installing many things, trying, until you got a
functional version of the previous code. This first issue with the WiFi prevent us
of making the same mistake again with the upcoming libraries that I had to use
for other functionalities, for example for doing the http requests to transmit the
data towards the server.

A.0.3 Conflicts with RadioLib and HTTPClient

When we were developing the module Network to handle the Wifi connections,
and the Http requests towards the server and we tried to build it in the same
project as the LoRaMesher, we realized that there was a conflict with the class
HTTPClient which was in charge of doing the http requests. For some reason there
was a class on RadioLib with the same name as the HTTPClient of the arduino
framework. Reading documentation we got to know that this issue was already
fixed on the latest version of RadioLib, we also saw that that module had no longer
support since the functionality was the same as the already existing in Arduino
framework and had no further advantatges. The problem was that LoRaMesher
was using actually a modded version from RadioLib forked from a previous version
of it . My first thought was trying to merge both branches, the modded version
and the actual version of RadioLib where this issue was fixed. But it didn’t give
good results, the newer version of RadioLib had a lot of different things from the
previous one and directly messed all up . Then after ponder a little bit more, we
found a more simple solution. If there was a conflict with a certain class name,
the only thing we had to do is just delete one of them and cross fingers that
there will be no other class depending on it. So that’s what we did, we delete the
library HTTP from RadioLib, with the HTTPClient definition. There was only
an include of this .h file in the main loramesher.h file. We delete it as well and
no other problem seemed to appear so in fact nobody seemed to needed anymore.
We had solved the issue.

A.0.4 The error called guru meditation error core 0 panic’ed
(loadprohibited). exception was unhandled

This error appeared suddenly when everything was expected to work fine just
seeing previous works of other students. The explanation of this was quite simple.

101

Bachelor Thesis TFG

Figure 21: core 0 panic’ed (loadprohibited). exception was unhandled error screen-
shot,source: PlatformioIDE

This was caused by the board trying to execute a post or a get instruction without
even being connected to the wifi. I assumed that it was already connected but for
some reason I misunderstood the sequence of the events in the inherited code so
by the the time that the GET instruction was executed, the WiFi connection still
have not taken place which became in a core panic’ed error(fig 21).

A.0.5 Platformio doesn’t flash more than one board at the
same time

The problem is that Platformio not only doesn’t flash more than one board at the
same time, but it doesn’t make you easy having the chance of which usb port you
want to flash. The thing is that it took quite a lot of time to realize that because
at the time of uploading the project to the board, Platformio in fact lets you to
choose what serial you want to see, but I thought you were choosing what board to
flash as well, but it did not happen like that, something just did not make sense.
I realized it when some errors that I had already fixed seemed to appear again.
Of course they did, because they were already working with the old version of the
code without getting noticed. There are some ways you can flash multiple boards
simultaneously, but you need to code a script in python but due to the deadlines
I wasn’t able to learn and test it properly by the time I found the obstacle. There
are alternatives to get to flash many boards at the same time like executing the
following python script described in list A.1

1

102

Bachelor Thesis TFG

2 from platformio import util
3 import os
4
5 if name == ’main’:
6 ports = util.get_serial_ports ()
7 for port in ports:
8 os.system("pio run --target upload --upload -port " + port[

"port"])
9 print("Successfully update port: " + port["port"])

Listing A.1: Python script to flash multiple boards,source :Joan Miquel Solé

A.0.6 Sensibility of the ELK stack to different versions be-
tween components and with the javascript client

During the development of the monitoring system I switched between different
versions of elastic search and I must say that several issues may appear from doing
so. There are some mechanism that remain unknown for me but I you switch to a
branch with a lower elastic search version installed, when you try to turn on the
systems, some pointers might be pointing the previous version, no matter if you
are working with containers and you must be very careful if you are dealing with
several versions on developing on the same machine.Afterwards I discovered that
it was necessary to delete not only the containers of the previous docker deploys,
but also the volumes executing the commands in list A.2

1 docker -compose down
2 docker rm -f \$(docker ps -a -q)
3 docker volume rm \$(docker volume ls -q)

Listing A.2: Previous recommended commands before a clean deploy from docker-
compose file,source: [6]

Besides this, there’s another important thing that to consider, the javascript client
comparing to the ELK version, if they don’t match the way the documentation
says, several errors may appear, thread await errors, nodes that doesn’t retrieve
information or who knows. The things you should know about the javascript client
[9]:
The client versioning follows the Elastic Stack versioning, this means that major,
minor, and patch releases are done following a precise schedule that often does not
coincide with the Node.js release times.
To avoid support insecure and unsupported versions of Node.js, the client will
drop the support of EOL versions of Node.js between minor releases. Typically, as
soon as a Node.js version goes into EOL, the client will continue to support that
version for at least another minor release. If you are using the client with a version

103

Bachelor Thesis TFG

Table 13: Node EOL versions,source: [9]

Node.js Version Node.js EOL date End of support
8.x December 2019 7.11 (early 2021)
10.x April 2021 7.12 (mid 2021)
12.x April 2022 8.2 (early 2022)

Table 14: Compatibility matrix

ElasticSearch Version Client Version
8.x 8.x
7.x 7.x
6.x 6.x
5.x 5.x

of Node.js that will be unsupported soon, you will see a warning in your logs (the
client will start logging the warning with two minors in advance).
Unless you are always using a supported version of Node.js, we recommend defining
the client dependency in your package.json with the ~instead of ^. In this way, you
will lock the dependency on the minor release and not the major. (for example,
~7.10.0 instead of ^7.10.0). We can see all this better expressed in table 13
We should as well have in mind the compatibility matrix between the javascript
client and our Elastic Stack, otherwise we will have several working issues appear-
ing in many shapes.
Language clients are forward compatible 14; meaning that clients support com-
municating with greater or equal minor versions of ElasticSearch. ElasticSearch
language clients are only backwards compatible with default distributions and
without guarantees made [9] .

A.0.7 The amount of virtual memory

It’s very common while working in dockerized environment, not having enough
virtual memory space on the heap . Luckily this has a very quick fix executing the
following instruction in list A.3 through the command line :

1 sysctl -w vm.max_map_count =262144

Listing A.3: Set virtual memory value instruction,source: [15]

104

Bachelor Thesis TFG

A.0.8 The confusing placement of the documentation of
Elastic Stack

When the new version of the Elastic Stack came out, the standard documentation
of elastic search changed its version and all the older version documentation became
more difficult to find. For some time I begun to think that it had disappeared.
Luckily it was still there but somewhere hidden in elastic site but I lost some time
exploring the newer version that I finally did not use. Afterwards I found the
right documentation and after some research I could securize elastic side of the
monitoring system. But that meant quite a lot of time until that.

105

Appendix B

Initial Gantt Diagram

106

P
D

F
 G

enerated
 O

n: 1
0/1

6/20
21

, 1
8:30

:21
P

ag
e 1 / 1

Appendix C

New Gantt Diagram

108

Fecha de inicio
Fecha de fin

1E
studio nuevo código

25/01/2022
01/02/2022

2Im
plem

entación nueva tarea
01/02/2022

08/02/2022
3C

onexión con servidor de N
ode en entorno dockerizado

08/02/2022
15/02/2022

3.1Test conexión con node
10/02/2022

15/02/2022
4E

studio E
lasticS

earch y K
ibana

15/02/2022
22/02/2022

6D
ockerización K

ibana, E
lasticS

earch
22/02/2022

01/03/2022
7Integración node, m

ongo, elastic search
01/03/2022

08/03/2022
8 E

xperim
entos Validación

08/03/2022
15/03/2022

9 D
espliegue Ip P

ública
15/03/2022

30/03/2022
10 D

ocum
entación adicional

25/01/2022
15/04/2022

24/01/2022
31/01/2022

07/02/2022
14/02/2022

21/02/2022
28/02/2022

07/03/2022
14/03/2022

21/03/2022
28/03/2022

04/04/2022
11/04/2022

18/04/2022
25/04/2022

25
26

27
28

29
30

31
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

01
02

03
04

05
06

07
08

09
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

S
tart data

E
nd data

T
W

T
F

S
S

M
T

W
T

F
S

S
M

T
W

T
F

S
S

M
T

W
T

F
S

S
M

T
W

T
F

S
S

M
T

W
T

F
S

S
M

T
W

T
F

S
S

M
T

W
T

F
S

S
M

T
W

T
F

S
S

M
T

W
T

F
S

S
M

T
W

T
F

S
S

M
T

W
T

F
S

S
M

T
W

T
F

S
S

M
T

W
T

F
S

1E
studio nuevo código

0
7

25/01/2022
01/02/2022

2Im
plem

entación nueva tarea
7

7
01/02/2022

08/02/2022
3C

onexión con servidor de N
ode en entorno dockerizado

14
7

08/02/2022
15/02/2022

3.1Test conexión con node
16

5
10/02/2022

15/02/2022
4E

studio E
lasticS

earch y K
ibana

21
7

15/02/2022
22/02/2022

6D
ockerización K

ibana, E
lasticS

earch
28

7
22/02/2022

01/03/2022
7Integración node, m

ongo, elastic search
35

7
01/03/2022

08/03/2022
8 E

xperim
entos Validación

42
7

08/03/2022
15/03/2022

9 D
espliegue Ip P

ública
49

15
15/03/2022

30/03/2022
10 D

ocum
entación adicional

0
90

25/01/2022
25/04/2022

Appendix D

Working with the new code

At the point where I was supposed to deliver my work I suffered some crucial delays
and I had to renounce delivering my thesis at the end of January and leave till the
end of april . On the other hand, there was another student called Joan Miquel
Solé who coded an improved version of the LoRaMesher. This time it worked with
no errors and all the test he did gave a good result. So I took advantage of his
researchs and started working from that point. From now on I will explain the
steps I took to get Joan Miquel code working on my old project on PlatformIO.

1. Copy paste from the platformio.ini main branch located at the example folder
in the LoRaMesher project to the actual platformio.ini file.

2. Compile. Then the PLatformIO will download the LoRaMesher library with
the right branch to the .pio folder and will change the name of the folder
with the old LoRaMesher to avoid conflicts. Afterwards you can delete this
library safely by hand because it won’t be needed anymore.

3. Copy paste from the main.cpp located in the example folder from the Lo-
RaMesher project to the actual main.cpp .

4. Compile

5. Upload to the TTGO-TBeam .Profit!

The next thing I did was creating my own branch from Joan Miquel version and I
added my network.cpp library that was initially supposed to help extracting data
from the old LoRaMesher towards our node server. A little modifications will be
needed to get things working again with this new version.

110

Appendix E

Repos

Here are the main repos of the whole system

• LoRaMesher’s side, concretely NuevaRamaAlejandro is my branch: LoRaMesher

• Node and elastic search server wihth dockerfiles here. It has several branches,
halfway authenticated version, local test deployment, with three and one
node, and version 8 test deployment.

• Main cpp used for flashing test boards with platformio here (Not included in
the attached files because it was too big with all the library dependencies)

111

https://github.com/LoRaMesher/LoRaMesher/tree/NuevaRamaAlejandro
https://github.com/pellax/micowlocalyzer
https://github.com/pellax/TFG

Bibliography

[1] BCN Wages list of the wages in the it world. https://www.glassdoor.
es/Sueldos/barcelona-qa-sueldo-SRCH_IL.0,9_IM1015_KO10,12.htm?
clickSource=searchBtn. Accessed: 2021-10-18.

[2] Dockerizing elk stack version 7.17. https://www.elastic.co/guide/en/
elastic-stack-get-started/7.17/get-started-docker.html. Accessed:
2022-04-07.

[3] Elk stack. https://www.elastic.co/es/elasticsearch/. Accessed: 2022-
04-14.

[4] Freertos http core. https://www.freertos.org/http/index.html. Ac-
cessed: 2022-04-14.

[5] Grafana features. https://grafana.com/grafana/. Accessed: 2022-03-17.

[6] How to do a clean restart of a docker instance. https:
//docs.tibco.com/pub/mash-local/4.1.0/doc/html/docker/
GUID-BD850566-5B79-4915-987E-430FC38DAAE4.html. Accessed: 2022-04-
15.

[7] Installing docker compose on ubuntu 20.04. https:
//www.digitalocean.com/community/tutorials/
how-to-install-and-use-docker-compose-on-ubuntu-20-04-es. Ac-
cessed: 2022-04-15.

[8] Installing docker on ubuntu 20.04. https:
//www.digitalocean.com/community/tutorials/
how-to-install-and-use-docker-on-ubuntu-20-04-es. Accessed:
2022-04-15.

[9] Javascript elastic client. https://www.elastic.co/guide/en/
elasticsearch/client/javascript-api/current/installation.html?
baymax=rec&rogue=rec-1&elektra=guide. Accessed: 2022-03-16.

112

https://www.glassdoor.es/Sueldos/barcelona-qa-sueldo-SRCH_IL.0,9_IM1015_KO10,12.htm?clickSource=searchBtn
https://www.glassdoor.es/Sueldos/barcelona-qa-sueldo-SRCH_IL.0,9_IM1015_KO10,12.htm?clickSource=searchBtn
https://www.glassdoor.es/Sueldos/barcelona-qa-sueldo-SRCH_IL.0,9_IM1015_KO10,12.htm?clickSource=searchBtn
https://www.elastic.co/guide/en/elastic-stack-get-started/7.17/get-started-docker.html
https://www.elastic.co/guide/en/elastic-stack-get-started/7.17/get-started-docker.html
https://www.elastic.co/es/elasticsearch/
https://www.freertos.org/http/index.html
https://grafana.com/grafana/
https://docs.tibco.com/pub/mash-local/4.1.0/doc/html/docker/GUID-BD850566-5B79-4915-987E-430FC38DAAE4.html
https://docs.tibco.com/pub/mash-local/4.1.0/doc/html/docker/GUID-BD850566-5B79-4915-987E-430FC38DAAE4.html
https://docs.tibco.com/pub/mash-local/4.1.0/doc/html/docker/GUID-BD850566-5B79-4915-987E-430FC38DAAE4.html
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-20-04-es
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-20-04-es
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-20-04-es
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-20-04-es
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-20-04-es
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-20-04-es
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/installation.html?baymax=rec&rogue=rec-1&elektra=guide
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/installation.html?baymax=rec&rogue=rec-1&elektra=guide
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/installation.html?baymax=rec&rogue=rec-1&elektra=guide

Bachelor Thesis TFG

[10] Kibana. https://www.elastic.co/es/kibana/. Accessed: 2022-04-14.

[11] LoRa Frequencies by country. https://www.thethingsnetwork.org/docs/
lorawan/frequencies-by-country/. Accessed: 2022-04-2.

[12] Manually configure security. https://www.elastic.co/guide/en/
elasticsearch/reference/current/manually-configure-security.
html#manually-configure-security. Accessed: 2022-03-20.

[13] Maximum segment size definition. https://www.geeksforgeeks.org/
how-to-calculate-maximum-segment-size-in-tcp/. Accessed: 2022-04-
17.

[14] Maximum transmission unit. https://www.geeksforgeeks.org/
what-is-mtumaximum-transmission-unit/. Accessed: 2022-04-17.

[15] Virtual memory in elastic. https://www.elastic.co/guide/en/
elasticsearch/reference/7.17/vm-max-map-count.html. Accessed:
2022-04-15.

[16] What is Grafana. https://grafana.com/docs/grafana/latest/
introduction/oss-details/. Accessed: 2022-03-17.

[17] Aloÿs Augustin, Jiazi Yi, Thomas Clausen, and William Mark Townsley. A
study of lora: Long range amp; low power networks for the internet of things.
Sensors, 16(9), 2016.

[18] Roger Pueyo Centelles, F. Freitag, R. Meseguer, and L. Navarro. A mini-
malistic distance-vector routing protocol for lora mesh networks. Technical
report, Jun 2021.

[19] Antonio Cilfone, Luca Davoli, Laura Belli, and Gianluigi Ferrari. Wireless
mesh networking: An iot-oriented perspective survey on relevant technologies.
Future Internet, 11(4), 2019.

[20] Jeferson Rodrigues Cotrim and João Henrique Kleinschmidt. Lorawan mesh
networks: A review and classification of multihop communication. Sensors,
20(15), 2020.

[21] Council of European Union. General data protection regulationgdpr, 2016.
https://gdpr-info.eu/.

[22] Pengfei Hu and Wai Chen. Software-defined edge computing (sdec): Princi-
ples, open system architecture and challenges. In 2019 IEEE SmartWorld,

113

https://www.elastic.co/es/kibana/
https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country/
https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country/
https://www.elastic.co/guide/en/elasticsearch/reference/current/manually-configure-security.html#manually-configure-security
https://www.elastic.co/guide/en/elasticsearch/reference/current/manually-configure-security.html#manually-configure-security
https://www.elastic.co/guide/en/elasticsearch/reference/current/manually-configure-security.html#manually-configure-security
https://www.geeksforgeeks.org/how-to-calculate-maximum-segment-size-in-tcp/
https://www.geeksforgeeks.org/how-to-calculate-maximum-segment-size-in-tcp/
https://www.geeksforgeeks.org/what-is-mtumaximum-transmission-unit/
https://www.geeksforgeeks.org/what-is-mtumaximum-transmission-unit/
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/vm-max-map-count.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/vm-max-map-count.html
https://grafana.com/docs/grafana/latest/introduction/oss-details/
https://grafana.com/docs/grafana/latest/introduction/oss-details/
https://gdpr-info.eu/

Bachelor Thesis TFG

Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable
Computing Communications, Cloud Big Data Computing, Internet of Peo-
ple and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBD-
Com/IOP/SCI), pages 8–16, 2019.

[23] Dorian Pyle. Data preparation for data mining. morgan kaufmann, 1999.

[24] Francoise Sailhan, Liam Fallon, Karl Quinn, Paddy Farrell, Sandra Collins,
Daryl Parker, Samir Ghamri-Doudane, and Yangcheng Huang. Wireless mesh
network monitoring: Design, implementation and experiments. In 2007 IEEE
Globecom Workshops, pages 1–6. IEEE, 2007.

[25] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge comput-
ing: Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646,
2016.

[26] Joan Miquel Solé. Improving the usability of a lora mesh library, 1 2022.

[27] Usama Fayyad Johannes Gehrke Jiawei Han Shinichi Morishita Gregory
Piatetsky-Shapiro Wei Wang Soumen Chakrabarti, Martin Ester. DATA
MINING CURRICULUM: A PROPOSAL. https://kdd.org/curriculum/
view/introduction, 2021. [Online; accessed 26-September-2021].

[28] Er. Pooja Yadav, Er. Ankur Mittal, and Hemant Yadav. Iot: Challenges and
issues in indian perspective. In 2018 3rd International Conference On Internet
of Things: Smart Innovation and Usages (IoT-SIU), pages 1–5, 2018.

114

https://kdd.org/curriculum/view/introduction
https://kdd.org/curriculum/view/introduction

	List of Figures
	List of Tables
	Context and Scope
	Introduction
	Context
	Justification
	Problem to solve
	Main Concepts
	LoRa
	IoT
	Mesh networks
	Multihop
	LPWAN
	LoRAWAN
	Data preprocessing
	Data collection
	Edge computing
	Data cleansing
	Data Mining

	Implied Metrics
	Time on Air(ToA)
	Routing tables

	Project Scope
	Methodology
	Risks
	Goals
	Functional requirements
	Non-Functional requirements

	Main elements
	Hardware
	Software

	Time Planning
	Task description
	Project Management
	Previous Work
	Developing
	Integrating parts
	Data collection
	Data preprocessing
	Graphics

	Resources
	Human resources
	Material Resources
	Risk Management
	Project deviations
	Time deviations
	Cost deviations
	Initial conditions deviation
	Goals deviation

	Economic Management and Sustainability
	Budget
	Staff costs
	Generic costs

	Contingence Plan
	Unexpected issues
	Total costs

	Control Management
	Sustainability
	Self Evaluation
	Economic dimension
	Environmental dimension
	Social dimension

	Legal considerations
	LoRa
	General Data Protection Regulation
	Intelectual Property

	Analysis of the LoRaMesher library
	Types of packets
	FreeRTOS

	Design of the monitoring system
	Keeping up FreeRTOS stability
	Options to build the data flow to the server, client side
	coreHTTP
	Arduino's HTTPClient
	Using the HTTPClient

	Wifi connection
	Our Network LoRa Module

	Server side
	Node.js
	Mongo
	Dockerizing the server

	Monitoring tools
	Monitoring mesh networks:state-of-art
	Grafana
	Our proposal : ElasticSearch
	Kibana

	Dockerizing our Elastic Stack
	The Javascript Elastic client
	Integration of the different parts of the server

	Our final monitoring architecture design

	Usage of the monitoring system
	Kibana setup
	Flashing boards
	Plotting Dashboards
	First Experiments
	Longer-Term monitoring experiments

	Deploying to a public IP
	First Test Deployment
	Securized deployment
	First steps
	ELK stack security features
	Securizing the ELK Stack
	Loading the whole system

	Conclusions
	Technical conclusions
	Personal conclusions about the work and other comments
	Future work
	Monitoring system stress experiments
	Experiments about the best fit in the priority task scale
	Measuring monitoring systems overheads
	Power Consumption overheads
	Post Requests Overheads

	Securize the node server
	Finish the ELK stack securization

	Appendices
	Obstacles
	Issues with the platformio IDE
	Using platformio external libraries instead of Arduino Libraries
	Conflicts with RadioLib and HTTPClient
	The error called guru meditation error core 0 panic'ed (loadprohibited). exception was unhandled
	Platformio doesn't flash more than one board at the same time
	Sensibility of the ELK stack to different versions between components and with the javascript client
	The amount of virtual memory
	 The confusing placement of the documentation of Elastic Stack

	Initial Gantt Diagram
	New Gantt Diagram
	Working with the new code
	Repos
	Bibliography

