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Abstract. Given a subset D of the interval (0, 1), if a Borel set A ⊂ [0, 1) contains no

pair of elements whose difference modulo 1 is in D, then how large can the Lebesgue

measure of A be? This is the analogue in the circle group of a well-known problem of

Motzkin, originally posed for sets of integers. We make a first treatment of this circle-

group analogue, for finite sets D of missing differences, using techniques from ergodic

theory, graph theory and the geometry of numbers. Our results include an exact solution

when D has two elements, at least one of which is irrational. When every element of D

is rational, the problem is equivalent to estimating the independence ratio of a circulant

graph. In the case of two rational elements, we give an estimate for this ratio in terms of

the odd girth of the graph, which is asymptotically sharp and also recovers the classical

solution of Cantor and Gordon to Motzkin’s original problem for two missing differences.

1. Introduction

Many interesting developments in combinatorial number theory are related to the gene-

ral problem of determining how large a subset of an abelian group can be if the set avoids

certain prescribed configurations. Famous examples include Szemerédi’s theorem, where

the configurations in question are arithmetic progressions in sets of integers. Another

notable problem of this kind, posed by T.S. Motzkin, asks how large a set of integers

can be if it does not contain any pair of elements whose difference lies in a prescribed

set. More precisely, given a non-empty subset D of the natural numbers N, let us say

that a set A ⊂ Z is D-avoiding if for every a, a′ ∈ A we have |a − a′| /∈ D, in other

words if the difference set A − A = {a − a′ : a, a′ ∈ A} is disjoint from D. Let A(N)

denote the cardinality |A∩ [−N,N ]|, and let δ̄(A) denote the upper density of A, namely

δ̄(A) = lim supN→∞
A(N)
2N+1

. Then, Motzkin’s problem (posed originally for sets A ⊂ N in

an unpublished problem collection; see [6]) consists in determining the following quantity,

sometimes called the Motzkin density of D:

MdZ(D) := sup{δ̄(A) : A is a D-avoiding subset of Z}. (1)

The first publication on Motzkin’s problem is the paper [6] by Cantor and Gordon. Their

results include a full solution for |D| ≤ 2. This involves proving that the elements of D

can be assumed to be coprime, then proving that MdZ(D) = 1/2 for |D| = 1, and then

proving the following formula for D = {d1, d2} with gcd(d1, d2) = 1:

MdZ(D) =
bd1+d2

2
c

d1 + d2

. (2)
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Motzkin’s problem is still open in general. In the decades since the initial paper [6], the

problem has motivated many works and various special cases have been addressed; see

for instance [14, 16, 27, 30, 31, 32]. The problem also has interesting relations with other

well-known topics in combinatorics and number theory, such as the fractional chromatic

number of distance graphs, or the lonely runner conjecture; see for example [26] and the

references therein.

There is an analogue of Motzkin’s problem for any compact abelian group Z. Namely,

given a non-empty set D ⊂ Z, letting µ denote the Haar probability measure on Z, the

problem is to determine or estimate the quantity

MdZ(D) := sup{µ(A) : A ⊂ Z a Borel set with (A− A) ∩D = ∅}. (3)

In particular, a hitherto unexplored yet natural analogue of Motzkin’s problem consists

in taking Z to be the circle group T = R/Z, which we shall view as the interval [0, 1] with

addition modulo 1, letting D be a set of real numbers in (0, 1). In this paper we make a

first treatment of this problem for D a finite set {t1, . . . , tr}.
In Section 2 we make some observations on the problem for general r ∈ N, showing

in particular that it can be approached using tools from ergodic theory. We illustrate

this first in the “extreme” case where D ∪ {1} is linearly independent over Q, applying

the version of Rokhlin’s lemma for free measure-preserving actions of Zr to prove that in

this case MdT(D) = 1/2; see Theorem 2.4. (Different applications of Rokhlin’s lemma in

combinatorial number theory have been given recently in [2, 11].) The general case, where

D∪{1} may be linearly dependent over Q, can be approached using more general versions

of Rokhlin’s lemma which are applicable to free actions of quotients of Zr. In particular,

the problem of determining MdT(D) can thus be transferred to a similar problem in the

discrete setting of the finitely generated abelian group Zr/Λ, where Λ is the kernel of

the homomorphism Zr → T, n 7→ n1t1 + · · · + nrtr. In this setting a natural notion of

Motzkin density can be defined using Følner sequences; see Definition 2.5. We then have

the following result.

Theorem 1.1. Let D = {t1, . . . , tr} ⊂ T, let Λ be the kernel of the homomorphism

Zr → T, n 7→ n1t1 + · · ·+ nrtr, and let E be the image of the standard basis of Rr in the

quotient Zr/Λ. Then MdT(D) = MdZr/Λ(E).

This result also holds for more general compact abelian groups; see Theorem 2.6.

Theorem 1.1 can be used as a first step in an approach towards determining MdT(D),

since the corresponding Motzkin density in the discrete setting, i.e. MdZr/Λ(E), can often

be simpler to determine. In this paper we pursue this approach for r ≤ 2.

Another notable special case of the problem, at the other extreme from D∪{1} being

linearly independent over Q, is the case in which D ⊂ Q. This reduces to the problem
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of determining the independence ratio of a circulant graph which we call the associated

circulant graph. More precisely, supposing that each element of D is of the form ti = ai/bi

with coprime positive integers ai < bi, then the subgroup 〈D〉 ≤ T is isomorphic to ZN
with N = lcm(b1, . . . , br). The associated circulant graph is the (undirected) connected

circulant graph G with vertex set ZN (viewed as the set of integers [0, N−1] with addition

modulo N) with jumps d1, . . . , dr where di = aiN/bi. Thus x, y ∈ ZN form an edge in

G if and only if x − y = di or −di mod N for some i ∈ [r]. Equivalently G is the

Cayley graph on ZN with generating set {di,−di : i ∈ [r]}, which we shall denote by

G = Cay(ZN , {d1, . . . , dr}). The independence ratio of G is α(G)
N

, where α(G) is the

independence number ofG, i.e. the maximal cardinality of an independent (or stable) set in

G. As a straightforward consequence of Theorem 1.1 we have MdT(D) = α(G)
N

; see Lemma

2.10. It can also be seen, using known results, that determining these independence ratios

yields a solution to Motzkin’s problem for finitely many missing differences in Z, so in

this sense Motzkin’s problem in T subsumes the original problem in Z; we detail this in

Remark 2.11.

Circulant graphs are extensively treated in the combinatorics and computer science

literature (in the latter they are also known as multiple-loop networks or chordal rings);

see for instance [3, 5, 8, 13, 18]. However, these works study mostly other parameters than

the independence ratio. Works determining the independence ratio of certain circulant

graphs include [12, 23].

After these remarks on the problem for general r, and a brief solution for r = 1 (see

Proposition 2.12), we close Section 2 and focus on the problem for r = 2 for the rest of

the paper. Here we distinguish two cases.

In Section 3 we treat the case in which at least one element of D is irrational. Here

we obtain the following exact solution (see Theorem 3.2).

Theorem 1.2. Let D = {t1, t2} ⊂ (0, 1) with D 6⊂ Q. If D ∪ {1} is linearly independent

over Q, then MdT(D) = 1/2. Otherwise, letting m0,m1,m2 be integers not all zero such

that m0 = m1t1 +m2t2 and gcd(m0,m1,m2) = 1, we have

MdT(D) =
bk/2c
k

, where k = |m1|+ |m2|. (4)

In Section 4, we focus on the case in which both elements of D are rational. This is

equivalent to determining the independence ratio of circulant graphs with two jumps. We

study this problem using mainly tools from the geometry of numbers. The usefulness of

such tools for the analysis of circulant graphs is well-known (see for instance [5, 9, 28]),

though apparently before the present work these tools had not been used to study the

independence ratio.
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The independence ratio of a circulant graph G is easily seen to be 1/2 when G is

bipartite, so we can assume that G contains odd cycles. The so-called “no-homomorphism

lemma” from [1] yields an upper bound for α(G)
N

of the form k−1
2k

, where k is the odd girth

of G, i.e. the smallest length of an odd cycle in G (see Lemma 4.1). It is then natural to

examine how accurate this upper bound is as an estimate for α(G)
N

. In particular, the odd

girth is always one of the successive minima, relative to the `1-norm, of a 2-dimensional

lattice naturally associated with G; see Lemma 4.6 (the lattice in question is just the

lattice Λ from Theorem 1.1 applied in this special case). This expression of the odd girth

makes the estimate k−1
2k

relatively easy to compute (see Remark 4.11, where an algorithm

is outlined). Regarding the accuracy of this estimate of α(G)
N

, we obtain the following

result, showing that it is asymptotically sharp.

Theorem 1.3. Let D = {t1, t2} ⊂ Q∩(0, 1). Let G be the associated circulant graph, and

let N be the order of G. If G is bipartite then MdT(D) = α(G)
N

= 1
2
. Otherwise, letting k

be the odd girth of G, we have

k−1
2k
≥ MdT(D) = α(G)

N
> k−1

2k
− ( 2

N
)

1
2 . (5)

This is obtained as an immediate consequence of the following estimate for the indepen-

dence number of connected circulant graphs with two jumps (see Theorem 4.10).

Theorem 1.4. Let G = Cay(ZN , {d1, d2}) with 〈d1, d2〉 = ZN , and suppose that G has

odd girth k. Then ⌊
k−1
2k
N
⌋
≥ α(G) ≥

⌈
k−1
2k
N −

√
2N + 1

⌉
. (6)

The independence ratio of a circulant graph G is equal to the reciprocal of its fractional

chromatic number χf (G). Therefore the estimate (5) implies the following estimate for

the fractional chromatic number of a connected circulant graph G of order N with 2 jumps

and odd girth k:
2k
k−1

≤ χf (G) < 2k
k−1

+ 9
(N/2)1/2−3

. (7)

We also study the related question of determining which graphs among such circulant

graphs have independence number matching the upper bound bk−1
2k
Nc, though we do not

settle this question fully; see Remark 4.3, Example 4.4, and Proposition 4.12.

Finally, we note that the odd girth notion enables a unification of solutions to Motzkin’s

problem for two missing differences across various settings, in the non-bipartite case. For

example, Theorem 1.3 can be seen to imply the formula (2) of Cantor and Gordon, by

expressing the formula in terms of the odd girth of the corresponding distance graph

Cay(Z, {d1, d2}), and viewing the corresponding Motzkin density as the limit of indepen-

dence ratios of circulant graphs Cay(ZN , {d1, d2}). In Section 5 we detail such connections

and discuss further questions.
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2. Remarks on the general problem

In this section we make some initial observations on the problem of determining MdT(D)

for finite D, illustrating especially how tools from ergodic theory can be applied to the

problem. In particular we shall use Rokhlin’s lemma for free actions of finitely generated

abelian groups, which we state below after recalling some terminology.

Definition 2.1. A measure-preserving action of a countable discrete group Γ on a proba-

bility space (X,X , µ) is a map f : Γ × X → X such that for every g ∈ Γ there is a

measure-preserving map fg : X → X, with fidΓ
being the identity map, and such that for

every g, h ∈ Γ and x ∈ X we have fg h(x) = fg(fh(x)). We say that such an action is free

if for every g, h ∈ Γ with g 6= h we have µ({x ∈ X : fg(x) = fh(x)}) = 0.

Definition 2.2. Let f be a measure-preserving action of a countable discrete group Γ on

a probability space (X,X , µ), and let K ⊂ Γ. If B ∈ X is such that the sets fg(B), g ∈ K
are pairwise disjoint, then the union

⋃
g∈K fg(B) is called a K-tower for f with base B.

A subset K of an abelian group Γ is said to tile Γ if there exists C ⊂ Γ such that we have

the partition Γ =
⊔
c∈C K + c. The version of Rokhlin’s lemma that we shall use is the

following special case of [29, p. 58, Theorem 5].

Lemma 2.3. Let Γ be a finitely generated abelian group and let f be a free measure-

preserving action of Γ on a standard probability space (X,X , µ). Let K ⊂ Γ be a finite set

that tiles Γ. Then for every ε > 0 there exists a K-tower for f of measure at least 1− ε.

As a first simple example of the use of this lemma in this context, let us treat swiftly the

case of Motzkin’s problem in T where D ∪ {1} is linearly independent over Q.

2.1. The case of linear independence of D ∪ {1} over Q.

In this subsection we prove the following result.

Theorem 2.4. Let D be a finite subset of (0, 1) such that D∪{1} is linearly independent

over Q. Then MdT(D) = 1
2
. Moreover, no D-avoiding Borel set A ⊂ T satisfies µ(A) = 1

2
.

In the proof we use the special case of Lemma 2.3 for free actions of Zr, which was given

in [7, Theorem 3.1] and independently in [20, Theorem 1].

Proof. Let D = {t1, . . . , tr}. Clearly MdT(D) ≤ 1
2
. Fix any ε > 0 and any odd N ∈ N.

The translations by the elements t1, . . . , tr ∈ D generate a measure-preserving action

f of Zr on T, namely f(n, x) = x + n1t1 + · · · + nrtr mod 1. It follows from the linear

independence of D ∪ {1} over Q that this action is free. By Lemma 2.3 there is a Borel

set B ⊂ T that is the base of a [0, N)r-tower for f of Haar probability at least 1− ε.

Let A =
⊔

j1,...,jr ∈ [0,N−2]: j1+···+jr is even

B + j1t1 + · · ·+ jrtr.
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It is readily seen that (A+ ti)∩A = ∅ for each i ∈ [r], so A is D-avoiding. Moreover, since

the translates of B in the tower have equal measure at least (1−ε)/N r, and since A consists

of (N−1)r/2 of these sets, we have µ(A) ≥ ((N−1)r/2)(1−ε)/N r ≥ (1−ε)(1−1/N)r/2.

Letting N →∞ and ε→ 0, we deduce that MdT(D) ≥ 1
2
, so MdT(D) = 1

2
.

To see that the supremum 1/2 cannot be attained, suppose for a contradiction that

A ⊂ T is a measurable D-avoiding set with µ(A) = 1/2. Since A+ t1 ⊂ Ac := T \ A and

µ(A+t1) = 1/2 = µ(Ac), we have µ
(
(A+t1)∆Ac) = 0. Hence µ

(
(A+2t1)∆(A+t1)c) = 0.

By the triangle inequality µ
(
(A+2t1)∆A) ≤ µ

(
(A+2t1)∆(A+t1)c)+µ

(
(A+t1)c∆A) = 0.

Hence A is an invariant set of measure 1/2 for the map x 7→ x + 2t1, contradicting the

fact that, since t1 is irrational, this map is ergodic. �

2.2. Transference to finitely generated abelian groups.

Given a compact abelian group Z, and D = {t1, . . . , tr} ⊂ Z, we consider the lattice

Λ = {n ∈ Zr : n1t1 + · · ·+ nrtr = 0}, (8)

that is, the kernel of the homomorphism Zr → Z, n 7→ n1t1 + · · · + nrtr. The finitely

generated abelian group Zr/Λ then has a free action f on Z, well-defined by

f(n+ Λ, x) = x+ (n1 + u1)t1 + · · ·+ (nr + ur)tr, for any u ∈ Λ. (9)

The main idea in the proof of Theorem 2.4 is that the Rokhlin lemma enables the problem

of determining MdT(D) to be transferred to a discrete setting, where it can be easier to

solve. The transference part of this approach can be carried out more generally. We

establish this in Theorem 2.6 below, for a general finite set D, and not just for T but

for any compact abelian group Z such that (Z, µ) is a standard probability space, so that

Lemma 2.3 can be applied with X = Z and X the Borel σ-algebra on Z. This applicability

holds if Z is metrizable (as (Z,X ) is then a standard Borel space [21, (4.2),(12.5)]). To

avoid further technicalities, we shall assume that Z is metrizable.

Our transference result (Theorem 2.6 below) expresses the Motzkin density MdZ(D)

as an analogous quantity in Zr/Λ. To detail this, we first describe a natural notion of

Motzkin density in any finitely generated abelian group Γ.

For any set X we denote by P<∞(X) the set of all finite subsets of X. Recall that a

sequence (FN)N∈N of sets in P<∞(Γ) is a Følner sequence if

for every g ∈ Γ we have lim
N→∞

|FN∆(g + FN)|
|FN |

= 0. (10)

Definition 2.5. Let Γ be a finitely generated abelian group and let E ⊂ Γ. Let

φE : P<∞(Γ)→ Z≥0, S 7→ max{ |A| : A ⊂ S, (A− A) ∩ E = ∅ }.
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Then we define

MdΓ(E) := lim
N→∞

φE(FN)

|FN |
, for any Følner sequence (FN)N∈N in Γ. (11)

Note that the function φE is monotone relative to inclusion, subadditive relative to unions,

and Γ-invariant. It follows by known results that the limit in (11) exists and is independent

of the choice of Følner sequence (see [25, Theorem 6.1] or [10, Proposition 2.2]).

A notion of Motzkin density in Γ can also be defined using the upper density relative

to certain Følner sequences, the resulting definition being a more direct generalization of

the original notion used in (1) (see Definition 2.7 and (17)). We show later in this section

that for finite sets E this alternative definition agrees with (11) (see Lemma 2.8). We

shall use mainly the version in (11), as it is more convenient for our arguments.

We can now state the transference result.

Theorem 2.6. Let Z be a compact metrizable abelian group, let D = {t1, . . . , tr} ⊂ Z, let

Λ be the kernel of the homomorphism Zr → Z, n 7→ n1t1 + · · · + nrtr, and let E be the

image of the standard basis of Rr in the quotient Zr/Λ. Then MdZ(D) = MdZr/Λ(E).

Proof. Let Γ = Zr/Λ, let (FN)N∈N be a Følner sequence in Γ, and let us denote the

elements of E by e′1, . . . , e
′
r. It follows from (10) that

∀ δ > 0, ∃N0, ∀N ≥ N0, ∀ i ∈ [r], |(FN + e′i) \ FN | ≤ δ|FN |. (12)

We first prove that

MdZ(D) ≥ MdΓ(E). (13)

Fix any ε > 0. By (11) and (12), we can fix N such that the following properties hold:

firstly there is an E-avoiding set A′ ⊂ FN satisfying |A′|
|FN |
≥ MdΓ(E)− ε

4
, and secondly for

each i ∈ [r] we have |(FN + e′i) \ FN | ≤ ε
4r
|FN |.

Let A′′ = {g ∈ A′ : g + E ⊂ FN}. We have A′ \ A′′ ⊂ {g ∈ FN : g + E 6⊂ FN}
⊂
⋃
i∈[r] FN\(FN−e′i). This together with the properties above implies |A

′′|
|FN |
≥ MdΓ(E)− ε

2
.

By Lemma 2.3 applied to the action f defined in (9), there is a base B ⊂ Z of an

FN -tower for f of measure at least 1 − ε
2
. Let A =

⊔
g∈A′′ fg(B). For every i ∈ [r], the

set A+ ti =
⊔
g′∈A′′ fg′+e′i(B) is disjoint from A (otherwise, since A′′ + e′i ⊂ FN , the tower

property implies that g′+e′i = g for some g, g′ ∈ A′′, contradicting that A′′ is E-avoiding).

Hence MdZ(D) ≥ µ(A) = |A′′|µ(B) ≥ |FN |(MdΓ(E)− ε
2
)

1− ε
2

|FN |
≥ MdΓ(E)− ε. This yields

(13) by letting ε→ 0.

We now prove that

MdZ(D) ≤ MdΓ(E). (14)
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Fix any D-avoiding Borel set A ⊂ Z, and any ε > 0. By (11) and (12), we can fix N such

that firstly |(FN + e′i) \ FN | ≤ ε
2r
|FN | for every i ∈ [r], and secondly

every E-avoiding set S ⊂ FN satisfies
|S|
|FN |

≤ MdΓ(E) +
ε

2
. (15)

By Lemma 2.3, there is a base B ⊂ Z of an FN -tower for f of measure at least 1 − ε
2
.

We claim that there is a partition B =
⊔
j∈[M ] Bj such that there is a set A′ ⊂ A (which

is therefore D-avoiding) with µ(A′) ≥ µ(A) − ε
2
, and with the property that for every

j ∈ [M ] there is Sj ⊂ FN such that A′ is of the form A′ =
⊔
j∈[M ]

⊔
g∈Sj fg(Bj). Before

we prove this claim, let us explain how it yields (14). The D-avoiding property of A′

implies that each set Sj is E-avoiding. Indeed, otherwise there would be some j ∈ [M ]

and i ∈ [r] such that there is g′ ∈ Sj with g′ + e′i ∈ Sj. But then the form of A′ implies

that fg′+e′i(Bj) ⊂ A′ (since g := g′+ e′i ∈ Sj) and fg′+e′i(Bj) = fg′(Bj) + ti ⊂ A′+ ti (since

g′ ∈ Sj), so A′∩(A′+ti) ⊃ fg′+e′i(Bj), contradicting that A′ is D-avoiding. Hence each Sj is

indeed E-avoiding, and then (15) implies
|Sj |
|FN |
≤ MdΓ(E) + ε

2
for all j ∈ [M ]. Then, using

that
∑

j∈[M ] µ(Bj)|FN | = µ
(⊔

g∈FN fg(B)
)
≤ 1, we have µ(A′) ≤

∑
j∈[M ] |Sj|µ(Bj) ≤

MdΓ(E) + ε
2
, so µ(A) ≤ MdΓ(E) + ε, and (14) follows by letting ε→ 0.

We now prove the claim by finding the desired partition of B and the set A′. For every

g ∈ FN , we have the partition B(g) = {Bg,0, Bg,1} of B with atoms Bg,1 := B ∩ f−1
g (A)

and Bg,0 := B \ Bg,1. The desired partition is the common refinement (or supremum)

of these partitions, i.e. the partition of B whose atoms are all the intersections of the

atoms of B(g) as g ranges in FN . Let B1, . . . , BM be the atoms in this partition. Let

A′ :=
⊔
g∈FN [A ∩ fg(B)] ⊂ A. Since the FN -tower with base B has measure at least

1− ε
2
, we have µ(A \ A′) ≤ ε

2
. Since A′ =

⊔
g∈FN fg(Bg,1), and each set Bg,1 is a union of

some of the atoms Bj, it follows that A′ is a union of some of the atoms of the partition

{fg(Bj) : j ∈ [M ], g ∈ FN}. Hence for every j ∈ [M ] there is a set Sj ⊂ FN such that

A′ =
⊔
j∈[M ]

⊔
g∈Sj fg(Bj). This proves the claim and completes the proof. �

To close this subsection, we record another natural way to define the Motzkin density of

a finite set in a finitely generated abelian group, in Lemma 2.8 below. This is not used

in later sections of this paper, but it can be used for instance in an alternative proof of

Theorem 2.6; see Remark 2.9.

Definition 2.7. Let Γ be a finitely generated abelian group. Given any set A ⊂ Γ, and

any Følner sequence F = (FN)N∈N in Γ, the upper density of A relative to F is defined

by δF(A) := lim supN→∞
|A∩FN |
|FN |

.

A Følner sequence (FN)N∈N in Γ is a tiling Følner sequence if FN tiles Γ for every N .

Such a sequence can be obtained using the fundamental result that there is a group

isomorphism ϑ : Zd × Γ′ → Γ for some finite group Γ′ and d ∈ Z≥0. Indeed we can then



ON MOTZKIN’S PROBLEM IN THE CIRCLE GROUP 9

take (for instance)

FN = ϑ([−N,N ]d × Γ′). (16)

Lemma 2.8. Let Γ be a finitely generated abelian group, let F be a tiling Følner sequence

in Γ, and let E be a finite subset of Γ. Then

MdΓ(E) = sup{δF(A) : A ⊂ Γ, (A− A) ∩ E = ∅}. (17)

Proof. It is easily checked from the definitions that MdΓ(E) ≥ δF(A) for every E-avoiding

set A ⊂ Γ, so MdΓ(E) ≥ sup{δF(A) : A ⊂ Γ, (A− A) ∩ E = ∅}. We now prove that

MdΓ(E) ≤ sup{δF(A) : A ⊂ Γ, (A− A) ∩ E = ∅}. (18)

Let F1, F2, . . . be the sets in F , and fix any ε > 0. By (11), for all N sufficiently large

we have φE(FN )
|FN |

≥ MdΓ(E) − ε
2
, so there is an E-avoiding set S ⊂ FN with |S|

|FN |
≥

MdΓ(E)− ε
2
. Since E is finite, it follows from (10) that for all N sufficiently large we also

have |(FN + t) \ FN | ≤ ε
2|E| |FN | for each t ∈ E. Let us now fix N with the previous two

properties. The set S ′ := {g ∈ S : g + E ⊂ FN} satisfies S \ S ′ ⊂
⋃
t∈E FN \ (FN − t),

so |S′|
|FN |
≥ |S|
|FN |
− ε

2
≥ MdΓ(E) − ε. By assumption there is a tiling Γ =

⊔
c∈C c + FN . It

is then easily checked that A := C + S ′ is E-avoiding. Therefore it now suffices to prove

that δF(A) ≥ |S′|
|FN |

, since then MdΓ(E) ≤ δF(A) + ε, and then (18) follows by taking the

supremum and letting ε → 0. For each N ′ ∈ N, let C ′ = {c ∈ C : c + FN ⊂ FN ′}.
Then |FN ′ ∩ A| ≥ |FN ′ ∩ (C ′ + S ′)| = |S′|

|FN |
|C ′ + FN | = |S′|

|FN |
(|FN ′ | − |FN ′ \ (C ′ + FN)|).

Moreover, letting T = FN − FN , we have FN ′ \ (C ′ + FN) ⊂ FN ′ \ (T + FN ′). Indeed, if

g ∈ FN ′ \ (C ′ + FN) then by the tiling we have g = c + x for some c ∈ C, x ∈ FN , and

by the definition of C ′ we have c+ x′ 6∈ FN ′ for some x′ ∈ FN ; so g + x′ − x 6∈ FN ′ . Thus

we deduce that
|FN′∩A|
|FN′ | ≥

|S′|
|FN |

(
1− |FN′\(T+FN′ )|

|FN′ |

)
. Applying now (10) with variable N ′ and

every g ∈ T , we deduce that δF(A) = lim supN ′→∞
|FN′∩A|
|FN′ | ≥

|S′|
|FN |

, as required. �

Remark 2.9. Using (17), the anonymous referee provided an alternative proof of (14) (the

second main part of the proof of Theorem 2.6) by applying the pointwise ergodic theorem

for actions of finitely generated abelian groups. We gratefully include the argument here.

Let E ⊂ Γ = Zr/Λ as defined in Theorem 2.6, let f be the action of Γ on Z, and

let F be the tiling Følner sequence given by (16). Let A ⊂ Z be a Borel set with

µ(A) > MdΓ(E). We will find a point x ∈ Z such that Ax := {g ∈ Γ : fg(x) ∈ A}
satisfies δF(Ax) ≥ µ(A). Thus we will have δF(Ax) > MdΓ(E), implying by (17) that Ax

is not E-avoiding, so that there are distinct elements a, b ∈ Ax with a − b ∈ E. Then

fa(x), fb(x) ∈ A, so A− A contains the element fa(x)− fb(x) = fa−b(0) ∈ D, so A is not

D-avoiding. Hence MdZ(D) ≤ MdΓ(E).

To find the set Ax, we apply the pointwise ergodic theorem for finitely generated

abelian groups with the action f (for instance as a special case of [24, Theorem 1.2],
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noting that F clearly has the required property of being tempered). Thus we deduce

that the averages x 7→ 1
|FN |

∑
g∈FN 1A(fg(x)) converge pointwise almost everywhere to an

f -invariant function 1A ∈ L1(µ). We have
∫

1A dµ =
∫

1A dµ = µ(A), and it follows that

the set of points x ∈ Z with 1A(x) ≥ µ(A) is not µ-null. Hence there exists x ∈ Z at

which the limit of these averages is at least µ(A). This implies that δF(Ax) ≥ µ(A).

2.3. The case D ⊂ Q: the independence ratio of circulant graphs.

Let us formalize the remarks, made in the introduction, about the general rational case

D ⊂ Q in the circle group.

Lemma 2.10. Let D = {t1, . . . , tr} ⊂ (0, 1), where for each i ∈ [r] we have ti = ai/bi

with 1 ≤ ai < bi and gcd(ai, bi) = 1. Let N = lcm(b1, . . . , br), and let G be the connected

circulant graph on ZN with jumps d1, . . . , dr where di = Nti. Then MdT(D) = α(G)
N

.

Proof. The connectedness of G is equivalent to the elements d1, . . . , dr generating the full

group ZN , which is equivalent to gcd(d1, . . . , dr, N) = 1, which in turn is equivalent to

gcd(N
b1
, . . . , N

br
, N) = 1 by our assumptions. This last equality can be seen to hold using

the identity lcm(b1, . . . , br) = b1···br
gcd(π1,...,πr)

where πi =
∏

j∈[r]\{i} bj for i ∈ [r].

Using the notation in Theorem 2.6, we have MdT(D) = MdZr/Λ(E). Letting ψ denote

the homomorphism Zr → T, n 7→ n1t1 + · · · + nrtr, by the first isomorphism theorem,

we have Zr/Λ ∼= ψ(Zr). Denoting by 1
N
· ZN the subgroup of T of order N , we have

ψ(Zr) = 1
N
·ZN and ψ(e′i) = ti = di

N
for i ∈ [r]. It follows that MdZr/Λ(E) = Md 1

N
·ZN (D) =

MdZN ({d1, . . . , dr}). This last quantity equals α(G)
N

. Hence MdT(D) = α(G)
N

. �

Remark 2.11. Lemma 2.10 shows that Motzkin’s problem in T subsumes the prob-

lem of determining the independence ratio of circulant graphs. Let us mention that

solving the latter problem in turn yields a solution to Motzkin’s original problem in Z
for finitely many missing differences. This follows from the fact that for any finite set

D ⊂ N, identifying ZN with the integer interval FN = [−N
2
, N

2
] with addition mod N ,

we have limN→∞MdZN (D) = MdZ(D). This fact can be seen from (11) noting that

limN→∞
φD(FN )
|FN |

−MdZN (D) = 0, and it can also be seen from previous work: by [23, The-

orem 4.1] the limit limN→∞MdZN (D) equals the reciprocal of the fractional chromatic

number of the graph Cay(Z, D); this reciprocal in turn equals MdZ(D) [27, Theorem 1].

2.4. The case |D| = 1.

Proposition 2.12. For D = {t} with t ∈ (0, 1) we have

MdT(D) =

{
1/2, t 6∈ Q
bN/2c /N, t = d

N
∈ (0, 1), gcd(d,N) = 1.
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Proof. The case t 6∈ Q follows from Theorem 2.4. For t = d
N

with (d,N) = 1, we

have by Lemma 2.10 that MdT(D) is the independence ratio of an N -cycle. This ratio

is easily seen to equal bN/2c /N by identifying the cycle’s vertex set with [0, N − 1],

where x, y ∈ [0, N − 1] form an edge if and only if |x − y| = 1 mod N , and noting that

{0, 2, . . . , 2(bN/2c − 1)} is a stable set of maximal cardinality. �

3. The case |D| = 2, D 6⊂ Q

In this section we suppose that D = {t1, t2} ⊂ (0, 1) where t1, t2 are not both rational,

and we prove Theorem 1.2. Theorem 2.4 already covers the case in which 1, t1, t2 are

linearly independent over Q, in other words, the case in which the lattice Λ from (8) is

trivial. The case in which Λ has full rank 2 corresponds to D ⊂ Q (treated in the next

section). Therefore, here it only remains to address the case in which Λ has rank 1, that

is, where Λ is a non-trivial cyclic subgroup of Z2. We begin by describing this subgroup

more explicitly in terms of the assumption in Theorem 1.2.

Lemma 3.1. Suppose that t1, t2 ∈ (0, 1) are not both rational and that 1, t1, t2 are linearly

dependent over Q. Let Λ be the kernel of the homomorphism ψ : Z2 → T, (n1, n2) 7→
n1t1 +n2t2 mod 1, and let m1,m2 ∈ Z. Then (m1,m2) generates the cyclic group Λ if and

only if there is m0 ∈ Z such that

(m0,m1,m2) ∈ Z3 \ {0}, m0 = m1t1 +m2t2 and gcd(m0,m1,m2) = 1. (19)

In particular, it follows that the quantity in (4) is well-defined.

Proof. If (m1,m2) generates Λ (i.e. Λ = Z(m1,m2)) then in particular (m1,m2) ∈ Λ so

there is m0 ∈ Z such that m0 = m1t1 +m2t2 (and clearly m1,m2 cannot be both 0 since Λ

is non-trivial); moreover g := gcd(m0,m1,m2) must be 1, as otherwise (m1

g
, m2

g
) would be

an element of Λ \ Z(m1,m2), contradicting that (m1,m2) generates Λ. Hence (19) holds.

To see the converse, note first that if (19) holds then (m1,m2) ∈ Λ, so Z(m1,m2) ⊂ Λ

and it only remains to prove the opposite inclusion. For this, it suffices to prove the claim

that every m′ = (m′0,m
′
1,m

′
2) ∈ Z3 satisfying m′0 = m′1t1 +m′2t2 is an integer multiple of

m = (m0,m1,m2). If one of t1, t2 is rational, say t1 ∈ Q, then by irrationality of t2 we must

have m2 = m′2 = 0, so m′0/m
′
1 = t1 = m0/m1 and the claim is then clear. Let us therefore

assume that t1, t2 are both irrational. We have by assumption

{
m0 = m1t1 +m2t2

m′0 = m′1t1 +m′2t2
.

Note that none of m1,m
′
1 is zero, otherwise t2 is rational. Multiplying the first equation

by m′1, the second one by m1, and subtracting, we deduce that m′0m1−m0m
′
1 = (m1m

′
2−

m′1m2)t2. Since t2 is irrational, this implies that m1m
′
2 = m′1m2 and m′0m1 = m0m

′
1. The

former equation implies that the vectors (m1,m2), (m′1,m
′
2) are linearly dependent over
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Q. Hence there are coprime non-zero integers a, b such that a(m1,m2) = b(m′1,m
′
2). Using

this back in the system of equations above, we deduce that am0 = am1t1+am2t2 = bm′1t1+

bm′2t2 = bm′0. Hence am = bm′. This, combined with gcd(a, b) = gcd(m0,m1,m2) = 1,

implies that |b| = 1, and the claim follows. �

In view of Lemma 3.1 and Theorem 2.6, to complete the proof of Theorem 1.2 it now

suffices to prove the following result.

Theorem 3.2. Let Λ be a cyclic subgroup of Z2 generated by an element (m1,m2) ∈
Z2 \ {0}. Let E be the image of the standard basis {e1, e2} in the quotient Z2/Λ. Then

MdZ2/Λ(E) = bk/2c/k, where k = |m1|+ |m2|. (20)

The basic idea of the proof is that the (undirected) Cayley graph Cay(Z2/Λ, E) can be

decomposed by partitioning Z2/Λ into translates of a cycle of length k in the graph, so

that MdZ2/Λ(E) is then easily shown to equal the independence ratio of this cycle.

Proof. We can assume without loss of generality that m1 ≥ 0 and m2 > 0.

Let R denote the set Z(1,−1)+[0, k−1]×{0} = {(n1, n2) ∈ Z2 : n1 +n2 ∈ [0, k−1]}.
It is easily checked that R is a fundamental domain for the action of Λ on Z2. For this

proof we identify Z2/Λ as a group with R equipped with addition mod Λ (i.e. addition in

Z2 composed with reduction mod Λ into R), and we identify E with {e1, e2} ⊂ R.

Let G be the Cayley graph on R with generating set E, i.e. with uv being an edge

in G if and only if v − u ∈ {e1,−e1, e2,−e2} (where the operations are in R). Let

C = C1 ∪ C2 ⊂ R where C1 = {(0, i) : i ∈ [0,m2 − 1]} and C2 = {(i,m2 − 1) : i ∈ [m1]}
(if m1 = 0 then C2 = ∅). Note that the subgraph of G induced by C (denoted by G[C])

is a k-cycle. Note also that R =
⊔
n∈Z C + n(1,−1).

We now prove that MdZ2/Λ(E) is the independence ratio of G[C], i.e. bk/2c
k

. For N ∈ N
let FN =

⊔N
n=−N C + n(1,−1). It is easily seen that (FN)N∈N is a Følner sequence in R.

To see that MdZ2/Λ(E) ≥ bk/2c
k

, let S be a stable subset of C of maximal size (thus

|S| = bk/2c) and note that S is E-avoiding. Let A :=
⊔
n∈Z S + n(1,−1) = S + Z(1,−1).

We claim that A is E-avoiding. Indeed, suppose for a contradiction that there is x ∈ A
with x + ei ∈ A for i = 1 or 2. Since A is invariant under translation by elements

of Z(1,−1), we can suppose that x ∈ S. If x + e1 ∈ A, then we must have x + e1 ∈
S ∪ (S + (1,−1)). This implies that (S + e1)∩ [S ∪ (S + (1,−1))] 6= ∅, which implies that

S − S contains e1 or e2, which is impossible since S is E-avoiding. If x + e2 ∈ A, then

x + e2 ∈ S ∪ (S − (1,−1)), but then (S + e2) ∩ [S ∪ (S − (1,−1))] 6= ∅, which similarly

contradicts that S is E-avoiding. This proves our claim. Now note that |A∩FN ||FN |
= |S|
|C| =

bk/2c
k

for all N . Hence by (11) we have MdZ2/Λ(E) ≥ bk/2c
k

.

To see that MdZ2/Λ(E) ≤ bk/2c
k

, note that for any ε > 0, by (11), for some N ∈ N
there exists an E-avoiding set A ⊂ FN such that |A|

|FN |
≥ MdZ2/Λ(E) − ε. We also have
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|A|
|FN |

= 1
(2N+1)k

∑N
n=−N |(C + n(1,−1)) ∩ A|. Now each set A ∩ (C + n(1,−1)) is a stable

set in (a translate of) the cycle G[C], so this set has size at most bk/2c. We deduce that
|A|
|FN |
≤ bk/2c

k
, so MdZ2/Λ(E) ≤ bk/2c

k
+ε and the desired inequality follows letting ε→ 0. �

4. |D| = 2, D ⊂ Q: the independence ratio of 2-jump circulant graphs

When both elements of D are rational, it follows from Lemma 2.10 that MdT(D) is the

independence ratio of a connected circulant graph with two jumps. Thus throughout this

section we let G be a circulant graph Cay(ZN , {d1, d2}) with gcd(N, d1, d2) = 1. Our aim

is to determine α(G).

It is well-known (and easily seen) that in this situation if G is bipartite then α(G) = N
2

,

so from now on we assume that G is not bipartite and therefore contains an odd cycle.

Recall that the odd girth of G is then the smallest length of an odd cycle in G. Then we

have the following upper bound for α(G).

Lemma 4.1 (Odd-girth bound). Let G be a circulant graph of order N and odd girth k.

Then

α(G) ≤
⌊
k−1
2k
N
⌋
. (21)

This is an immediate consequence of the “no homomorphism lemma” of Albertson and

Collins, which we recall here; see [1, Theorem 2] and also [15, Lemma 3.3].

Lemma 4.2. Let G be a vertex transitive graph and let H be a subgraph of G. Then

α(G)/|V (G)| ≤ α(H)/|V (H)|.

Remark 4.3. The odd-girth bound (21) is attained in many cases. Note first that if

G is 2-regular then d1 equals d2 or −d2, i.e. there is just one jump of odd order N , so

α(G) attains the odd-girth bound bN/2c in this case. If G is 3-regular (which occurs

only if N is even and one of the jumps is N/2) then it can be seen that the odd-girth

bound is attained as well, using for instance [17, Corollary 2.27]. Therefore, from now on

we assume that G is 4-regular. Among 4-regular connected circulant graphs, examples

attaining the odd-girth bound include those given by Gao and Zhu in [12, Theorem 7],

which have jumps 1 and d2, with d2 sufficiently small compared to N . We establish a

different family of examples in Proposition 4.12.

Let us give a simple example that does not attain the odd-girth bound.

Example 4.4. Let G = Cay(Z24, {3, 4}). This graph has odd girth 7: an example of a

7-cycle is {0, 3, 6, 9, 12, 8, 4}, and a simple inspection shows that G contains no shorter

odd cycle. The odd-girth bound here is therefore b3
7

24c = 10. However, there is no stable

set of size 10 in G. One way to see this is to consider the four cosets of the subgroup
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H = 〈4〉 of order 6. If A is a stable set, then each coset of H can contain at most 3

elements. Therefore there are two ways in which A could have 10 elements in total: either

by having 3 elements in three cosets and one element in the fourth coset, or by having 3

elements in two cosets and 2 elements in the other two cosets. It can be seen by inspection

that A cannot be stable in any of these two ways.

While α(G) can be less than the odd-girth bound, the presence of short odd cycles in G

seems to be the principal obstruction to having large independent sets, and this motivates

trying to determine α(G) in terms of the odd-girth bound. We shall achieve this in an

asymptotic sense by proving Theorem 1.3. To this end, we shall use the following full-rank

lattice naturally associated with G (which is also the special case in this setting of the

lattice from (8)):

Λ = {x ∈ Z2 : x1d1 + x2d2 = 0 mod N}, (22)

that is, the lattice Λ is the kernel of the homomorphism

ϕ : Z2 → ZN , (x1, x2) 7→ x1d1 + x2d2 mod N. (23)

Since we suppose that 〈d1, d2〉 = ZN , we have that ϕ is surjective. Note that ϕ is also a

graph homomorphism Cay(Z2, {e1, e2})→ G.

The lattice Λ is useful to analyze cycles in G. In particular, short cycles are related

to the successive minima λ1, λ2 of Λ relative to the `1-norm, namely (see [4])

λ1 = min{ρ : dim
(
Span(Bρ ∩ Λ)

)
≥ 1}, λ2 = min{ρ : dim

(
Span(Bρ ∩ Λ)

)
≥ 2}, (24)

where Bρ is the ball in R2 centered at the origin and of radius ρ relative to the `1-norm.

Remark 4.5. The lattice in (22) is a special case of the lattice in (8). These objects, as

well as the role played by short odd cycles, are some ideas unifying the various cases of

Motzkin’s problem treated in this paper. We say more about this in Section 5.

The following lemma shows that we can always select a convenient basis for Λ.

Lemma 4.6. Let G = Cay(ZN , {d1, d2}) with 〈d1, d2〉 = ZN , and let λ1, λ2 be the succes-

sive minima defined in (24). Then there exist u, v ∈ Λ with the following properties:

(i) {u, v} is a basis of Λ such that ‖u‖1 = λ1, ‖v‖1 = λ2.

(ii) If G has odd girth k, then k ∈ {λ1, λ2}.

Proof. Property (i) is a standard result (see [4, p. 204, Lemma 1]).

To see property (ii), note first that λ1, λ2 are both lengths of cycles in G. Indeed,

given any w ∈ Z2 let P (w) denote the path in Z2 that starts at the origin, then adds

e1 = (1, 0) if w1 > 0 (resp. −e1 if w1 < 0) until it reaches (w1, 0) and then adds e2 = (0, 1)

if w2 > 0 (resp. −e2 if w2 < 0) until it ends at w. Note that if w is u or v, then the map

ϕ from (23) is injective on P (w) \ {w}, so that ϕ(P (w)) is indeed a cycle in G of length
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‖w‖1 = λi. Indeed, suppose for a contradiction that there exist x, y ∈ P (w) \ {w} with

ϕ(x) = ϕ(y) and ‖x‖1 < ‖y‖1. Then y − x ∈ Λ \ {0} would have ‖y − x‖1 < ‖w‖1 ≤ λ2,

so y − x would be in ±u (see [4, p. 204, Lemma 1]). It follows that w = v. Then

v − (y − x) = w − (y − x) is an element of Λ \ {0} of `1-norm less than λ2, so it is also

±u. This contradicts the linear independence of u, v.

If G has odd girth k, then by translating we find a k-cycle C = (x0 = 0, x1, . . . , xk = 0)

in G. We can then construct a walk C̃ = (x̃0 = 0, x̃1, . . . , x̃k) in Cay(Z2, {e1, e2}) such

that ϕ(C̃) = C (in particular ϕ restricted to C̃ \{x̃k} is bijective onto C). Note that x̃k is

in Λ and cannot be 0, since otherwise k would be even. Hence ‖x̃k‖1 ≥ λ1, and so k ≥ λ1.

If λ1 is odd, then we must have k = λ1, since by the previous paragraph λ1 is the length

of an odd cycle in G, and k is the minimal such length. If λ1 is even, then λ2 must be

odd. Indeed, otherwise for every cycle C = (x0 = 0, x1, . . . , xn−1, xn = 0) in G, for the

walk C̃ = (x̃0 = 0, x̃1, . . . , x̃n) in Z2 satisfying ϕ(C̃) = C, we have that x̃n ∈ Λ, so x̃n is

an integer combination of u, v and therefore ‖x̃n‖1 would be even. This would imply that

every cycle in G has even length, contradicting that G has odd cycles. Since k cannot be

the even number λ1 and is at least the `1-norm of some non-zero element in Λ, we have

k ≥ λ2, whence k = λ2 (since λ2 is an odd-cycle length). This proves property (ii). �

We shall use the basis {u, v} to estimate α(G), our main objective being to prove Theorem

1.3. We begin by reformulating the bipartite case in terms of the minima from (24).

Lemma 4.7. We have α(G) = N/2 if and only if λ1 and λ2 are both even.

Proof. We first prove the backward implication. If λ1 and λ2 are both even, then, as noted

in the proof of Lemma 4.6, the graph G has no odd cycles, so it is bipartite and therefore

α(G) = N/2.

For the forward implication, note that if one of λ1, λ2 is odd then G has odd girth

k ∈ {λ1, λ2} by Lemma 4.6, so by Lemma 4.2 we have α(G) ≤ k−1
2k
N < N/2. �

Thus, to prove Theorem 1.3 we can assume that at least one of u, v has odd `1-norm.

Let P denote the parallelogram determined by u, v:

P := [0, 1)2 · (u, v) := {αu+ βv : α, β ∈ [0, 1)}.

By standard results, the Lebesgue measure of P is the absolute value of det( u1 v1
u2 v2

), which

is also equal to the index |Z2/Λ|, which equals N by the first isomorphism theorem and

the surjectivity of ϕ. Moreover, since P is also a fundamental domain for Z2/Λ, we have

that |P ∩ Z2| is also equal to |Z2/Λ|, so

|P ∩ Z2| = N. (25)

The following result tells us that for each i ∈ {1, 2} we can always partition a subset of

ZN of maximum possible size into useful translates of a cycle of length λi.
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Lemma 4.8. Let G = Cay(ZN , {d1, d2}) be 4-regular with 〈d1, d2〉 = ZN , let Λ be the

associated lattice from (22), and let λ1, λ2 be the successive minima of Λ relative to the

`1-norm. Then for each i ∈ {1, 2} there exists a λi-cycle Ci in G and ε1, ε2 ∈ {1,−1}
such that we have the following union of pairwise disjoint translates of Ci in ZN :

b N
λi
c−1⊔

t=0

(
Ci + t(ε1d1 + ε2d2)

)
. (26)

The idea of the proof is that there is a lattice path in Z2 which represents a λi-cycle and

has the property that, modulo Λ, one can tile a subset of P ∩Z2 as large as possible with

certain translates of this path. The images of these translates under ϕ then yield (26).

Proof. Let {u, v} be the basis of Λ provided by Lemma 4.6. We prove (26) for i = 1; the

proof for i = 2 is similar. Note that the operations of permuting d1, d2 and changing their

sign all yield isomorphisms of G, and that the conclusion of the lemma is not affected

by these operations. It follows that, by performing such operations if necessary, we can

assume that u has both coordinates non-negative and the angle from u to v is in (π, 2π)

(i.e. det( u1 v1
u2 v2

) < 0). In the resulting more specific situation, we can prove (26) with

ε1 = −ε2 = 1, as follows.

We first settle the case in which one of u1, u2 is 0. If u1 = 0, then u2 = λ1 is the order

of d2 in ZN . We then set C1 to be the cycle 〈d2〉. By Minkowski’s second theorem [4, p.

203, (12)] we have λ1λ2 ≤ 2N , and each λi is at least 3 (otherwise G is not 4-regular).

Hence λi < N , so in particular C1 is a proper subgroup of ZN . Since 〈d1, d2〉 = ZN , the

cosets of the form C1 + td1, t ≥ 0 cover ZN . Then the smallest t ∈ N such that td1 ∈ C1

is t = N/λ1 (in particular d1 6∈ C1). Hence (26) holds, as a particular way to write the

partition of ZN into cosets of C1. A similar argument yields (26) when u2 = 0.

We assume from now on that u1, u2 > 0. Let C̃1 = (x(1) = 0, x(2), . . . , x(λ1) = u− e2)

be the lattice path in Z2 of length λ1 which starts at the origin, ends at u− e2, and stays

as close as possible to the line Ru while staying below this line (i.e. x
(j)
2 ≤ u2

u1
x

(j)
1 for all

j ∈ [λ1]). We can describe C̃1 inductively as follows:

x(1) = 0, and for j ∈ [λ1 − 1], x(j+1) =

{
x(j) + e1,

u2

u1
x

(j)
1 − x

(j)
2 ∈ [0, 1)

x(j) + e2,
u2

u1
x

(j)
1 − x

(j)
2 ≥ 1

. (27)

We now determine the greatest positive integer s such that the homomorphism ϕ from

(23) is injective on
⋃s
t=0(C̃1 + t(1,−1)). First note that, for every s ∈ N, there is no

pair of points in this union differing by a non-zero multiple of u. Indeed, supposing that

x ∈ C̃1 + i(1,−1) and y ∈ C̃1 + j(1,−1) for j ≥ i, then y cannot be x+ u (let alone being

x + ru for any integer r > 1), for we have y2 ≤ u2 − 1 − j, while x2 + u2 ≥ u2 − i, so

x2 + u2 − y2 ≥ j − i+ 1 > 0. Therefore ϕ is injective on
⋃s
t=0 C̃1 + t(1,−1) if and only if

no pair of points in this union differ by a lattice point of the form au + bv with a, b ∈ Z
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and b 6= 0. A sufficient condition for this to hold is that every point in the union lies

strictly above the line v + Ru. To ensure that this condition holds, it suffices to ensure

that no point of C̃1 + (s,−s) lies on or below the line v + Ru. Let z denote the point

in C̃1 most distant from Ru in the direction of (1,−1), i.e. the point that maximizes the

Euclidean length of the line segment parallel to (1,−1) joining the point to the line Ru.

Then the above condition holds if we let s be bσc where σ, η are the unique real solutions

to z + (σ,−σ) = v + ηu.

To determine z, we note that this is a point in C̃1 which has maximum vertical distance

to Ru. Hence z = x(j+1) where x(j) has vertical distance d to Ru which is maximum subject

to being less than 1. Thus d = maxj∈[0,u1−1]{j u2

u1
} = 1− gcd(u1,u2)

u1
, so the vertical distance

from z to Ru is d + u2

u1
= u1+u2−gcd(u1,u2)

u1
. The problem thus reduces to calculating σ

such that (0,−u1+u2−gcd{u1,u2}
u1

) + σ(1,−1) ∈ v + Ru. We obtain (using in particular that

λ1 = u1 + u2) that σ = N
λ1
− 1 + gcd(u1,u2)

λ1
> N

λ1
− 1. Hence, setting s = bσc ≥ bN

λ1
c− 1, we

conclude that ϕ is injective on the set S :=
⋃s
t=0

(
C̃1 + t(1,−1)

)
. It is easily seen from

(27) that the translates of C̃1 forming S are pairwise disjoint and by injectivity of ϕ the

same holds for the images of these translates under ϕ. Letting C1 be the cycle ϕ(C̃1) in

G, we deduce (26) in this case, which completes the proof. �

Using the tiling by cycles in Lemma 4.8, we can form large independent sets in G by

carefully choosing a maximal independent subset in each translate of Ci in (26) except

the last translate. This yields the following result.

Proposition 4.9. Let G = Cay(ZN , {d1, d2}) be 4-regular with 〈d1, d2〉 = ZN , let Λ be

the associated lattice from (22), and let λ1, λ2 be the successive minima of Λ relative to

the `1-norm. Then

α(G) ≥ max
i∈{1,2}

(⌊
N
λi

⌋
− 1
) ⌊

λi
2

⌋
. (28)

Proof. Let
⊔s
t=0(Ci + t(ε1d1 + ε2d2)) be the partition in (26), with s = bN

λi
c − 1. Let B

be the independent subset of Ci of maximal size obtained by starting from 0 and picking

one of every two successive elements, stopping once we have picked bλ1

2
c elements. Let

A :=
⊔s−1
t=0

(
B + t(ε1d1 + ε2d2)

)
. It suffices to prove that A is stable, as then α(G) ≥

|A| ≥ sbλi
2
c. We prove this for i = 1; the proof for i = 2 is similar. By similar initial

operations as in the previous proof, we may assume that ε1 = −ε2 = 1, u1, u2 ≥ 0, and

det( u1 v1
u2 v2

) < 0.

Suppose for a contradiction that vertices x, y ∈ A form an edge in G. Since B is

stable, these vertices must lie in distinct translates of C1. Shifting and relabeling, we can

suppose that x ∈ B and y ∈ B + t′(d1 − d2) for some t′ ∈ [1, s− 1].

We claim that t′ = 1. To see this let C̃1 be the Z2-path described in (27), and note that

since ϕ is bijective on
⊔s
t=0

(
C̃1 + t(1,−1)

)
, there are unique x̃ ∈ C̃1 and ỹ ∈ C̃1 + t′(1,−1)
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with ϕ(x̃) = x, ϕ(ỹ) = y. The distance in G between x and y (i.e. the length of a shortest

path from x to y in G) is ‖ỹ − x̃‖`1/Λ := minz∈Λ ‖ỹ − x̃ − z‖1. Since x, y are neighbours

in G, this distance is 1, so there is z ∈ Λ and w ∈ {±e1,±e2} such that ỹ = x̃ + w + z.

If t′ ≥ 2 then this cannot happen with z being just a multiple of u, so z must be of the

form n1u+ n2v for n1 ∈ Z and n2 ∈ N. But then ỹ − w = x̃+ z lies on or below the line

v + Ru, which is impossible by construction of s since t ≤ s− 1. This proves our claim.

Since t′ = 1, we have ỹ ∈ C̃1 + (1,−1), and since ỹ = x̃ + w + z, we have that

C̃1 + (1,−1) overlaps mod Λ with C̃1 +w. By construction of C̃1, this requires w to be e1

or −e2 (since C̃1 − e1 and C̃1 + e2 clearly do not overlap with C̃1 + (1,−1)). We deduce

that y = ϕ(x̃+ w + z) equals x+ d1 or x− d2. Since y = b+ d1 − d2 for some b ∈ B, we

deduce that b = x + d2 or x − d1, so x, b are elements of B adjacent in G, contradicting

that B is stable. This proves that A is stable and completes the proof. �

Since the odd girth k of G is in {λ1, λ2}, from (28) we deduce immediately that

α(G) ≥
(⌊

N
k

⌋
− 1
)
k−1

2
. (29)

This may look close to the odd-girth bound, but the two bounds can in fact differ by as

much as a fraction of N , when k is proportional to N . However, we can use (28) together

with Minkowski’s second theorem to obtain the following result, which implies the lower

bound in (5) and thus completes the proof of Theorem 1.3.

Theorem 4.10. Let G = Cay(ZN , {d1, d2}) with 〈d1, d2〉 = ZN , and suppose that G has

odd girth k. Then ⌊
k−1
2k
N
⌋
≥ α(G) ≥

⌈
k−1
2k
N −

√
2N + 1

⌉
. (30)

Proof. By (21), it suffices to prove the lower bound for α(G) in (30). As noted in Remark

4.3, if G is d-regular with d < 4 and has odd girth k, then we already know that α(G) =

bk−1
2k
Nc, so (30) holds in these cases. We therefore assume from now on that G is 4-regular.

Suppose first that k = λ1. Then by Minkowski’s second theorem we have

k ≤
√
λ1λ2 ≤

√
2N. (31)

Therefore, in this case by (28) we have

α(G) ≥
(⌊

N
k

⌋
− 1
)
k−1

2
>
(
N
k
− 2
)
k−1

2
≥ k−1

2k
N − k + 1 ≥ k−1

2k
N −

√
2N + 1.

Supposing instead that k = λ2 > λ1, then by minimality of k and the fact that λ1 is the

length of a cycle in G, we have that λ1 must be even, so λ1 ≥ 4 (since G is 4-regular).

By Minkowski’s second theorem again we have λ1 ≤
√

2N . Then by (28) we have (using

that 2k ≤ λ1λ2/2 ≤ N)

α(G) ≥
(⌊

N
λ1

⌋
− 1
)
λ1

2
> N

2
− λ1 ≥ k−1

2k
N + N

2k
−
√

2N ≥ k−1
2k
N −

√
2N + 1. �
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Remark 4.11. As mentioned above, from (30) we immediately deduce the asymptotically

sharp estimate (5). To compute the main term k−1
2k

in this estimate, it suffices to find

the vectors u, v from Lemma 4.6. This can be done using the Lagrange-Gauss reduction

algorithm for the `1-norm [19], starting from any basis u′, v′ for Λ (for instance u′ =

(d2

g
,−d1

g
), v′ = (Na,Nb) where g = gcd(d1, d2) and a, b ∈ Z satisfy ad1

g
+ bd2

g
= 1).

To finish this section, we consider the problem of determining for which 4-regular circulant

graphs with 2 jumps the independence number matches the odd-girth bound. We give the

following family of such graphs, which is naturally described in terms of the associated

lattice, and which differs significantly from the family given by Gao and Zhu in [12,

Theorem 7].

Proposition 4.12. Let G = Cay(ZN , {d1, d2}) be 4-regular with 〈d1, d2〉 = ZN , and

suppose that G has odd girth k. Let w be the basis element in {u, v} such that ‖w‖1 = k.

If some coordinate of w is 0, then α(G) equals the odd-girth bound k−1
2k
N .

Note that by permuting d1 and d2 if necessary, we can assume that w1 = 0, so that

w = (0, k). In this case the subgroup 〈d2〉 ≤ ZN constitutes a k-cycle C in G (and in

particular k divides N). Let w′ ∈ {u, v} \ {w}. By Lemma 4.8 we have the partition

ZN =

w′
1−1⊔
t=0

(C + td1),

with w′1 = N/k. In particular w′1d1 ∈ C, so there is j ∈
[
− k−1

2
, k−1

2

]
which is the integer

with least absolute value such that w′1d1 + jd2 = 0 mod N . Then, since ‖w′‖1 is the

other smallest length of a non-trivial cycle in G, it follows that w′2 = j.

Proof of Proposition 4.12. We first observe that the following claim implies the conclusion

of the proposition.

There is a walk p0, p1, . . . , pw′
1

in Cay(Zk, {1,−1}) starting at 0 and ending at w′2. (32)

Indeed, if (32) holds then we can construct a set A ⊂ ZN that is stable in G and has

|A| = k−1
2k
N , as follows. The set A0 = {0, 2d2, 4d2, . . . , (k − 3)d2} ⊂ C is stable in G and

has size k−1
2

(which is maximal subject to being a stable set included in C). Then, letting

p0, p1, . . . , pw′
1

be a walk as described in (32), the following set is stable of size N
k
k−1

2
:

A =

w′
1−1⊔
t=0

A0 + td1 + ptd2.

We now prove the claim (32), by distinguishing two cases according to the parity of ‖w′‖1.

Suppose that ‖w′‖1 is odd. Then w′1 + |w′2| = ‖w′‖1 ≥ k. Then N
k

= w′1 ≥ k − |w′2|.
We can then see that there is a walk as claimed in (32), as follows. Since w′1 − (k − |w′2|)
is non-negative even, we can start the walk by alternating +1 and −1, setting p0 = 0,
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p1 = 1, p2 = 0, and so on up to pw′
1−(k−|w′

2|) = 0. From here the walk becomes monotonic,

adding only +1s (resp. −1s) to end at pw′
1

= k−|w′2| ≡ w′2 mod k if w′2 ∈ [−k−1
2
, 0) (resp.

pw′
1

= −(k − |w′2|) ≡ w′2 mod k if w′2 ∈ [0, k−1
2

]).

Suppose now that ‖w′‖1 is even. We claim that w′1 ≥ |w′2|. Indeed, otherwise the

number w′1 + k − |w′2| is less than k, is odd (since it equals k + ‖w′‖1 − 2|w′2|), and is

positive (since |w′2| ≤ k−1
2

). On the other hand this number is the length of an odd cycle

in G. Indeed, since w′ ∈ Λ, we have sw′1d1 + |w′2|d2 = 0 mod N for some s ∈ {1,−1}.
Hence, since d2 has order k, we have −sw′1d1 + (k − |w′2|)d2 = 0 mod N , which indeed

implies the existence of a cycle of length w′1 + k − |w′2|. This proves our claim. Since

w′1 ≥ |w′2|, we have that w′1 − |w′2| = ‖w′‖1 − 2|w′2| is non-negative even. We can then

construct a walk as claimed in (32) as follows. We start again by alternating +1 and −1,

setting p0 = 0, p1 = 1, p2 = 0, and so on up to pw′
1−|w′

2| = 0. From here the path goes

monotonically again, to end at pw′
1

= w′2 (adding only +1s if w′2 ∈ [0, k−1
2

] and only −1s

if w′2 ∈ [−k−1
2
, 0)). �

5. Final remarks

As mentioned in the introduction and explained in Remark 2.11, Motzkin’s problem in

T can be seen to subsume (in its rational case D ⊂ Q) the original problem in Z. At

the end of the introduction we mention a more specific instance of this, namely that the

asymptotic solution to the case of two rational missing differences in T (i.e. Theorem 1.3)

implies the classical solution (2) of Cantor and Gordon, namely MdZ({d1, d2}) = b(d1+d2)/2c
d1+d2

for any coprime positive integers d1, d2. Let us detail this.

As explained in Remark 2.11, we have MdZN ({d1, d2}) → MdZ({d1, d2}) as N → ∞.

It is easily seen that if d1, d2 are both odd then, for N even, the circulant graph GN :=

Cay(ZN , {d1, d2}) is bipartite, while if d1, d2 have different parity then for large N the

graph GN has odd girth d1 +d2. Hence in all cases Theorem 1.3 indeed yields formula (2)

in the limit. In particular, in the non-bipartite case, formula (2) can be written in terms

of the odd girth k of Cay(Z, {d1, d2}), namely MdZ({d1, d2}) = k−1
2k

.

Formula (4) can also be phrased in terms of the odd girth of an associated graph,

namely the uncountable Cayley graph G = Cay(T, {t1, t2}). Under the assumptions of

Theorem 1.2, it can be seen that if m1,m2 have equal parity then G is bipartite (since

then every element of Λ is a multiple of (m1,m2) by Lemma 3.1 and therefore has even

`1-norm, which implies that every cycle in G is even), and otherwise G has odd girth

k = |m1|+ |m2|, so that formula (4) can be written MdT({t1, t2}) = k−1
2k

.

These connections suggest that there may be a more fundamental result, phrased in

terms of the odd girth of a more general type of Cayley graph, which would imply all the

above results in the case |D| = 2, thus shedding more light on the above connections.
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It would be interesting to explore Motzkin’s problem further, for instance in other

compact abelian groups. In this direction there are known results in combinatorics which

can be viewed as determining Motzkin densities in certain complex cases. We have for

example the main result from the paper [22] by Kleitman, which can be phrased as follows.

Theorem 5.1 (Kleitman 1966). Let k, n ∈ N with 2k ≤ n. Let G = Zn2 , and let

D = {(x1, . . . , xn) ∈ G : #{j : xj = 1} > 2k}.

Then MdG(D) = 1
2n

∑k
i=0

(
n
i

)
.

It would also be interesting to understand more precisely which connected circulant graphs

with 2 jumps have independence number equal to the odd-girth bound (21), and more

generally to refine Theorem 4.10 further. One may also consider whether, and in what

form, the asymptotically sharp estimate (5) can be extended to circulant graphs with

more than 2 jumps.
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