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Effects of an imposed axial flow on a Ferrofluidic Taylor-Couette flow
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Summary We investigate the effects of an externally imposed axial mass flux [1, 2] (axial pressure gradient, axial through flow) on
ferrofluidic Taylor-Couette flow under the influence of either an axial or a transverse magnetic field [3]. Without imposed axial through
flow, due to the symmetry-conserving axial field and the symmetry-breaking transverse field, it gives rise to various vortex flows in
ferrofluidic Taylor-Couette flow such as wavy Taylor vortex flow (wTVF), wavy spiral vortex flow (wSPI) and wavy vortex flows
(wTVFHx and wSPIHx ), which are typically produced by a non-linear interaction of rotational, shear and magnetic instabilities. In
addition, when an axial through flow is imposed to a ferrofluidic Taylor-Couette flow in the presence of such a magnetic field, new
helical vortex structures are born. In particular, we uncover ’modulated Mixed-Cross-Spirals’ with a combination of at least three
different dominant azimuthal wavenumbers.

FIXED TRANSVERSAL MAGNETIC FIELD.
To investigate the effects of an externally imposed axial through flow Re, for a fixed transversal magnetic field (sx =
0.6), examine dynamics of flow states by varying Re, specially focusing on bifurcation phenomenon for two fixed inner
Reynold numbers, Rei = 110 and 270. Due to a transversal magnetic field, all flow states are inherently 3D and wavy-like
modulated flow [4] containing specific higher modes m± 2.

BIFURCATION SCENARIO
For Rei = 110 and Re = 0 the system shows multistability having three stable states, L1−wSPIHx

, R1−wSPIHx
and

wTV FHx
. By increasing Re, both flow states R1 − wSPIHx

and wTV FHx
move to L1 − wSPIHx

, and then follow
the destiny of L1− wSPIHx (Fig. 1(a)).

(a) Rei = 110 (b) Rei = 270
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Figure 1: Bifurcation scenarios vs. imposed axial through flow Re. Bifurcation scenarios for (a) Rei = 110 and (b) Rei = 270,
respectively. Shown is the total (time-averaged) modal kinetic energy Ekin. Different flow structures are labeled. Vertical arrows
illustrate the transition direction to another stable state, when a flow state loses its stability. Thin [thick] lines correspond to toroidally
closed [helical] flow states.

Increasing Re the state wTV FHx
becomes unstable at Re ≈ 35, where a wavy flow state 2 − wTV FHx

with dominant
mode amplitudes (2,±1) bifurcates. At Re ≈ 38, 2−wTV FHx

finally loses its stability, and moves towards a modulated
helical spiral state L1−wSPIHx

. The helical downward propagating state R1−wSPIHx
becomes unstable at Re ≈ 10,

and then moves toward a stable helical upward propagating state L1−wSPIHx . Starting with L1−wSPIHx , one obtains
the following sequence of flow states (Fig. 1(a)):

L1− wSPIHx → L3− wSPIHx → L4− wSPIHx → L5− wSPIHx →
L6L5L4−mMCSHx → L6− wSPIHx → L7L6L5−mMCSHx → L8− wSPIHx .

While most steps in this scenario can be anticipated, i.e. increasing the helicity - larger azimuthal modes m with in-
creasing Re one eventually finds a new type of mixed mode states as non-linear interaction. We will call this states mod-
ulated Mixed-Cross-Spirals (mMCSHx

)[5] as they appear with three dominant azimuthal wavenumbers. For instance,
L6L5L4−mMCSHx

and L7L6L5−mMCSHx
.
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At larger Rei = 270 (Fig. 1(b)) the sequence of flow state appearing out of wTV FHx with increasing Re is quite different:
wTV FHx

→ 4− wTV Fl,Hx
→ L1− wSPIHx

.
At Re ≈ 47.6, wTV FHx

bifurcates to 4 − wTV Fl,Hx
with dominant azimuthal wavenumber m = 4. However flow

states with lower azimuthal wavenumber m, as 2−wTV Fl,Hx
and 3−wTV Fl,Hx

were temporarily observed as unstable
and only transient states. Further, at Re ≈ 52, 4 − wTV Fl,Hx loses its stability, and then moves towards the helical
L1−wSPIHx . As before, within this transition process, 5−wTV Fl,Hx and 6−wTV Fl,Hx appear as unstable transient
states. Interestingly we could not observe any other stable wTV Fl,Hx

with larger azimuthal wavenumber m ≥ 7.

MODULATED MIXED-CROSS-SPIRALS
The spatial structure of a stable L6L5L4 − mMCSHx

(Fig. 2), which exists between L5 − wSPIHx
and L6 −

wSPIHx clearly illustrates the dominance of the largest mode m = 6 while at the same time the influence and modulation
of both other dominant modes m = 5 and m = 4 are visible. The dominant azimuthal wavenumber m is decreasing from
the inner towards the outer cylinder (Fig. 2(4)). Due to the symmetry-breaking effect of a transversal magnetic field,

Figure 2: Left: Flow visualization of flow states L6L5L4-mMCSHx at sx = 0.6 & sz = 0.0, Rei = 110 and fixed axial through flow
Re = 82. (1) Isosurface of rv; (2) The azimuthal velocity v(r, θ) at mid-plane; (3) Vector plot [u(r, z), w(r, z)] of the radial and
axial velocity components including color-coded azimuthal vorticity η(r, θ = 0, z)). (4a−d) The radial velocity u(r, θ, z) at different
radial positions as indicated. Right: Dominant excited modes (colored squares) of the different solutions in the two-dimensional Fourier
mode space (m,n). Filled circles denote linearly driven modes and linear Fourier mode subspaces are indicated by thick lines. They
represent L5− wSPIHx(5n± 2, n), L6− wSPIHx(6n± 2, n), and a combination of both in L6L5L4−mMCSHx .

the helical state L5 − wSPIHx
[L6 − wSPIHx

] has its dominant mode m = 5 [m = 6] and an additionally stimulated
modes m±2 = {3, 7} [m±2 = {4, 8}] [4], respectively. When the states L5−wSPIHx

and L6−wSPIHx
come close

in Re, they stimulate one of these additional modes (here m = 4) as a nonlinear interaction of dominant modes and thus
a new state with three dominant modes is born. The correspondingmode space of L6L5L4−mMCSHx can be (linearly)
constituted as a combination of two mode spaces of L5− wSPIHx and L6− wSPIHx [(5n± 2, n) and (6n± 2, n)].

CONCLUSIONS
When an axial mass flux is applied to a ferrofludic system, the dynamics of a system can be described by results of
competition of the three different instabilities; centrifugal instability due to rotation, shear instability due to axial mass
flux and magnetic instability due to applied magnetic fields. Due to competition of these instabilities, previously unknown
new flow states appear. These are localized wavy Taylor vortices (wTV Fl and wTV Fl,Hx ) and modulated Mixed-Cross-
Spirals (mMCSHx

). mMCSHx
appear as a byproduct of an interaction of an axial through flow and a transversal

magnetic field. In fact the symmetry breaking nature of a transverse magnetic field is responsible for the appearance of
mMCSHx

due to its additionally stimulated modes m± 2.
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