
Parallel Computing 111 (2022) 102920

A
0

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Towards electronic structure-based ab-initiomolecular dynamics simulations
with hundreds of millions of atoms
Robert Schade a, Tobias Kenter a,b, Hossam Elgabarty c, Michael Lass a,b, Ole Schütt d,
Alfio Lazzaro e, Hans Pabst f, Stephan Mohr g,h, Jürg Hutter i, Thomas D. Kühne a,c,∗,
Christian Plessl a,b

a Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
b Department of Computer Science, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
c Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
d Department of Materials, ETH Zürich, CH-8092, Zürich, Switzerland
e HPE Switzerland GmbH, Basel, Switzerland
f Intel Extreme Computing, Software and Systems, Zürich, Switzerland
g Nextmol (Bytelab Solutions SL), Barcelona, Spain
h Barcelona Supercomputing Center (BSC), Spain
i Department of Chemistry, University of Zurich, Switzerland

A R T I C L E I N F O

Keywords:
Supercomputing
High-performance computing
Massively-parallel algorithms
Large-scale linear algebra
Ab-initio molecular dynamics
Approximate computing

A B S T R A C T

We push the boundaries of electronic structure-based ab-initio molecular dynamics (AIMD) beyond 100 million
atoms. This scale is otherwise barely reachable with classical force-field methods or novel neural network and
machine learning potentials. We achieve this breakthrough by combining innovations in linear-scaling AIMD,
efficient and approximate sparse linear algebra, low and mixed-precision floating-point computation on GPUs,
and a compensation scheme for the errors introduced by numerical approximations.

The core of our work is the non-orthogonalized local submatrix method (NOLSM), which scales very
favorably to massively parallel computing systems and translates large sparse matrix operations into highly
parallel, dense matrix operations that are ideally suited to hardware accelerators. We demonstrate that the
NOLSM method, which is at the center point of each AIMD step, is able to achieve a sustained performance of
324 PFLOP/s in mixed FP16/FP32 precision corresponding to an efficiency of 67.7% when running on 1536
NVIDIA A100 GPUs.
1. Overview of the problem

1.1. Atomistic computer simulations

The exponential increase in the performance of high-performance
computers over the past decades, together with advances in computer
science and applied mathematics, has led to the birth of a new way
of doing science at the intersection of theory and experiment. This
field is generally referred to as computational science and allows for
experiments in silico that otherwise would be too difficult, expensive,
or simply impossible to perform. As a result, computer simulations have
been very successful in predicting and rationalizing a large variety of
novel physical phenomena.

For systems made of atoms, the two most common computational
techniques to conduct such simulations are the Monte Carlo and the
molecular dynamics (MD) algorithms [1,2]. The latter is simply the

∗ Corresponding author.
E-mail address: thomas.kuehne@uni-paderborn.de (T.D. Kühne).

numerical solution of Hamilton’s equation of motion, which allows
both equilibrium thermodynamic and dynamic properties of a system
at finite temperature to be computed. Since it also provides a window
into the real-time evolution of the atoms, another role of MD is that of
a computational microscope.

One of the most challenging and very important aspects of MD sim-
ulations is calculating the interatomic forces. In classical simulations
they are computed by conventional force fields, or novel neural net-
work and machine learning potentials, which have been parameterized
to reproduce experimental or accurate ab-initio data of small model
systems [3,4]. Even though great strides in improving such empirical
potentials have been made and often render them surprisingly accu-
rate [5,6], the transferability to systems or regions of the phase diagram
different from the ones to which they have been trained in the first
vailable online 5 March 2022
167-8191/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.parco.2022.102920
Received 26 July 2021; Received in revised form 17 January 2022; Accepted 21 Fe
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

bruary 2022

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:thomas.kuehne@uni-paderborn.de
https://doi.org/10.1016/j.parco.2022.102920
https://doi.org/10.1016/j.parco.2022.102920
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2022.102920&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Parallel Computing 111 (2022) 102920R. Schade et al.
place may be restricted. Ultimately, when assuming a classical model,
as ingenious it may be, the access to the quantum mechanical electronic
structure is irrevocably lost. However, some of the most relevant and
interesting phenomena of modern chemistry and physics are inherently
non-classical.

1.2. Electronic structure-based ab-initio molecular dynamics

Therefore, an electronic structure-based ab-initio MD (AIMD) ap-
proach [7,8], where the forces are computed on-the-fly from accurate
quantum mechanical calculations, is very attractive since many of these
limitations can, in principle, be removed. Nevertheless, the accuracy
and increased predictive power of AIMD simulations come at a signif-
icant computational cost, which has to be carefully balanced against
system size and sampling requirements, thus limiting the attainable
length and time scales despite substantial progress [9]. Hence, effec-
tive single-particle theories such as Hartree–Fock, density functional
theory (DFT), and semi-empirical tight-binding (TB) approaches are
to date the most commonly used electronic structure methods within
AIMD [10]. However, for very large systems, like those occurring in
biology, nanotechnology, materials science, or mechanical engineering,
which contain many millions of atoms, self-consistently solving the
corresponding Schrödinger-like equations is computationally not fea-
sible even on today’s largest supercomputers. This practical limitation
stems from the fact that these equations are very high-dimensional
eigenvalue problems with up to trillions of unknowns. The computation
of all eigenvalues and corresponding eigenvectors requires the diago-
nalization of the quantum mechanical Hamilton operator that uniquely
defines the specific system and typically scales cubically with its size.

1.3. Linear-scaling electronic structure theory

Therefore, novel computational methods that scale linearly with the
size of the system to directly calculate the all-important density matrix
instead of all eigenvectors would be very desirable, thus making a new
class of systems accessible to AIMD that were previously thought not
feasible. Several so-called linear-scaling methods have been proposed to
circumvent the cubic scaling diagonalization that is the main bottleneck
of DFT and TB [11–14]. Underlying all of these methods is the con-
cept of ‘‘nearsightedness’’ [15], an intrinsic system-dependent property,
which states that at fixed chemical potential the electronic density
depends just locally on the external potential so that all matrices
required to compute the Fermi operator will become sparse [16]. When
using sparse matrix algebra techniques the property can be exploited to
devise computational methods whose memory requirements and com-
putational effort increase only linearly with problem size. However, the
crossover point after which linear-scaling electronic structure methods
become advantageous has remained rather large, in particular if high
accuracy is needed.

1.4. Approximate computing-based submatrix method

Beyond algorithmic improvements, it is also possible to relax the
requirement for the accuracy of computations and profit from the
substantially improved performance of modern computer architectures
for low-precision arithmetic. We demonstrate that by leveraging the
approximate computing (AC) paradigm [17,18], the usage of mixed-
and low-precision numerics can be rigorously compensated by an ap-
propriately modified Langevin-type equation. The noise within the
nuclear forces can be assumed as white, thus facilitating the exact
computation of ensemble-averaged expectation values [14,19,20]. One
possible route is the linear-scaling sign-method [21], whose accuracy
had been previously systematically investigated in detail and it has
been demonstrated that good accuracy can be obtained [22]. The chief
2

advantage of the employed sign-method, however, is that it only relies
on large sparse matrix–matrix multiplies. Yet, due to the distributed na-
ture of the required matrix multiplications, large-scale applications are
usually limited by a communication bottleneck. To avoid this bottle-
neck, we have extended the recently developed submatrix method [23,
24], which transforms calculations on large distributed sparse matrices
into computations on small local dense matrices and combined it with
the second-generation Car–Parrinello method of Kühne et al. [9,25] to
bypass the previously mentioned self-consistent solution. This transfor-
mation opens the door to employ hardware-accelerated low-precision
linear algebra without compromising the accuracy of the eventual
results.

2. Current state of the art

Previous attempts to push the boundaries of electronic structure-
based structure relaxation and AIMD simulations are summarized in Ta-
ble 1. They include DFT calculations using delocalized plane wave (PW)
basis sets, as implemented in the CPMD [26], Qbox [27],
LS3DF [28] and OpenAtom [29] codes, as well as localized orbital
DFT simulations based on real-space finite difference (RS-DFT) and
finite element methods (FEM) using the RSDFT [30] and DFT-FE [31]
codes, respectively. The largest simulations, however, are conducted
employing low-scaling electronic structure methods such as linear-
scaling DFT (LS-DFT). With the exception of the LDC-DFT code [32],
which relies on an extended real-space multigrid PW (RMG-PW) basis
within a less correlated subsystem DFT (SS-DFT) approach, localized
basis functions with finite spatial extent are used. Examples of the latter
are non-orthogonal generalized Wannier functions (NGWF), finite dif-
ference (FD), polarized atomic orbitals (PAO) and Gaussian and plane
waves (GPW) basis sets that are implemented in the ONETEP [33],
MGmol [34], CONQUEST [35] and CP2K [36] codes, respectively.

To put our achievement in context to previous work, we find it
important to point out that the hitherto largest electronic structure
calculation conducted so far with 6.3 million atoms has been achieved
using the SS-DFT approach, which subdivides the total system in a
divide-and-conquer fashion into overlapping fragments that can be
computed independently from each other. Even though this offers an
intriguing additional level of parallelism, which is reflected by a peak
performance of more than 5 PFLOP/s, it also entails a further approxi-
mation. Along similar lines, simulations involving multiple independent
k-points can also be trivially parallelized over each of these points.
Interestingly, the simulation with the so-far largest peak performance of
46 PFLOP/s and an efficiency of 27.8% has been conducted for just 10.5
thousand atoms, even though with electronically rather complicated
alkaline earth metals atoms.

In the present work, we have conducted individual AIMD-based
dynamical simulated-annealing steps to mimic the relaxation of the
structure of a whole human immunodeficiency virus-1 (HIV-1) capsid
in aqueous solution containing more than 62.5 million atoms, as well
as for water with about 102 million atoms. For that purpose, we
have extended the Geometry, Frequency, Noncovalent, eXtended Tight-
Binding (GFN-xTB) scheme towards periodic systems and implemented
it within the CP2K code [36,45].

3. Innovations realized

3.1. Summary of contributions

The central innovation of this work is the approximate mapping of a
matrix function of a very large sparse matrix to a series of matrix func-
tions of much smaller but dense matrices. Since in this way inter-node
communication is avoided, a very favorable parallel scaling is obtained.
The evaluations of the matrix functions for the small dense matrices,
with dimension of ∼ 500 to ∼ 10000 for the applications in this work,
are computed with iterative schemes and mixed-precision arithmetic on
tensor cores of GPUs. The resulting noise from these approximations is
rigorously compensated by making use of the fluctuation–dissipation
theorem so that the desired thermodynamic expectation values can

nevertheless be obtained accurately.

Parallel Computing 111 (2022) 102920R. Schade et al.

s
t

𝑭

i
2

⟨

Table 1
Performance of previously conducted electronic structure-based structure relaxation or AIMD simulations. Therein, the employed electronic structure method is abbreviated by DFT,
NSC-DFT, LS-DFT and SS-DFT, which stands for density functional theory and its non-self-consistent, linear-scaling and subsystem variants, respectively. The corresponding basis set
to represent the single-particle orbitals are denoted by PW for conventional plane waves, RMG-PW for real-space multigrid plane waves, GPW for Gaussian and plane waves, GTO
for Gaussian-type orbitals, FD for finite difference, RS-FD for real-space finite difference, FEM for finite element method, NGWF for non-orthogonal generalized Wannier functions
and PAO for polarized atomic orbitals. If the calculation was conducted involving trivial k-point parallelism, the total number of atoms is given as the product of number of
independent instances time the number of atoms in anyone of them. The sustained efficiency is either given with respect to the corresponding peak performance, or estimated in
terms of parallel efficiency and identified by the ‘‘≈’’ sign.

Code Year Method Basis System # Atoms # Cores Machine Peak performance Efficiency

CPMD [37] 2005 DFT PW Bulk SiC 1k 1.2k CPU IBM p690 1.087 TFLOP/s ≈ 20%
Qbox [38] 2006 DFT PW Bulk Mo 8*1k 128k CPU IBM BlueGene/L 207.3 TFLOP/s 56.5%
LS3DF [28] 2009 DFT PW Bulk ZnTeO 36k 147 k CPU Cray Jaguar 442 TFLOP/s ≈ 33%
CONQUEST [39] 2010 NSC-DFT PAO Bulk Si 2.1M 4k CPU Cray XT4 ≈ 60%
CP2K [40] 2012 LS-DFT GPW Bulk H2 1M 47k CPU Cray XT5
ONETEP [41] 2014 LS-DFT NGWF Amyloid fibril trimer 42k 115k CPU IBM BlueGene/Q
CONQUEST [42] 2014 LS-DFT PAO Bulk Si 786k 200k CPU K-Computer
RSDFT [30] 2014 DFT RS-FD Si nanowire 107k 664k CPU K-Computer 5.48 PFLOP/s 51.67%
CP2K [43] 2016 SS-DFT GPW Satellite tobacco mosaic virus 1M 20k CPU Cray XC30
LDC-DFT [32] 2014 SS-DFT RMG-PW Bulk SiC 6.3M 786k CPU IBM BlueGene/Q 5.08 PFLOP/s 50.5%

OpenAtom [29] 2016 DFT PW Periodic MOF 32*424 262k CPU IBM BlueGene/Q ≈ 52%
MGmol [34] 2016 LS-DFT FD Bulk H2O 1.2M 1.6 m CPU IBM BlueGene/Q ≈ 39%
DFT-FE [44] 2019 DFT FEM Mg cluster 10.5k 159k CPU +22.8k GPUs IBM Summit 46 PFLOP/s 27.8%
This work 2021 LS-DFT GTO Bulk water 102M 18.4k CPU +1.5k GPUs JUWELS Booster 206 PFLOP/s 43%
This work 2021 LS-DFT GTO HIV-1 capsid in solution 62.5M 18.4k CPU +1.5k GPUs JUWELS Booster 324 PFLOP/s 67.7%
w
e
a
i
o
N
a

3.2. Algorithmic innovations

3.2.1. Approximate computing
The ideas of AC can be applied to the field of electronic structure-

based AIMD simulations by recognizing that algorithmic or numerical
approximations cause noise in the computed total energy 𝐸𝑁 of the
ystem and in consequence noise 𝜩 𝑖 in the forces 𝑭 𝑖 on the atoms. Thus,
he computed noisy forces 𝑭𝑁

𝑖 can be written as

𝑁
𝑖 = − 𝜕𝐸

𝑁

𝜕𝑹𝑖
= 𝑭 𝑖 + 𝜩 𝑖, (1)

where 𝑭 𝑖 denote the exact forces. All quantities depend on the position
of the atoms 𝑹1,… ,𝑹𝑛. In previous works we have demonstrated that
n the present context 𝜩 𝑖 can be assumed to be nearly unbiased [14,19,
0], thus fulfilling the so-called fluctuation–dissipation theorem

𝜩 𝑖(0) ⋅ 𝜩 𝑖(𝑡)⟩𝑇 ≊ 2𝛾𝑁𝑀𝑖𝑘𝐵𝑇 𝛿(𝑡), (2)

where ⟨⋯⟩𝑇 denotes the Boltzmann-weighted ensemble average at the
temperature 𝑇 , 𝑘𝐵 the Boltzmann constant, 𝑀𝑖 the atomic masses, and
𝛾𝑁 a friction coefficient, whose exact value needs to be determined.
However, if we would know 𝛾𝑁 such that Eq. (2) is satisfied, a modified
Langevin-type equation

𝑀𝑖�̈�𝑖 = 𝑭 𝑖 + 𝜩 𝑖 − 𝛾𝑁𝑀𝑖�̇�𝑖 (3)

is recovered, which guarantees for an accurate canonical sampling of
the Boltzmann distribution and to compute precise thermodynamic
expectation values [9]. Fortunately, the exact value of 𝛾𝑁 does not
need to be known a priori, but can be bootstrapped so as to generate
the correct average temperature [25], as measured by the equipartition
theorem
⟨ 1
2
𝑀𝑖�̇�

2
𝑖

⟩

= 3
2
𝑘𝐵𝑇 . (4)

More precisely, in order to determine the hitherto unknown value of
𝛾𝑁 , we perform a short preliminary simulation on an identical but
smaller system in which we vary 𝛾𝑁 on-the-fly using a Berendsen-like
algorithm until Eq. (4) is eventually satisfied [46]. Previous studies
have demonstrated the efficacy of this approach for a wide variety of
systems ranging from insulators to semiconductors and even to metals
in condensed phases [10,20].

3.2.2. Linear-scaling eigenvalue solver via the non-orthogonalized local
submatrix method
3.2.2.1. Linear-scaling electronic structure calculations. In electronic
3

structure-based AIMD simulations, forces 𝑭 𝑖 on the atoms are derived s
in every time step on-the-fly from the solution of the quantum me-
chanical problem of electrons in the electrostatic field generated by
the nuclei. The total energy of a system can be written as

𝐸 = 𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑑𝑐 + 𝐸𝑖𝑜𝑛 =
𝑜𝑐𝑐.
∑

𝑖
⟨𝜓𝑖|�̂�0|𝜓𝑖⟩ + 𝐸𝑑𝑐 + 𝐸𝑖𝑜𝑛, (5)

where the summation runs over all occupied electronic states |𝛹𝑖⟩ in the
ground state, the Hamiltonian operator �̂�0, additional double counting
terms 𝐸𝑑𝑐 and the nuclear Coulomb repulsion energy 𝐸𝑖𝑜𝑛. The form
of the Hamiltonian matrix 𝑯0 and the double counting terms depend
on the level of the theory. In any case, however, 𝑯0 is dependent on
the one-particle density matrix 𝑫, or on the electron density, which
necessitates a self-consistency cycle (SCF). A linear-scaling algorithm
to solve the quantum mechanical problem, �̂�0|𝜓𝑖⟩ = 𝜖𝑖|𝜓⟩, is required
to find the ground-state energy of the system that determines the forces
via Eq. (1). Linear-scaling density-matrix-based electronic structure
algorithms directly purify the Hamiltonian into the density matrix
𝑫 [47], i.e.,

𝑫 = 1
2
(

𝑰 − sign(𝑺−1𝑯0 − 𝜇𝑰)
)

𝑺−1, (6)

where 𝑺 denotes the overlap matrix and 𝜇 the chemical potential. The
electronic energy and the forces can now be obtained via

𝐸𝑒𝑙𝑒𝑐 = Tr(𝑫𝑯0). (7)

To evaluate the contribution to the forces from the localized atom-
centered basis functions (Pulay forces) [48], the energy-weighted den-
sity matrix

𝑾 = 𝑫𝑯0𝑫 (8)

is required. The matrix-sign function in Eq. (6) can be evaluated
iteratively, for example with the Newton–Schulz iteration [49]

𝑿0 = 𝑨, 𝑿𝑘+1 =
1
2
𝑿𝑘(3𝑰 −𝑿2

𝑘) (9)

sign(𝑨) = lim
𝑘→∞

𝑿𝑘, (10)

hich converges quadratically if the matrix 𝑨 has no purely imaginary
igenvalues and ‖𝑨2 − 𝐼‖ < 1 [50]. The matrices 𝑨 in this work have
real eigenspectrum and the probability that an eigenvalue is numer-

cally zero is negligible. The norm condition is ensured by a rescaling
f the matrix prior to the sign iteration. Other possibilities than the
ewton–Schulz iteration are higher-order Padé-approximants [51], or
rbitrary-order iteration schemes [52]. In conventional linear-scaling
chemes the underlying multiplications of large sparse matrices are

Parallel Computing 111 (2022) 102920R. Schade et al.
performed with global matrix operations [21,36]. In contrast, we view
the purification as a matrix function and approximate it with our
submatrix method so that no global matrix multiplications are required
that would otherwise lead to a communication-bound algorithm.

3.2.2.2. The submatrix method. The submatrix method [23,24], re-
cently developed by some of the authors, approximates a matrix func-
tion of a large sparse matrix by evaluating it on a series of much
smaller and denser matrices. The underlying idea of the submatrix
method is described by Fig. 1. It entails three major steps: (i) submatrix
construction, (ii) application of the matrix function and (iii) write-
back of the result. In the first step a submatrix is constructed for
each column of the original matrix 𝑨 by removing the rows and their
corresponding columns, where the chosen column has zero values.
Hence, 𝑗 constructs the submatrix for column 𝑗. Thus, 𝑗 (𝑨) represents
the dense submatrix that is constructed for column 𝑗 of the large sparse
matrix 𝑨. In the second step the matrix function 𝑓 is applied to
every submatrix independently, i.e., 𝑓 (𝑗 (𝑨)) for every 𝑗. Because the
submatrices are by construction much denser and much smaller than
the original matrix, efficient dense matrix algorithms can be employed
for all operations. In the last step, the write-back step, the relevant
column of the matrix 𝑓 (𝑗 (𝑨)) is written back into the 𝑗th column of
the result matrix and represents an approximation of the 𝑗th column of
𝑓 (𝑨).

As a result, the submatrix approximation of 𝑓 (𝑨) has the same spar-
sity pattern as the matrix 𝐴. Please note, that the submatrix merging
procedure proposed in Section 3.2.3 can make the submatrix approx-
imation of 𝑓 (𝑨) more dense than 𝑨. Moreover, when applied to well
behaved matrices, i.e., not arrowhead-type matrices the dimensionality
of the submatrices are independent of the system size for a sufficiently
large system (i.e. within the linear-scaling regime). This is for example
the case if the submatrix method is applied to the overlap, or Hamil-
tonian matrix and when localized basis functions are used to describe
the electronic wave functions.

The application of the submatrix method to an atomistic system
described with local atom-centered basis functions can be understood
by identifying the columns (or sets of columns) of the input matrix 𝑨
with atoms. The construction of a submatrix for a column 𝑗 correspond-
ing to an atom 𝐽 can then be seen as the construction of a subsystem
containing all atoms in the vicinity of the atom 𝐽 that have non-zero
matrix elements with atom 𝐽 . For this subsystem, the density matrix
is computed as a matrix function and the matrix elements between
the atom 𝐽 and other atoms are used as an approximation to the
elements of the density matrix of the full system. Thus, the submatrix
method makes use of the intrinsic nearsightedness of the electronic
matter and adaptively defines an environment around each atom as a
subsystem [15].

Hence, the submatrix method is particularly suitable to estimate the
total energy and quantities derived from it. The electronic energy 𝐸elec
given in Eq. (7) can be written as

𝐸elec =
∑

𝑖,𝑗
𝑫𝑖,𝑗𝑯0,𝑗,𝑖. (11)

Thus, only elements {𝑖, 𝑗} contribute if 𝑯0,𝑗,𝑖 ≠ 0. As long as elements
of 𝑫𝑗,𝑖, where 𝑯0,𝑗,𝑖 ≠ 0, are accurately approximated, then the total
energy is also estimated accurately, as we have previously demon-
strated [23]. This shows that the restriction of the sparsity pattern of
𝑫 to be the same as for �̂�0, which is implied by the submatrix method,
is suitable for electronic structure calculations.

3.2.2.3. The non-orthogonal local submatrix method. As an extension of
the submatrix method, we propose here the NOLSM method, which for
the purification in Eq. (6) views 𝑫(𝑯0,𝑺) as a matrix function, i.e., the
submatrix idea is applied here for the first time simultaneously to two
non-orthogonalized matrices.

Accordingly, the steps of the submatrix method are generalized as
4

follows. In the submatrix generation step the sparsity patterns of 𝑯0
Fig. 1. Schematic representation of the steps of the submatrix method for the
approximate calculation of a matrix function 𝑓 (𝑨) of a large sparse matrix 𝑨. The
first step is the construction of a submatrix 𝑖(𝑨) for every column of the matrix 𝑨.
Then the matrix function is applied to the dense submatrices, i.e., 𝑓 (𝑖(𝐴)) and finally
the relevant result columns are inserted into the sparse result matrix.

and 𝑺 are merged so that a row 𝑖 is included in the submatrix for
column 𝑗 if either 𝑯0,𝑖,𝑗 ≠ 0, or 𝑺 𝑖,𝑗 ≠ 0. Thus, the merged sparsity
pattern determines the pair of submatrices 𝑗 (𝑯0) and 𝑗 (𝑺) that are
equal in size and contain the same indices. The matrix functions,
i.e., the purification

𝑗 (𝑫) = 1
2
(

𝑰 − sign(𝑗 (𝑺)−1𝑗 (𝑯0) − 𝜇𝑰)
)

𝑗 (𝑺)−1, (12)

as well as the computation of the energy-weighted density matrix

𝑗 (𝑾) = 𝑗 (𝑫)𝑗 (𝑯0)𝑗 (𝑫) (13)

are applied directly to the submatrices to yield the submatrix of the
density matrix 𝑗 (𝑫) and the energy-weighted density matrix 𝑗 (𝑾).
The entries in columns of these matrices that correspond to the column
of the initial matrix form an approximation of the elements in the
corresponding columns of the result matrices 𝑫 and 𝑾 , respectively.

The general arguments for the suitability of the submatrix idea
for chemical applications given in Section 3.2.2.2 also holds for the
non-orthogonal local submatrix method.

3.2.2.4. The non-orthogonal local submatrix method with GPUs. The
schematic for the implementation of the NOLSM method with accel-
erators is shown in Fig. 2. We discuss here general implementation
aspects that are required to obtain an efficient parallel scaling. Within
our implementation, the sparse input matrices 𝑯0 and 𝑺 are generated
such that each column is completely owned by one MPI rank (Fig. 2
𝑎1./𝑎2.). Thus, the row indices required for the submatrices of 𝑯0 and
𝑺 for a column 𝑗 (Fig. 2 𝑏1./𝑏2.) can be determined and merged without
communicating between the nodes (Fig. 2 𝑐.). The row information
and additional data for the construction of the matrix elements are
transferred from the host to the GPU (Fig. 2 𝑑.). The matrix elements of
the submatrices 𝑗 (𝑯0) and 𝑗 (𝑺) are not transferred from the host or
from other ranks, but are computed locally (Fig. 2 𝑒.) on the GPU. The
submatrix of the overlap matrix can then be inverted (Fig. 2 𝑓 .) and
the resulting 𝑗 (𝑺)−1 can be used in the purification (Fig. 2 𝑔.) given
in Eq. (13). The columns of 𝑗 (𝑫) and 𝑗 (𝑾) that correspond to the
columns of the original matrices hold the approximate matrix elements
of the matrices 𝑫 and 𝑾 . These elements are transferred from the GPUs
to the host (Fig. 2 ℎ.) and written to the sparse result matrices 𝑫 and
𝑾 (Fig. 2 𝑖1./𝑖2.), respectively. This write-back is a local operation so
that in total the NOLSM method avoids any inter-node communication
during the evaluation of the matrix function.

3.2.3. Submatrix combination heuristics
The NOLSM method as described in Section 3.2.2 can be opti-

mized by generating common submatrices for multiple similar columns
instead of individual submatrices for each column. However, it is
worthwhile to combine more columns: Let 𝑛𝑖 and 𝑛𝑗 be the dimensions
of submatrices 𝑖 and 𝑗 , whereas 𝑛𝑖∧𝑗 denote the common rows con-
tained both in and . Then a combined or merged submatrix will
𝑖 𝑗 𝑖,𝑗

Parallel Computing 111 (2022) 102920R. Schade et al.
Fig. 2. Schematic representation of the steps within our NOLSM method: 𝑎1./𝑎2. the overlap matrix 𝑺 (𝑎1.) and the Hamiltonian 𝑯0 (𝑎2.) are stored as large sparse matrices, where
each column is owned by a node; 𝑏1./𝑏2. the row indices for the submatrix of a column or multiple columns are extracted; 𝑐. row indices of the column from the Hamiltonian and
from the overlap matrix are merged; 𝑑. row information together with additional data required for the construction of the matrix elements such as atomic positions are transferred
to the GPU; 𝑒. the matrix elements of the submatrices are generated; 𝑓 . the submatrix of the overlap matrix is inverted; 𝑔. the Hamiltonian submatrix is purified into the density
matrix and the energy-weighted density matrix is calculated; ℎ. the result columns are transferred back to the host and inserted at the corresponding places into the sparse matrices
of the density matrix 𝑫 and energy-weighted density matrix 𝑾 (𝑖1./𝑖2.).
contain 𝑛𝑖 + 𝑛𝑗 − 𝑛𝑖∧𝑗 rows. Considering that the required FLOPs for the
evaluation of each submatrix scales cubically, combining 𝑖 and 𝑗 into
𝑖,𝑗 yields a speedup if and only if

(𝑛𝑖 + 𝑛𝑗 − 𝑛𝑖∧𝑗)
3 < 𝑛3𝑖 + 𝑛

3
𝑗 . (14)

In this work, we use this relation as a strict acceptance criterion for
an iterative combination heuristic. This choice is different from our ear-
lier work that used the spatial location of atoms as guiding properties
for the combination of submatrices [24]. Also, the presented approach
requires no target parameter for the number or size of clusters, but
automatically stops when no more improvement of the target metric
is found.

For the identification of candidate submatrices 𝑗 to be merged
into 𝑖, the row entries of 𝑖 itself are used as a first filter because
only submatrices connected in the global sparse matrix tend to have
many common row entries (i.e. large 𝑛𝑖∧𝑗). Given this neighborhood
information, valid candidates conforming to the criterion from Eq. (14)
are considered iteratively in a sequence that depends on the number
of unique elements that 𝑗 would add to 𝑖, i.e. 𝑛𝑗∖𝑖 = 𝑛𝑗 − 𝑛𝑖∧𝑗 . For
each iteration 𝑛𝑗∖𝑖 ∈ {0,… , 𝑛}, the valid merge candidates are first
identified and prioritized in parallel and then merged into a common
representative 𝑖,𝑗 . This is a similar process to the position update in the
k-means clustering employed by Lass et al. [24]. However, by using
the exact row representation of 𝑖,𝑗 instead of a spatial position, it
allows for the more exact proximity metric (Eq. (14)), while, at the
same time, avoiding separate data structures and updates for nearest-
neighbor information, thus also facilitating the required scaling to
many millions of atoms and submatrices. As the combination approach
is not performed on individual columns, but on groups of all columns
corresponding to each atom, the initial set of submatrices corresponds
directly to the number of atoms. Applying the heuristic from scratch
for a system of about 62.5 million atoms takes about two hours on
a single compute node and the result can be used for many AIMD
steps. Although in the current work the merging was performed for
the full system, parallelization is possible. For that purpose, the system
can be subdivided into sufficiently large subcells and the submatrix
merging can be performed within every subcell independently. The
borders between the subcells can either be treated in a second step by
clustering in the border area, while forbidding modifications of clusters
that do not touch the border, or simply by neglecting them. In this way,
a linear-scaling procedure is obtained.

Yet, instead of fully recomputing the optimal merging of subma-
trices, if atoms have moved appreciably from the positions for which
the merging was originally conducted, simple update strategies of the
merging are possible by splitting up merged submatrices and recombin-
ing them with other submatrices on-the-fly. However, the development
of such update approaches and the necessary row exchanges between
5

the MPI ranks is a topic for future research.
3.3. Implementation innovations

3.3.1. Distributed block compressed sparse row library: DBCSR
The Hamiltonian and the overlap matrix have an underlying block-

structure originating from the fact that multiple spatial basis functions
describe the electronic wave function in the vicinity of an atom and
each basis function corresponds to a column of the matrices. The
DBCSR sparse matrix library [53], which handles the sparse matrix
operations in CP2K [36], stores such small blocks in a dense format,
while referencing these blocks aka non-zero elements in CSR format.
The library is used in this work for the storage and operations on sparse
matrices outside of the submatrix method.

3.3.2. Minimization of communication
Due to the favorable parallel properties of the NOLSM method it

avoids inter-node communication by construction. The transfers be-
tween CPU-main memory and GPUs are minimized by constructing the
matrix elements of the submatrices directly on the GPUs. Thus, only
metadata, i.e., the row indices required for a submatrix, as well as atom
species information, atomic positions for the atoms involved in this
submatrix and additional data for the underlying electronic structure
method have to be transferred. To reduce the overhead of the matrix-
element generation routines on the GPUs, an automatic code generation
approach was employed that directly yields expressions for the matrix
elements of the overlap matrix between two atomic species that only
depend on the distance vector between two atoms. The matrix elements
are computed in FP32 to make efficient use of the special function
units in NVIDIA GPUs for single-precision floating-point transcendental
functions [54]. In addition, we employ a load-balancing between the
GPUs in a compute node so that submatrices are assigned to GPUs
dynamically.

3.3.3. Efficient iterative matrix function solvers on GPU tensor cores
The matrix function for the submatrices, which in the present case

is the purification in Eq. (13), can be solved with libraries for dense
linear algebra. However, we solve this problem with lower precision
linear algebra, specifically making use of the low-precision matrix-
multiplications available with tensor cores in GPUs such as the NVIDIA
A100 that support FP16 (with FP32 accumulation), bfloat16 (with FP32
accumulation), TensorFloat32 and FP64 [55]. For this purpose, the
matrix inversion 𝑖(𝑺)−1 is performed by an iterative scheme [51]

𝒀 0 = 𝑖(𝑺), 𝒁0 = 𝑰 , 𝑽 𝑘 = 𝒁𝑘𝒀 𝑘 (15)

𝒀 𝑘+1 =
1
2
𝒀 𝑘(3𝑰 − 𝑽 𝑘), 𝒁𝑘+1 =

1
2
(3𝑰 − 𝑽 𝑘)𝒁𝑘 (16)

𝒀
− 1

2
0 = lim

𝑘→∞
𝒁𝑘, 𝑖(𝑺)−1 = (𝒀

− 1
2

0)2 (17)

Parallel Computing 111 (2022) 102920R. Schade et al.
and the sign function with the Newton–Schulz iteration given in
Eqs. (9)–(10) [24]. We perform all generalized matrix multiplications
(gemm) with the tensor cores in mixed precision: FP16 with FP32-based
accumulation. To reduce the overhead, the convergence of Eqs. (9)–
(10) and (15)–(17) is not checked in every iteration, but a fixed
number of steps was used. For the matrix multiplications, kernels
from cuBLAS are used. Although individual small- or intermediate-sized
matrix multiplications (dimension ≲ 2000) cannot saturate an NVIDIA
A100, we obtain a significant portion of the floating-point performance
of the tensor cores by employing three additional strategies: firstly by
implementing a suitable caching strategy for the matrices during the
iterations in Eqs. (9) and (16), secondly by using concurrency via CUDA
streams and thirdly by reducing the kernel launch overhead with CUDA
graphs [54]. To reduce the number of required CUDA graphs and the
corresponding graph recording overhead, the matrices are padded to
multiples of 256. Furthermore, GPU memory allocations are reused.

4. How performance was measured

4.1. Computational details

To investigate the performance of the NOLSM method, we have
chosen two kinds of systems: liquid water at ambient condition as a
homogeneous system and the HIV-1 capsid solvated in water as an
inhomogeneous system.

4.1.1. Simulation details
In all of our simulations the GFN-xTB approach is employed in

conjunction with a London dispersion correction based on the rational
Becke–Johnson damping function [56]. Therein, the electronic states
are represented by localized Gaussian-type orbitals. Specifically, every
hydrogen atom is represented by two, sulfur by nine, and all other
elements used in this work by four basis functions, respectively. As
described in Ref. [36], we have extended the GFN-xTB method towards
periodic boundary conditions. For that purpose, the long-range elec-
trostatic is computed using the fast Fourier transformation (FFT)-based
smooth particle mesh Ewald summation with a spline interpolation of
fifth order [57].

Within our NOLSM method, all submatrices of individual atoms,
i.e. all columns corresponding to basis functions of the corresponding
nuclei, are coalesced in a single submatrix by default. Moreover, the
chemical potential has been fixed to a value that ensures the overall
charge neutrality of the system. To that extent, a bisection-like mech-
anism as an outer loop for the determination of the chemical potential
is implemented to satisfy the charge neutrality constraint. Such a
procedure can also be directly integrated into the submatrix method
as shown in [24]. In the spirit of the second-generation Car–Parrinello
AIMD method, the electronic state is propagated in time by means of
fictitious dynamics, thereby completely avoiding the computationally
expensive SCF cycle [9,10]. Therewith individual AIMD-based dynam-
ical simulated annealing steps with a discretized time-step of 0.5 fs
were performed. The modified Langevin-type equation of Eq. (3) is
integrated using the algorithm of Ricci and Ciccotti [58].

4.1.2. Water
The water benchmark is derived from the linear-scaling DFT bench-

mark included with CP2K [59]. The basic cell contains 32 water
molecules and was equilibrated at a temperature of 300 K and a
pressure of 1 bar. This cell is cubic with a length of 9.8 Å. The cell
is then repeated in all spatial directions to create a scalable benchmark
case. The submatrix combination heuristics is not used for water so that
there is one atom per submatrix.
6

Fig. 3. Graphical representation of the present HIV-1 capsid in aqueous solution
containing more than 62.5 million atoms.

4.1.3. HIV-1 capsid
The three-dimensional atomic structure of the entire HIV-1 viral

capsid (PDB 3J3Q) was used as a starting point [60]. The structure is
composed of 313,236 amino acid residues with a total of 2,440,800
atoms. Missing hydrogen atoms were added such that all the terminal
amino acids, the side chains of lysine, arginine, aspartate, glutamate,
and glutamine residues, were all in the charged state. The protonation
states of the histidine residues were assigned based on the local hydro-
gen bonding patterns. The capsid was then placed in an orthorhombic
unit cell of dimensions 1183.9 × 800.5 × 667.8 Å and the entire
structure was solvated in water. Thereafter, the total charge of the
system was neutralized by randomly replacing water molecules with
sodium ions. The final system, which is shown in Fig. 3 and deposited
at [61], has a total of 62,589,576 atoms, i.e. 40,910,985 hydrogen,
1,537,704 carbon, 429,852 nitrogen, 19,689,348 oxygen, 4059 sodium
and 17,628 sulfur atoms, respectively.

4.2. Measurements

The main measurements presented here are:

4.2.1. Wall clock time of the NOLSM method 𝑇NOLSM
The wall clock time 𝑇NOLSM of the core computational routine

NOLSM method, i.e., steps 𝑑.−ℎ. in Fig. 2 are measured. This includes
all transfers between host and GPU.

4.2.2. FLOPs in the NOLSM method FLOPsNOLSM
The floating-point operations FLOPsNOLSM in the FP16/FP32-mixed-

precision matrix iterations in the NOLSM method are estimated as
2𝑛3 for a gemm-operation 𝑪 = 𝛼𝑨 ⋅ 𝑩 + 𝛽𝑪 with 𝑨,𝑩,𝑪 ∈ R𝑛×𝑛.
The construction of the matrix elements of the submatrices, which is
performed in FP32, is neglected here because they constitute a small
fraction of the total workload and due to the ambiguity of counting
the exponential functions as floating-point operations. Other operations
that scale as (𝑛2) in the size of the submatrices such as norms and
scalings are also neglected in the FLOP count.

4.2.3. Sustained performance of NOLSM method 𝑃NOLSM
To judge the sustained performance obtained from the

GPU-acceleration we define the sustained performance 𝑃NOLSM of
NOLSM method as 𝑃 = FLOPs ∕𝑇 .
NOLSM NOLSM NOLSM

Parallel Computing 111 (2022) 102920R. Schade et al.

G

5

a
w
u
𝑛
s
t
1
(
D
s

4.2.4. Wall time clock for one AIMD step 𝑇MD−step
The wall clock time 𝑇MD−step for a single AIMD step is measured as

the average over at least three AIMD steps. This includes all operations
required for one AIMD step, i.e., also IO. This time does not include
operations that are only performed once per full MD simulation such as
MPI and GPU initialization/finalization or setup of the physical system
as well as the heuristic for combining submatrices.

4.2.5. Time-to-solution 𝑇sol
With the quantities introduced above we define the time-to-solution

𝑇sol as the wall-clock time 𝑇MD−step for a single AIMD step. This defini-
tion is reasonable because the number of AIMD steps per MD calcula-
tion can vary greatly depending on the physical or chemical objective
of the calculation. Often many thousands or more steps are performed
so that operations performed only once per MD calculation can be
neglected.

4.3. HPC system and environment

The benchmark calculations have been performed on the JUWELS
Booster [62]. The system is ranked as number 7 on the TOP500 list
as of winter 2020 with a peak double-precision performance of nearly
71 PFLOP/s [63]. Each of the 936 compute nodes of the JUWELS
Booster is a dual-socket system with AMD EPYC 7402 24-core CPUs in
NPS4-configuration with 512 GB of DDR4 main memory. Each socket is
connected to an individual PCIe-switch that in turn is connected to two
NVIDIA A100 GPUs and two Mellanox HDR200 InfiniBand ConnectX6
HCAs. Thus, the theoretical inter-node-communication bandwidth is
800 GBit/s. The four GPUs per node are fully interconnected with
NVLink3. The cluster interconnect is configured in a DragonFly+ topol-
ogy with groups of 48 nodes forming a non-blocking cell. The cells are
interconnected with 10 links between each cell.

The NVIDIA A100s in the JUWELS BOOSTER have 40 GB of HBM2
memory with a peak memory bandwidth of 1555 GB/s. The theoretical
peak performance of the non-tensor-core execution units is 9.7 TFLOP/s
in FP64, 19.5 TFLOP/s in FP32 and 78 TFLOP/s in FP16. The peak
performances when using the tensor cores are listed as 19.5 TFLOP/s in
FP64, 156 TFLOP/s in TF32 and 312 TFLOP/s in FP16 with FP32-based
accumulate [55].

The relevant components of the software environment used in
this work are GCC 9.3.0, OpenMPI 4.1.0, CUDA NVCC 11.0.221, and
CUBLAS 11.0. All benchmarks have been performed with one MPI-rank
per node to minimize data replication and 48 CPU-threads per rank.
Four CUDA streams are used per GPU and each stream is controlled by
a single CPU-thread.

5. Performance results

5.1. Performance of the NOLSM method

The performance and scaling of the core steps of the NOLSM method
𝑃NOLSM, i.e., steps 𝑑. − ℎ. shown in Fig. 2 including transfers to/from

PUs are evaluated in this section.

.1.1. Scaling
The physical system used for weak scaling investigations is water,

s described in Section 4.1.2. To allow for scaling from a single node,
e have used 22 × 22 × 22 basic cells as a basic unit. This basic
nit holds 1,022,208 atoms (1M) and is repeated in 𝑧-direction. For
compute nodes used, we have 𝑛 such basic units. For the strong

caling starting from one node, this single basic unit is used. Addi-
ionally, strong scaling is also shown for the large-system case with
02 × 102 × 102 basic cells corresponding to 101,875,968 atoms
102M). Fig. 4 shows the wall time and parallel efficiency results.
ue to the favorable parallel nature of the non-orthogonalized local

ubmatrix method, a parallel efficiency very close to one is achieved. In
7

Fig. 4. Strong and weak scaling behavior of the NOLSM method for water: weak scaling
for 1,022,208 atoms per node (1M) and strong scaling for 1,022,208 atoms (1M) as
well as 101,875,968 atoms (102M).

Fig. 5. Sustained performance of the NOLSM method and fraction of theoretical peak
performance achieved in the strong and weak scaling calculations for water shown in
Fig. 4.

addition, Fig. 5 shows the achieved floating-point performance 𝑃NOLSM
and fraction of peak performance corresponding to the results shown in
Fig. 4. As defined in Section 4.2, the floating-point operations counted
here only include matrix multiplications on the tensor cores in mixed
precision. Hence, the theoretical peak performance of 312 TFLOP/s
per GPU in FP16-based matrix multiplies with FP32 accumulation was
used for comparison. A fraction of about 43% of the theoretical peak
performance is achieved in this example or, in other words, about 206
PFLOP/s for 384 compute nodes.

5.1.2. Performance of matrix iterations on NVIDIA a100
Fig. 6 shows the increase of performance of cuBLAS-based square

matrix multiplications on the tensor cores of the NVIDIA A100 from
additional techniques like multiple CUDA streams and CUDA graphs.
As a comparison also the performance of the matrix-sign iteration
of Eqs. (9)–(10) while using these techniques is shown. Due to the
cache-friendly nature of the matrix iteration, the overall performance
is higher than for individual matrix multiplications of the same size.
The well-known deficiency of the performance for matrix multiplica-
tions of small matrices persists but is mitigated by these additional

techniques.

Parallel Computing 111 (2022) 102920R. Schade et al.
Fig. 6. Performance of mixed-precision FP16 with FP32-accumulate matrix multiplica-
tions (hgemm) compared to the sign iteration of Eqs. (9)–(10) with cuBLAS on NVIDIA
A100 for different sizes of square matrices and with or without CUDA streams or CUDA
graphs.

5.1.3. Effect of submatrix combination heuristics and transition to HIV-1
system

As discussed in Section 3.2.3, the main benefit of applying the
submatrix combination technique is a reduction of the total workload.
We investigate the effect with the example of the HIV-1 capsid with
about 62.5 million atoms introduced in Section 4.1.3. The heuristic
for the combination of submatrices described in Section 3.2.3 reduces
the cubic work metric that is used as combination criterion in Eq. (14)
by a factor of ≈ 1.65. The second benefit of submatrix combination is
to increase the average submatrix dimensions into regions where the
matrix iterations on GPU reach higher performance as demonstrated
in Fig. 6. Fig. 7 shows the effect of submatrix combination on the
numbers and sizes of submatrices for the HIV-1 capsid system. We
see that the mean and median submatrix sizes increase, most notably
by moving the peak of most common sizes from between 400 and
800 elements to between 800 and 1600 elements with an order of
magnitude fewer submatrices. Furthermore, we see two disjoint large
groups of sizes. The group of smaller submatrices contains up to around
1200 elements before combination and up to 3200 elements afterward,
whereas a group of large submatrices exists between 4000 and 10200
elements that changes little by the combination of submatrices. While
the combination process itself is completely driven by neighborhood
properties encoded in global matrix entries and thus is agnostic of
atom types, the large submatrices are formed around sodium atoms.
After combination, most of the other submatrices are formed around
hydrogen atoms.

The transition from water to the HIV-1 capsid also impacts the
calculation of the matrix elements of the submatrices on the GPU. It
becomes more elaborate because matrix elements involving species like
sulfur require more effort than, for example for hydrogen or oxygen.
For example, a matrix element from our automatic code generation
approach between two sulfur atoms requires roughly ten times more
exponential functions than a matrix element between two oxygen
atoms. However, the impact of this is countered by a third effect of
the submatrix combination heuristics: not only the cubic target metric
of FLOPs during the matrix multiplications is reduced, but at the same
time also a quadratic metric of submatrix elements used i.e., ∑

𝑖 𝑛
2
𝑖

improves by a factor of ≈ 3.3, which benefits the construction of the
submatrices on the GPUs (see step 𝑒. in Fig. 2).

Fig. 8 shows the resulting strong scaling of the NOLSM method for
the sustained performance and fraction of theoretical peak performance
after combining submatrices for the HIV-1 capsid. Please note that
the timing for submatrix combination is not included in the measure-
ments because the combination can be precomputed and has to be
8

Fig. 7. Number of submatrices by groups of sizes 𝑛𝑖. The situation with one atom
per submatrix resulting in 62,589,576 submatrices is compared to the result of the
submatrix combination heuristics that yields 5,536,116 submatrices.

Fig. 8. Strong scaling behavior of the NOLSM method for the HIV-1 capsid with ≈ 62
million atoms.

Fig. 9. Strong scaling behavior of the NOLSM method for HIV-1 capsid with ≈ 62
million atoms.

refreshed only occasionally during an MD calculation. Thus, the NOLSM
method has been shown to reach a sustained performance of about
324.7 PFLOP/s for 384 compute nodes and a fraction of the theoretical
peak performance of 67.7% for the HIV-1 capsid with about 62.5
million atoms. In addition, Fig. 9 shows the strong-scaling wall time
and parallel efficiency for the NOLSM method for the HIV-1 capsid.

Parallel Computing 111 (2022) 102920R. Schade et al.

m

5

c
t
a
a

w
s
i
h
f
f
A
s

6

f
o

f

t
t

Fig. 10. Strong and weak scaling behavior of a full AIMD step for water: weak scaling
for 1,022,208 atoms per node (1M) and strong scaling for 1,022,208 atoms (1M) as
well as 101,875,968 atoms (102M).

Fig. 11. Strong scaling behavior of a full AIMD step for the HIV-1 capsid with ≈ 62
illion atoms.

.2. Electronic structure-based molecular dynamics

As shown above, the NOLSM method drastically accelerates the
omputation of the electronic ground state, which is the core compu-
ational routine of an electronic structure-based AIMD calculation. In
ll previous approaches, this part by far dominated the overall runtime
nd has thus been a focus of this work.

Fig. 10 shows the resulting strong and weak scaling results for
ater for a complete electronic structure-based AIMD step. The overall

caling of a complete time step suggests that additional effort should be
nvested in the force evaluation. In total, the use of the NOLSM method
as enabled the calculation of an electronic structure-based AIMD step
or a system containing more than 100 million atoms in under one hour
or the first time. Fig. 11 shows the corresponding results for a full
IMD step on the HIV-1 capsid. The total wall time for a complete time
tep is well below one hour.

. Implications

The methods developed in this work have far-reaching implications
or both scientific applications and extreme-scale simulation methods
n modern computer architectures with accelerators.

From the application point of view, our technique allows for per-
orming electronic structure-based simulations for systems with more
9

han 100 million atoms at quantum mechanical accuracy. This con-
ribution allows the application of ab-initio simulation methods in

life-sciences, where simulation of very large molecules or long time
scales are required that are typically only accessible to classical meth-
ods. Since our new developments and code improvements will be
contributed to the official CP2K code, the broad atomistic-simulation
community will be able to directly profit from this work.

On the methodological level, our work can be applied and gen-
eralized to a large variety of atomistic simulation and computational
science problems. A natural extension is to apply the presented methods
to DFT because in CP2K the required construction of the Kohn–Sham
Hamiltonian also scales nearly linearly [36]. Further, our method to
compute exact ensemble averages for observables despite truncation
errors in the force computation is neither restricted to AIMD, nor errors
introduced by low-precision arithmetic. On the contrary, our approach
of using a modified Langevin-type equation is directly applicable to the
complete field of MD simulations, in particular for classical methods,
and can be used to compensate other forms of approximations that
can be modeled as noise, for example, time-step errors, mixed-precision
arithmetic or FFT-based Ewald summation for periodic structures [57].

Finally, the submatrix method we have used to compute the matrix
sign function in this work is also applicable to other matrix functions,
for example, arbitrary polynomials, roots, etc. The precondition is that
the sparsity pattern of the initial matrix is approximately preserved
under the matrix function. The submatrix method has two main ad-
vantages for extreme-scale computing applications: First, it decomposes
the problem of computing matrix functions to make it highly parallel
while only requiring very little communication. Second, the conversion
of the problem from large sparse distributed matrices to much smaller
dense local matrices is favorable for GPUs and other accelerators that
are optimized for dense matrix algebra. Hence, it is possible to apply
the submatrix method in many cases where the core computational
problem is a linear eigenproblem that can be reformulated as a matrix
function. Examples include the solution of Maxwell’s equations in
the frequency domain for electrodynamics simulations by casting the
problem as a linear eigenproblem [64].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors gratefully acknowledge the Gauss Centre for Supercom-
puting e.V. (www.gauss-centre.eu) for funding this project by providing
computing time on the GCS Supercomputer JUWELS Booster at Jülich
Supercomputing Centre (JSC). Additionally, we would like to thank for
funding of this project by computing time provided by the Paderborn
Center for Parallel Computing (PC2), as well as the Federal Ministry
of Education and Research (BMBF) and the state of North Rhine-
Westphalia as part of the NHR Program. T.D.K. received funding from
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (Grant Agreement No.
716142). T.D.K. and C.P. kindly acknowledge funding from Pader-
born University’s research award for ‘‘GreenIT’’. Finally, we thank
Thomas Müller (JSC), Paul F. Baumeister (JSC), and Markus Hrywniak
(NVIDIA) for valuable discussions.

References

[1] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation
of state calculations by fast computing machines, J. Chem. Phys. 21 (6) (1953)
1087.

[2] A. Rahman, Correlations in the motion of atoms in liquid argon, Phys. Rev. 136
(2A) (1964) A405–A411.

http://www.gauss-centre.eu
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb1
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb1
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb1
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb1
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb1
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb2
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb2
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb2

Parallel Computing 111 (2022) 102920R. Schade et al.
[3] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, UFF, a
full periodic table force field for molecular mechanics and molecular dynamics
simulations, J. Am. Chem. Soc. 114 (25) (1992) 10024–10035.

[4] A.D. MacKerell Jr., et al., All-atom empirical potential for molecular modeling
and dynamics studies of proteins, J. Phys. Chem. B 102 (18) (1998) 3586–3616.

[5] A.P. Bartok, et al., Machine learning unifies the modeling of materials and
molecules, Sci. Adv. 3 (12) (2017) e1701816.

[6] J.A. Keith, et al., Combining machine learning and computational chemistry for
predictive insights into chemical systems, arXiv:2102.06321 [physics.chem-ph].

[7] R. Car, M. Parrinello, Unified approach for molecular dynamics and
density-functional theory, Phys. Rev. Lett. 55 (22) (1985) 2471–2474.

[8] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative min-
imization techniques for ab initio total-energy calculations: Molecular dynamics
and conjugate gradients, Rev. Modern Phys. 64 (4) (1992) 1045–1097.

[9] T.D. Kühne, M. Krack, F.R. Mohamed, M. Parrinello, Efficient and accurate Car-
Parrinello-like approach to born-oppenheimer molecular dynamics, Phys. Rev.
Lett. 98 (6) (2007) 066401.

[10] T.D. Kühne, Second generation Car–Parrinello molecular dynamics, WIREs
Comput. Mol. Sci. 4 (2014) 391–406.

[11] S. Goedecker, Linear scaling electronic structure methods, Rev. Modern Phys. 71
(4) (1999) 1085–1123.

[12] W. Yang, Direct calculation of electron density in density-functional theory, Phys.
Rev. Lett. 66 (11) (1991) 1438–1441.

[13] G. Galli, M. Parrinello, Large scale electronic structure calculations, Phys. Rev.
Lett. 69 (24) (1992) 3547–3550.

[14] D. Richters, T.D. Kühne, Self-consistent field theory based molecular dynamics
with linear system-size scaling, J. Chem. Phys. 140 (13) (2014) 134109.

[15] E. Prodan, W. Kohn, Nearsightedness of electronic matter, Proc. Natl. Acad. Sci.
USA 102 (33) (2005) 11635–11638.

[16] T.D. Kühne, J. Heske, E. Prodan, Disordered crystals from first principles II:
Transport coefficients, Ann. Physics 421 (2020) 168290.

[17] P. Klavik, A. Malossi, C. Bekas, A. Curioni, Changing computing paradigms
towards power efficiency, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 39 (2018)
(2014) 372.

[18] C. Plessl, M. Platzner, P.J. Schreier, Approximate computing, Inform. Spektrum
15 (2015) 396–399.

[19] K. Karhan, R.Z. Khaliullin, T.D. Kühne, On the role of interfacial hydrogen bonds
in ‘‘on-water’’ catalysis, J. Chem. Phys. 141 (22) (2014) 12B632_1.

[20] V. Rengaraj, M. Lass, C. Plessl, T.D. Kühne, Accurate sampling with noisy forces
from approximate computing, Computation 8 (39) (2020) 1–11.

[21] J. VandeVondele, U. Borstnik, J. Hutter, Linear scaling self-consistent field
calculations with millions of atoms in the condensed phase, J. Chem. Theory
Comput. 8 (10) (2012) 3565–3573.

[22] K. Nemeth, G.E. Scuseria, Linear scaling density matrix search based on sign
matrices, J. Chem. Phys. 113 (2000) 6035–6041.

[23] M. Lass, S. Mohr, H. Wiebeler, T. Kuhne, C. Plessl, A massively parallel algorithm
for the approximate calculation of inverse p-th roots of large sparse matrices,
in: Proc. Platform for Advanced Scientific Computing (PASC) Conference, ACM,
New York, NY, USA, 2018.

[24] M. Lass, R. Schade, T. Kühne, C. Plessl, A submatrix-based method for approxi-
mate matrix function evaluation in the quantum chemistry code CP2K, in: Proc.
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), IEEE Computer Society, Los Alamitos, CA, USA, 2020, pp.
1127–1140.

[25] T.D. Kühne, E. Prodan, Disordered crystals from first principles I: Quantifying
the configuration space, Ann. Physics 391 (2018) 120–149.

[26] J. Hutter, A. Curioni, Car–Parrinello molecular dynamics on massively parallel
computers, ChemPhysChem 6 (9) (2005) 1788–1793.

[27] F. Gygi, Architecture of Qbox: A scalable first-principles molecular dynamics
code, IBM J. Res. Dev. 52 (1.2) (2008) 137–144.

[28] Z. Zhao, et al., The linearly scaling 3D fragment method for large scale electronic
structure calculations, J. Phys. Conf. Ser. 180 (1) (2009) 012079.

[29] N. Jain, et al., Openatom: Scalable ab-initio molecular dynamics with diverse
capabilities, in: International Conference on High Performance Computing,
Springer, 2016, pp. 139–158.

[30] Y. Hasegawa, et al., Performance evaluation of ultra-large-scale first-principles
electronic structure calculation code on the K computer, J. High Perform.
Comput. Appl. 28 (3) (2014) 335–355.

[31] P. Motamarri, et al., DFT-FE–A massively parallel adaptive finite-element code
for large-scale density functional theory calculations, Comput. Phys. Comm. 246
(2020) 106853.

[32] K.-i. Nomura, et al., Metascalable quantum molecular dynamics simulations of
hydrogen-on-demand, in: SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, IEEE, 2014,
pp. 661–673.

[33] J.C. Prentice, et al., The ONETEP linear-scaling density functional theory
program, J. Chem. Phys. 152 (17) (2020) 174111.
10
[34] J.-L. Fattebert, D. Osei-Kuffuor, E.W. Draeger, T. Ogitsu, W.D. Krauss, Modeling
dilute solutions using first-principles molecular dynamics: Computing more than
a million atoms with over a million cores, in: SC’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2016, pp. 12–22.

[35] A. Nakata, et al., Large scale and linear scaling DFT with the CONQUEST code,
J. Chem. Phys. 152 (16) (2020) 164112.

[36] T. Kühne, et al., CP2K: An electronic structure and molecular dynamics software
package - Quickstep: Efficient and accurate electronic structure calculations, J.
Chem. Phys. 152 (19) (2020) 194103.

[37] J. Hutter, A. Curioni, Dual-level parallelism for ab initio molecular dynamics:
Reaching teraflop performance with the CPMD code, Parallel Comput. 31 (1)
(2005) 1–17.

[38] F. Gygi, et al., Large-scale electronic structure calculations of high-Z metals on
the bluegene/l platform, in: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, 2006, p. 45.

[39] D.R. Bowler, T. Miyazaki, Calculations for millions of atoms with density
functional theory: Linear scaling shows its potential, J. Phys.: Condens. Matter
22 (7) (2010) 074207.

[40] J. VandeVondele, U. Borstnik, J. Hutter, Linear scaling self-consistent field
calculations with millions of atoms in the condensed phase, J. Chem. Theory
Comput. 8 (10) (2012) 3565–3573.

[41] K.A. Wilkinson, N.D. Hine, C.-K. Skylaris, Hybrid MPI-OpenMP parallelism in the
ONETEP linear-scaling electronic structure code: Application to the delamination
of cellulose nanofibrils, J. Chem. Theory Comput. 10 (11) (2014) 4782–4794.

[42] M. Arita, S. Arapan, D.R. Bowler, T. Miyazaki, Large-scale DFT simulations with
a linear-scaling DFT code CONQUEST on K-computer, J. Adv. Simul. Sci. Eng. 1
(1) (2014) 87–97.

[43] S. Andermatt, J. Cha, F. Schiffmann, J. VandeVondele, Combining linear-
scaling DFT with subsystem DFT in Born–Oppenheimer and Ehrenfest molecular
dynamics simulations: From molecules to a virus in solution, J. Chem. Theory
Comput. 12 (7) (2016) 3214–3227.

[44] S. Das, P. Motamarri, V. Gavini, B. Turcksin, Y.W. Li, B. Leback, Fast, scalable
and accurate finite-element based ab initio calculations using mixed preci-
sion computing: 46 PFLOPS simulation of a metallic dislocation system, in:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2019, pp. 1–11.

[45] S. Grimme, C. Bannwarth, P. Shushkov, A robust and accurate tight-binding
quantum chemical method for structures, vibrational frequencies, and nonco-
valent interactions of large molecular systems parametrized for all spd-block
elements (Z=1–86), J. Chem. Theory Comput. 13 (5) (2017) 1989–2009.

[46] T.D. Kühne, M. Krack, M. Parrinello, Static and dynamical properties of liquid
water from first principles by a novel Car-Parrinello-like approach, J. Chem.
Theory Comput. 5 (2009) 235–241.

[47] R. McWeeny, Some recent advances in density matrix theory, Rev. Modern Phys.
32 (2) (1960) 335.

[48] P. Pulay, Ab initio calculation of force constants and equilibrium geometries in
polyatomic molecules: I. Theory, Mol. Phys. 17 (2) (1969) 197–204.

[49] G. Schulz, Iterative berechung der reziproken matrix, J. Appl. Math. Mech.
(ZAMM Z. Angew. Math. Mech.) 13 (1) (1933) 57–59.

[50] C. Kenney, A.J. Laub, Rational iterative methods for the matrix sign function,
SIAM J. Matrix Anal. Appl. 12 (2) (1991) 273–291.

[51] N.J. Higham, Stable iterations for the matrix square root, Numer. Algorithms 15
(2) (1997) 227–242.

[52] D. Richters, M. Lass, A. Walther, C. Plessl, T. Kühne, A general algorithm to
calculate the inverse principal p-th root of symmetric positive definite matrices,
Commun. Comput. Phys. 25 (2) (2019) 564–585.

[53] U. Borštnik, J. VandeVondele, V. Weber, J. Hutter, Sparse matrix multiplication:
The distributed block-compressed sparse row library, Parallel Comput. 40 (5–6)
(2014) 47–58.

[54] NVIDIA Corporation, CUDA C++ Programming Guide, NVIDIA Corpora-
tion, 2021, [Online]. Available: https://docs.nvidia.com/cuda/pdf/CUDA_C_
Programming_Guide.pdf.

[55] [Online]. Available: https://www.nvidia.com/content/dam/en-zz/Solutions/Data
-Center/nvidia-ampere-architecture-whitepaper.pdf.

[56] S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion
corrected density functional theory, J. Comput. Chem. 32 (7) (2011) 1456–1465.

[57] U. Essmann, et al., A smooth particle mesh Ewald method, J. Chem. Phys. 103
(19) (1995) 8577–8593.

[58] A. Ricci, G. Ciccotti, Algorithms for Brownian dynamics, Mol. Phys. 101 (12)
(2003) 1927–1931.

[59] [Online]. Available: https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52
fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp.

[60] G. Zhao, et al., Mature HIV-1 capsid structure by cryo-electron microscopy and
all-atom molecular dynamics, Nature 497 (7451) (2013) 643–646.

[61] R. Schade, et al., Enabling electronic structure-based ab-initio molecular dynam-
ics simulations with hundreds of millions of atoms, 2021, http://dx.doi.org/10.
5281/zenodo.4692508, Zenodo.

[62] Hardware configuration of the JUWELS booster module, [Online]. Avail-
able: https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/
Configuration/Configuration_node.html.

http://refhub.elsevier.com/S0167-8191(22)00024-2/sb3
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb3
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb3
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb3
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb3
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb4
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb4
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb4
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb5
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb5
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb5
http://arxiv.org/abs/2102.06321
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb7
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb7
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb7
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb8
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb8
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb8
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb8
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb8
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb9
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb9
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb9
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb9
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb9
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb10
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb10
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb10
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb11
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb11
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb11
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb12
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb12
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb12
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb13
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb13
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb13
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb14
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb14
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb14
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb15
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb15
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb15
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb16
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb16
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb16
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb17
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb17
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb17
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb17
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb17
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb18
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb18
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb18
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb19
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb19
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb19
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb20
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb20
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb20
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb21
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb21
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb21
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb21
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb21
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb22
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb22
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb22
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb23
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb23
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb23
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb23
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb23
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb23
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb23
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb24
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb24
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb24
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb24
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb24
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb24
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb24
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb24
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb24
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb25
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb25
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb25
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb26
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb26
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb26
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb27
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb27
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb27
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb28
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb28
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb28
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb29
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb29
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb29
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb29
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb29
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb30
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb30
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb30
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb30
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb30
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb31
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb31
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb31
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb31
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb31
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb32
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb32
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb32
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb32
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb32
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb32
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb32
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb33
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb33
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb33
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb34
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb34
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb34
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb34
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb34
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb34
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb34
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb34
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb34
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb35
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb35
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb35
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb36
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb36
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb36
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb36
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb36
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb37
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb37
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb37
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb37
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb37
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb39
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb39
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb39
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb39
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb39
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb40
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb40
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb40
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb40
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb40
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb41
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb41
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb41
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb41
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb41
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb42
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb42
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb42
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb42
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb42
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb43
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb43
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb43
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb43
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb43
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb43
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb43
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb45
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb45
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb45
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb45
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb45
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb45
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb45
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb46
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb46
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb46
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb46
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb46
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb47
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb47
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb47
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb48
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb48
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb48
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb49
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb49
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb49
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb50
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb50
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb50
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb51
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb51
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb51
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb52
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb52
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb52
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb52
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb52
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb53
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb53
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb53
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb53
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb53
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb56
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb56
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb56
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb57
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb57
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb57
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb58
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb58
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb58
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
https://github.com/cp2k/cp2k/blob/028e7b8381f1bc85b52fb82ab205a43ab6f0c339/benchmarks/QS_DM_LS/H2O-dft-ls.inp
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb60
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb60
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb60
http://dx.doi.org/10.5281/zenodo.4692508
http://dx.doi.org/10.5281/zenodo.4692508
http://dx.doi.org/10.5281/zenodo.4692508
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/Configuration/Configuration_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/Configuration/Configuration_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/Configuration/Configuration_node.html

Parallel Computing 111 (2022) 102920R. Schade et al.
[63] JUWELS booster TOP 500 entry, [Online]. Available: https://www.top500.org/
system/179894/.
11
[64] S.G. Johnson, J.D. Joannopoulos, Block-iterative frequency-domain methods for
Maxwell’s equations in a planewave basis, Opt. Express 8 (3) (2001) 173–190.

https://www.top500.org/system/179894/
https://www.top500.org/system/179894/
https://www.top500.org/system/179894/
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb64
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb64
http://refhub.elsevier.com/S0167-8191(22)00024-2/sb64

	Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms
	Overview of the problem
	Atomistic computer simulations
	Electronic structure-based Ab-initio molecular dynamics
	Linear-scaling electronic structure theory
	Approximate computing-based submatrix method

	Current state of the art
	Innovations realized
	Summary of contributions
	Algorithmic innovations
	Approximate computing
	Linear-scaling eigenvalue solver via the non-orthogonalized local submatrix method
	Submatrix combination heuristics

	Implementation innovations
	Distributed block compressed sparse row library: DBCSR
	Minimization of communication
	Efficient iterative matrix function solvers on GPU tensor cores

	How performance was measured
	Computational details
	Simulation details
	Water
	HIV-1 capsid

	Measurements
	Wall clock time of the NOLSM method TNOLSM
	FLOPs in the NOLSM method FLOPsNOLSM
	Sustained performance of NOLSM method PNOLSM
	Wall time clock for one AIMD step TMD-step
	Time-to-solution Tsol

	HPC system and environment

	Performance results
	Performance of the NOLSM method
	Scaling
	Performance of matrix iterations on NVIDIA a100
	Effect of submatrix combination heuristics and transition to HIV-1 system

	Electronic structure-based molecular dynamics

	Implications
	Declaration of competing interest
	Acknowledgments
	References

