
Decomposition of transition systems into sets of
synchronizing state machines

Viktor Teren
Department of Computer Science
Università degli Studi di Verona

Verona, Italy
viktor.teren@univr.it

Jordi Cortadella
Department of Computer Science

Universitat Politècnica de Catalunya
Barcelona, Spain

jordi.cortadella@upc.edu

Tiziano Villa
Department of Computer Science
Università degli Studi di Verona

Verona, Italy
tiziano.villa@univr.it

Abstract—Transition systems (TS) and Petri nets (PN) are
important models of computation ubiquitous in formal methods
for modeling systems. An important problem is how to extract
from a given TS a PN whose reachability graph is equivalent
(with a suitable notion of equivalence) to the original TS.

This paper addresses the decomposition of transition systems
into synchronizing state machines (SMs), which are a class of
Petri nets where each transition has one incoming and one
outgoing arc and all markings have exactly one token. This is an
important case of the general problem of extracting a PN from
a TS. The decomposition is based on the theory of regions, and
it is shown that a property of regions called excitation-closure is
a sufficient condition to guarantee the equivalence between the
original TS and a decomposition into SMs.

An efficient algorithm is provided which solves the problem by
reducing its critical steps to the maximal independent set problem
(to compute a minimal set of irredundant SMs) or to satisfiability
(to merge the SMs). We report experimental results that show a
good trade-off between quality of results vs. computation time.

Index Terms—Transition system, Petri net, state machine,
decomposition, theory of regions, SAT, pseudo-Boolean optimiza-
tion.

I. INTRODUCTION

The decomposition of a transition system (TS) into a
synchronous product of state machines (SMs, Petri nets with
exactly one incoming and outgoing edge for every transition)
gives an intermediate model between a TS and a Petri net
(PN). The set of SMs may exhibit fewer distributed states
and transitions, exploiting the best of both worlds of TSs and
PNs, leading to better implementations (e.g., smaller circuits
with less power consumption). Furthermore, the decompo-
sition procedure extracts explicitly the system concurrency
(a PN feature), which is convenient for system analysis and
performance improvement (see an example in Fig. 1).

The decomposition of a transition system can be seen from
the Petri net perspective as the problem of the coverability
by S-components of a Petri net [1]–[3] or of a connected
subnet system [4, p. 49] (called S-coverability): each S-
component is a strongly connected safe SM i.e., SM with only
one token, therefore it cannot contain concurrency. The only
concurrency of the system is featured in the interaction of
the S-components. In our paper we present how the theory
of regions [5] can be used to design a similar procedure
starting from a transition system and creating a set of in-

teracting SMs, but without building an equivalent Petri net.
Our approach computes a set of minimal regions with the
excitation-closure (EC) property of a given TS, and derives
from them an irredundant synchronous product of interacting
SMs. Excitation closure guarantees that the regions extracted
from the transition system are sufficient to model its behaviour.

s0 s16

s17

s1

s19

s2

s4

s3

s5

s6

s18

s7

s9

s10

s8

s12

s13

s11

s15

s14

b−

s+

r−

b+

r−
s+

a+

r−
b+

a+
s+

a+
b+

s−
b−

s+
r+

b+
r+

s+
a−

r+

b+
a−

s+

a−

b+

s−

(a)
r3

r1 r2

r0

b−
s+
b+

s−
r3

r0 r2

r1

r−
a+
r+

a−

r4 r3 r2

r0 r1

b− r+
r− a−

a+
s−

(b)

Fig. 1: TS derived from
an STG1(1a) and the de-
rived set of synchronizing
state machines (1b).

A. Previous and related work

In [6], a transition system is
decomposed iteratively into an
interconnection of n component
transitions systems with the ob-
jective to extract a Petri net from
them. This can be seen as a
special case of our problem, be-
cause in [6] the decomposition
allows the extraction of a Petri
net, but the decomposed set of
transition systems cannot be used
as an intermediate model. Their
approach is flexible in choosing
how to split the original transi-
tion system, but it does not pro-
vide any minimization algorithm,
so that the redundancy due to
overlapping states in the compo-
nent transition systems translates
into redundant places of the final
Petri net. Another method pre-
sented in [7] is based on the de-
composition of transition systems
into “slices”, where each transi-
tion system is separately synthe-
sized into a Petri net, and in case
of Petri nets “hard” to understand
the process can be recursively repeated on one or more
“slices” creating a higher number of smaller PNs. With respect

1A Signal Transition Graph (STG) G = (V,E) is an interpreted subset
of marked graphs wherein each transition represents either the rising (x+)
or falling (x−) of a signal x which has signal levels high and low. V is the
set of transitions and E is the set of edges corresponding to places of the
underlying marked graph.

1

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI: 10.1109/DSD53832.2021.00021

to the aforementioned methods, our objective was the creation
of a method for the decomposition of TSs in synchronizing
SMs without the use of PNs and aiming to the minimization
of the computational time and size, applying a minimization
criteria.

Decomposition plays an important role in process min-
ing [8]–[11], where in most cases the decomposition starts
from a Petri net representing the whole behaviour of the
system [8]–[10]. Instead of creating a PN from event logs we
can easily create a transition system [12], [13] and directly
decompose it with our algorithm.

This paper is organized as follows. Sec. II introduces
the background material. Sec. III represents a part of our
contribution characterizing and showing a procedure to extract
SMs from TSs. Additionally Sec. IV represents the second part
of our contribution with the main theoretical result showing
that the synchronous product of SMs is bisimilar [5] to the
original transition system. Exhaustive experiments are reported
in Sec. V, with final conclusions drawn in Sec. VI.

II. PRELIMINARIES

A. Transition systems, Petri nets and synchronizing SMs

s0

s7

s9 s1

s2 s8

s4

s3s6

s5

a

b
c

b

c
d

a

fe

e

fd

Fig. 2: Example of
transition system.

We assume the reader to be familiar
with Transition systems and Petri nets.
We refer to [14], [15] and [5] for a
deeper insight on the concepts used in
this work. We will only deal with safe
Petri nets, i.e., nets whose places do
not contain more than one token in any
reachable marking. For this reason, we
will model markings as sets of places.

The TS in Fig. 2 will play the role of running example.
We refer to [14] for the definition of synchronous product,

adopting the syntax TS1||TS2 for the synchronous product
of TS1 and TS2. Being the synchronous product associa-
tive, we can define the product of a collection of n TSs:
TS1||TS2|| . . . ||TSn = ((TS1||TS2) . . .)||TSn; as an alternative,
we can extend directly the definition to more than two TSs.

It has been observed in [4, p. 49] that a state machine
M = (P, T, F,M0) can be interpreted as a transition system
TS = (P, T,∆, s0), where the places correspond to the states,
the transitions to the events, s0 corresponds to the unique
marked initial place, and (p, t, p′) ∈ ∆ iff •t = {p} and
t• = {p′} (in a SM by definition |•t| = |t•| = 1). Therefore
the reachability graph of M is isomorphic [5] to the transition
system TS, i.e., RG(M) is isomorphic to TS.

In this paper we consider sets of synchronizing SMs.

B. Theory of regions

In this paper we propose a procedure for the decomposition
of Transition Systems based on the theory of regions (from
[5]). A region is a subset of states in which all the transitions
under the same event have the same relation with the region:
either all entering, or all exiting, or some completely inside
and some completely outside the region.

For those who is not familiar with the theory of regions
we refer to [14] for the definitions of region, minimal region,
pre-region/post-region, excitation set/switching set, excitation
closure and Excitation Closed Transition System (ECTS).

III. FROM LTS TO SMS BY REGIONS

We now show how to decompose an ECTS into a set
of synchronizing SMs. If the initial TS does not satisfy the
excitation closure (EC) or event effectiveness property, label
splitting [5] can be performed to obtain an ECTS.

A set of regions R represents a state machine if R covers
all the states S of the transition system and all the regions are
disjoint, i.e.:

∀r ∈ R,@r′ ∈ R : r∩r′ 6= ∅ ∧ ∀s ∈ S, ∃r ∈ R : s ∈ r

Given a set of regions satisfying the previous properties we
obtain a state machine whose places correspond to the regions,
with a transition ri

e→ rj when ri and rj are pre- and post-
regions of e, respectively. Since the regions of an SM are
disjoint, each derived SM has only one marked place, which
corresponds to the regions that cover the initial state. Notice
that only the events that cross some region appear in the SM.
Notice also that the reachability property of the original TS is
inherited by the SMs obtained by this construction.

Theorem 1. Given an ECTS TS = (S,E, T, s0) and the set
of all its minimal regions, a subset of regions R represents an
SM if and only if the set covers all the states of TS and all its
regions are pairwise disjoint.

Proof. The proof can be found in [14].

The property of excitation closure can be inherited by the
SMs, as stated in the following definition.

Definition 1 (Excitation-closed set of State Machines derived
from an ECTS). Given a set of SMs S derived from an ECTS
TS, the set of all regions R of S, the set of labels E of TS,
the sets of pre-regions ◦e of the TS for all e ∈ E:
S is excitation-closed with respect to the regions of TS if

the following condition is satisfied:
• EC: ∀e ∈ E :

⋂
r∈(◦e∩R) r = ES(e)

• Event effectiveness: ∀e ∈ E : ∃r ∈ R | r ∈ ◦e

The first step to decompose a transition system is to
enumerate all the minimal regions of the original TS. Each
collection of disjoint regions covering all the states of the TS
represents a state machine, such that the regions are mapped
to places of the SM, i.e., each such SM includes a subset of
regions of the original TS and represents only the behavior
related to the transitions entering into these regions or exiting
from them (instead, internal and external events are missing).

The example in Sec. IV shows also that we do not need all
the SMs to reconstruct the original LTS, so the question is how
many of them we need and which is the “best” (in some sense)
subset of SMs sufficient to represent the given LTS. Therefore
we may set up a search to obtain a subset of SMs, which are
excitation-closed and cover all events, to yield a composition

2

r1

r6r16

ad

f

c

(a) SM1

r2 r7
c

f

(b) SM2

r3 r4
b

f

(c) SM3

r1

r8 r14

ad

c

e

(d) SM4

r11 r12

b

f

(e) SM5

r1

r5 r17

a
b

f

d

(f) SM6

r1

r9r13

ad

b

e

(g) SM7

r10 r15

c

e

(h) SM8

Fig. 3: All SMs created from TS in Fig. 2.

equivalent to the original TS. An easy strategy to guarantee
the complete coverage of all events is to add new SMs until all
regions are used. However, the resulting collection of SMs may
contain completely or partially redundant SMs (see Secs. III-B
and III-C), which can be removed exactly or greedily by
verifying the excitation-closure property. Moreover, the size of
the selected SMs can be reduced through removing redundant
labels by merging regions. As a summary, Algorithm 1 shows
the decomposition procedure.
Algorithm 1 Decomposition

Require: An ECTS
Ensure: A minimal set of interacting SMs

1: Computation of all minimal regions
2: Generation of a set of SMs with EC property
3: Removal of redundant SMs
4: Merge of regions preserving the EC property

The first step
of the algorithm
can be achieved by
a greedy algorithm
from the literature,
which checks min-
imality while cre-

ating regions [5] [4, p. 103] [16].
The second step of the decomposition algorithm is per-

formed by reducing it to an instance of maximal independent
set (MIS)2, and by calling a MIS solver on the graph whose
vertices correspond to the minimal regions with edges which
connect intersecting regions. Each maximal independent set
of the aforementioned graph corresponds to a set of disjoint
regions that define an SM.

A greedy algorithm is used for the computation of the third
step: starting from the SM with the highest number of regions,
one removes each SM whose removal does not invalidate the
ECTS properties.

The last step of merging is reduced to a SAT instance,
by encoding all the regions of each SM and also the events
implied by the presence of one or more regions. Solving this
SAT instance by a SAT solver, the number of labels can be
minimized by merging the regions which occur multiple times
in different SMs.

A. Generation of a set of SMs with excitation closure

Given a set of minimal regions of an excitation-closed
TS, Algorithm 2 returns an excitation-closed set of SMs,
by associating sets of non-overlapping regions to SMs as
mentioned below. Notice that in Def. 1 we extended the
definition of an excitation-closed transition system (ECTS)

2Given an undirected graph G = (V,E), an independent set is a subset
of nodes U ⊆ V such that no two nodes in U are adjacent. An independent
set is maximal if no node can be added without violating independence.

Algorithm 2 Generation of excitation-closed set of SMs

Require: Set of minimal regions of an ECTS
Ensure: An excitation-closed set of SMs

1: Create the graph G where each node is a region and there is an edge
between intersecting regions

2: G0 ← G
3: M ← ∅, F ← ∅
4: do
5: Compute m = MIS(G)
6: M ←M ∪ {m}
7: G← G \M
8: while G 6= ∅
9: for m ∈M do

10: Compute m̃ = MIS(G0) with the constraint m̃ ⊇ m
11: Build state machine ˜sm induced by set of regions m̃
12: F ← F ∪ { ˜sm}
13: return F

to an excitation-closed set of SMs, by requiring that the two
properties of excitation-closure and event-effectiveness hold
on the union of regions underlying the SMs.

Initially, Algorithm 2 converts the minimal regions of the
TS into a graph G, where intersecting regions define edges
between the nodes of G (line 1). As long as G is not empty,
the search of the maximal independent sets is performed on it
by invoking the procedure MIS on G (MIS(G), line 5), storing
the results in M (line 6) and removing the vertices selected at
each iteration (line 7). In this way, each vertex will be included
in one MIS solution. Notice that the maximal independent sets
computed after the first one are not maximal with respect to
the original graph G0, because the MIS procedure is run on a
subgraph of G0 without the previously selected nodes. To be
sure that we obtain maximal independent sets with respect to
the original G0, we expand to maximality the independent sets
in M , by invoking the MIS procedure on each independent
set m ∈ M constrained to obtain a maximal independent
set m̃ ⊃ m on G0 (from line 9). Then from the maximal
independent sets we obtain the induced state machines to be
stored in F (from line 12). The motivation of this step to
enlarge the independent sets is to increase the number of
regions for each SM, in order to widen the space of solutions
for the successive optimizations of redundancy elimination and
merging. The set of SMs derived from Algorithm 2 satisfies the
EC and event-effectiveness properties because by construction
each region is included in at least one independent set.

Fig. 3 shows the resultant SMs derived from the TS in Fig. 2

B. Removal of the redundant SMs

The set of SMs generated by Algorithm 2 may be redundant,
i.e., it may contain a subset of SMs which still define an
ECTS. We describe a greedy search algorithm to obtain an
irredundant set of SMs: we order all the SMs by size and try
to remove them one by one starting from the largest to the
smallest, by checking that the union of the remaining regions
satisfies excitation closure and event effectiveness. If excitation
closure and event effectiveness are preserved, then the given
SM can be removed. This algorithm is not optimal, because the
removal of an SM may prevent the removal of a set of smaller
SMs whose sum of places is greater than the number of places

3

of the removed SM. However, this approach guarantees good
performance having linear complexity in the number of SMs.

After the removal of the redundant SMs from the set shown
in Fig. 3 only SM4, SM5, SM6 and SM8 are left.

C. Merge between regions preserving the excitation closure

r1

r2

r3

r4

a

b

c

d

e
f

(a) SMa

r3

r7

r6r5

r4
e

f

b′

c

b

d

(b) SMb

Fig. 4: Initial SMs.

The third step of the pro-
cedure merges pairs of regions
with the objective to minimize
the size of the sets of SMs: edges
carrying labels are removed, and
by consequence the two nodes
connected to them are merged
decreasing their number. E.g.,

both the SMs in Fig. 4 (obtained from a TS different from
the one in Fig. 2) contain an instance of label e connected by
regions r3 and r4. This means that an edge carrying label e
can be removed in one of the SMs. The result of removing
the edge with label e in SMb and merging the regions r3 and
r4 replacing them with the region r34 is shown in Fig. 5.

r1

r2

r3

r4

a

b

c

d

e
f

(a) SMa

r34

r5 r6

r7

f

b′

cb

d

(b) SMb

Fig. 5: SMs of Fig. 4 after the
removal of label e in SMb.

All instances of a region
except one can be removed,
because removing all of
them would change the set
of regions used for check-
ing the excitation closure-
property, whereas keeping
at least one guarantees the
preservation of the property.

We formulated the merging problem as solving an instance
of SAT. We will skip the exact SAT clause encoding due to
lack of space. According to the SAT solution, the SMs are
restructured by removing arcs and nodes to be deleted and
adding merged nodes, and redirecting arcs as appropriate. In
the running example, in SMb we merge the nodes r3, r4 into
node r34, remove the edge labeled e between the deleted nodes
r3 and r4, and redirect to r34 the edges pointing to r3 or r4.

Instead, none of the four SMs surviving the irredundancy
step from Fig. 2 is further minimized by the merging step.

IV. COMPOSITION OF SMS AND EQUIVALENCE TO THE
ORIGINAL TS

r1r11

r8r11 r14r11

r1r12

r8r12 r14r12

ad

c

e

ad

c

e

b

b b

f

f f

(a) RG(SM4)||RG(SM5)

Fig. 6: Composition between
RG(SM4) and RG(SM5) of
Fig. 3

Intuitively, the SMs
derived from an LTS in-
teract running in parallel
with the same rules of
the synchronous product
of transition systems. In-
deed, if we interpret the
reachability graphs of
the SMs as LTSs and
execute the synchronous
product deriving a single
LTS which models the interaction of the SMs, it turns out
that the result of the composition is equivalent to the original
LTS. E.g., consider the composition of reachability graphs

of SMs SM4 and SM5 in Fig. 6, it generates a superset
of behaviors of the original LTS in Fig. 2: it produces the
sequence “acbdaefd” which is in the original LTS, but also
new behaviors, which are not in the original LTS because some
constraints of the original LTS are missing; indeed, these two
SMs are not enough to satisfy the excitation-closure property,
whereas event effectiveness is satisfied by them because all
events are included in the composition. The composition of
SMs can exhibit these hidden behaviors by including new
regions: e.g., the composition of SM4 with SM5 includes two
new regions r11 and r12 so that the events b and f show up
in the composition.

The equivalence between an ECTS and the derived set
of SMs is proved by defining a bisimulation between the
original TS and the synchronous product of the reachability
graphs of the derived state machines RG(SM1)||RG(SM2)|| . . .
||RG(SMn), denoted by ||i=1,...,nRG(SMi).

Theorem 2. Given an excitation-closed set {SM1, . . . , SMn}
of SMs derived from the ECTS TS, there is a bisimulation B
such that TS ∼B ||i=1,...,nRG(SMi).

Proof. The proof can be found in [14].

Theorem 2 states that, given a set of SMs, the excitation
closure and event effectiveness of the union of their regions
is a necessary and sufficient condition to guarantee that their
synchronous product is equivalent to the original TS.

V. EXPERIMENTAL RESULTS

We implemented the procedure described in Sec. III and
performed experiments on an Intel core running at 2.80GHz
with 16GB of RAM. Our software is written in C++ and uses
PBLib [17] for the resolution of SAT. The resolution of the
MIS problem is performed by the NetworkX library [18].

Due to lack of space we refer to the tables in our extended
version of the paper [14] in which the following information
can be found.

The generation of minimal regions is the dominating op-
eration taking more than 60% of the overall time spent; it
is exponential in the number of events and with the increase
of the input dimensions it becomes the bottleneck shadowing
the remaining computations. However it is still possible to
decompose quite large transition systems with about 106 states
and 3 · 106 transitions.

Table I compares the states and transitions of transition
systems vs. the places/transitions/crossing arcs of the Petri
nets derived by Petrify [16] (columns under PN), and vs. our
product of state machines for the first benchmark set. The
number of crossing arcs is reported by the dot algorithm of
graphviz [19] and can be considered as a metric of structural
simplicity of the model (i.e., fewer crossings implies a simpler
structure). Our results from synchronized state machines have
similar sizes compared to those from Petri nets, but they have
fewer crossings, which is a significant advantage in supporting
a visual representation for “large systems”. Therefore the plots,
in a two-dimensional graphical representation of synchronizing

4

Example TS PN Synchronizing SMs
States T P T C SM P T C

alloc-out. . . 21 18 14 14 3 2 17 21 0
clock 10 10 8 5 4 3 11 15 0
dff 20 24 13 14 21 3 25 41 0
espinalt 27 31 22 20 5 3 29 32 0
fair arb 13 20 11 10 4 2 12 18 0
future 36 44 18 16 1 3 21 22 0
intel div3 8 8 7 5 2 2 10 11 0
intel edge 28 36 11 15 22 4 35 68 1
isend 53 66 25 27 106 13 80 138 4
lin edac93 20 28 10 8 1 3 13 14 0
master-read 8932 36226 33 26 0 8 38 38 0
pe-rcv-ifc 46 62 23 20 96 2 39 57 2
pulse 12 12 7 6 2 2 7 10 0
rcv-setup 14 17 10 10 5 2 12 14 0
vme read 255 668 38 29 18 9 50 67 1
vme write 821 2907 46 33 31 11 57 74 1

TABLE I: Places (P), transitions (T) and arc crossings (C) of
the original TS vs. derived Petri nets vs. product of SMs.

SMs, are substantially more readable than the ones of Petri
nets: see the inputs intel edge and pe-rcv-ifc witnessing that
peaks of edge crossings are avoided. The example master-read
instead is an impressive case of how our decomposition tames
the state explosion of the original transition system derived
from a highly concurrent environment, since from 8932 states
we go down to 8 SMs with an average number of 5 states
each. An extended version of this table can be found in [14]
with details about the resultant SMs and also the comparison
with Petri nets computed by an option of Petrify to trade-off
more transitions vs. fewer crossings.

We implemented also an exact search of all SMs derived
from the original TS, to gauge our heuristics, when it is
possible to find an exact solution. We compared the times
taken by the exact and heuristic SM generation steps: the
exponential behaviour of the exact algorithm makes it hardly
affordable for about 15 regions and run out of 16GB of
memory for more than 20 regions (the table of comparisons is
omitted for lack of space but it can be found in [14]). Instead,
the approximate algorithms presented in Sec. III can handle
very large transition systems. Even though the result is not
guaranteed to be a minimum one, the irredundancy procedure
guarantees a form of minimality, yielding a compact repre-
sentation that avoids state explosion and exhibits concurrency
explicitly.

VI. CONCLUSIONS

In this paper we described a new method for the de-
composition of transition systems. Our experimental results
demonstrate that the decomposition algorithm can be run on
transition systems with up to one million states, therefore,
it is suitable to handle real cases. Since the generation of
minimal regions is currently a computational bottleneck, future
work will address this limitation, while it will leverage the
improvements in efficiency of last-generation MIS and SAT
solvers, and the power of HPC since the generation of minimal
regions is highly parallelizable. HPC can be exploited also in
other steps of the decomposition algorithm, e.g., different MIS
computations could be performed simultaneously applying

constraints to each parallel computation (e.g., assigning a state
to each thread and forcing it to be in the MIS result).

As future work, we want to apply this decomposition
paradigm to process mining. Rather than synthesizing intricate
“spaghetti” Petri nets from logs, we aim at distilling loosely
coupled concurrent threads (SMs) that can be easily visualized,
analyzed and optimized individually, while preserving the
synchronization with the other threads. Optionally, a new Petri
net can be obtained by composing back the optimized threads
and imposing some structural constraints, e.g., to be a Free-
Choice Petri net, thus providing a tight approximation of the
original behavior with a simpler structure.

REFERENCES

[1] P. Kemper and F. Bause, “An efficient polynomial-time algorithm to
decide liveness and boundedness of free-choice nets,” in Application
and Theory of Petri Nets, 1992, pp. 263–278.

[2] J. Desel, Free choice Petri nets. Cambridge New York: Cambridge
University Press, 1995.

[3] P. M. Mattheakis, “Logic synthesis of concurrent controller specifica-
tions,” Ph.D. dissertation, University of Thessaly, 2013.

[4] E. Badouel, L. Bernardinello, and P. Darondeau, Petri net synthesis.
Berlin: Springer, 2015.

[5] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, “Deriving
Petri nets from finite transition systems,” IEEE Transactions on Com-
puters, vol. 47, no. 8, pp. 859–882, Aug 1998.

[6] A. A. Kalenkova, I. A. Lomazova, and W. M. van der Aalst, “Process
model discovery: A method based on transition system decomposition,”
in International Conference on Applications and Theory of Petri Nets
and Concurrency. Springer, 2014, pp. 71–90.

[7] J. de San Pedro and J. Cortadella, “Mining structured Petri nets for the
visualization of process behavior,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing, 2016, pp. 839–846.

[8] W. M. Van Der Aalst, “Decomposing process mining problems using
passages,” in International Conference on Application and Theory of
Petri Nets and Concurrency. Springer, 2012, pp. 72–91.

[9] W. M. Van der Aalst, “Decomposing Petri nets for process mining: A
generic approach,” Distributed and Parallel Databases, vol. 31, no. 4,
pp. 471–507, 2013.

[10] H. Verbeek and W. M. van der Aalst, “Decomposed process mining:
The ILP case,” in International Conference on Business Process Man-
agement. Springer, 2014, pp. 264–276.

[11] D. Taibi and K. Systä, “From monolithic systems to microservices: A
decomposition framework based on process mining.” in CLOSER, 2019,
pp. 153–164.

[12] W. M. Van der Aalst, V. Rubin, H. Verbeek, B. F. van Dongen,
E. Kindler, and C. W. Günther, “Process mining: a two-step approach
to balance between underfitting and overfitting,” Software & Systems
Modeling, vol. 9, no. 1, p. 87, 2010.

[13] J. Carmona, J. Cortadella, and M. Kishinevsky, “Divide-and-conquer
strategies for process mining,” in International Conference on Business
Process Management. Springer, 2009, pp. 327–343.

[14] V. Teren, J. Cortadella, and T. Villa, “Decomposition of transition
systems into sets of synchronizing state machines,” 2021.

[15] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[16] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE Transactions on
information and Systems, vol. 80, no. 3, pp. 315–325, 1997.

[17] T. Philipp and P. Steinke, “Pblib – a library for encoding pseudo-boolean
constraints into cnf,” in Theory and Applications of Satisfiability Testing
– SAT 2015, ser. Lecture Notes in Computer Science, M. Heule and
S. Weaver, Eds. Springer International Publishing, 2015, vol. 9340,
pp. 9–16.

[18] NetworkX developer team, “Networkx,” 2014. [Online]. Available:
https://networkx.github.io/

[19] E. Gansner, E. Koutsofios, S. North, and K.-P. Vo, “A technique for
drawing directed graphs,” Software Engineering, IEEE Transactions on,
vol. 19, pp. 214 – 230, 04 1993.

5

https://networkx.github.io/

	Introduction
	Previous and related work

	Preliminaries
	Transition systems, Petri nets and synchronizing SMs
	Theory of regions

	From LTS to SMs by regions
	Generation of a set of SMs with excitation closure
	Removal of the redundant SMs
	Merge between regions preserving the excitation closure

	Composition of SMs and equivalence to the original TS
	Experimental results
	Conclusions
	References

