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Abstract

Uncertainty Quantification (UQ) is a booming discipline for complex
computational models based on the analysis of robustness, reliability and
credibility. UQ analysis for nonlinear crash models with high dimen-
sional outputs presents important challenges. In crashworthiness, nonlin-
ear structural behaviours with multiple hidden modes require expensive
models (18 hours for a single run). Surrogate models (metamodels) allow
substituting the full order model, introducing a response surface for a re-
duced training set of numerical experiments. Moreover, uncertain input
and large number of degrees of freedom result in high dimensional prob-
lems, which derives to a bottle neck that blocks the computational effi-
ciency of the metamodels. Kernel Principal Component Analysis (kPCA)
is a multidimensionality reduction technique for non-linear problems, with
the advantage of capturing the most relevant information from the re-
sponse and improving the efficiency of the metamodel. Aiming to com-
pute the minimum number of samples with the full order model. The
proposed methodology is tested with a practical industrial problem that
arises from the automotive industry.

Keywords: crashworthiness, uncertainty quantification, adaptive, non-
instrusive, kPCA, dimensionality reduction, metamodeling, sensitivity anal-
ysis.
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1 Introduction

Uncertainty Quantification (UQ) plays an important role in crash analysis, aim-
ing to obtain robust models that provide sensitivity analysis and probabilistic
information. In crashworthiness, having an accurate knowledge of the model
allows to reduce the number of prototypes and, in consequence, their costs.
Stochastic modeling for UQ has been used in the crash industry for decision
making support [10, 17]. The process to propagate the variability from the in-
put to the output requires thousands of model evaluations. For the automotive
industry, where each single model consumes at least 18 hours, it is essential to
reduce the number of simulations to a small training set of experiments. Beyond
the computational cost, crashworthiness presents important challenges in meta-
modeling high-dimensional problems for outputs with large degrees of freedom
presenting nonlinear behaviours. Reference [11] presents a comparative study
for crash simulations combining dimensionality reduction and surrogate mod-
elling through a probability density function analysis. Other surrogate models
based in similar strategies are recently presented in [13]. Also, Min Li proposed
a sensitivity analysis methodology combining PCA and Kriging for models with
high-dimensional outputs. The study was applied for the San Francisco coastal
protection [6]. Also J.B Nagel, J. Rieckermann and B. Sudret proposed a sen-
sitivity analysis methodology applying PCA for the reduction of the outputs
and Polynomial Chaos for surrogate modeling for an urban drainage model [8].
All of these studies present strategies for dealing with dimensionality reduction
and surrogate modeling for UQ. However, large number of simulations for the
training set are needed, and in consequence high computational cost for the field
of crashworthiness.

In this work, an adaptive (or levelled) methodology that combines dimen-
sionality reduction and surrogate modeling for nonlinear complex models is
proposed. Specifically, kernel Principal Component Analysis (kPCA) is used
to reduce the high-dimensional outcomes to low number of components and
Ordinary Kriging (OK) to metamodel between the stochastic input space and
the reduced space from kPCA. Quite apart from the terms of standard UQ, the
methodology allows obtaining complementary multi-purpose information of the
model. Different features of the model are obtained in this context with a negli-
gible additional computational effort: structural modes associated with output
data, sensitivity analysis (influence from perturbation of input parameters in the
results), statistical assessment of various quantities of interest... The method
provides an efficient and robust tool for decision making with the minimum
evaluations of the full order model but guaranteeing precision. This adaptive
strategy allows to evaluate only the necessary samples for the training set to
optimize the computational cost. In order to demonstrate the performance of
the proposed approach, a benchmark crash problem is studied. The literature
contains different works in crashworthiness UQ field [11, 10, 17], where different
UQ approaches are shown implementing techniques as Monte Carlo, Polynomial
Chaos, Quasi Monte Carlo, dimensionality reduction and surrogate modelling.

The paper is structured as follows: In Section 2 a benchmark crash problem is
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presented. In Section 3 is provided the description of the adaptive methodology
divided in main steps. In Section 4 it is presented the results of the benchmark
problem for a vademecum of 3000 simulations and the results of the proposed
methodology. Finally, Sections 5 and 6 close the manuscript with a discussion
and some conclusions.

2 Benchmark crash problem

In this section, a benchmark problem is presented to validate the feasibility of
the proposed UQ methodology.

In the field of crashworthiness, the B-pillar is a part of the structure of a
car that plays an important role in passenger safety. The manufacture process
is one of the keys to achieve a successful design. Initially, the B-pillars were
designed by assembling monolithic parts with different strengths capabilities.
The idea was to produce a substructure with variable strength depending on
the external loads. Recently, this structure design has been improved by reduc-
ing the number of pieces and weight by introducing a tailored templed B-pillar
with a variable hardness profile, that is variable mechanical properties. The
tailored tempering manufacturing process results in a progressive hardness pro-
file, as illustrated in Fig. 1. An austenitized sheet piece with a thickness of
1.5 mm is introduced to a tailored press. This press is divided in two halves.
One half with a temperature of 40◦C and the other half with 530◦C. After
a holding time of 20 seconds the piece is extracted and cooled down to room
temperature. As a result, the piece has a progressive hardness profile. In Fig. 3
is illustrated the hardness curve. The problem of the tailored tempering process
is to ensure certain reproducibility within a series production process. Random
perturbations of the mechanical properties are inevitable in serial production.
Thus, the resulting mechanical properties are affected by important uncertain-
ties, to be modelled with material parameters of aleatoric nature. Controlling
this stochastic process with robustness is a challenge for the industry, and rep-
resents a cumbersome task. Therefore, computational modelling can be a hard
task due to its random behaviour.
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Figure 1 Tailored tempering process. Tailored press with two temperatures.
The Right press with 40◦C and the left press with 530◦C.

For this research, the model is developed with explicit formulation in VPS/Pamcrash
[1]. Solving the equation of transient dynamics

MÜ + CU̇ + KU = Fext(t), (1)

where M (mass matrix), C (damping matrix), K (Stiffness matrix), Fext
(external force) and t (time).

A simplified model is adopted here to demonstrate the strengths and capabil-
ities of the proposed algorithms and data driven strategies. It models a tapered
tensile specimen. With respect to a realistic B-pillar profile, this benchmark has
much lower computational requirements while containing the essential features
of the problem, allowing to account for the same conceptual difficulties and re-
produce all the pertinent mechanisms. The geometry of the model is illustrated
in Fig. 2. The structure is fixed in the right side. In the left side a uniform
displacement of 7 mm in 40 ms (uniaxial load) is prescribed. The benchmark
is modelled using the Belytschko-Tsay shell element with one integration point
in the plane. The model has a total of 329 quadratic shell elements of 1.5 mm
(thickness) and 384 nodes. A fracture model with a no element elimination
configuration is implemented to guaranty the same number of elements for each
simulation. For the time discretization it is used a time step of 0.2 ms.
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Figure 2 Geometry of the benchmark model.

The model is characterized with a Young Modulus of 200 [GPa] and a Poisson
ratio of 0.3. Due to the manufacturing process explained above, the variability
of the problem comes from the hardness curve of the material. To characterize
the random behaviour of the curve, the position of the three points in Fig. 3 are
taken as the uncertain input of the problem. Namely, Point 1=(h1, h4), point
2=(h2, h5) and point 3=(h3, h6). The six stochastic variables are collected in a
vector of inputs h = [h1, h2, h3, h4, h5, h6]T . The random inputs are assumed to
be uncorrelated with Gaussian distributions hi ∼ N (µi, σi), i = 1, 2, ..., 6. All
the other parameters in the model are considered deterministic. In Table 1 the
mean and standard deviation (StD) for each variable is described.
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Figure 3 Hardness curve for the sheet piece through the manufacture process
of heated and cooled press halves.

Table 1 Uncertainty variables.

Inputs Mean StD
hi µi σi
h1 20 5.5%
h2 70 5.5%
h3 120 3%
h4 212 5.5%
h5 360 2.5%
h6 460 3%

The output of the solution U of eq. 1 is characterized as a QoI vector x
of dimension d = 329, corresponding to the values of the plastic strain in 329
elements. In practise, sampling the parametric input values and computing the
full order model results in collecting different matrices of x ∈ IRd.
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3 Adaptive UQ methodology

3.1 Dimensionality reduction, surrogate modeling and UQ

A novel UQ methodology for high dimensional outputs in the field of crash-
worthiness is proposed in [11]. The methodology combines Dimensionality Re-
duction (DR) and Surrogate Modeling (SM). The approach requires a specific
number of evaluation of the high order model for the UQ methodology. Then,
a DR technique is proposed to reduce the output data to a reduced space with
lower dimension and SM to establish a relationship between the input space and
the reduced space. Once the metamodel is achieved, a standard Monte Carlo
analysis is carried out to perform an UQ study with a negligible computational
cost.

The main disadvantage of this approach is how to define the number of sam-
ples for the training set (to guarantee enough information for an UQ analysis).
In industry, the size of the data set is defined based on computational resources,
objectives, and the model. In terms of efficiency, this is an inappropriate ap-
proach to deal with this kind of problems, since the computational cost of the
full order model is high, where each evaluation consume high resources and time.
In this paper it is presented an UQ methodology to evaluate only the necessary
samples for the training set without losing precision. The novel approach is
based in an adaptive strategy combining DR+SM.

3.2 Adaptive UQ methodology

To guarantee a robust design with a small number of evaluation of expensive
models becomes a real challenge. The proposed methodology is developed to
deal with the complex issue to quantify the uncertainty for crash problems, with
the aim of minimizing computational cost, while preserving precision with an
adaptive approach. In this section, the main steps of the proposed strategy are
described. Fig. 4 presents the flowchart, and in the following subsections each
step is explained in detail. A general overview of the main steps in the flowchart
follows:

• The first step, called A-Training set, relies on the identification and char-
acterization of the stochastic inputs to evaluate the expensive model in
a set of training points. Then, the Quantity of Interest (QoI) of each
simulation is stored in the output matrix X.

• The second step, B-Dimensionality reduction is based on the kPCA di-
mensionality reduction technique applied to nonlinear data set. However,
other techniques can be implemented. This step is intended to reduce
the dimension of the output matrix X. The reduced space of princi-
pal components allows to detect hidden structural modes and also avoids
jeopardizing the metamodel approach.

• The third step, C-Surrogate modeling , corresponds to the development
of a response surface between the reduced space, from kPCA, and the
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stochastic space of inputs. The metamodel allows to substitute the full
order model to evaluate any new point in the reduced space and to map
it backwards in the original space [2].

• The fourth step, D-Parametric convergence quantification, it is evaluated
the metamodel with new Monte Carlo samples as a substitute of the ex-
pensive model. Sensitivity analysis of the input parameters (Sobol Indices)
and clustering are performed in the enriched reduced space of kPCA. These
indices are used in a stopping criterion to check the convergence and sta-
bility of the method.

• In the fifth step, E-Uncertainty quantification, the enriched space of kPCA
is mapped backwards to perform uncertainty quantification of the input
space. Statistical measures of the input space (QoI histograms, means,
variances, standard deviations and free new simulations) are analyzed with
negligible computational cost.

The first four steps (A, B, C, D) are implemented in an adaptive scheme with
different levels of sampling sizes. The variance of the percentage of the clusters
and the sensitivity indices of the input parameters are compared for each level
aiming to analyze the stability of the problem outcome. If the stopping criterion
is fulfilled, the method stops. If not, it goes to the next level with a new sampling
size ns, for enriching the training set. This levelled approach is implemented
until stability is achieved. The details of the adaptive stopping criteria are
explained in Section 3.7.

8



Figure 4 Flowchart of the adaptive UQ methodology

3.3 Training set

Let us consider a set of random variables describing the input parameters of the
model by h = [h1h2 · · ·hnd ]T . A Halton sampling technique [18] is used to select
ns points (to build a discrete training set in the input space). The advantage
of Halton sequence with respect other techniques as Monte Carlo, Hammersley
sequences, among others, is the nested samples property for each resampling
level size. The sampling points of the input space are stored in the matrix
H = [h1h2 · · ·hns ] ∈ IRnd×ns . Each input vector hi, i = 1, 2, ..., ns requires a
single run in VPS/pamcrash. The idea is to evaluate ns simulations of the
expensive model to store the output responses in X = [x1x2 · · ·xns ] ∈ IRd×ns as
a training set. In the benchmark problem, each xi collects the maximum plastic
strain of all the elements of the model in the last time step. Fig. 5 illustrates
the flowchart to sample the parametric space and obtain the training set.
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Figure 5 Flowchart of the training model.

3.4 kPCA dimensionality reduction

Analyze the training set and find the principal components allows to reduce de
complexity of the problem. The dimensionality reduction technique kPCA is
proposed for the reduction of the output matrix X = [x1x2 · · ·xns ] ∈ IRd×ns . It
is of utmost importance consider that in the field of crashworthiness the data is
nonlinear. The standard Principal Component Analysis (PCA) captures linear
behaviours, however for this research kPCA is implemented for its non-linear
ability and the extremely advantageous backward mapping to recover back the
full-order object in as accurately as possible. In this aspect, kPCA behaves
much better than PCA in many cases.

kPCA provides a useful tool to transform the original data from high dimen-
sional space to a low dimensional space where the main features of the input
data are kept. Considering the training set matrix X = [x1x2 · · ·xns ] ∈ IRd×ns

as the input matrix, the main objective is to find a low dimensional space, where
the first k principal components retain most of the information to capture the
data behaviour. For this, a nonlinear mapping function Φ(x) is needed, where
in general it is unknown. However, the most used kernel functions are:

• Gaussian kernel: κ(xi,xj) = e−β‖x
i−xj‖2

• Linear kernel: κ(xi,xj) =< xi,xj >

• Polynomial kernel: κ(xi,xj) = (< xi,xj > +b)p

Collecting a reduced number of terms with enough pieces of information
allows to reduce the number of metamodels for the feature space z?, and in
consequence, the computational cost. This combination is problem dependent
and refit kPCA multiple times to compare different kernels and parameters with
a optimization function is needed. Also, if the data has different behaviours and
the mapping function is appropriate, then the reduced space z? is a sensitive
measure for cluster detection (structure modes).

In practice, this boils down to apply kPCA and determine a mapping func-
tion G(x) between the solutions x ∈ IRd and some new variable z? ∈ IRk in
a much lower-dimensional space (k � d). The set of eigenvalues provides the
criterion to choose the number of terms k to be retained for the reduction (for
the benchmark problem, 90% of information must be retained), leading to,
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z? = G(x). (2)

The mapping between x and z? is to be characterized forward and backward
as x? = G−1(z?) ≈ x. There exist different techniques available in the literature
[19, 16]. For this research, it is implemented a technique based on a minimization
of the discrepancy functional (residual) [2].

The proposed weighting distance technique [2] associates weights to each
value in the calculation based on the distance between the samples and the
input sample x. Let di for i = 1, ..., ns be the squared distances di = ‖z?−z? i‖.
Where wi are the weights defined by,

wi =
1/d2i∑ns
j=1 1/d2j

. (3)

Here, the inverse of the squared distances (1/d2) is used to define the weights,
following [2]. Any other decreasing function of the distance is admissible, to
account for the influence of the distance in the weights. Any version of the radial-
based interpolation is commonly used to construct surrogate models based on
samples from a training set.

For a z? point in the reduced space it corresponds a x point in the orginal
space defined by:

x ≈
ns∑
i=1

wix
i. (4)

This technique allows to backward any point from the reduced space z? to
the original space. In Fig. 6 it is illustrated the flowchart for the dimensionality
reduction step.

Figure 6 Flowchart of the dimensionality reduction step.

3.5 Surrogate modeling

In crashworthiness, it is common to have high dimensional output matrices.
In consequence, it is unaffordable to construct a surrogate model in terms of
computational cost to deal for an efficient approach.
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The main idea of this surrogate modeling step is constructing a response
surface z? = F (h), from input h to the reduced space z?. Here, the surrogate
technique is presented to establish a functional dependency among some input
h and some output function y(h) (typically, a postprocess or reduced model of
x?).

A scalar output Y is considered for any of the components of y(h). For the
benchmark problem, Y corresponds to the first principal component of kPCA,
that is Y = [z?]1 = [y1y2 · · · yns ]T , where yi, i = 1, 2, ..., ns are the points of the
reduced space .

The functional dependence Y = F (h) is determined from the data provided
by the training set, and the dimensionality reduction space. The metamodel
function F (h), approximates for any input h the corresponding image yi in the
reduced space. Then the backward mapping explained in Section 3.4 returns to
the input sample by x? ≈ G−1(F (h)).

For this research, Ordinary Kriging (OK) is used for metamodeling. In the
literature different papers regarding kriging metamodeling [9, 11]. Other sur-
rogate modelling technique can be implemented as Polynomial Chaos or Sepa-
rated Response Surface [10, 11]. However, kriging shows a better performance
for crash modelling [11]. The purpose is to evaluate the metamodel with new nMC
realizations to estimate new z? values to enrich the reduced space for a posteriori
UQ analysis. Here it is presented a brief review of OK for the methodology.

OK is an interpolation surrogate method that determines weights for a set of
sample points to obtain a prediction of a new input. The weights are based on a
variogram model that has the main advantage of estimating different variances
for any distance between a pair of samples. The kriging metamodel F (h) of any
point h is defined by:

F j(h) =

ns∑
i=1

wij(h)[yi]j , j = 1, 2, ..., k. (5)

The unknowns w are the weights and [yi]j are the scalars of the principal
component j of kPCA. This means that for each dimension of z? is needed a
particular surrogate model. Therefore, the first k terms of the feature space
determines the number of metamodels needed for the approach. The main
condition with OK with respect other kriging approaches is that the sum of
weights is equal to 1. For more theoretical details of OK see [9]. In Fig. 7 it is
illustrated the scheme for the surrogate modeling block.
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Figure 7 Flowchart of the surrogate modeling.

3.6 Parametric convergence quantification

Optimization and redesign is a common task in crashworthiness, where detecting
the main structure modes and the principal parameters could provide a useful
tool for the engineers. For that, once the surrogate model F (h) is available, for
each input value h, the corresponding z? is computed as F (h). At this point,
standard Monte Carlo is performed with nMC = 105 new random samples of h
to evaluate the surrogate model. The operations are computationally negligi-
ble with respect to the cost of the training set of the full order simulations.
Therefore, sensitivity and statistical measures are easily performed.

In order to quantify the parametric uncertainty of the problem, sensitiv-
ity analysis of the input parameters (Sobol Indices) and clustering (structure
modes) are performed in the enriched reduced space z? of kPCA with new
nMC = 105 samples. Here, the clustering technique K-means [7] is implemented
for the reduced space z? ∈ IRk×ns in order to detect clusters in the data. How-
ever, other cluster techniques can be implemented [14] . On the other hand,
Sobol Indices are implemented to characterize the influence of the inputs to the
outputs.

The essence of Sobol Indices is based on a variance decomposition of the
feature space Y . We can define the total variance of Y as V arY . Therefore,
V arY can be decomposed into partial variance associated with the inputs h
as V arY =

∑nd
i=1 V ari +

∑nd−1
i=1

∑nd
j=i+1 V arij + ... + V ar1,...,nd , where V ari

denotes the variance contribution of the parameter hi. While the other terms
make reference with high order of interaction between inputs h. Two sensitivity
measures provide the Sobol Indices:

• Parameter influence ranking

• Identification of negligible parameters

For this study three types of Sobol Indices are calculated:
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1. First order Sobol Index:
The first order sensitivity index Si measures the single effect of the input
hi on the output variance of the model [15, 12]. Si is defined as

Si =
V ari
V arY

=
V ari[E∼i(Y |hi)]

V arY
, (6)

where the conditional expectation E∼i(Y |hi) denotes the expected value
of the output Y when the input hi is fixed.

2. Second order Sobol Index:
The second order sensitivity index Sij measures the interaction between
hi and hj [15, 12]. Sij can be computed as

Sij =
V arij
V arY

=
V arij [E∼ij(Y |hi, hj)]

V arY
− Si − Sj , (7)

where the conditional expectation E∼i(Y |hi, hj) is the expected value of
the output Y when the two input hi and hj are fixed.

3. Total order Sobol Index :
The Total sensitivity index STi is called the ”Total effect” of a input
parameter hi [8]. This index includes the effect of the first order indices
and the effects between the input hi and all the possible combinations
with the other inputs [3]. It is defined as

STi = 1− V ar∼i[Ei(Y |h∼i)]
V arY

, (8)

where h∼i refers to all the inputs except hi. For instance, h∼1 = h2, h3, h4, h5, h6.

For the calculation of the conditional expectation of the Sobol indices there
exist different estimators in order to optimize the number of model evaluations
[12]. For this research, Saltelli algorithm [5] is implemented to calculate the
conditional expectation. In addition, it is important to remark that Sobol In-
dices are computed for all principal components of z? ∈ IRk. In Fig. 8 it is
illustrated the main ideas for the parametric convergence quantification step.

Figure 8 Flowchart of the parametric convergence quantification step.
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3.7 Autonomous stopping criteria

For the proposed adaptive UQ approach is required a stopping criteria. The
variables used to analyze the convergence are both, the Sobol Indices and the
percentage of the clusters. These two variables are proposed for the importance
in the field of crashworthiness to detect structure modes and main parameters.
However, any other sensitive measures can be implemented as a stopping criteria
for the reduced space z? (e.g. mean, variance, standard deviation, histograms)
depending on the problem.

The strategy is based in a comparative approach between levels of different
sampling size. The size of the training sets for each level are defined by n`s =
ncon` with ` = 1, 2, ..., L. Where ncon is a constant variable of the number of
simulations. This parameter depends on the problem and is defined by the user.
For the benchmark problem ncon = 10, which leads to obtain the levels:

• Level1 → n1s = 10

• Level2 → n2s = 20

• Level3 → n3s = 30
...

• LevelL → nLs = 10L

Referring to the flowchart in Fig. 9, the methodology starts with Level1
and the computation of the steps A,B,C,D. Then, Level2 is launched with the
computation of the steps with a new sampling size n2s. For the new sampling
size of each level it is reused the simulations of the previous level, aiming to
evaluate the minimum number of simulations of the full order model. The first
levels are launched until s levels (for the benchmark problem s = 5). In the last
level (Levels) the variance of the percentage of the modes and the Sobol indices
of the previous s levels are analyzed. If the variances of the stopping variables
(Sobol indices and cluster percentage) are sufficiently small with respect to a
stopping variance condition, the method stops. If not, the approach goes to
a next level with the new increment of sampling size. The stopping variables
are always analyzed for the last s levels, meaning that the parameter s defines
how stationary is the solution. The process is repeated for each new level until
the stability is achieved. In addition, it is necessary to achieve these stopping
conditions for each dimension of the reduced space z? ∈ IRk.

3.8 Uncertainty quantification

Once the methodology is converged, the backward mapping returns z? to the
corresponding input space x through x? = G−1(z?), aiming to develop uncer-
tainty quantification of the input space.

Uncertainty quantification of high-dimensional objects like x is cumbersome
and the outcome is difficult to use as a tool supporting decision making. In
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Figure 9 Flowchart scheme of the adaptive stopping criteria.

16



that sense, the stochastic assessment focuses in a low-dimensional (even purely
scalar) QoI, rather than in a high-dimensional object like x. A specific QoI is
introduced as an essential indicator for decision making.

For this study, the specific QoI is the average plastic strain of the input
vector x. However, any QoI function can be analyzed depending of the purpose
of the problem. Here, it is represented by a function form l0(·), and for each hi

and xi reads

l0(xi) =
1

d

d∑
j=1

xij . (9)

Statistical measures of l0(x) can be performed (e.g. mean, variance, standard
deviation).

On the other hand, the fact that the model order reduction strategy is able to
recover back the full-order object x?, is extremely advantageous to represent new
simulations with negligible computational cost. Therefore, for any combination
of the input parameters h it is able reproduce the solution of the vector x for
the physical model. In Fig. 10 it is illustrated the main ideas for the uncertainty
quantification step.

Figure 10 Flowchart of the uncertainty quantification step.

On the other hand, for a better understanding of the previous sections, a
more detailed overview of the adaptive method is presented in Fig. 11. There
are illustrated the 5 most important steps (A, B, C, D, E in navy blue) and the
most important information derived from them.

4 Numerical results

In this section the proposed methodology is implemented for the benchmark
problem. The numerical results are divided in two sub-sections: i) The Refer-
ence results, where the benchmark problem has been evaluated with a vademe-
cum of 3000 simulations, and ii) UQ adaptive results, where it is evaluated the
methodology and compared with the reference results.
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Figure 11 Flowchart overview of the proposed adaptive methodology.

4.1 Reference results

The idea of this section is to calculate the reference results, aiming to be com-
pared with the proposed adaptive methodology. For this, the proposed method-
ology is implemented with a fixed number of samples ns for the training set.
It is considered six stochastic inputs h = [h1, h2, h3, h4, h5, h6]T for the bench-
mark problem, where each input follows a normal distribution with its cor-
responding mean and standard deviation described in Table 1. For the QoI
output it is considered the maximum plastic strain of all the shell elements
(d = 329) from the tapered geometry. For the reference data set, a vademecun
of ns = 3000 Monte Carlo samples are computed to obtain the output matrix,
X = [x1x2 · · ·xns ] ∈ IRd×ns . Each vector xi, i = 1, 2, ..., ns store the maximum
plastic strain of all the elements for each simulation in the last step of time. In
Fig. 12 it is shown the 3000 stochastic hardness curves for each simulation.
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Figure 12 Input hardness curves of 3000 samples.

The dimensionality reduction problem is implemented with a Polynomial
Kernel, k(xi,xj) = (< xi, xj > +b)p with a coefficient b = 0.1 and a polynomial
degree p = 3. With this kernel configuration it is reduced the dimension of
the problem to the first principal component (k = 1) with capturing 98, 8% of
the variance information. Leading to obtain a reduced space Y = z? = [z?]1 ∈
IRk×ns . Using linear PCA, 17 principal components (k = 17) are required to
capture the same percentage information, and in consequence 17 metamodels for
each dimension. Clearly an improvement is shown with respect to PCA (kPCA
→k=1 and PCA →k=17). For the metamodel it is implemented OK between
the input parameters h and the feature space [z?]1 with a spherical variogram
[9]. For the UQ analysis (statistic measures and Sobol indices) it is evaluated
the metamodel with 105 random samples.

In Fig. 13 it is shown the reduced space of the first principal component Y =
[z?]1 of kPCA and the corresponding PDF. Clearly, two clusters (modes of the
structure) of samples are differentiated. The red and blue samples are plotted
by K-means algorithm [4]. The percentage of probability for each clusters are:

• Red cluster: 84.43%.

• Blue cluster: 15.57%.

In Fig. 14 a solution of the original model for each cluster (red and blue) is
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Figure 13 Histogram and reduced space Y .
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(b)

Figure 14 (a) Corresponds to a sample from the red mode of the reduced
space Y transformed by backward mapping to the original space of the model.
Figure (b) corresponds to a sample from the red mode of the reduced space
Y transformed by backward mapping to the original space of the model.

shown. It is observed two different behaviours. The structure breaks either on
the right (Fig. 14a) or to the left (Fig. 14b).

For the Sobol sensitivity analysis it is used Saltelli method to obtain the
conditional variance for each index [12]. In Fig.15 it is plotted the values of the
first order of Sobol Indices for each input. In Fig. 16 are shown the second order
Sobol indices. This index explains the interaction effect between all the possible
pairs of parameters with respect to the output variance output. In Fig. 17 it is
illustrated the 6 Total Sobol indices. This index explains the total effect of an
input parameter hi to the total variance V arY .This measures the effect of the
output variance of hi, with respect to any variable and any order of interaction
between parameters.

From the above presented results, in Table 2 it is illustrated the most im-
portant variables to take into account as a reference values for the next section
4.2 where the adaptive methodology is tested.
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Figure 15 First order Sobol indices.

Figure 16 Second order Sobol indices.
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Figure 17 Total Sobol indices.

4.2 UQ adaptive results

In this section it is presented the numerical results to validate the performance
of the adaptive methodology applied to the benchmark problem described in
Section 2. The approach is implemented with a polynomial kernel (degree p = 3)
for the dimensionality reduction problem and OK for the surrogate modeling
from h to Y . For the benchmark, Y coincides with the first component of the
reduced space using kPCA. The criterion to stop the adaptive methodology
is based in a variance criterion. The approach stops once the variance of the
previous 5 levels (s = 5) achieves the order of V ar

S
= 10−4 (for the Sobol

Indices) and V ar
m

= 1 (for the mode percentage).
In Fig. 18 it is plotted the evolution of the Sobol indices and the cluster

percentage for each level of sampling size. We can analyze that the last 5 sample
points of each graph have small variability, corroborating that the stopping
criteria is accomplished. The method stops in Level24 (L = 24) with a training
set of n24s = 240.

In Table 3 it is compared the results obtained with the training set of 3000
samples (Vade.) with respect to the adaptive approach with 240 training sam-
ples (Adapt.).

The surrogate model constructed with 240 training samples brings a pow-
erful tool. Statistical measures (mean, variance and standard deviation) and
scattered plots offer and interesting analysis to understand an analyze the cause
of each structure mode. Fig. 19 shows the scatter plot between the two main pa-
rameters h4 and h6. The sample points are coloured in red or in blue, depending
on the structure mode (left=red, right=blue).
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Figure 18 Evolution plots of the First Sobol Indices (S4, S6), Second order
Sobol Indice (S46), Total Sobol Indices (ST4, ST6) and the percentage of the
left mode (Lm).
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Table 2 Reference values from a vademecum of 3000 training samples.

Clustering modes

Left mode = 84.43%
Right mode = 15.57%

Sobol Indices

First order
S4 = 0.35
S6 = 0.23

Second order
S46 = 0.26

Total indices
ST4 = 0.62
ST6 = 0.51

Table 3 Comparison results between reference vademecum (3000 training sam-
ples) with respect to the adaptive methodology (240 training samples).

Lm Rm S4 S6 S46 ST4 ST6

Vade. 84.43% 15.57% 0.35 0.23 0.26 0.62 0.51

Adapt. 84.81% 15.19% 0.34 0.22 0.23 0.56 0.43

Figure 19 Scatter plot between the inputs h4 and h6. Red samples corresponds
to the left mode and blue samples to the right mode. Point A (h1 = 22,
h2 = 60, h3 = 128, h4 = 195, h5 = 333, h6 = 472). Point B (h1 = 18.5,
h2 = 65, h3 = 122, h4 = 224.5, h5 = 365, h6 = 430).
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Here it is clearly visible two differentiated areas of color points. This means
that the relation between the parameters h4 and h6 defines practically the whole
behaviour of each mode.

Each training sample needs considerable CPU resources and time. This
method allows to obtain new simulations with a negligible consumption of time.
In the scatter plot (Fig.19) a new point h for each color area is selected in a
empty zone of the plot (yellow points) to backward to the original space x. In
Fig. 20 it is compared the full order computational samples with respect to the
corresponding backward samples from Y to x with PCA and kPCA techniques.
The performance of PCA and kPCA is shown to illustrate the improvement of
kPCA for this crashworhtiness model.

kPCA clearly shows better performance in the backward mapping. Taking
into account that with kPCA the first principal component [z?]1 contains 98.8%
of information and PCA only 77.7%.

(a) VPS/Pamcrash result (Point A). (b) VPS/Pamcrash result (Point B).

(c) Backward with PCA (Point A). (d) Backward with PCA (Point B).

(e) Backward with kPCA (Point A). (f) Backward with kPCA (Point B).

Figure 20 (a) and (b) illustrates the full order simulation with VPS/Pamcrash
for the points A and B. Also (c), (d), (e) and (f) show the backwards from Y
to the original space x with PCA and kPCA.

On the other hand, in Fig. 21 it is illustrated the histogram of the spe-
cific QoI function l0(x). Depending on the problem, the QoI is sufficient i
some cases, for decision making [11], since the QoI summarizes the information
contained in x. Here, the QoI corresponds to the average of vector x. The
statistical measures of the QoI are: mean=0.0407, variance=1.12e − 06 and
standard deviation=0.0011. The histogram presents a normal distribution cen-
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tred approximately at 0.041 and a long tail on the left. The samples falling in
the normal distribution corresponds to the left structure mode. Otherwise, the
samples that fall into the distribution tail makes reference to the samples with
the structure mode on the right.

Figure 21 Histogram of the QoI with ns = 105.

5 Discussion

In this article, the proposed UQ methodology combining kPCA and surrogate
modeling for nonlinear problems is implemented for a real industrial crash prob-
lem. The uncertainty of the problem is characterized with 6 input random pa-
rameters defining the hardness curve of the material model. The maximum
plastic strain for all the elements in the last time step is considered as QoI of
the model.

The methodology is implemented with a polynomial kernel. The convergence
is achieved with 240 samples for the training set with a stopping criteria of a
variance condition of V ar

S
= 10−4 (for the Sobol Indices) and V ar

m
= 1 (for the

mode percentage). The method detected two structure modes (clusters). The
big mode approximately with 84% and a small mode with 16% of probability.
In the biggest structure mode, the pyshical model concentrates high values of
plastic strain in the left part. In contrast, in the small mode they are on the
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right area. Moreover, the main influence parameters for the output are h4, h6
(h4 → 34% and h6 → 22%) for the first order, and h4−h6 (h4−h6 → 23%) for
the second order of sensitivity. This means that the relation between these two
parameters is defining practically all the behaviour of the model. In addition,
the total Sobol Indices ST4 and ST6 are showing similar relation with respect
to the first and second order of Sobol Indices. This emphasizes that the other
parameters h1, h2, h3, h5 have low influence to the output. Also, the specific QoI
function l0(·) shows a normal distribution with a long tail in the left allowing
to facilitate the understanding of the high dimension vector x.

6 Conclusions

Uncertainty quantification in crash simulation is a highly demanding research
field for the automotive industry. Its nonlinear behaviours combined with hidden
structure modes leads to a challenging task for UQ analysis. High dimensional
outputs for the quantity of interest can be a challenging problem for surrogate
modelling by suffering the curse of dimensionality. This problem is relevant
for automotive engineering and, despite the fact that only six input parameters
are assumed to have stochastic nature (6 input dimensions are not awakening
the curse of dimensionality), the dimensionality reduction is still pertinent to
simplify the output of interest to be analyzed.

Additionally, each evaluation of a full vehicle model needs around hours.
Therefore, classic approaches as Monte Carlo are not viable. Here, a benchmark
model requiring a significantly lower computational time, and of special interest
for automotive industry, is used to demonstrate the performance of the adaptive
methodology with a data driven strategy.

This paper presents an adaptive methodology for crashworthiness combining
dimensionality reduction and surrogate modelling for multi-purpose UQ analy-
sis. The methodology evaluates limited set of samples of the high order model
guaranteeing a good precision. The problem of dimensionality reduction for the
outputs is tackle using kPCA in such a way OK for metamodelling the reduced
space of kPCA and the input samples hi, i = 1, 2, · · · , ns. Moreover, key infor-
mation as cluster detection, percentage of clusters, sensitivity analysis, statistics
and free new simulations provide robust and reliable information supporting de-
cision making. Having access to these descriptive behaviours of the model is a
great advantage for CAE departments. Overall, the proposed methodology re-
quires significantly less memory and resources compared to classic methods as
Monte Carlo for calculating UQ and sensitivity indices for the high dimensional
outputs.

The results from the industrial benchmark verified the performance and ac-
curacy of the proposed methodology with respect to a vademecum approach of
3000 samples for the training set. The method can be extended and applied
for other disciplines (e.g. aerodynamics, occupant safety, aeroacoustic, among
others) with uncertainty inputs, nonlinear responses and high dimensional out-
puts. The methodology is presented with kPCA and OK for dimensionality
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reduction and surrogate modeling, respectively. Nevertheless, other dimension-
ality reduction techniques as Isometric Mapping or Locally Embeddings can
be implemented as well. In addition, other metamodel techniques (regression,
interpolation) can be used as well depending on the data.

The combination of dimensionality reduction and surrogate models with an
adaptive approach for multi-purpose information produces accurate solutions
with an affordable computational cost, accounting also for the uncertainty, that
is assessing the credibility of the simulation. Particularly in the context of
crashworthiness UQ, the computational cost is a key issue and a driving force
for the research developments in the field. Since, increasing accuracy requires
a higher computational effort, finding a trade-off between these two factors is
a critical concern for last decision making. This paper intends to provide tools
to achieve accurate and credible crashworthiness industrial simulations at an
acceptable computational effort.
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