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A systematic analysis of the discrete conservation properties of non-dissipative, central-
difference approximations of the compressible Navier–Stokes equations is reported. 
A generalized splitting of the nonlinear convective terms is considered, and energy-
preserving formulations are fully characterized by deriving a two-parameter family of split 
forms. Previously developed formulations reported in literature are shown to be particular 
members of this family; novel splittings are introduced and discussed as well. Furthermore, 
the conservation properties yielded by different choices for the energy equation (i.e. total 
and internal energy, entropy) are analyzed thoroughly. It is shown that additional preserved 
quantities can be obtained through a suitable adaptive selection of the split form within 
the derived family. Local conservation of primary invariants, which is a fundamental 
property to build high-fidelity shock-capturing methods, is also discussed in the paper. 
Numerical tests performed for the Taylor–Green Vortex at zero viscosity fully confirm the 
theoretical findings, and show that a careful choice of both the splitting and the energy 
formulation can provide remarkably robust and accurate results.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that standard central finite-difference approximations of the equations governing fluid flow are suscep-
tible to numerical nonlinear instability when used at or near zero viscosity, owing to the accumulation of aliasing errors 
resulting from discrete evaluation of the convective terms [1]. Such shortcoming has also been traced to failure in discretely 
preserving the secondary quadratic invariants associated with the conservation equations [2,3]. For instance, total kinetic 
energy is conserved from the Euler equations in the incompressible limit in unbounded or periodic domains, and failure to 
discretely satisfy this property typically leads to flow divergence, when non-dissipative spatial discretizations are employed. 
Several attempts have been made over the years to develop numerical methods for the incompressible and the compress-
ible flow equations which replicate quadratic conservation properties in the discrete sense, both in finite-difference and 
in finite-volume frameworks [4–7]. For incompressible flows, most efforts made so far loosely rely on the idea of expand-
ing the convective derivatives to ‘skew-symmetric’ split form [8,9], i.e. as the average of divergence (∇ · uu) and advective 
(u · ∇u) forms, with the objective of either minimizing the aliasing error [10], or to discretely preserve total kinetic en-
ergy [8]. In the context of compressible flow equations, where the convective term involves derivatives of triple products, 
straightforward extensions of ‘skew-symmetric’ split forms have been proposed, with varying degrees of success [11–13]. 
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Additional numerical robustness in the presence of density variations was gained by Kennedy and Gruber [14] through the 
use of a ‘triple splitting’ of the convective terms, i.e. by fully splitting the derivatives of triple products through the product 
rule. In their paper, the authors analyzed the effects of a full splitting of the cubic nonlinearity on the minimization of both 
aliasing errors and computational cost, for general multi-component flows.

Although splitting of the convective derivatives may guarantee good numerical stability properties1 the resulting discrete 
approximations are not generally expressible in locally conservative form, i.e. a numerical flux cannot always be defined. As a 
consequence, primary conservation properties may be violated, which is especially concerning if the scheme has to be used 
as a building block of hybrid shock-capturing algorithms [15]. Pirozzoli [16] showed that locally conservative formulations 
with arbitrary order of accuracy are possible for some types of splittings, and showed that a particular member of the 
family of splittings introduced by Kennedy and Gruber [14] yields discrete energy preservation, and it is particularly robust.

Discretization of the energy equation is also known to be a sensitive issue in the numerical solution of the compress-
ible Navier–Stokes equations. Of special importance is the choice of the form of the energy equation among analytically 
equivalent ones, namely the internal energy, the total energy, the entropy equation and so on. For instance, good numerical 
stability properties were found by Honein and Moin [17] when using the entropy equation. When the total energy equa-
tion is used, several arrangements are possible for the convective and pressure fluxes [12,14,16], which may lead or not to 
consistency with the internal and the kinetic energy equation, hence leading to different numerical stability properties.

It is the main goal of this paper to present a systematic study of the numerical conservation properties of several 
central-difference approximations applied to the compressible Navier–Stokes equations. First, in Sections 2 and 3 we focus 
on the issue of splitting of the convective terms. We show that a more general family of energy-conserving splittings 
of the mass and momentum equations exists than currently known, some of which also leading to local conservation 
of the primary invariants. The properties of several members of this wide family are presented and discussed, also in 
terms of empirically testing their numerical robustness. Second, in Section 4 we focus on the issue of the most appropriate 
formulation for the energy equation. For that purpose, we consider formulations including the total and internal energy, and 
the entropy, and bring out discrete conservations properties ensuing from different splittings. We also consider ‘dynamic’ 
splittings for the energy equation(s), whereby additional conservation properties are obtained through suitable adaptive 
selection of a free parameter in the family of available energy-conserving splittings. Numerical experiments are finally 
presented in Section 5 to support the validity of the theoretical inferences.

2. Problem formulation

The Navier–Stokes equations for a compressible flow can be written as

∂ρ

∂t
= −∂ρu j

∂x j
, (1)

∂ρui

∂t
= −∂ρu jui

∂x j
− ∂ p

∂xi
+ ∂τi j

∂x j
, (2)

∂ρE

∂t
= −∂ρu j E

∂x j
− ∂ pu j

∂x j
+ ∂τi jui

∂x j
+ ∂

∂x j

(
κ

∂T

∂x j

)
, (3)

where E = uiui/2 +cv T is the total energy per unit mass and τi j is the stress tensor, for which the usual relation is assumed

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
μ

∂uk

∂xk
δi j .

The standard notation is here adopted whereby ρ is the density, ui are the Cartesian components of the velocity field, 
p is the pressure, T is the temperature, κ is the thermal conductivity, cv the specific heat at constant volume and μ is 
the molecular viscosity. Closure of the system is achieved by the ideal equation of state p = ρRT , with R the universal 
gas constant. Equations (1)–(3) represent the viscous balance of mass, momentum and total energy, and fully describe the 
motion of a compressible viscous fluid, once the equation of state and a suitable dependence of μ with the temperature 
has been specified.

By introducing the internal energy e = cv T and the entropy s = cv ln(p/ργ ), with γ = cp/cv and cp the specific heat at 
constant pressure, the following induced balance equations are easily derived

∂ρe

∂t
= −∂ρu je

∂x j
− p

∂u j

∂x j
+ τi j

∂ui

∂x j
+ ∂

∂x j

(
κ

∂T

∂x j

)
, (4)

1 In this work, we will use the term numerical stability and its derivatives with exclusive reference to the concept of nonlinear stability introduced by 
Phillips [1]. In this sense, stable formulations are those that enhance the robustness and avoid blow-up of numerical simulations by enforcing secondary 
conservation properties and/or by alleviating the accumulation of aliasing errors. This work is especially concerned with the former approach.
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∂ρs

∂t
= −∂ρu j s

∂x j
+ 1

T

[
τi j

∂ui

∂x j
+ ∂

∂x j

(
κ

∂T

∂x j

)]
, (5)

any of which can be employed in place of the total energy, Eq. (3), to fully describe the motion and the state of the fluid.
The convective terms in Eqs. (1)–(5) have a common structure which can be summarized as

C = ∂ρu jφ

∂x j
, (6)

where φ equals unity, ui , E , e and s for the mass, momentum, total and internal energy and entropy respectively. Integra-
tion of the governing equations readily shows that convective terms preserve the total amount of any conserved quantity. 
The associated invariants are hereafter referred to as linear invariants. By applying the standard product rule, the generic 
convective term can be written in different analytically equivalent forms. Due to the cubic nonlinearity, there are five basic 
forms in which it can be expressed

CD = ∂ρu jφ

∂x j
, (7)

Cφ = φ
∂ρu j

∂x j
+ ρu j

∂φ

∂x j
, (8)

Cu = u j
∂ρφ

∂x j
+ ρφ

∂u j

∂x j
, (9)

Cρ = ρ
∂u jφ

∂x j
+ φu j

∂ρ

∂x j
, (10)

CL = ρφ
∂u j

∂x j
+ ρu j

∂φ

∂x j
+ φu j

∂ρ

∂x j
. (11)

Equation (7) is the usual divergence form, whereas Eqs. (8) and (9) were firstly used in conjunction with CD by Feiereisen 
et al. [11] and Blaisdell et al. [12] respectively. These authors applied their splittings for the discretization of both the 
momentum and continuity equations, and obtained stable simulations. The discretization of Eq. (10) was considered for 
the first time by Kennedy and Gruber [14], whereas the one in Eq. (11) is named linear (L) since only the gradients of 
linear quantities appear. Note that for the continuity equation, the forms CD and Cφ reduce to the classical divergence form, 
whereas Cu , Cρ and CL are identical and correspond to the usual advective form. Also, only one advective form can be 
defined for quadratic nonlinearities, whereas four possibilities exist for a cubic product, namely Eqs. (8)–(11).

Any linear convex combination of the above mentioned forms is a consistent expression of the nonlinear convective term. 
This distinction has little importance in a continuous framework, since all the derived expressions are equivalent once the 
required analytical manipulations are assumed to be valid. On the other hand, the corresponding discretizations behave dif-
ferently, mainly because the product rule, which is required to switch from one form to the others, does not hold in general 
for discrete operators. The differences among the various forms clearly emerge when considering the discrete evolution of 
induced quantities, such as kinetic energy. As it will be recalled in the next section, a divergence structure for the nonlinear 
convective term always induces a divergence structure also for the corresponding term in the evolution equation for the 
generalized energy ρφ2/2. This in turn implies that convective terms do not contribute to the evolution of the total amount 
of generalized energy, a property that is usually lost unless the discretization is properly carried out. Previous experience 
has shown that retaining this property can yield beneficial effects in terms of numerical stability and physical fidelity of the 
computations [16,17]. In the next section, we will derive rigorous conditions under which the contribution of convective 
terms to the evolution of total generalized energy vanishes at the discrete level, when a generic linear combination of the 
forms (7)–(11) is adopted.

In what follows we will assume that the governing equations are numerically treated by adopting a semidiscretization 
procedure, in which the equations are firstly discretized in space, and then integrated in time. Hence, we assume that all the 
manipulations involving time derivatives can be carried out at the continuous level. The effects of discrete time integration 
will not be discussed in detail in this paper. It is worth mentioning that temporal errors are typically of dissipative character 
(especially when using Runge–Kutta schemes) and can be controlled by using sufficiently small time steps [18]. Although 
the ensuing discussion will focus on the case of spatially periodic computational domains, the analysis herein carried out 
only assumes that the space discretization operators satisfy the summation-by-parts (SPB) property, namely the discrete 
counterpart of integration by parts. Given two scalar grid functions u, v , and D a finite difference approximation of the first 
derivative operator, the SBP property can be expressed as 〈u, D v〉 = −〈Du, v〉 + b.t., where 〈·, ·〉 is a suitable discrete scalar 
product and b.t. are boundary terms. This property is satisfied in the periodic case (in which the boundary terms vanish) 
by central difference operators of any order [19], but SBP operators can also be derived for non-periodic domains [20]. In 
that general case, physical boundary conditions can be effectively handled through the simultaneous-approximation-terms 
(SAT) approach [21]. Hence, for the sake of simplicity but with no loss of generality, we will assume that space derivatives 
are approximated with central formulas, both explicit or compact, on a collocated mesh layout, which allows to infer the 
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effect on the evolution of induced quantities through analytical manipulations of the time derivatives, upon use of the SBP 
property.

3. Energy-preserving formulations

3.1. Derivation of the new forms

For a generic scalar variable φ, one can easily obtain the simple relation

∂ρφ2/2

∂t
= φ

∂ρφ

∂t
− φ2

2

∂ρ

∂t
, (12)

whose derivation only employs manipulation of temporal derivatives. If φ satisfies an equation of the type ∂ρφ/∂t = −C , 
the evolution equation for the generalized energy ρφ2/2 is given by

∂ρφ2/2

∂t
= −

(
φC − φ2

2
M

)
, (13)

where −M is the right-hand-side of Eq. (1). Assuming that C has the divergence structure of Eq. (6), simple analytical 
manipulation of the spatial derivatives can be applied to Eq. (13) to yield

∂ρφ2/2

∂t
= −∂ρuiφ

2/2

∂xi
(14)

which shows that a divergence structure for C and M induces a divergence structure for the right-hand-side of the evolu-
tion equation for the generalized energy ρφ2/2. This in turn implies that the global energy (i.e. the energy integrated over 
the entire domain) is always conserved when periodic or homogeneous boundary conditions are applied. The associated 
invariants are hereafter referred to as quadratic invariants.

When the evolution equation has a more complex form, as in the cases of Eqs. (2)–(5), the considerations made above 
apply only to the convective terms, which always have a structure of the type (6), whereas global energy conservation is 
spoiled by viscous and pressure forces. This property holds in the continuous case for all the balanced quantities reported 
in Eqs. (1)–(5), and its reproduction at the discrete level is usually considered to be an important target for the choice of 
the spatial discretization. More specifically, when φ equals ui (i.e. for the momentum equation) the generalized energy is 
exactly the kinetic energy of the fluid. In the case of incompressible flows, for which kinetic energy is globally conserved 
in the inviscid limit, energy-preserving numerical methods are highly desirable because of their inherent nonlinear stability 
[10,9,22]. When φ equals E , e or s, the corresponding generalized energies read ρE2, ρe2 and ρs2 respectively. While 
these quantities have no direct physical meaning, numerical discretizations capable of ensuring that the convective terms 
do not contribute to the rate of variation of their volume integrals are likewise appealing. Indeed, experience shows that 
enforcement of these additional requirements typically yields enhanced numerical robustness [17].

The derivation of Eq. (14) from Eq. (13) employs the classical product rule for spatial derivatives, which is generally 
violated by discrete operators. As a consequence, the divergence structure of the convective term in Eq. (14) is in general 
not reproduced at a discrete level, and the analytically equivalent forms, Eqs. (7)–(11), behave differently when discretized. 
In what follows, when a discretization reproduces the physical property that nonlinear terms do not contribute to the gen-
eralized global energy balance, we will term it a globally energy-preserving discretization. This concept is usually not related 
to the classical conservative approximation property, which consists in the discrete preservation of the linear invariants. 
Following the standard usage, we will term globally conservative discretizations those for which the volume integral of the 
discretized convective term is zero. On the other hand, local conservation is achieved when the discretization of the con-
vective term can be cast as difference of fluxes at adjacent nodes, this in turn implying global conservation through the 
telescoping property [16].

The condition that has to be satisfied so that the discretized nonlinear terms do not spuriously contribute to the global 
energy balance is easily derived by integrating Eq. (13) over the entire domain, and by equating it to zero∫

	

(
φC − φ2

2
M

)
d	 = 0. (15)

The fulfilment of Eq. (15) by a central-difference discretization requires that a suitable form for C and M has to be chosen 
among Eqs. (7)–(11) (or among any linear combination of them), such that the integral at the l.h.s. can be shown to vanish 
by virtue of the integration by parts rule only, assuming that boundary terms are zero because of periodic or homogeneous 
boundary conditions.

Following the steps of Kennedy and Gruber [14], we express the convective terms for mass and for the generic variable 
φ as a linear combination of different, analytically equivalent, forms (7)–(11):

M = ξ MD + (1 − ξ)MA, (16)
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C = α CD + β Cφ + γ Cu + δ Cρ + ε CL, (17)

where ξ is an arbitrary coefficient and α +β +γ + δ + ε = 1. In Eq. (16) MD = ∂ρu j/∂x j and MA = ρ∂u j/∂x j + u j∂ρ/∂x j

are the divergence and advective forms of the nonlinear term in the continuity equation. Upon substitution of Eqs. (16)–(17)
in Eq. (15), and by transforming the resulting terms by making use only of the integration by parts rule, one can easily derive 
that satisfying the condition of Eq. (15) leads to the following constraints on the coefficients⎧⎪⎪⎪⎨⎪⎪⎪⎩

α = 1/2 − δ

β = ξ/2
γ = δ

ε = 1 − ξ

2
− δ.

(18)

The system (18) defines a two-parameter family of discretizations having the property that nonlinear convective terms do 
not contribute to the global energy balance, as it happens for the continuous equations. Note that by assuming that the 
coefficient ξ is independent of the coefficients appearing in Eq. (17), we are somehow deviating from the usual assumption 
that the same splitting is applied to the continuity and to the other balance equations. Removing this assumption greatly 
enlarges the range of possible energy-preserving formulations, although it affects global conservation of the linear invariants, 
as discussed later on.

Split forms which are found in the literature, and for which energy preservation has been already shown, are but two. 
The first is the Feiereisen (F) form, which is obtained by setting the free parameters ξ = 1, δ = 0, resulting in the divergence 
form for the continuity equation and in the employment of the forms CD and Cφ , both weighted with 1/2, in the balance 
equation for φ. The second is the splitting obtained by uniformly weighting the forms CD , Cφ , Cu and Cρ with weight 1/4. 
This last splitting, which was firstly considered by Kennedy and Gruber [14] and later shown to be energy preserving by 
Pirozzoli [16], is obtained by choosing the free parameters ξ = 1/2, δ = 1/4 and will be denoted as KGP (Kennedy–Gruber–
Pirozzoli) hereinafter. The Blaisdell form, which has been used in the past as an extension of the so-called ‘skew symmetric’ 
form in the incompressible case, cannot be obtained by choosing specific values of δ and ξ , and is, in fact, not energy 
preserving.

The present analysis shows that the two mentioned examples are particular cases of a two-parameter family of energy-
preserving forms that can be obtained by weighting the five forms of Eqs. (7)–(11). In the next section an analysis of this 
family is proposed, and new particular energy-preserving split formulations are introduced.

3.2. Analysis of the new forms

Starting from the general expression given in Eq. (18), two special one-parameter families of energy-preserving dis-
cretizations can be deduced. The first one is obtained by setting ε = 0 in Eq. (17). Indeed, by performing an analysis similar 
to that employed for the case of the energy preservation, it can be easily shown that this condition is related to the possi-
bility of attaining a formulation which discretely preserves linear invariants. In fact, the presence of the form CL in Eq. (17)
prevents the possibility of nullifying the integral of the convective term over the entire domain by just applying the inte-
gration by parts rule. In Appendix A it is shown that the requirement ε = 0 is also a sufficient condition for writing the 
discretization in locally conservative form for central, explicit schemes.

When ε = 0, the following one-parameter family of energy-preserving, globally conservative forms is thus obtained⎧⎪⎪⎨⎪⎪⎩
ξ = 1 − 2δ

α = β = 1/2 − δ

γ = δ

ε = 0.

(19)

The F and KGP forms are members of this family corresponding to δ = 0 and δ = 1/4. Note that this family satisfies ξ =
α + β , which implies that both the φ-equation and the continuity are discretized by employing the same split form. Hence, 
a necessary condition for a split form to be energy preserving and globally conservative of linear invariants is that the same 
form is employed for continuity and φ-equation, which in turn is equivalent to require that ε = 0.

Another interesting one-parameter family can be obtained by requiring that Eq. (17) has the symmetric structure given 
by β = γ = δ, as done by Kennedy and Gruber [14], yielding the following one-parameter family⎧⎪⎪⎨⎪⎪⎩

ξ = 2δ

α = 1/2 − δ

β = γ = δ

ε = 1/2 − 2δ.

(20)

Actually, the symmetry assumption is not strictly needed, since the special role played by the continuity equation breaks the 
symmetry among the ‘quadratic’ forms Cφ , Cu and Cρ of the convective term. In this respect, the family of energy-preserving 
split forms identified by Kennedy and Gruber [14] does not have any special significance, but it is here highlighted to allow 



G. Coppola et al. / Journal of Computational Physics 382 (2019) 86–104 91
Fig. 1. Chart showing two families of energy-conserving schemes.

Table 1
Coefficients of classical and new energy-preserving split forms analyzed in Sec. 3.2.

ξ α β γ δ ε

F 1 1/2 1/2 0 0 0
C 0 0 0 1/2 1/2 0
KGP 1/2 1/4 1/4 1/4 1/4 0
KG1 0 1/2 0 0 0 1/2
KG2 1 0 1/2 1/2 1/2 −1/2

for a comparison with the work of these authors. In this respect, we note that in Fig. 7 of [14], a chart was reported showing 
the output in terms of blown-up or completed simulations for compressible isotropic turbulence tests. Several splittings of 
the momentum and energy equations in the α − β plane (same convention for the coefficients of Eq. (17) is used here) 
were employed. The authors’ comment on that test campaign was that a diagonal band of α–β pairs result in the DNS code not 
crashing. That ‘diagonal band’ in fact coincides with the energy-preserving family of forms identified by Eq. (20), which is a 
first indirect confirmation of the validity of the present analysis.

The only form belonging to both classes is the one obtained by substituting δ = 1/4 in (20) or (19), i.e. the KGP form, 
which turns out to be the only globally conservative and energy-preserving form among the ones analyzed by Kennedy and 
Gruber. A chart showing the two one-parameter families on a α − β plane is given in Fig. 1. In this graph, both the F and 
KGP forms are highlighted, together with three new forms with a particularly simple structure, which are briefly outlined 
below. A summary of the coefficients of these energy-preserving forms is also given in Table 1.

1. The form denoted as KG1 has parameters α = ε = 1/2 and ξ = β = γ = δ = 0. It is energy preserving, but is not 
globally conservative of linear invariants. The continuity equation is discretized with the advective form and the CD and 
CL forms are used with weight 1/2,

∂ρ

∂t
= ρ

∂u j

∂x j
+ u j

∂ρ

∂x j
(21)

∂ρφ

∂t
= 1

2

(
∂ρu jφ

∂x j
+ ρφ

∂u j

∂x j
+ ρu j

∂φ

∂x j
+ φu j

∂ρ

∂x j

)
. (22)

Equation (22) was used by Kennedy and Gruber in their direct numerical simulations of decaying compressible isotropic 
turbulence. However, in their implementation the form corresponding to the case ξ = 1/2 was adopted for continuity 
equation, hence the global scheme used in their paper is not strictly energy preserving.

2. The form denoted with KG2 has parameters ξ = 1, α = 0, β = γ = δ = 1/2 and ε = −1/2. As for the KG1 form, this 
form is energy preserving, but it does not globally preserve linear invariants. The continuity equation is discretized with 
the divergence form, whereas in the φ-equation the forms Cφ , Cu and Cρ are used with equal weights 1/2, while CL is 
weighted with −1/2. The φ-equation has only “quadratic” terms, i.e. terms of the type f ∇(gh)

∂ρ

∂t
= ∂ρu j

∂x j
(23)

∂ρφ

∂t
= 1

2

(
φ

∂ρu j

∂x j
+ u j

∂ρφ

∂x j
+ ρ

∂u jφ

∂x j

)
. (24)

3. The form denoted as C has parameters ξ = α = β = ε = 0 and γ = δ = 1/2. This is an energy-preserving form which 
also globally preserves linear invariants. The continuity equation is discretized with the advective form and in the 
momentum equation Cu and Cρ forms are both weighted with 1/2
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∂ρ

∂t
= ρ

∂u j

∂x j
+ u j

∂ρ

∂x j
(25)

∂ρφ

∂t
= 1

2

(
u j

∂ρφ

∂x j
+ ρφ

∂u j

∂x j
+ ρ

∂u jφ

∂x j
+ φu j

∂ρ

∂x j

)
. (26)

This new form is in some sense symmetric to the classical F form and seems to have never been considered in the 
literature. Note that the one-parameter family of forms (19) can be equivalently expressed as a linear combination of 
the F and C forms with weight ξ and 1 − ξ respectively, the KGP form corresponding to the case ξ = 1/2.

An important issue related to energy-preserving and globally conservative discretizations is local conservation of linear 
invariants. As shown by Pirozzoli [16], when central explicit finite-difference formulas of arbitrary order are used to dis-
cretize the derivatives, both the F and the KGP forms can be recast in a locally conservative form, i.e. as the difference of 
numerical fluxes at successive intermediate nodes. Besides the important implications on the convergence to weak solutions 
and the improvement in computational efficiency, this result implies that discrete local and global conservation of the linear 
invariants is guaranteed when the F or KGP forms are employed. This result directly extends to the family of forms defined 
by Eq. (19), which may cast as a convex linear combination of F and KGP forms. For the F and KGP forms, particularly simple 
and cost-effective flux functions have been show to exist. In Appendix A we show that similar simple flux function can also 
be derived for the C form, thus establishing a complete analogy with the F form.

4. Splitting of the energy equation

Regardless of the splitting selected for the convective terms in the continuity and momentum equations, the issue re-
mains of which additional equation for energy is most suitable among the equivalent formulations (3)–(5), and which type 
of splitting to apply to it. A variety of splittings of the energy equation have been considered in the previous literature. 
Blaisdell et al. [12] applied their splitting to the internal energy equation, whereas Feiereisen et al. [11] used the evolution 
equation for pressure. Kennedy and Gruber [14] and Pirozzoli [16] used total energy, although the approach adopted by 
Kennedy and Gruber separately splits the convective term for ρE and the pressure term, whereas Pirozzoli applied the 
splitting directly to the total enthalpy E + p/ρ . Honein and Moin [17] applied the Feiereisen splitting to continuity, mo-
mentum and entropy equations, and reported great advantages in terms of robustness of the simulations. In this section, a 
systematic overview of the possible approaches is presented.

In the case of vanishing viscosity, the system of Eqs. (1)–(5) can be symbolically written as

∂ρ

∂t
= −M , (27)

∂ρui

∂t
= −Qi − Gi, (28)

∂ρE

∂t
= −E−D, (29)

∂ρe

∂t
= −E −P, (30)

∂ρs

∂t
= −S, (31)

where M, Qi, E, E and S are the nonlinear convective terms for ρ, ui, E, e and s respectively, and Gi = ∂ p/∂xi , D =
∂ pu j/∂x j , P = p∂u j/∂x j .

From the definitions of E , e and s the following general relations are easily derived by manipulating only temporal 
derivatives,

∂ρE

∂t
= ∂ρe

∂t
+ ∂ρu2

i /2

∂t
, (32)

∂ρs

∂t
= cv

e

∂ρe

∂t
+ (s − γ cv)

∂ρ

∂t
. (33)

From these relations, it is easy to obtain the effects of the spatial discretization of any quantity among E, e, s on the balance 
of the other ones. In the following sections we will separately explore the possible alternatives.

4.1. Discretization of the total energy equation

Discretization of the continuity and momentum equations according to Eqs. (27)–(28) induces a discrete evolution equa-
tion for ρu2/2 of the form
i
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∂ρu2
i /2

∂t
= −

(
uiQi − u2

i

2
M

)
− uiGi, (34)

which is analogous to Eq. (13) in the case φ = ui . By construction, in the absence of pressure gradients (from now on 
this assumption will be tacitly made when referring to local and global conservation properties) kinetic energy is globally 
conserved, since energy-preserving splittings are used for Qi and M. Local conservation is however not guaranteed in 
general, even when locally conservative discretizations are used for Qi and M. The additional discretization of the total 
energy equation, Eq. (29), through a locally conservative and globally energy-preserving form, ensures that ρE is conserved 
locally and ρE2 is conserved globally. By virtue of Eq. (32), this in turn ensures that ρe is conserved globally, and it evolves 
through an equation of the form (30), where E and P are expressed as

E = E− uiQi + u2
i

2
M, (35)

P = D − uiGi . (36)

This implies that, according to Eqs. (13) and (32), the discrete evolution equation for ρe2/2 is

∂ρe2/2

∂t
= −e

(
E− uiQi + u2

i

2
M

)
+ e2

2
M− e (D − uiGi) , (37)

which readily shows that ρe2 is not conserved globally in general, i.e. a locally conservative, energy-preserving discretization 
of ρ, ρui and ρE is globally conservative but not energy preserving for ρe.

The induced equation for entropy is of the type (31), where by virtue of Eq. (33), S reads

S = cv

e

(
E− uiQi + u2

i

2
M

)
+ (s − γ cv)M+ cv

e
(D − uiGi) , (38)

from which it can be readily seen that ρs is in general not conserved globally.
Note that, due to the divergence structure of the pressure term in the total energy equation, Eq. (29) can be equivalently 

expressed as

∂ρE

∂t
= −E−D = −H (39)

where H has the classical structure of Eq. (6) with φ = E + p/ρ . We will hereafter refer to ‘total energy splitting’ as the 
classical splitting of E with accompanying discretization of D in divergence form, and to ‘total enthalpy splitting’ as the 
splitting directly applied to H.

4.2. Discretization of the internal energy equation

Discretization of the internal energy equation, Eq. (30), in addition to continuity and momentum equations, through a 
globally (and locally) conservative and a globally energy-preserving discretization, of course guarantees that ρe is conserved 
locally, and ρe2 is conserved globally. As for the previous case, by virtue of Eq. (32) this guarantees that ρE is conserved 
globally and it evolves through an equation of the form (29) where E and D read

E = E + uiQi − u2
i

2
M, (40)

D = P + uiGi . (41)

According to Eqs. (13) and (32), the discrete evolution equation for ρE2/2 is

∂ρE2/2

∂t
= −E

(
E + uiQi − u2

i

2
M

)
+ E2

2
M− E (P + uiGi) , (42)

from which it is again easily seen that ρE2 is not conserved globally in general, i.e. a locally conservative, energy-preserving 
discretization of ρ, ρui and ρe is globally conservative but not energy preserving for ρE .

The induced equation for entropy is of the type (31), where by virtue of Eq. (33) S has the form

S = cv

e
E + (s − γ cv)M+ cv

e
P, (43)

from which it can be readily seen that ρs is in general not conserved globally.
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Table 2
Conservation properties induced by different energy balance equations discretized in split form. ⊙: variable 
conserved locally and globally, ©: variable conserved globally but not locally, ×: variable not conserved.

Conserved variable

ρ ρui ρE ρe ρs ρu2
i ρE2 ρe2 ρs2

Discretized
energy
equation

ρE
⊙ ⊙ ⊙ © × © © × ×

ρe
⊙ ⊙ © ⊙ × © × © ×

ρs
⊙ ⊙ × × ⊙ © × × ©

ρe (dyn)
⊙ ⊙ © ⊙ © © × © ×

ρs (dyn)
⊙ ⊙ © © ⊙ © × × ©

4.3. Discretization of the entropy equation

A discussion on the equations induced by a direct discretization of the entropy equation can be conducted similarly to 
the previous two cases. A discretization of Eq. (31), in addition to continuity and momentum equations, through a globally 
(and locally) conservative and a globally energy-preserving discretization, guarantees that ρ, ρui and ρs are conserved 
locally, and ρu2

i and ρs2 are conserved globally. By virtue of Eq. (33) and of Eqs. (40) and (41), this implies that ρe and ρE
evolve through equations of the form (30) and (29) respectively, where E +P and E +D are expressed in the form

E +P = e

cv
S − e

cv
(s − γ cv)M, (44)

E+D = e

cv
S − e

cv
(s − γ cv)M+ uiQi − u2

i

2
M+ uiGi, (45)

from which it is seen that in general, neither ρe nor ρE are globally conserved. Note that the application of Feiereisen 
splitting to Eqs. (44) and (45) yields exactly the non-viscous versions of Eqs. (18) and (19) of Honein and Moin [17].

4.4. Adaptive selection of the split form

The results of the above made considerations are summarized in Table 2, showing that by discretizing directly the 
internal or the total energy equation, global conservation of entropy is not guaranteed. On the other hand, discretizing the 
entropy equation ensures that ρs is conserved locally and ρs2 globally, but conservation of the total and internal energy is 
lost, even in a global sense.

Since the possible split forms which are energy preserving and globally (and locally) conservative of linear invariants 
constitute a one-parameter family, it is tempting to exploit the degree of freedom given by the free parameter in order to 
satisfy additional conservation properties. As shown below, this can be achieved under certain conditions, through an adap-
tive procedure that selects the splitting within the family in a dynamic way, by enforcing an additional global conservation 
constraint. This procedure can in fact be designed in different ways. Here we provide some possibilities to illustrate the 
general idea.

Let us consider the case in which the continuity and momentum equations are discretized together with the internal 
energy equation with a globally (and locally) conservative discretization and with an energy-preserving split form. According 
to Eq. (43), the condition for global conservation of entropy is given by∫

	

( cv

e
E + (s − γ cv)M+ cv

e
P

)
d	 = 0. (46)

Since ρ is globally conserved, the space integral of M is zero, and Eq. (46) reduces to∫
	

( cv

e
E + sM+ cv

e
P

)
d	 = 0. (47)

Note that, if M and E are discretized through a split form of the family (19), they may be expressed as

M = ξMD + (1 − ξ)MA, (48)

E = ξE F + (1 − ξ)EC , (49)

where E F and EC are the convective terms of the internal energy equation discretized in the F and in the C form, respec-
tively. By substituting Eqs. (48) and (49) into Eq. (47) one is left with∫

ξ
[ cv

e

(
E F − EC

)
+ s

(
MD −MA

)]
+

( cv

e
EC + sMA + cv

e
P

)
d	 = 0. (50)
	



G. Coppola et al. / Journal of Computational Physics 382 (2019) 86–104 95
In Eq. (50), the free parameter ξ can be selected in order to satisfy Eq. (47). In fact, dynamically adjusting ξ in time 
according to

ξe = −
∫
	

( cv

e
EC + sMA + cv

e
P

)
d	∫

	

cv

e

(
E F − EC

) + s
(
MD −MA

)
d	

(51)

guarantees that Eq. (47) is satisfied at each time instant, and the procedure will conserve locally ρ, ρui and ρe and globally 
ρu2

i , ρE, ρe2 and ρs.
Similarly, if one considers the case in which the entropy equation is discretized together with the continuity and the 

momentum equations, according to Eq. (44), the condition for global conservation of internal energy is given by∫
	

(
e

cv
S − e

cv
(s − γ cv)M−P

)
d	 = 0. (52)

By expressing M through Eq. (48) and S as S = ξS F + (1 − ξ)SC , Eq. (52) reduces to∫
	

ξ
e

cv

[(
S F − SC

)
− (s − γ cv)

(
MD −MA

)]
+ e

cv

(
SC − (s − γ cv)MA

)
−P d	 = 0, (53)

from which one may infer that dynamically adjusting ξ in time according to

ξs = −
∫
	

(
e

cv

(
SC − (s − γ cv)MA

) −P
)

d	∫
	

e

cv

[(
S F − SC

) − (s − γ cv)
(
MD −MA

)]
d	

(54)

guarantees that Eq. (52) is satisfied at each time instant, and the procedure will conserve locally ρ, ρui and ρs and globally 
ρu2

i , ρs2, ρe and ρE .

5. Numerical tests: the inviscid Taylor–Green flow

In this section, the inviscid compressible Taylor–Green flow is used as a test case for comparing the performance of 
the various split forms analyzed in Sec. 3.2. Different splittings of the energy equation are also considered as explained in 
Sec. 4, resulting in a test matrix of 20 different formulations. We should point out that for convenience of computational 
implementation, and as suggested by Honein and Moin [17] the total energy equation is solved in all cases, however with the 
right-hand side rearranged either according to Eqs. (40), (41) to emulate the splitting of the internal energy equation, or to 
Eq. (45), to emulate the splitting of the entropy equation. Spatial discretization is performed in all cases by standard explicit 
central schemes of order 2, 4 and 6, and time integration is carried out by means of the third-order TVD Runge–Kutta 
scheme of Shu and Osher [23] and by the standard fourth-order Runge–Kutta scheme (RK4). The flow is integrated in a 
triply periodic cube of size 2π with zero viscosity, with the following initial conditions [15]

ρ = 1,

u = sin(x) cos(y) cos(z),

v = − cos(x) sin(y) cos(z),

w = 0,

p = 100 + (cos(2x) + cos(2y)) (cos(2z) + 2) − 2

16
,

where pressure is taken to be sufficiently high to provide a flow which is effectively incompressible. The ratio of specific 
heats γ is set to 1.4. It is well known that, after an initial transient, the initially smooth flow experiences distortion and 
stretching, and quickly undergoes instabilities characterized by the formation of smaller and smaller scales. For any given 
grid, after a sufficiently long time interval the flow develops unresolved scales, entering a thermalized random regime. This 
behaviour makes this flow a convenient testbed to check the stability of numerical methods in strongly under-resolved 
situations, and the absence of viscosity allows rigorous verification of the conservation of the invariants of motion.
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Table 3
Test matrix for inviscid Taylor–Green flow numerical simulations. �numerically stable; × numerically 
unstable. Refer to Table 1 for the definition of the various split forms.

Order Forms for convective terms

KGP F C KG1 KG2

Formulation
of energy
equation

Internal energy
2 � × × × ×
4 � × × × ×
6 � × × × ×

Total energy with
total energy splitting

2 � × × × ×
4 � × × × ×
6 � × × × ×

Total energy with
total enthalpy splitting

2 � � � × ×
4 � � � × ×
6 � � � × ×

Entropy
2 � � � × ×
4 � � � × ×
6 � � � × ×

5.1. Robustness assessment

A numerical simulation campaign was first carried out to verify the computational robustness of the various formulations. 
The Euler equations are discretized on a 323 uniform grid and integrated in time with the third-order TVD Runge–Kutta 
scheme up to the final time t = 256 with CFL = 1.

The results of the tests are summarized in Table 3, in terms of numerical stability or instability, at least within the 
time integration interval. The data have been checked to be sufficiently general by performing additional spot calculations 
at different CFL numbers and changing the time integration scheme to RK4. The table shows that among the various split 
forms, the KGP form is most robust, allowing to achieve stable computations when applied in conjunction with any of the 
formulations for the energy equation. Furthermore, use of the total energy equation with total enthalpy splitting or of the 
entropy equation is found to be the most robust choice for the energy equation, yielding numerical stability also for the 
F and C split forms. In all other cases the simulations diverged within the time integration interval. The order of accuracy 
of the spatial discretization seems to have no influence on stability, although it is clearly expected to play a role on the 
accuracy of the solution.

In order to verify the predictions developed in the previous sections, selected calculations have been carried out with 
the more accurate RK4 scheme and with CFL = 0.1, in order to reduce temporal errors as much as possible. The results are 
shown in Figs. 2, 3 in terms of the time evolution of linear and quadratic invariants. In these plots, the overbar denotes 
spatial integration over the entire domain, whereas the brackets indicate the normalization

〈 f 〉 = f − f0∣∣∣ f0

∣∣∣ ,

where the absolute value at the denominator is taken to correctly represent time variations in the case that the initial value 
is negative.

The data reported in Fig. 2 were obtained by integrating the equations of mass, momentum and total energy with 
total enthalpy splitting, and by testing all the energy-preserving split forms discussed in Sec. 3. Central second-order ap-
proximations were used for all the space derivatives. It is found that the formulations employing the KG1 and KG2 forms 
diverge before t = 10, and the corresponding curves are seen as vertical lines (not labelled). On the other hand, the energy-
preserving and locally-conservative forms KGP, F and C are found to be stable over the entire integration interval. As seen in 
panels (a)–(c), global values of mass, momentum and total energy are accurately conserved in time, up to machine precision 
(all calculations have been carried out using double-precision arithmetics). Although globally preserved by convection, ρe
and ρu2

i are not conserved in time as their evolution is also affected by exchange of energy through the exchange terms 
P , uiGi (see Eqs. (30), (34), respectively). Similarly, the quantity ρE2, although preserved by convective terms, is affected 
by the pressure-type term E (P + uiGi), which causes slight increase in time. On the other hand, ρs and ρs2, should stay 
constant in the inviscid case, hence their variations are entirely attributable to the lack of global discrete conservation.

The data reported in Fig. 3 support this analysis. In this case, splitting is applied to the mass, momentum and entropy 
equations, again with all the energy-preserving forms discussed in Sec. 3. The plots clearly show that mass, momentum and 
entropy are exactly globally conserved in time, together with ρs2. The total energy displays slight deviations from constancy, 
because the entropy formulation does not guarantee global preservation of total and internal energy. Note that for this 
formulation of the energy equation the C split form performs worse than the KGP and the F forms, as larger deviations 
from the expected behaviour are observed starting at t � 50; however, no blow-up is observed. At t = 100, 〈ρu2〉, 〈ρE〉 and 
〈ρs〉 reach values of 0.22, 3.8 × 10−4 and 4.1 × 10−10, respectively. Note also that, in contrast to what observed in Fig. 2, 
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Fig. 2. Time evolution of linear and quadratic invariants for inviscid Taylor–Green flow using different splittings of the convective terms, with second-order 
central discretization of the space derivatives. Black lines refer to KGP form, blue lines to F form, red lines to C form and green and cyan lines refer to KG1 
and KG2 forms, respectively. The total energy equation is used with total enthalpy splitting. (For interpretation of the colours in the figure(s), the reader is 
referred to the web version of this article.)

the deterioration of the performances of the C form also affects the quantities ρs and ρs2, which should be conserved by 
construction (see the C curves in panels (e) and (i)). This behaviour may be traced to the previously noted use of a surrogate 
total energy equation in the place of the entropy equation. In this formulation, the entropy is strictly a derived variable (it is 
evaluated from ρE through ρs = ρcv ln

(
(γ − 1)

(
ρE − ρu2

i /2
)
/ργ −1

)
, and therefore, accumulation of numerical errors may 

also spoil variables which should be globally conserved by construction. The deterioration of the accuracy of the C form, on 
the other side, does not affect the global conservation of mass and momentum, whose equations are directly solved for (see 
panels (a) and (b)).

A further observation on Fig. 3 relates to the total energy evolution obtained from the KGP split form applied to the 
entropy formulation. The curve labelled as KGP in Fig. 3(c) actually shows that, in contrast to the C and F curves, in the 
entropy formulation the total energy is globally conserved with good accuracy during the whole integration interval (its 
maximum absolute value is about 2 × 10−10). This additional conservation property of the KGP split form in the context of 
the discretization of the entropy equation is further investigated in the forthcoming section.

5.2. Test of adaptive splitting procedures

With the aim of further analyzing the properties of the various split forms in connection to the enforcement of additional 
balance equations, the adaptive procedures proposed in Sec. 4.4 have been tested. The test case and the space and time 
discretization setup are the same as in Sec. 5.1, but the split form is now dynamically adjusted within the family of Eq. (19), 
by adapting the value of ξ according to either Eq. (51) or Eq. (54).

In Fig. 4(a) the value of the coefficient ξs obtained from Eq. (54) is shown as a function of time. In this simulation, 
the mass, momentum and entropy equations are solved in split form, and the free coefficient is dynamically adjusted to 
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Fig. 3. Time evolution of linear and quadratic invariants for inviscid Taylor–Green flow using different splittings of the convective terms, with second-order 
central discretization of the space derivatives. Black lines refer to KGP form, blue lines to F form, red lines to C form and green and cyan lines refer to KG1 
and KG2 forms, respectively. The entropy energy equation is used.

Fig. 4. Time evolution (a) and frequency distribution histogram (b) of the ξs coefficient for the adaptive procedure of Eq. (54).
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Fig. 5. Frequency distribution histograms of the ξe coefficient for the adaptive procedure of Eq. (51) for inviscid Taylor–Green flow (a) and of ξs for the 
adaptive procedure of Eq. (54) for viscous Taylor–Green flow at Re = 1600 (b).

guarantee the additional global preservation of ρe. From this plot it can be seen that, with the exception of isolated spikes 
due to the possibly singular character of Eq. (54), the value of ξs obtained from the dynamic procedure settles around 0.5. 
In practice, this stands to indicate that the KGP form applied to the entropy equation also guarantees global conservation of 
the internal energy, and as a consequence global conservation of ρE . This finding is in perfect agreement with the results 
obtained in the previous section with the KGP form applied to the entropy equation (recalling Fig. 3(c)), which was shown 
to yield negligible variation of global total energy. The frequency distribution of ξs is shown in Fig. 4(b), where bars outside 
the interval [−0.5,2] are not displayed. From these data it may be estimated that ξs falls in the interval 0.5 ± 0.01 in the 
90% of the cases, and in the interval 0.5 ± 0.05 in more than 95% of the cases (note that semi-logarithmic representation is 
used).

A similar situation also occurs for the dynamical procedure applied to the internal energy equation. In this case the 
mass, momentum and internal energy equations are integrated in time, whereas the split form is dynamically selected by 
the value of ξe given by Eq. (51), which guarantees additional global preservation of ρs. Fig. 5(a) shows the frequency 
distribution histogram of ξe . The convergence to the 0.5 value corresponding to the KGP form is confirmed also for this 
procedure, and cases in which ξe falls in the interval 0.5 ± 0.05 are estimated to be around 92% of the total.

As far as additional global conservation properties are concerned, both simulations show that the KGP form is almost 
optimal over the entire time integration interval. This includes smooth states in the initial transient, as well as fully thermal-
ized states in later stages. The robustness of this finding has been further investigated by applying the dynamic procedure 
to a viscous calculation. The same initial condition and the same domain size are employed for numerical integration of 
the viscous Taylor–Green flow on a 323 grid at Reynolds number of 1600. The mass, momentum and entropy equations are 
solved, and the split form is adaptively determined through application of Eq. (54). In Fig. 5(b) the frequency distribution 
histogram of the dynamically calculated coefficient ξs is reported. The histogram again shows a strong tendency of the dy-
namical procedure to select values of ξs around 0.5. In this case the number of occurrences of ξs in the interval 0.5 ± 0.05
is around 97% of the total.

5.3. Effect of formulations of the energy equation

The effect of the formulation used for the energy equation on the reliability of numerical simulations remains to be 
explored. Indeed, we find the KGP split form to be equally robust, regardless of the energy formulation employed (among 
those introduced in Sec. 4), whereas the F and C forms proved to be stable only when either the total energy equation (with 
total enthalpy splitting) or the entropy equation are used. In this section we attempt to give additional insights regarding 
the accuracy of the various (stable) formulations, with the aim of establishing the most reliable one.

As a measure for reliability, we monitor the evolution of thermodynamic fluctuations in time, and in particular we 
consider density and temperature fluctuations. It is expected that after an initial transient, these quantities should level 
off to a constant value, similarly to what reported for inviscid isotropic homogeneous turbulence [17,16]. In Fig. 6, the 
r.m.s. density and temperature fluctuations obtained with selected numerical simulations are shown. The parameters of 
the simulations are the same as in Figs. 2 and 3, except for the spatial discretization, which was carried out through 
fourth-order central explicit formulas. All formulations for the energy equation are considered along with the KGP splitting 
(the corresponding cases are denoted as KPG(X)), whereas the total energy equation with total enthalpy splitting is used 
with the C splitting (the corresponding case is denoted as C(ρH)), and the entropy equation is used with the F splitting 
(the corresponding case is denoted as F(ρs)). Note that the two formulations KGP(ρH) and F(ρs) match those considered by 
Pirozzoli [16] and by Honein & Moin [17] respectively, although in the latter case compact differencing was used in space.
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Fig. 6. Density (a) and temperature (b) fluctuations for inviscid Taylor–Green flow using different formulations of the energy equation coupled with different 
splittings. Black lines refer to the KGP(ρE) formulation, blue lines to KGP(ρH), magenta lines to C(ρH), red, green and cyan lines refer to KGP(ρs), KGP(ρe) 
and F(ρs) formulations, respectively.

The data in Fig. 6 show that not all the stable formulations yield asymptotic stabilization. Numerical simulations with 
the KGP form using the total energy equation (irrespective of the use of total energy or total enthalpy splitting) exhibit 
a non-negligible increase of density and temperature fluctuations, which, however, does not lead to numerical divergence. 
Similar results are obtained with the F and C split forms in conjunction with the total energy equation, although only the 
C(ρH) formulation is displayed. This behaviour was previously highlighted by Pirozzoli [16]. On the other hand, application 
of the KGP or F split forms together with the entropy equation provides much better results, both formulations yielding 
an asymptotically constant level of the fluctuations. Use of the internal energy yields contrasting results, as the F and C 
splittings yield numerical divergence, whereas the KPG splitting is effective in maintaining thermodynamic fluctuations 
to a constant asymptotic value similar to that given by entropy-based formulations. This is the likely consequence of the 
previously noted empirical evidence that the KPG(ρe) formulation is capable of nearly conserving the total entropy, although 
we cannot offer a rigorous proof at this stage.

As a further check of the predicted conservation properties, as listed in Table 2, we have carried out additional numerical 
simulations of nonlinear steepening of a one-dimensional acoustic wave. For that purpose a [0, π ] periodic interval was 
considered, with the following initial conditions

ρ(x,0) = ρ0(1 + 0.2 sin x), u(x,0) = 0.2c0 sin x, p = p0 + 0.2ρ0c2
0 sin x. (55)

Nonlinear breakdown of the wave occurs at t ≈ 3, at which a shock wave forms, and as a consequence entropy and internal 
energy are no longer conserved. Our purpose here is to verify that the mathematical conservation properties imparted 
to the numerical algorithm still apply. As a reference for the physically ‘correct’ results, a numerical solution has been 
computed with a fifth-order weighted essentially-non-oscillatory (WENO) scheme on a fine mesh to converge to the entropy 
solution with minimal amount of numerical dissipation. The computed density distributions using the KGP splitting with 
different formulations of the energy equations are shown in Fig. 7, where 32 cells are used. All the schemes yield visually 
indistinguishable results up to t = 2, at which the solution is still smooth. Some wiggles are observed at t = 3, after which 
large Gibbs oscillations arise, which are not found in the reference solution. Nevertheless, all formulations yield visually 
similar results. The global flow parameters are monitored in time in Fig. 8. The entropy solution yields dissipation of kinetic 
energy into heat starting at t ≈ 3, and accordingly entropy starts to increase in time. As expected, this feature is not found in 
any of our conservative formulations. In particular, consistent with the results previously presented, we find that the entropy 
formulation fails to conserve the total energy, and vice-versa. We are also able to confirm that the formulation based on the 
internal energy, besides conserving internal and total energy, also yields near conservation of the total entropy.

6. Conclusions

A general framework for the derivation of energy-preserving split forms for convective terms in the compressible Navier–
Stokes equations has been presented. In contrast to the incompressible case, for which the skew-symmetry of the discretized 
convective operator was shown to be the essential ingredient for global preservation of kinetic energy, energy-preserving 
formulations in the compressible case were not completely characterized. The theory herein developed fills this gap and 
provides a wide generalization of existing split forms for the compressible Navier–Stokes equations. Although illustrative 
examples are only provided for the case of spatially periodic computational domains, the analysis merely relies on use of 
the SBP property, hence it equally applies to the case of non-periodic domains, when supplemented with suitable SAT nu-
merical boundary conditions. The classical Feiereisen et al. [11] splitting, and the more recent form introduced by Kennedy 
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Fig. 7. Time evolution of density distribution for the one-dimensional acoustic wave test case. Black dashed lines refer to fifth order WENO scheme on a 
512-cells mesh, used as reference solution. The solid lines refer to simulations obtained by using the KGP splitting of the convective terms on a 32-cells 
mesh, and by discretizing different energy balance equations. Blue lines refer to the KGP(ρH) formulation, green lines to KGP(ρe) and red lines to KGP(ρs). 
These last three formulations produce very similar results and the curves are hardly distinguishable in the scale of the plot.

and Gruber [14] and employed by Pirozzoli [16] (here referred to as KGP form), have been shown to be just two particular 
cases of a two-parameter family of energy-preserving forms. The analysis of the new forms has been conducted by con-
sidering also the topic of global conservation of primary quantities. It has been shown that even in the case in which the 
preservation of both linear and quadratic invariants is required, the set of admissible split forms constitutes a one-parameter 
family. Locally conservative formulations, on the other hand, have shown to be possible for this restricted class (for central 
explicit schemes of arbitrary order) by extending the approach used by Pirozzoli [16], and particularly simple and economic 
flux functions have been derived also for the new splitting forms.

In compressible flows the choice of a suitable energy-preserving split form for the discretization of convective terms does 
not strictly guarantee nonlinear stability. Another important and influential topic is the choice of which energy equation is 
most suitable among the various equivalent possibilities. A systematic analysis of the induced conservation properties of 
each formulation has been presented, and the employment of the free parameters stemming from the proposed theory 
on the split forms has led to the idea of ‘dynamic’ procedures which are able to provide additional discrete conservation 
properties by adaptively selecting the split form within a one-parameter family.

Numerical tests on the inviscid compressible Taylor–Green flow confirmed the theoretical predictions and provided new 
insights toward the selection of an optimal formulation in terms of stability and reliability. The numerical experiments 
showed that global conservation of linear invariants is a important issue, since energy-preserving formulations which are 
not globally conservative of primary variables are typically unstable in the inviscid case. This result is somehow in contrast 
to what happens in incompressible flows, for which kinetic energy conservation alone is typically sufficient to prevent 
instabilities arising from the accumulation of aliasing errors. Among the various split forms, the newly derived C form 
has robustness properties analogous to the classical F form, while the KGP form has proved to be the most robust, in 
conjunction with all the energy equation formulations. This behaviour has been confirmed by the application of adaptive 
procedures, which revealed that the KGP form is the optimal choice also with respect to additional induced conservation 
requirements. Finally, an analysis conducted on thermodynamic fluctuations has confirmed that the conservation of global 
entropy is an important ingredient. This is true not only for robustness, but also with respect to the reliability of numerical 
simulations, since the unphysical increase in amplitude of the fluctuations, arising in some stable formulations, is not present 
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Fig. 8. Time evolution of linear and quadratic invariants for the one-dimensional acoustic wave test case. Black dashed lines refer to fifth order WENO 
scheme on a 512-cells mesh, used as reference solution. The solid lines refer to simulations obtained by using the KGP splitting of the convective terms on 
a 32-cells mesh, and by discretizing different energy balance equations. Blue lines refer to the KGP(ρH) formulation, green lines to KGP(ρe) and red lines 
to KGP(ρs).

when global entropy is preserved, both as a primary effect of the direct discretization of the entropy equation or as a 
hidden advantage of the adopted splitting. Additional numerical simulations for a one-dimensional sinusoidal acoustic wave 
developing into a shock confirm the predicted conservation properties discussed in the paper, and provide further support 
to the theoretical inferences.

Appendix A. Locally conservative formulations

By assuming a central finite difference explicit differentiation formula of the form

∂̂φ

∂x

∣∣∣∣
i
=

L∑
k=1

akδkφi,

where δkφi = (φi+k − φi−k)/(2kh), the derivative of a product of two functions f and g can be expressed in locally conser-
vative form, namely as the difference of numerical flux functions ( F̂ i+1/2 − F̂ i−1/2)/h where F̂ i+1/2 has the form:

F̂ i+1/2 = 2
L∑

ak

k−1∑
I ( f , g)i−m,k . (A.1)
k=1 m=0
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In Eq. (A.1), I ( f , g)i,k is a suitable two-function two-point interpolation operator. The divergence and advective forms of the 
product f g have the associated interpolation operators,

∂̂ f g

∂x
−→ I( f , g)i,k = ( f , g)i,k ≡ f i+k gi+k + f i gi

2
,

̂(
f
∂ g

∂x
+ g

∂ f

∂x

)
−→ I ( f , g)i,k = ( f , g)i,k ≡ f i+k gi + f i gi+k

2
.

(A.2)

Any linear combinations of these two forms has a flux function given by the same linear combination of the corresponding 
fluxes. The associated interpolations follow the same rule,

α
∂̂ f g

∂x
+ β

̂(
f
∂ g

∂x
+ g

∂ f

∂x

)
−→ I ( f , g)i,k = α( f , g)i,k + β( f , g)i,k. (A.3)

A particularly simple structure is obtained for the case of α = β = 1/2, for which the interpolation operator assumes the 
form

1

2

[
∂̂ f g

∂x
+

̂(
f
∂ g

∂x
+ g

∂ f

∂x

)]
−→ I ( f , g)i,k = ( f̃ , g)i,k = 1

4

(
f i + f i+k

) (
gi + gi+k

)
. (A.4)

In the case of three functions ρ, u and φ there are five basic ways of expressing the derivative of the triple product, 
analogous to the five forms (7–11). Four of them can be expressed in locally conservative form with the associated numerical 
flux

F̂ i+1/2 = 2
L∑

k=1

ak

k−1∑
m=0

I (ρ, u, φ)i−m,k , (A.5)

where I (ρ, u, φ)i,k is a suitable three-function two-point interpolation operator. The list of forms and associated interpola-
tion operators is

∂ρuφ

∂x
−→ I(ρ, u, φ)i,k = (ρ, u, φ)i,k = (ρuφ)i+k + (ρuφ)i

2
, (A.6)

φ
∂ρu

∂x
+ ρu

∂φ

∂x
−→ I(ρ, u, φ)i,k = (ρu, φ)i,k = (ρu)i+kφi + φi+k(ρu)i

2
, (A.7)

u
∂ρφ

∂x
+ ρφ

∂u

∂x
−→ I(ρ, u, φ)i,k = (ρφ, u)i,k = (ρφ)i+kui + ui+k(ρφ)i

2
, (A.8)

ρ
∂uφ

∂x
+ φu

∂ρ

∂x
−→ I(ρ, u, φ)i,k = (φu,ρ)i,k = (φu)i+kρi + ρi+k(φu)i

2
. (A.9)

Any linear combination of these forms has a flux function whose associated interpolation operator I is a linear combination 
of the corresponding basic interpolation operators. Particularly simple structures are obtained in the following cases:

1. the F form, whose interpolation operator is

I(ρ, u, φ)i,k = 1

2

(
(ρ, u, φ)i,k + (ρu, φ)i,k

)
= (ρ̃u, φ)i,k; (A.10)

2. the KGP form, whose interpolation operator is

I(ρ, u, φ)i,k = 1

4

(
(ρ, u, φ)i,k + (ρu, φ)i,k + (ρφ, u)i,k + (φu,ρ)i,k

)
= (ρ̃, u, φ)i,k, (A.11)

where

(ρ̃, u, φ)i,k = 1

8

(
ρi + ρi+k

) (
ui + ui+k

) (
φi + φi+k

) ;
3. the C form, whose interpolation operator is

I(ρ, u, φ)i,k = 1

2

(
(ρφ, u)i,k + (φu,ρ)i,k

)
= (φ|ρ, u)i,k, (A.12)

where

(φ|ρ, u)i,k = 1

2

(
φi + φi+k

)
(ρ, u)i,k.
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A comparison of the computational effort required for the calculation of the fluxes for each form can be made by con-
sidering the cost required for the evaluation of the relevant interpolation operators, since the additional cost of assembling 
the flux through Eq. (A.5) is the same for all the locally conservative forms. The F form interpolation operator given by 
Eq. (A.10) requires 2L sums and L multiplications per node (cfr. Eq. (A.4)), in addition to a single multiplication per node in 
order to calculate the products of variables appearing in Eq. (A.10). The KGP form interpolation operator requires an effort 
of 3L sums and 2L multiplications, with no additional cost for the pre-storage of product of variables, whereas the C form 
requires 3L multiplications and 2L sums, with again no additional pre-storage cost. In summary, the F form interpolation 
requires N(1 + 3L) floating point operations, while the C and KGP form interpolations require 5N L operations.
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