

Pseudomonas aeruginosa biofilms and their partners in crime

<u>Maria del Mar Cendra^{1,2}</u>, Eduard Torrents^{1,3}

¹Bacterial infections & Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain ²Department of Agri-Food Engineering and Biotechnology, Barcelona School of Agri-Food and Biosystems Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, Castelldefels, Spain

³Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain

The ability of Pseudomonas aeruginosa to colonize medical devices and human tissues while growing in resistant communities called biofilms is a worldwide public health concern. P. aeruginosa biofilms have increased antibiotic tolerance and are more resistant to host responses than their planktonic counterparts, which makes the clearance of these biofilms difficult and infections chronic. A critical trait of P. aeruginosa is its capacity to interact and coexist with other microorganisms in multispecies communities. From a clinical point of view, these interactions are usually detrimental to the patient, as infections caused by multiple species are often associated with worse prognosis. On the other hand, from a biotechnological perspective, there is a challenge to recreate the optimal conditions to grow multiple bacterial species simultaneously. P. aeruginosa can interact with other bacteria, fungi and viruses and together infect a wide range of human tissues. This study focuses on the main traits of P. aeruginosa biofilms, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, it also highlights the main microbial interactions of *Pseudomonas* and the current models used to recreate them under laboratory conditions. The antimicrobial and antibiofilm strategies developed against *P. aeruginosa* biofilms are also detailed (1).

Staphylococcus aureus is a major partner in crime of P. aeruginosa and the interaction lead to multiple consequences on their mutual pathogenicity.

Multiple strategies have been designed to combat P. aeruginosa biofilms.

Antibiofilm strategy	Mechanism of action	M	
Inhibition of QS	Use of compounds to inhibit QS signaling	ch	
Inhibition of adhesion	 Surface coating with antimicrobial NPs/molecules that prevent bacterial adhesion Modification of the surface material to inhibit biofilm formation 		
Inhibition of c-di-GMPMolecules that inhibit, decrease or sequester c-di-GMP promoting biofilm dispersal			
Antibiofilm and antimicrobial molecules and peptidesMolecules and peptides with direct antimicrobial or antibiofilm properties			
Bacteriophage therapy	Bacteriophage therapy Pseudomonas-targeted bacteriophages that infect and kill the bacterium		
Bioacoustic effect	Ultrasonication increases antibiotic diffusion		
Main features of P.	aeruginosa biofilms among		
infections and the respective consequences on the			
infection progression.			

odels that fight with the challenge to reproduce *P. aeruginosa* ronic infections.

al	Model	Exemples
to inhibit film	Medium optmization	 Addition of albumin ,L-arginine, adenosine monophosphate or nicotinamide adenine dinucleotide phosphate (NADPH) to compromise <i>Pseudomonas</i> while increasing <i>S. aureus</i> survival
es that	Modification of the physicochemilar parameters of the coculture system	 Continuous supply of oxygen pH maintenance ~7 Different inoculation ratios of microorganisms
iffusion	3D printed models	 Gelatin-based multiphoton lithography
nong n the	Cell <i>in vitro</i> models	 2D monolayers lung organoids
	Cystic Fibrosis Models	 Artificial Cystic Fibrosis Sputum Media Agar and alginate-beads to grow <i>P. aeruginosa,</i> alone or with other microbes found in CF infections Use of supernatant instead of live-bacteria Mice/rat models <i>ex vivo</i> pig lung models
	Wound models	 Lubbock chronic wound biofilm (LCWB) model Simulated wound fluid over collagen matrices Tryptic soy broth enriched with NaCl and glucose Murine wound infection models Porcine burn models
Reference: 1.Cendra MdM and Torrents E (2021) " <i>Pseudomonas aeruginosa</i> biofilms and their partno in crime". Biotechnology Advances 49 (107734).https://doi.org/10.1016/j.biotechadv.2021.107734		

S

0

Fibr

stic

C V

σ

Funding: The group is supported by the Ministerio de Economía, Industria y Competitividad, MINECO, and Agencia Estatal de Investigación (AEI), Spain, co-funded by Fondo Europeo de Desarrollo Regional, FEDER, European Union (RTI2018-098573-B-100), the CERCA programme and AGAUR-Generalitat de Catalunya (2017SGR-1079), the European Regional Development Fund (FEDER), Catalan Cystic Fibrosis association and Obra Social "La Caixa".

CERCA