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Abstract: This paper presents a method for optimal pressure sensor placement in water distribu-1

tion networks using information theory. The criteria for selecting the network nodes where to2

place the pressure sensors is that they provide the most useful information for locating leaks in the3

network. Considering that the node pressures measured by the sensors can be correlated (mutual4

information), a subset of sensor nodes in the network is chosen. The relevance of information is5

maximized, and information redundancy is minimized simultaneously. The selection of the nodes6

where to place the sensors is performed from datasets of pressure changes caused by multiple7

leak scenarios, which are synthetically generated by simulation using the EPANET software. In8

order to select the optimal subset of nodes, the candidate nodes are ranked using a heuristic9

algorithm with quadratic computational cost, which makes it time-efficient compared to other10

sensor placement algorithms. The sensor placement algorithm was implemented in MATLAB and11

tested in the Hanoi network. It was verified by exhaustive analysis that the selected nodes are the12

best combination to place the sensors and detect leaks.13

Keywords: Sensor Placement; Pressure Monitoring; Information Theory; Leak Localization; Water14

Distribution Network.15

1. Introduction16

Finding a suitable sensor placement is a fundamental problem for monitoring Water17

Distribution Networks (WDNs) because it is impossible to install sensors at each point18

of the geographic area covered by the distribution system. A WDN comprises hundreds19

of nodes; however, only a few sensors can be installed in certain carefully selected nodes.20

Then, the main question is how to select the optimal sensor placement. Finding an21

answer to this problem is not trivial because the selected nodes must capture the most22

relevant information to estimate hydraulic variables at non-measured points and provide23

essential information for different supervision algorithms, e.g., for leak localization [1,2].24

Often there are pressure and flow instruments at the supplying nodes of a WDN and25

in some cases at critical points (e.g., at the minimum pressure node). However, these26

measurements are not sufficient for an accurate leak localization, so additional sensors27

must be installed at other sites [3]. A practical solution is to install more pressure28

sensors because they are cheaper and easier to install and maintain than flow sensors.29

In addition, node-pressures are more sensitive to leaks than flow rates, which is why30

many localization algorithms are based primarily on pressure measurements. The31

problem of sensor placement is closely related to other WDN management problems,32

such as the state estimation of the network [4–6], the model calibration [7,8], the water33
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quality monitoring such as detection of contaminants and cyberattacks [9–15], among34

others. Nevertheless, the present work focuses on the context of leak detection and35

localization as discussed in [16,17]. Regarding techniques for optimal sensor placement36

for leak/burst detection and localization in water distribution systems, a comprehensive37

review can be found at [18].38

In a mathematical/computational context, the placement of pressure sensors is a39

mixed integer programming problem. In this problem, for a network with N nodes,40

a sensor placement consists of a selection [s1, s2, . . . , sN ] where si are binary decision41

variables such that si = 1 indicates that a sensor will be placed on the i-th node, whereas42

si = 0 indicates that no sensor will be placed on that node.43

Combinatorial analysis shows that there are 2N − 1 possible sensor placements44

when non-empty subsets with any number of sensors are considered. If the number45

of sensors is previously set to a fixed number S, then the number of possible sensor46

placements is reduced to (N
S ), which is still a very large number. Therefore, in medium-47

sized and large networks is not feasible to check all possible combinations. For example,48

in a network containing 500 nodes the number of different placements for 10 sensors49

is (500
10 ) ≈ 2.5× 1020. That is why it is important to find an optimal placement method50

without analysing all the possible combinations.51

Usually, sensor placement focused on leak localization has been addressed under52

an optimization approach from synthetic pressure data obtained by simulation. Some53

authors have focused on minimizing the number of undetectable leaks [19,20], whereas54

others reduce the error in the leak location [21,22]. In [23], a min-max optimization55

algorithm that considers the isolation of the leaks from their signatures obtained through56

simulation is proposed. In [24], a multi-objective approach to mitigate errors both in57

detection and localization of leaks, considering minimum night-flow conditions is pre-58

sented. Regarding the optimization of the objective function, two approaches are usually59

used: deterministic methods (e.g., branch and bound [25]), and metaheuristic methods,60

(e.g., genetic algorithms [26–28] and particle swarm optimization [29]). Deterministic61

approaches guarantee an optimal solution, but the computation time increases expo-62

nentially with the number of nodes and possible leak scenarios. On the other hand,63

metaheuristic methods search for a near-optimal solution that only guarantees optimal64

when the number of candidate solutions evaluated (named “population size”) tends65

to infinity. Furthermore, optimization-based sensor placement methods are linked to a66

specific leak localization method because the objective function is expressed in terms67

of a localization error or isolation index for that method [16,29,30]. Based on this, a68

sensor placement method may be optimal for one specific leak localization method but69

not as good for others. Furthermore, the method should be independent of the leak70

localization method since it is not feasible to change it for every method. Thus, an71

improved leak localization method could be proposed based on an ensemble of different72

machine learning algorithms using the information provided by the sensors.73

The huge computing time in networks with hundreds and thousands of nodes using74

optimization-based methods and the high dependence on the selected leak localization75

method has motivated the present work. In this new proposal, it is not considered how76

specific leak localization methods will use the information provided by the sensors,77

but rather that the sensor placement method only focuses on the sensors capturing as78

much information related to the leaks as possible. The proposed method consists of a79

heuristic algorithm to select the subset of nodes where to place the sensors, seeking to80

maximize the relevance of the information captured by the sensors while minimizing81

the redundancy between the pressures in the selected nodes. Both metrics, relevance82

and redundancy, will be defined in terms of information theory.83

An important contribution of this work is the reduction in computing time for sensor84

placement, compared to methods based on metaheuristic optimization. Another relevant85

contribution is the non-dependence of the sensor placement on the leak localization86

method used, which allows using the same sensor placement with different localization87



methods. Some aspects not yet covered in this work are the possible heterogeneity88

of sensors (e.g., different errors and measurement ranges) and the influence of the89

measurement noise in the optimal placement, but they are considered as future work.90

The rest of the document is organized as follows: In Section 2 the concepts of91

redundancy and relevance will be presented in terms of mutual information, and the92

information quotient used as the basis of the method will also be defined. In Section 3,93

the proposed method is formally described and some guidelines for its implementation94

are given. In Section 4, the results of the proposed method applied in a simplified version95

of the Hanoi network (case study) are presented. Finally, in Section 5, the conclusions96

are presented and future related works are proposed.97

2. Information Theory Fundamentals98

In Shannon’s Information Theory (IT), the self-information of a random variable99

is defined according to the unexpectedness of its values [31]. Thus, the information100

contained in a constant random variable is zero. Mathematically, if an event E has101

probability P, its information content is defined by:102

I(E) def
= − logb(P), (1)

where the unit of measure of I is defined by the base of the logarithm, b, which in case of103

being b = 2 is called “bit”. In a discrete random variable X with probability function104

p(x) = Pr(X = x), the self-information of obtaining x as a result when measuring X is105

given by:106

I(x) = − logb(p(x)) = logb(1/p(x)). (2)

To quantify the average information that a random variable contains, considering107

all its possible values, entropy is used:108

H(X)
def
= E(I(x)) = ∑

x
−p(x) logb(p(x)), (3)

which is the expected value of the information contained in the measurements of X.109

That is the sum of the self-information of each of its possible values weighted by its110

probability of occurrence.111

The mutual information of two random variables, sometimes called “information112

gain”, measures the amount of information obtained about one of the random variables113

by observing the other one. For example, in a practical application of WDN monitor-114

ing, the mutual information between two node pressures would indicate how much115

information about the pressure at one node is gained by knowing the pressure at the116

other one. In probabilistic terms, mutual information determines how different the joint117

distribution of (X, Y) is from the product of the marginal distributions of X and Y.118

For two discrete variables X and Y, defined over the space X × Y , the mutual119

information is computed as the double sum:120

I(X, Y) = ∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
, (4)

where p(x, y) = Pr(X = x, Y = y) is the joint probability function of X and Y, whereas121

p(x) and p(y) are the marginal probability functions of X and Y, respectively. The122

mutual information (4) is derived from entropy and conditional probability by the123

following equivalences:124

I(X, Y) ≡ H(X)− H(X |Y) ≡ H(Y)− H(Y | X). (5)

Furthermore, I(X, X) = H(X), I(X, Y) = I(Y, X) and I(X, Y) ≥ 0, where I(X, Y) = 0125

iff X and Y are independent.126



For continuous random variables, the summations in (4) are replaced by integrals127

and the probability functions by probability densities:128

I(X, Y) =
∫
Y

∫
X

p(x, y) log
p(x, y)

p(x)p(y)
dx dy. (6)

Due to the difficulty in modeling the probability densities and subsequently evalu-129

ating the double integrals in (6), a simplification to calculate the mutual information in130

continuous variables is to discretize the variables with n bits, so that the domain of each131

variable is reduced to 2n bins. For example, to compute the mutual information of two132

node pressures in a hydraulic network, the span of the pressure variables [Pmin, Pmax]133

must be divided into a discrete 8-bit grid (256 different values) and then apply (4).134

3. Sensor Placement Method135

The proposed sensor placement method is based on a dataset of node pressures136

that collects typical variations due to leaks of different sizes in all network nodes. The137

pressure dataset is obtained from simulations with the hydraulic model of the network138

[32]. Each pressure data is labeled with a “leak class” (the node where the leak occurs)139

so that the proposed method can be classified as supervised.140

In the context of machine learning, the placement of pressure sensors is a feature141

selection stage. To select the features (subset of nodes where the sensors will be placed), an142

algorithm is proposed that seeks to maximize the relevance of the selected features (node143

pressures) for the response variable (leaky node), while each of them avoids capturing144

information already contributed by the others, that is, minimizing redundancy.145

The following definitions of relevance and redundancy, proposed in [33], are used146

as a basis for defining the methodology:147

Definition 1 (Relevance). A metric of the relevance of the subset of node pressures S148

for the response variable y (leak node), is given by149

Rel(S) def
=

1
S ∑

x∈S
I(x, y), (7)

where x is any feature in S , and S = |S| is the number of features in S (the cardinality).150

Definition 2 (Redundancy). A metric for information redundancy in a feature subset S151

is given by:152

Red(S) def
=

1
S2 ∑

x,x′∈S
I(x, x′), (8)

where x and x′ are any features in S .153

To apply the above definitions to compute a pressure sensor placement, first, a154

dataset of node pressures is built covering different scenarios that consider leaks of155

different magnitude in all nodes of the network. Through simulation with the hydraulic156

model of the network, a series of samples of the node pressures is obtained, one sample157

for each different leakage scenario. In this way, if M different leakage scenarios are158

simulated in a network containing N nodes, the result of the simulation is a collection159

of N M-dimensional vectors, x and x′ in (7) and (8), corresponding to the N candidate160

nodes (initially, it is assumed that all nodes are potential sensing nodes). In addition, an161

output vector, y in (7), is generated containing integer labels to indicate the leaky node162

corresponding to each simulated scenario.163

The exhaustive search for the optimal subset of sensors, S , requires testing of the164

2N − 1 different combinations, which would require impractical computation time in165

networks with many nodes. Therefore, the use of a method proposed in [33] is considered166

to rank the node pressures through an iterative forward scheme that only requires O(NS)167



computations. In fact, with this proposal it is possible to rank all the node pressures in168

order of importance with a computational cost O(N2).169

Next, a heuristic algorithm is proposed that orders the node pressures according170

to their importance to explain the different leak classes (leaky nodes). The first node171

pressures in the output list correspond to the nodes with the highest importance in172

explaining the leak positions according to the information contained in the dataset. The173

sequential selection of nodes starts from an empty subset and, in each iteration, adds the174

best-ranked node among those that are still available to be selected. In each iteration,175

the relevance of each available feature (node pressure) with respect to the output (leaky176

node) and its redundancy with respect to the variables that have been previously selected177

is evaluated using the following equations, adapted from (7) and (8):178

Rely(x) = I(x, y), (9)

RedS (x) =
1
S ∑

x′∈S
I(x, x′). (10)

Since maximizing relevance and simultaneously minimizing redundancy represents179

a multi-objective problem, a combined relevance/redundancy index (RRI) is defined180

that increases with increasing relevance and also with decreasing redundancy, so the181

problem is expressed as a single objective to be maximized:182

RRI = Rely(x)/ RedS (x). (11)

The complete node ranking process is formally expressed in Algorithm 1. When the183

process finishes, the nodes to place the sensors are taken from the first positions in the184

list S . If it is not necessary to obtain the complete ranking of nodes, but only to know185

the best-ranked positions, the process may stop prematurely when the subset S already186

contains the number of sensors to be placed.187

Algorithm 1: Node ranking based on information theory
Data: Set with all node pressures, A. The nodes in A will be placed in the

ordered list S according to their importance (relevance/redundancy).
During the process, S̃ denotes the elements of A not yet added in S .

Result: Set with ordered node pressures, S .
Initialization:
S ←

[
arg max

x∈A
Rely(x)

]
repeat

if ∃x ∈ S̃ , Rely(x) 6= 0, RedS (x) = 0 then
S ←

[
S , arg max

x∈S̃ , RedS (x)=0

Rely(x)
]

else
break

end
until ∀x ∈ S̃ , RedS (x) 6= 0
repeat
S ←

[
S , arg max

x∈S̃ , Rely(x) 6=0

Rely(x)/ RedS (x)
]

until ∀x ∈ S̃ , Rely(x) = 0
S ←

[
S , S̃

]
Regarding the number of sensors to place for leak localization purposes, this is188

determined by the equipment available in most cases. The minimum number of sensors189

for a successful leak localization method will depend on how that method uses the190
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Figure 1. The Hanoi network.

available information, the measurement noise, as well as the quality, resolution and191

calibration of the sensors. If there are enough resources to intensively instrument the192

network, it must be taken into account that increasing the number of sensors does193

not always lead to better performance in locating leaks. To determine up to how many194

sensors should be placed, it is suggested to start from the ranking obtained by Algorithm195

1, and run a marginal analysis with the leak localization method to be used. Starting196

from one sensor (the best ranked), the number of sensors is progressively increased and197

the leak localization performance is evaluated for each new set of sensors until adding a198

new sensor no longer represents a significant benefit in locating leaks.199

It should be noted that Algorithm 1 does not take into account the geographical200

distribution of the nodes, since relevance and redundancy depend only on the mutual201

information between node pressures. This means that the distance between sensors202

is not determining, the network topology is what determines the amount of mutual203

information (i.e., two sensors can be geographically very close but have little mutual204

information).205

4. Results and Discussion206

Algorithm 1 was implemented in MATLAB and tested on the Hanoi network [34].207

The model of the Hanoi network is composed of one reservoir, 31 consumer nodes, and208

34 pipes, as shown in Figure 1. Due to its reduced topology, this network has been used209

as a standarized benchmark in different works [28,35,36].210

In order to build the pressure dataset, leaks of different magnitude were simu-211

lated in each junction node using the EPANET 2 simulation program [37] through212

EPANET/MATLAB Toolkit [38]. The procedure to generate the dataset using EPANET,213

the training and the predictive use of classifiers in locating leaks have been described in214

[39]. The dataset generated by simulation for this work considers leaks at all junction215

nodes with flow rates from 1 l/s to 50 l/s. In order to simulate leaks in a node, the216

demand assigned to that node in the EPANET hydraulic model was modified increas-217

ing this demand by an amount equal to the flow of the simulated leak. Because the218

Hanoi network contains few nodes, the optimality of the sensor placement calculated by219

Algorithm 1 was exhaustively verified.220

To assess the optimality of the sensor placement obtained from Algorithm 1, leak221

localization tests were carried out using two machine learning methods that use the222

pressures in the selected nodes as features (input variables). The methods used were223

k-Nearest Neighbors (k-NN) and Quadratic Discriminant Analysis (QDA). These leak lo-224



Table 1: Better positions to place three sensors in the Hanoi network, obtained by
exhaustive analysis. The shaded selection is the one obtained by Algorithm 1.

Rank Nodes Location Method

k-NN QDA

1 {12,21,28} 0.9974 0.9948
1 {12,21,27} 0.9974 0.9948
1 {12,21,31} 0.9974 0.9948
2 {7,12,21} 0.9961 0.9936
2 {12,17,21} 0.9961 0.9936
3 {3,12,21} 0.9961 0.9923
3 {4,12,21} 0.9961 0.9923
3 {6,12,21} 0.9961 0.9923
3 {5,12,21} 0.9961 0.9923

Rank Nodes Location Method

k-NN QDA

1 {12,21,28} 0.0026 0.0052
1 {12,21,27} 0.0026 0.0052
1 {12,21,31} 0.0026 0.0052
2 {12,13,21} 0.0065 0.0065
3 {7,12,21} 0.0065 0.0090
3 {12,17,21} 0.0065 0.0090
4 {3,12,21} 0.0039 0.0129
4 {4,12,21} 0.0039 0.0129
5 {6,12,21} 0.0065 0.0129

(a) Metric: Classification accuracy (b) Metric: Average topological distance

calization methods are based on classifiers that recognize directional patterns in pressure225

residuals using supervised learning techniques, as described in [40].226

Through the marginal analysis, suggested at the end of Section 3, it was determined227

that S = 3 is an adequate number of sensors in the Hanoi network, because the addition228

of the fourth sensor does not produce a statistically significant improvement (with229

0.95 confidence level) in leak location. Considering measurement noise may possibly230

increase the minimum number of sensors, but this discussion has been considered231

as future work. Because the Hanoi network contains few nodes, it was possible to232

comprehensively analyze all 4 495 possible combinations of three sensor nodes. For each233

triplet of nodes (3-sensor placement), 50 leak localization tests were carried out with flow-234

rates qleak = 1, 2, . . . , 50 l/s in each node of the network. Finally, the overall performance235

of both methods was evaluated for each candidate triplet using the classification accuracy236

(Acc) and the average topological distance (ATD) as performance metrics, as defined in237

[41]. The Acc is the fraction of exactly located leaks considering all leak scenarios in the238

test dataset, where Acc = 1 means that all leaks were correctly located, whereas Acc = 0239

means that no leaks were correctly located. The ATD is a measure of how far from the240

true leaky node the classifier locates the leak, counting the number of separation links241

between the true leaky node and the estimated leaky node, averaged across all scenarios242

in the test dataset. So the best sensor placements are the ones that lead to the highest243

Acc values and the lowest ATD values.244

The results in Table 1 show that the node triplet {12, 21, 28} computed by Algorithm245

1 is among the best ranked, since they present the highest accuracy and the lowest246

average topological distance.247

Figure 2 shows the geographic location of the 3-sensor placement obtained consid-248

ering the three nodes best ranked by Algorithm 1. Figure 3 shows the complete ranking249

considering the 31 nodes of the network.250

Table 2 shows the sensor placements obtained for 2, 3 and 4 sensors in the Hanoi251

network, and they are compared with the results obtained by metaheuristic methods252

reported in the literature [29]. The nodes selected by these methods are quite similar and253

produce very close results in terms of accuracy in locating leaks based on the pressures254

of the selected nodes. However, there is an important difference in the computation time255

of the IT-based method (Algorithm 1) compared to the metaheuristic methods. On a256

personal computer with an Intel 64-bit processor and 8 GB in RAM, the computation257

time for the IT-based method was around one second with the synthetic data from the258

Hanoi network, whereas it was 24 minutes for the genetic algorithm (may be larger,259

depending on the initial population size) and about one hour for exhaustive analysis.260

Further tests were made on larger networks, e.g. in some mid-size sectors of the261

Madrid network. Figure 4 shows a 10-sensor placement obtained using Algorithm262
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Table 2: Optimal 3-sensor placement in the Hanoi network using different methods.

S ITa GAb PSOc SEd

2 {12, 28} {12, 21} {12, 21} {12, 21}
3 {12, 21, 28} {12, 21, 27} {12, 14, 21} {12, 21, 29}
4 {12, 21, 26, 28} {1, 12, 21, 29} {1, 12, 21, 24} {1, 12, 21, 29}
a Algorithm 1.
b Genetic Algorithm, reported in [29].
c Particle Swarm Optimization, reported in [29].
d Semi-Exhaustive search, reported in [29].
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1 in a sector of the Madrid network containing one reservoir, 312 junction nodes and263

around 14 km of pipes. In these case, optimality was not exhaustively tested due to264

the vast number of possible placements to compare. However, it was found that the265

average accuracy in leak localization with sensor placements obtained by Algorithm 1266

was at least better than that obtained with an existing placement (previously obtained267

by genetic algorithm) for different leak scenarios.268

Reservoir
Junctions
Sensors
Pipes

Figure 4. The optimal 10-sensor placement in a sector of the Madrid network.

Figures 2 and 4 show that the computed sensor placements do not show geometric269

regularity (i.e., the sensors do not appear equally spaced), since geometric or spatial270

criteria are not used to distribute the sensors in the network. However, regardless of271

geometric irregularity, leak location tests with these placements demonstrate that pres-272

sure measurements at these nodes provide the most useful information for discerning273

between different leak scenarios. In fact, when the placement of sensors obtained by274

Algorithm 1 is compared with the results reported by other authors using metaheuristics,275

sometimes very close performances can be found even though the sensors are distributed276

in different nodes, because the proposed algorithm does not optimize the position of277

each sensor individually but the entire set of sensors. This can be explained with an278

informal analogy: two soccer teams can achieve similar performances using different279

players.280

Although, as noted above, there may be different sensor placements that lead to a281

good performance in locating leaks, the one obtained by Algorithm 1 has the advantage282

of being calculated in less time than the methods based on metaheuristics and that it is283

not linked to a specific leak location method, so changing the leak location method does284

not imply changing the location of the sensors, which would be impractical.285

5. Conclusion286

This paper has presented a technique for finding optimal sensor placements from287

information theory using a sequential forward selection, maximizing the relevance and288

minimizing the redundancy of the selected node subset. The proposed technique is289

computationally less expensive than other methods reported in the literature because the290

proposed technique operates directly on the values of node pressures without performing291

calculations for leak localization in the implementation of the algorithm. The optimality292

of the sensor placement obtained with the proposed method was extensively tested by293

simulation with the Hanoi network. It was found that the selection of nodes to place294

sensors using information theory produces the best combination of pressure variables to295

locate leaks using different machine learning methods.296

An implicit assumption in the proposed algorithms is that all network nodes have297

the same availability to place the sensors. However, in practice some specific nodes may298



have placement priority over others; for example, critical nodes (points of minimum299

pressure) and nodes that supply essential services (e.g., hospitals) could be monitored as300

a priority. It may also occur that some nodes already have a sensor installed and that301

previous partial placement must be held, or that the conditions in a node are physically302

adverse and instrumentation is avoided. These circumstances warrant adjustments303

to the proposed sensor placement algorithm that may lead to future work. Another304

possible working line is the combination of heterogeneous sensors where different sens-305

ing specifications are included (e.g., different precision) or where the sensors measure306

different physical magnitudes (e.g., sensor placements combining pressure and flow307

sensors).308
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